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1. Introduction1

Is time-varying firm-level profitability risk, propagated by physical capital adjustment2

frictions, a major cause of business cycle fluctuations? Shocks to firm risk have the appealing3

theoretical property that they can naturally generate bust-boom cycles, as shown in a seminal4

paper by Bloom (2009). These bust-boom cycles feature sharp recessions and longer-lasting5

recoveries, an asymmetry that is typical of most observed business cycles. After a surprise6

increase in risk, firms, more uncertain about future profitability, will halt or slow down7

activities that cannot be easily reversed - they ‘wait and see’.1 Investment in equipment and8

structures is an important example. After the heightened uncertainty is resolved, pent-up9

demand for capital goods leads to an investment boom.10

The propagation of firm-level risk shocks in the ‘wait-and-see’ story has the additional11

appeal that it is based on well-established capital adjustment frictions at the micro level, such12

as non-convex adjustment costs and irreversibilities (see Doms and Dunne, 1998, as well as13

Cooper and Haltiwanger, 2006). There is also microeconometric evidence that links increased14

firm-level risk to investment declines mediated through physical adjustment frictions: Guiso15

and Parigi (1999), Fuss and Vermeulen (2004), Bloom et al. (2007), as well as Bontempi16

et al. (2010). Finally, says Bloom (2009): “More generally, the framework in this paper17

also provides one response to the ‘where are the negative productivity shocks?’ critique18

of real business cycle theories. . . . Recessions could simply be periods of high uncertainty19

without negative productivity shocks.” This paper provides a quantitative evaluation of this20

mechanism.21

We use the Deutsche Bundesbank’s firm balance sheet data base, USTAN, to measure22

firms’ profitability risk and its cyclical fluctuations. USTAN is a private sector, annual data23

set that allows us to use 26 years of data (1973-1998), with cross-sections that have, on24

average, over 30,000 firms per year. USTAN has a broader ownership, size and industry25

1The basic idea goes back to Bernanke (1983), Dixit and Pindyck (1994), Hassler (1996 and 2001).
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coverage than the available comparable U.S. data sets from Compustat and the Annual1

Survey of Manufacturers (ASM).2

Firm-level Solow residual growth and firm-level real output growth in USTAN display3

countercyclical dispersion. The richness of USTAN also allows us to formulate lower and4

upper bound scenarios for the size of firm-level risk fluctuations. The empirical analysis5

suggests that existing estimates of the size of firm-level risk fluctuations, based on U.S. data6

sets for large publicly traded or manufacturing firms, are likely biased upward.7

A growing literature argues that various measures of firm-level risk are pervasively coun-8

tercyclical in an unconditional sense. Bloom et al. (2010) document this for the sales growth9

of large publicly traded firms (Compustat) and manufacturing plants (ASM). Gilchrist et al.10

(2010) as well as Gourio (2008) use Compustat data, and Chugh (2011) uses ASM data to11

establish related facts for various productivity measures. Kehrig (2010) shows that the level12

of productivity in the ASM is countercyclically disperse. Berger and Vavra (2011), using13

the underlying micro data of the CPI, show that the dispersion of price changes is coun-14

tercyclical. Davis et al. (1996) find that the dispersion of employment growth rates across15

manufacturing establishments was significantly larger in 1982 (recession) than in 1978 (ex-16

pansion). Finally, Bachmann, Elstner and Sims (2011) show that both disagreement and17

forecast error dispersion indices from business surveys are countercyclically disperse.2 While18

interesting and suggestive, these facts do not, however, directly speak to the question whether19

risk fluctuations generate business cycle fluctuations.20

Our approach is to quantitatively evaluate the business cycle implications of the ‘wait-21

and-see’ effect caused by capital adjustment frictions. The USTAN data are used to calibrate22

a heterogeneous-firm dynamic stochastic general equilibrium model with persistent idiosyn-23

cratic productivity shocks and fixed capital adjustment costs. In such an environment,24

time-varying firm-level risk is naturally modeled as fluctuations in the variance of future25

firm-level productivity shocks. The necessary numerical tools are developed to solve such a26

2Doepke et al. (2005), Doepke and Weber (2006), Higson et al. (2002, 2004) are additional examples.
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model in general equilibrium. The model features ‘wait-and-see’ when firm-level risk rises,1

because investment decisions cannot be reversed easily. The conditional effect of increases2

in firms’ risk is thus a bust-boom cycle in aggregate economic activity. We then study the3

unconditional business cycle implications of time-varying firm-level risk and compare them4

to the data as well as the business cycle properties of a model with aggregate productiv-5

ity shocks only. While the conditional dynamics establish ‘wait-and-see’ as an interesting6

mechanism, the conditional dynamics are not sufficient to show that time-varying firm-level7

profitability risk, mediated by capital adjustment costs, is a major cause of business cycle8

fluctuations. The results from this comparison of unconditional business cycle moments are9

the reason why this paper reaches a different conclusion from Bloom (2009) and Bloom et10

al. (2010) regarding the promise of ‘wait-and-see’ uncertainty-driven business cycles.11

Firm-level risk shocks in the model generate roughly 2 percent of the observed time series12

variance of output (equivalent to 15 percent of the standard deviation) when introduced13

alone or alongside independent aggregate productivity shocks. In other words, firm-level14

risk shocks propagated through ‘wait-and-see’ dynamics leave the unconditional business15

cycle statistics of the model basically unaltered. This holds true also without equilibrium16

real wage and real interest rate movements, i.e. in partial equilibrium.17

While the baseline model, focusing exclusively on ‘wait-and-see’ as a transmission chan-18

nel, suggests that risk shocks have negligible effects for the business cycle, a forecast error19

variance decomposition on the actual data based on simple Choleski-identified vector autore-20

gressions reveals that risk shocks, at longer horizons, account for roughly one third of output,21

investment and hours fluctuations, because risk and TFP are correlated in the actual data22

and not orthogonal as the baseline model assumes. In fact, data and model nicely align once23

one feeds the observed correlation between aggregate productivity and firm-level risk and24

their joint dynamics into the model. Then, firm-level risk shocks contribute as substantially25

to aggregate fluctuations in the model as in the data. Moreover, the conditional impulse26

responses to surprise increases in firm-level risk in the model become consistent with their27
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data counterparts. Nonetheless, the isolated contribution of the ‘wait-and-see’ mechanism1

remains small. Rather, risk shocks contribute to aggregate volatility as they help forecast2

future aggregate productivity over and above what firms can predict from today’s state of3

aggregate productivity.4

We also show that including time-varying aggregate risk has small aggregate effects since5

the average level of idiosyncratic risk in the data is found to be an order of magnitude larger6

than aggregate risk. Relative to the large average idiosyncratic risk that firms face, even the7

sizable fluctuations of aggregate risk in the data, with a percentage volatility between 308

and 40 percent, have a negligible impact on the total risk in firms’ future profitability and9

hence also negligible effects on firms’ optimal policies.10

To be clear about what these findings mean for ‘wait-and-see’ uncertainty-driven busi-11

ness cycles in particular, and for uncertainty-driven business cycles more generally: these12

findings leave open the possibility that particular historical recessions were driven mainly13

by ‘wait-and-see’ bust-boom cycles. Also, since variance decompositions of the data show14

that firm-level risk shocks explain roughly one third of output, investment and employment15

fluctuations, at least at longer horizons,3 the results in this paper open up room for other16

(propagation) mechanisms that are currently discussed in the literature. One angle is to ex-17

plore more structurally the reason for the observed dynamic correlations between firm-level18

risk and aggregate productivity found in the data. Bachmann and Moscarini (2011), using as19

their starting point the SVAR results of Bachmann, Elstner and Sims (2011), which suggest20

that increases in uncertainty might be caused by aggregate first-moment shocks, provide a21

learning model where firms that are subject to negative first-moment shocks or news thereof22

react with increased risk-taking and experimentation with their prices. In this view, observed23

risk fluctuations are an epiphenomenon of aggregate first-moment shocks, not autonomous24

drivers of the business cycle.25

3In Christiano et al. (2010), a DSGE estimation exercise, risk shocks have also a strong low frequency
impact. This is similar to the SVAR findings in Bachmann, Elstner and Sims (2011), who use business survey
data to measure firms’ risk, as well as Bond and Cummins (2004), who use surveys of financial analysts.
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There is also a growing literature that stresses the interaction of risk and economic activity1

propagated through financial, rather than physical frictions. Using a model with financial2

frictions, Gilchrist et al. (2010) argue that increases in firm risk lead to an increase in bond3

premia and the cost of capital which, in turn, triggers a decline in investment activity and4

measured aggregate productivity. Arellano et al. (2011) show that firms downsize investment5

projects to avoid default when faced with higher risk. Chugh (2011), who explains the6

dynamics of leverage with shocks to micro-level risk, finds in accordance with the results in7

this paper only a small business cycle impact of risk shocks. Dorofeenko et al. (2008) is8

another example in this literature.9

More recently, the literature has also started investigating risk shocks in environments10

with nominal rigidities and their interaction with precautionary saving. For example, Basu11

and Bundick (2011) study the impact of shocks to aggregate risk and argue that in a model12

without nominal rigidities (and without capital adjustment frictions) increases in aggregate13

risk lead to an investment boom, induced by the interest rate decline from increased precau-14

tionary saving. The result is a lack of comovement between consumption on the one hand15

and output, investment and employment on the other hand. In a model with sticky prices16

where output is essentially demand-determined, however, a decline in consumption leads to17

a decline in output, employment and investment.418

The remainder of this paper is organized as follows: Section 2 presents the empirical19

analysis from the USTAN data. Section 3 explains the model. Section 4 describes its20

calibration and Section 5 discusses the results.21

2. Some Facts about Firm-Level Risk22

Our firm-level data source is the USTAN data base from Deutsche Bundesbank. USTAN is23

a large annual balance sheet data base, which originated as a by-product of the Bundesbank’s24

4Other channels for the propagation of risk shocks have been considered in the literature: for example,
search frictions in Schaal (2011), investment opportunities in Lee (2011), as well as agency problems in Narita
(2011). Another literature stresses the importance of rare, but drastic surprise changes in the economic
environment: see Gourio (2010).
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rediscounting and lending activities. Bundesbank law required the Bundesbank to assess1

the creditworthiness of all parties backing a commercial bill put up for discounting. It2

implemented this regulation by requiring balance sheet data of all parties involved. These3

data were then archived and collected into a database.54

USTAN has broader coverage in terms of firm size, industry and ownership structure than5

comparable U.S. data sets. Davis et al. (2006) show that studying only publicly traded firms6

(Compustat) can lead to wrong conclusions, when cross-sectional dispersion is concerned.7

Also, just under half of the firms in USTAN are from manufacturing. USTAN allows us to8

study instead virtually the entire nonfinancial private business sector. Specifically, firms that9

are in one of the following six 1-digit industries are included into the sample: agriculture,10

mining and energy, manufacturing, construction, trade, transportation and communication.11

We model fluctuations in idiosyncratic risk as fluctuations in the cross-sectional standard12

deviation of firm-specific Solow residual growth, and use a standard Cobb-Douglas revenue13

production function at the firm level as a measurement device (as in the model used to14

evaluate the quantitative importance of risk fluctuations):15

log(yi,t) = log(zt) + log(εi,t) + θ log(ki,t) + ν log(ni,t), (1)

where εi,t is firm-specific and zt aggregate productivity.6 Labor input ni,t is assumed to16

be immediately productive, whereas capital ki,t is pre-determined and inherited from last17

period. The output elasticities of the production factors, ν and θ, are estimated as median18

shares of factor expenditures over gross value added within each 1-digit industry.7 The19

5Details about the USTAN data base, data treatment, including measurement error correction and sample
selection issues, as well as the actual time series of the baseline firm-level risk measure are available in an
online appendix.

6Disentangling firm-specific demand and supply shocks is not possible with USTAN, because firm-level
prices are not observed. The notion of productivity here is revenue productivity. Firms are indifferent in
their investment decisions as to whether higher revenues come from an increased idiosyncratic demand for
their products or higher productivity of their input factors.

7These are, respectively: ν = 0.2182, θ = 0.7310 (agriculture); ν = 0.3557, θ = 0.5491 (mining and
energy); ν = 0.5565, θ = 0.2075 (manufacturing); ν = 0.6552, θ = 0.1771 (construction); ν = 0.4536, θ =
0.2204 (trade); ν = 0.4205, θ = 0.2896 (transportation and communication).
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resulting time series of the cross-sectional dispersion of firm-level log Solow residual growth1

spans 26 years from 1973 to 1998, and is based on a sample of 854,105 firm-year observations,2

which means an average cross-section size of 32,850 firms per year.3

To focus on idiosyncratic changes that do not capture differences in industry-specific re-4

sponses to aggregate shocks or permanent ex-ante firm heterogeneity, firm fixed and industry-5

year effects are removed from the observations on firm-level Solow residual growth. Measured6

Solow residuals will likely reflect true firm productivity with some error. We take this into7

account and perform a measurement error correction, estimating the size of the measurement8

error by comparing the variances of one- and two-year Solow residual growth rates.9

Intuitively, the importance of fluctuations in idiosyncratic risk depends on its volatility10

and its cyclicality. Since any data treatment necessarily involves many decisions, this paper11

reports a range of results. This will allow us in the model section to compute lower and upper12

bound scenarios for the aggregate importance of idiosyncratic risk fluctuations. The results13

from the whole sample after removing fixed effects and the measurement error correction are14

used in the ‘Baseline’ calibration. The first row of Table 1 shows that firm-level risk fluctuates15

on average 4.72 percent as a fraction of average firm risk, 0.09. It is also countercyclical, as16

measured by the contemporaneous correlation of firm-level risk with the cyclical component17

of the real gross value added of the nonfinancial private business sector. This confirms18

the aforementioned results in the literature that have found various dispersion measures of19

firm-level realization or expectation variables to be countercyclical.20

–Table 1 about here–21

Table 1 also displays the cyclical properties of the cross-sectional standard deviation of22

Solow residual growth as well as average firm-level risk for various ways of cutting the sample23

and treating the data. For instance, the small differences between row (1) and (4) indicate24

that the observed dispersion in the raw data mostly comes from idiosyncratic shocks. Re-25

garding firm size (rows 2, 3 and 6), larger firms tend to have larger risk fluctuations. Row 726
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checks to what extent the cyclicality results are driven by cyclical changes in sample com-1

position (e.g. small, high-risk firms dropping out in recessions) by restricting the analysis to2

firms that are almost always in the sample, i.e. have at least 20 observations of Solow resid-3

ual changes.8 Finally, focusing on specific industries (manufacturing, row 8) and ownership4

structures (row 5), tends to increase the strength of measured risk fluctuations.5

We base our lower bound (‘LB’) calibration scenario (where the coefficient of variation6

of firm-level risk is halved) loosely on the second row, which displays the cyclical properties7

of firm-level risk for small firms. Small firms are still underrepresented in USTAN. The8

upper bound (‘UB’) calibration scenario is loosely based on the third row, which delivers the9

strongest risk fluctuations. To be conservative this value is roughly doubled when computing10

the upper bound models.11

Interestingly, combining features that increase risk fluctuations, such as ‘being almost12

always in the sample’ and ‘being in manufacturing’, does not substantially increase the13

volatility of risk over and above what each of these features alone does (see row (9) of Table 1).14

Any other combination of characteristics would not have left sufficient data to yield reliable15

results. These results show that one should be cautious when inferring the importance of16

risk fluctuations from data sources that are heavily geared towards manufacturing, publicly17

traded firms or large firms. One might overstate risk fluctuations.918

– Table 2 about here –19

Are the micro-level risk processes in Germany and the U.S. comparable? Focussing on20

output-based growth measures (which is what Bloom et al., 2010, make publicly available),21

8Since the sample design of USTAN does not lead to a strictly representative sample, Heckman (1976)
style regressions are run to check whether sample selection is important for the results. Correcting for sample
selection leaves the series of productivity dispersion virtually unchanged.

9One of the strengths of the USTAN data set is that it allows for a comparison of the extent of firm-level
risk fluctuations across industries. The combined retail and wholesale trade sector, for example, features a
similar volatility and cyclicality of risk as the overall USTAN data set. The combined transportation and
communication sector has somewhat higher risk volatility (albeit lower than manufacturing), but firm-level
risk is essentially acyclical there. Restricting the analysis to manufacturing data is thus problematic and
even more so in the U.S., where this industry has a smaller share in aggregate production and employment
than it has in Germany.
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Table 2 compares USTAN results with the readily available U.S. evidence and shows that1

both economies have similar idiosyncratic risk processes, with the U.S. exhibiting slightly2

higher risk fluctuations than Germany: the volatility of the cross-sectional interquartile range3

of output growth from the USTAN data (row 3), 8.00%, is close to the corresponding number4

in the ASM (row 4), 9.80%.10
5

Table 2 demonstrates that the lower and upper bound scenarios – half and quadruple the6

coefficient of variation (‘CV’) of the baseline scenario – comfortably cover the available U.S.7

evidence. This means that to the extent that our model simulations reveal little aggregate8

effects of risk fluctuations, these results are not driven by the use of German data.9

3. The Model10

The empirical results from the previous section are used to calibrate a simple heterogeneous-11

firm model that features ‘wait-and-see’ effects of risk. The models in Khan and Thomas12

(2008) as well as Bachmann, Caballero and Engel (2011) serve as starting points. The main13

departure from either paper is the introduction of time-varying idiosyncratic and aggregate14

productivity risk. Specifically, we assume that firms today observe the standard deviations15

of aggregate and idiosyncratic productivity shocks tomorrow, respectively, σ(z′) and σ(ε′).16

Notice the timing assumption: if firms learn their productivity levels at the beginning of a17

period, an increase in today’s standard deviation of idiosyncratic shocks does not constitute18

higher risk for firms. It merely leads to a higher cross-sectional dispersion of idiosyncratic19

productivity today. In contrast, higher standard deviations tomorrow are true risk today.20

This stark timing assumption is made to give risk shocks the best chance to have the most21

direct effect possible.11
22

10Measured average micro-level risk is higher in the ASM as it is plant-level data, while USTAN is firm-level
data.

11The alternative timing assumption, where firms today know only today’s standard deviations, but predict
tomorrow’s using persistence in the process for the standard deviation of idiosyncratic productivity shocks,
has little impact on the main results.
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3.1. Firms - The Physical Environment1

The economy consists of a unit mass of small firms. There is one commodity in the2

economy that can be consumed or invested. Each firm produces this commodity, employing3

its pre-determined capital stock (k) and labor (n), according to the following Cobb-Douglas4

decreasing-returns-to-scale production function (θ > 0, ν > 0, θ + ν < 1):5

y = zεkθnν , (2)

where z and ε denote aggregate and idiosyncratic revenue productivity, respectively.6

The idiosyncratic log productivity process is first-order Markov with autocorrelation ρε7

and time-varying conditional standard deviation, σ(ε′). Idiosyncratic productivity shocks8

are otherwise independent of aggregate shocks. The aggregate log productivity process is9

an AR(1) with autocorrelation ρz and time-varying conditional standard deviation, σ(z′).10

Idiosyncratic productivity shocks are independent across productive units. The processes11

for σ(ε′) − σ̄(ε) and σ(z′) − σ̄(z) are also modeled as AR(1) processes, where σ̄(ε) denotes12

the time-average of idiosyncratic risk and σ̄(z) the same for aggregate risk.13

The trend growth rate of aggregate productivity is denoted by (1 − θ)(γ − 1), so that14

aggregate output and capital grow at rate γ− 1 along the balanced growth path. From now15

on k and y (and later aggregate consumption, C) are understood to be denoted in efficiency16

units.17

Each period a firm draws its current cost of capital adjustment, 0 ≤ ξ ≤ ξ̄, which18

is denominated in units of labor, from a time-invariant distribution, G. G is a uniform19

distribution on [0, ξ̄], common to all firms. Draws are independent across firms and over20

time, and employment is freely adjustable.12
21

Upon investment, i, the firm incurs a fixed cost of ωξ, where ω is the current real wage.22

Capital depreciates at rate δ. The evolution of the firm’s capital stock (in efficiency units)23

between two consecutive periods, from k to k′, can then be summarized as follows:24

12An experiment with a specification, where adjustment costs are deterministic, shows little impact on the
results of the paper.
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Fixed cost paid γk′

i 6= 0: ωξ (1− δ)k + i

i = 0: 0 (1− δ)k

1

The firms’ distribution over (ε, k) is denoted by µ. Thus,
(
z, σ(z′), σ(ε′), µ

)
constitutes the2

current aggregate state and µ evolves according to the law of motion µ′ = Γ
(
z, σ(z′), σ(ε′), µ

)
,3

which firms take as given.4

3.2. Firms - The Dynamic Programming Problem5

Following Khan and Thomas (2008), we state the dynamic programming problem of a6

firm in terms of utils of the representative household (rather than physical units), and denote7

the marginal utility of consumption by p = p
(
z, σ(z′), σ(ε′), µ

)
. This is the kernel that firms8

use to price output streams.9

Let V 1
(
ε, k, ξ; z, σ(z′), σ(ε′), µ

)
denote the expected discounted value - in utils - of a firm10

that is in idiosyncratic state (ε, k, ξ), given the aggregate state
(
z, σ(z′), σ(ε′), µ

)
. Then the11

firm’s expected value prior to the realization of the adjustment cost draw is given by:12

V 0
(
ε, k; z, σ(z′), σ(ε′), µ

)
=

∫ ξ̄

0

V 1
(
ε, k, ξ; z, σ(z′), σ(ε′), µ

)
G(dξ). (3)

With this notation the dynamic programming problem becomes:13

V 1
(
ε, k, ξ; z, σ(z′), σ(ε′), µ

)
= max

n
{CF + max(Vno adj,max

k′
[−AC + Vadj])}, (4)

where CF denotes the firm’s flow value, Vno adj the firm’s continuation value if it chooses14

inaction and does not adjust, and Vadj the continuation value, net of adjustment costs AC,15

if the firm adjusts its capital stock. That is:16

CF =
[
zεkθnν − ω

(
z, σ(z′), σ(ε′), µ

)
n
]
p
(
(z, σ(z′), σ(ε′), µ

)
, (5a)

Vno adj = βE
[
V 0
(
ε′, (1− δ)k/γ; z′, σ(z′′), σ(ε′′), µ′)], (5b)

AC = ξω
(
z, σ(z′), σ(ε′), µ

)
p
(
z, σ(z′), σ(ε′), µ

)
, (5c)

Vadj = −ip
(
z, σ(z′), σ(ε′), µ

)
+ βE

[
V 0
(
ε′, k′; z′, σ(z′′), σ(ε′′), µ′)], (5d)
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where both expectation operators average over next period’s realizations of the aggregate1

and idiosyncratic shocks, conditional on this period’s values. Recall that i = γk′ − (1− δ)k.2

The discount factor, β, reflects the time preferences of the representative household.3

Taking as given ω
(
z, σ(z′), σ(ε′), µ

)
and p

(
z, σ(z′), σ(ε′), µ

)
, and the law of motion4

µ′ = Γ
(
z, σ(z′), σ(ε′), µ

)
, the firm chooses optimally labor demand, whether to adjust its5

capital stock at the end of the period, and the capital stock, conditional on adjustment. This6

leads to policy functions: N = N
(
ε, k; z, σ(z′), σ(ε′), µ

)
and K = K

(
ε, k, ξ; z, σ(z′), σ(ε′), µ

)
.7

Since capital is pre-determined, the optimal employment decision is independent of the cur-8

rent adjustment cost draw.9

3.3. Households10

There is a continuum of identical households. They have a standard felicity function in11

consumption and labor:13
12

U(C,Nh) = logC − ANh, (6)

where C denotes consumption and Nh the household’s labor supply. Households maximize13

the expected present discounted value of the above felicity function. By definition we have:14

p
(
z, σ(z′), σ(ε′), µ

)
≡ UC(C,Nh) =

1

C
(
z, σ(z′), σ(ε′), µ

) , (7)

and from the intratemporal first-order condition:15

ω
(
z, σ(z′), σ(ε′), µ

)
= − UN(C,Nh)

p
(
z, σ(z′), σ(ε′), µ

) =
A

p
(
z, σ(z′), σ(ε′), µ

) . (8)

3.4. Solution16

The recursive competitive equilibrium of this economy requires the usual optimality and17

market clearing conditions, which is omitted here for the sake of brevity. It is well-known that18

(4) is not computable, because µ is infinite dimensional. Following Krusell and Smith (1997,19

1998) the distribution, µ, is approximated by a finite set of its moments, and its evolution,20

13Experiments with a CRRA of 3 showed little impact on the results of the paper.
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Γ, by a simple log-linear rule. As usual, aggregate capital holdings, k̄, are included into1

this rule. It improves the fit of the Krusell-Smith-rules to add the standard deviation of the2

natural logarithm of idiosyncratic productivity, std(log(ε)). This is of course owing to the3

now time-varying nature of the distribution of idiosyncratic productivity. In the same vein,4

the equilibrium pricing function is approximated by a log-linear rule:5

log k̄′ =ak
(
z, σ(z′), σ(ε′)

)
+ bk

(
z, σ(z′), σ(ε′)

)
log k̄ + ck

(
z, σ(z′), σ(ε′)

)
log std(log(ε)), (9a)

log p =ap
(
z, σ(z′), σ(ε′)

)
+ bp

(
z, σ(z′), σ(ε′)

)
log k̄ + cp

(
z, σ(z′), σ(ε′)

)
log std(log(ε)). (9b)

Given (8), it is unnecessary to specify an equilibrium rule for the real wage. The log-linear6

forms (9a)– (9b) are posited, and then it is checked that in equilibrium they yield a good7

fit to the actual law of motion. The R2 for capital in the baseline calibration are all above8

0.999. For the marginal utility of consumption they exceed 0.993.14
9

Substituting k̄ and std(log(ε)) for µ into (4) and using (9a)–(9b), (4) becomes a com-10

putable dynamic programming problem with corresponding policy functions11

N = N
(
ε, k; z, σ(z′), σ(ε′), k̄, std(log(ε))

)
and K = K

(
ε, k, ξ; z, σ(z′), σ(ε′), k̄, std(log(ε))

)
.12

This problem is solved by value function iteration on V 0, applying multivariate spline tech-13

niques that allow for a continuous choice of capital when the firm adjusts.14

With these policy functions, a model economy can be simulated without imposing the15

equilibrium pricing rule (9b). Rather, the market-clearing conditions are imposed and the16

pricing kernel solved for at every point in time of the simulation. This generates a time series17

of {pt} and {k̄t} endogenously, on which the assumed rules (9a)–(9b) can be updated with a18

simple OLS regression. The procedure stops when the updated coefficients ak
(
z, σ(z′), σ(ε′)

)
19

to cp
(
z, σ(z′), σ(ε′)

)
are sufficiently close to the previous ones.20

14Of course, std(log(ε)) has an analytically known law of motion. The lowest R2 for the capital rule
without std(log(ε)) is just above 0.88, and for the marginal utility of consumption it is just above 0.97.
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4. Calibration1

This Section discusses the calibration of the model from Section 3: standard technology2

and preference parameters, followed by the idiosyncratic and aggregate shock processes and3

then the fixed capital adjustment cost parameter.4

4.1. Technology and Preference Parameters5

The model period is a year, which corresponds to the data frequency in USTAN. Most6

firm-level data sets that are based on balance sheet data are of that frequency. The following7

parameters then have standard values: The discount factor is β = 0.98, and the depreciation8

rate is δ = 0.094. δ is computed from German national accounting data (VGR) for the9

nonfinancial private business sector. Given this depreciation rate, the long-run growth factor10

γ = 1.014 is picked, in order to match the time-average aggregate investment rate in the11

nonfinancial private business sector of 10.8%. This number for γ is also consistent with12

German long-run growth rates. The disutility of work parameter A = 2 generates an average13

time spent at work of 1/3. The output elasticities of labor and capital are set to ν = 0.556514

and θ = 0.2075, respectively, which correspond to the measured median labor and capital15

shares in manufacturing in the USTAN data base.15 Table 3 summarizes these and the16

following parameter choices.17

– Table 3 about here –18

4.2. Idiosyncratic Shocks19

The standard deviation of idiosyncratic productivity shocks is calibrated to σ̄(ε) = 0.090520

(see the first row of Table 1 in Section 2) and set ρε = 0.95. This process is discretized on21

15If one views the DRTS assumption as a mere stand-in for a CRTS production function with monopolistic
competition, than these choices would correspond to an employment elasticity of the underlying production
function of 0.7284 and a markup of 1

θ+ν = 1.31.The implied capital elasticity of the revenue function, θ
1−ν is

0.47. Cooper and Haltiwanger (2006), using LRD manufacturing data, estimate this parameter to be 0.592;
Henessy and Whited (2005), using Compustat data, find 0.551. We have experimented with both elasticities
within conventional ranges, but have not found any of our main results to depend on them. Simulation
results are available on request.
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a 19−state-grid, using Tauchen’s (1986) procedure with mixed Gaussian normals.16 Het-1

eroskedasticity in the idiosyncratic productivity process is modeled with time-varying tran-2

sition matrices between idiosyncratic productivity states, where the matrices correspond to3

different values of σ(ε′).4

4.3. Aggregate Shocks5

The baseline case (Section 5.1) abstracts from time-varying aggregate risk and correlation6

between aggregate productivity and idiosyncratic risk. Both themes will be taken up in7

Sections 5.3 and 5.4, respectively. Thus, to compute ρz and σ̄(z), an AR(1)-process is8

estimated for the linearly detrended natural logarithm of aggregate Solow residuals computed9

from German national accounting data. This estimation leads to ρz = 0.5223 and σ̄(z) =10

0.0121. This process is discretized on a 5−state grid, using Tauchen’s (1986) procedure.11

An AR(1)-process is also estimated for the linearly detrended cross-sectional standard12

deviation of the first differences of the natural logarithm of firm-level Solow residuals, as13

computed in the baseline case, i.e. eliminating sectoral and firm-level fixed effects from14

Solow residual growth and correcting the data for measurement error (see the first row of15

Table 1 in Section 2). This leads to ρσ(ε) = 0.5800 and σσ(ε) = 0.0037. Again, this process16

is discretized on a 5−state grid, using Tauchen’s (1986) procedure. This finer discretization17

compared to a two-state one has the advantage that there is no need to define the high-risk18

state as a certain multiple of the size of the low-risk state, in order to match the overall19

volatility of firm-level risk (Bloom et al., 2010). We do not want to take a stand on how20

‘catastrophic’, i.e. strong but rare, a risk shock is. Instead, normality of risk shocks, which21

is supported by the data, is assumed. Both a Shapiro-Wilk-test and a Jarque-Bera-test do22

not reject at conventional levels. In fact, Bloom et al. (2010) show that catastrophic risk23

16Since idiosyncratic productivity shocks in the data also exhibit above-Gaussian kurtosis - 4.4480 on
average -, and since the fixed adjustment costs parameters will be identified by the kurtosis of the firm-level
investment rate (together with its skewness), it is important to avoid attributing excess kurtosis in the firm-
level investment rate to lumpy investment, when the idiosyncratic driving force itself has excess kurtosis. The
measured excess kurtosis is incorporated into the discretization process for the idiosyncratic productivity
state using a mixture of two Gaussian distributions: N(0, 0.0586) and N(0, 0.1224) - the standard deviations
are 0.0905± 0.0319, with a weight of 0.4118 on the first distribution.
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events such as a doubling of firm-level risk has not occurred in U.S. post war data, and the1

German data do not exhibit extreme risk shocks, either.2

The importance of shocks to firm-level risk for aggregate fluctuations is gauged by its3

time series coefficient of variation, which for the ‘Baseline’ case equals: CVrisk = 4.72%. It4

will be shown below that the business cycle relevance of firm-level risk shocks is essentially an5

increasing function of this statistic. Pinning down the value of CVrisk from firm-level data is6

invariably laden with assumptions and decisions during the data treatment process. We view7

our baseline number for CVrisk as a middle case. In order to assess how the results depend8

on CVrisk, two additional scenarios are considered: a ‘Lower Bound’ scenario with half the9

CVrisk (roughly based on the second row of Table 1 in Section 2), and an ‘Upper Bound’10

scenario, where CVrisk is quadrupled relative to the baseline case. To be conservative, the11

highest CVrisk found in the data, namely the size-weighted cross-sectional standard deviation12

of firm-level Solow residual growth (see the third row of Table 1 in Section 2), is doubled for13

this scenario.14

4.4. Adjustment Costs15

The distribution of firm-level investment rates exhibits both substantial positive skew-16

ness – 2.1920 – as well as (excess) kurtosis – 20.0355. Caballero et al. (1995) document a17

similar fact for U.S. manufacturing plants. They also argue that non-convex capital adjust-18

ment costs are an important ingredient to explain such a strongly non-Gaussian distribution,19

given a close-to-Gaussian firm-level shock process. With fixed adjustment costs, firms have20

an incentive to lump their investment activity together over time in order to economize on21

these adjustment costs. Therefore, typical capital adjustments are large, which creates excess22

kurtosis. Making use of depreciation, firms can adjust their capital stock downward with-23

out paying adjustment costs. This makes negative investments less likely and hence leads24

to positive skewness in firm-level investment rates. Therefore the skewness and kurtosis25

of firm-level investment rates are used to identify ξ̄. Given the following set of parame-26

ters
{
β, δ, γ, A, ν, θ, σ̄(ε), ρε, σ̄(z), ρz, σσ(ε), ρσ(ε)

}
, the adjustment costs, ξ̄, are calibrated to27

16



minimize the Euclidean distance, Ψ(ξ̄), between the time-average firm-level investment rate1

skewness and kurtosis produced by the model and the data. To take into account the dif-2

ferent precision at which skewness and kurtosis are estimated, both are weighted with the3

inverse of their time-series standard deviation.4

The following Table 4 shows that ξ̄ is indeed identified in this calibration strategy, as cross-5

sectional skewness and kurtosis of the firm-level investment rates are both monotonically6

increasing in ξ̄. The minimum of Ψ is achieved for ξ̄ = 0.25, our baseline case.17
7

– Table 4 about here –8

This implies average costs conditional on adjustment equivalent to roughly 7% of annual9

firm-level output, which is well in line with estimates from the U.S. (see Bloom, 2009, Table10

IV, for an overview). Moreover, the last column of Table 4 shows that the baseline model11

matches fairly well the fraction of firms with lumpy investment in any given year, measured12

as the investment rate that is larger than 20 percent in absolute value. This statistic is13

13.80% in the USTAN data and has been commonly used in the literature as a measure of14

the fraction of investment episodes that can reasonably be considered lumpy (see Cooper15

and Haltiwanger, 2006, as well as Gourio and Kashyap, 2007).16

5. Results17

This set-up can be used to evaluate the quantitative importance of capital adjustment18

frictions in propagating risk shocks through ‘wait-and-see’ effects. This is done in two steps.19

First, a model is analyzed where firm-level risk shocks are introduced as an independent20

process alongside standard aggregate productivity shocks, see Table 5. In extensions, Table21

7, aggregate productivity shocks and risk shocks have the correlation structure observed in22

the data (‘Correlated Processes’). Finally a case with time-varying aggregate risk added to23

the ‘Baseline’ model is analyzed (‘Aggregate Risk’).24

17Quadrupling ξ̄ to experiment with a stronger ‘wait-and-see’ motive has little impact on results.
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5.1. Baseline Results - Independent Shocks1

Partial equilibrium models feature ‘wait-and-see’ dynamics as their conditional response2

to a risk shock: a collapse of economic activity on impact, then a strong rebound and3

overshooting (Bloom, 2009). Figure 1 confirms that this characteristic impulse response4

survives both the introduction of independent standard first-moment aggregate productivity5

shocks as well as general equilibrium real interest rate and wage adjustments. The ‘Baseline6

Model’ thus features the expected conditional response to risk shocks. In fact, the initial7

investment collapse is somewhat stronger in general equilibrium due to a wealth effect,8

whereas overall fluctuations are dampened. Households perceive the prolonged rebound and9

overshooting of economic activity in the future, are wealthier and increase consumption of10

goods and leisure today. Less output is produced, more of it consumed and investment11

decreases. The rebound is weaker in general equilibrium due to consumption smoothing.12

–Figure 1 about here –13

To answer our initial question and to understand the importance of time-varying risk14

for the business cycle, however, studying the sign of the conditional responses might not be15

sufficient.16

– Table 5 about here –17

Table 5 displays the unconditional business cycle properties of various variants of the18

baseline model, i.e. firm-level risk shocks introduced as an independent process alongside19

standard aggregate productivity shocks. A comparison between column (1), the baseline20

calibration featuring a model with an intermediate estimate of the CVrisk = 4.72%, and the21

constant-risk, RBC-style model in column (4) shows that their business cycle statistics are22

essentially identical. Only in the extreme case of a CVrisk = 18.88%, column (3), the upper23

bound calibration, can risk fluctuations contribute somewhat to the volatility of output.24

18



Result 1. Firm-level risk fluctuations added to first moment productivity shocks lead to1

similar business cycle dynamics as RBC models, unless firm-level risk is (counterfactually)2

highly volatile.3

Table 5, in its last column, also shows that the business cycle properties in Germany4

are roughly the same as in the U.S. (for instance, aggregate technology shocks alone explain5

a large fraction of the business cycle volatility of output in the ‘RBC Model’), so that our6

results are not likely due to idiosyncrasies in the German business cycle. The only exception7

is the (relative) volatility of investment, which is indeed lower than in the U.S. However,8

in a very open economy such as Germany it is unclear what the best data counterpart of9

model investment is; indeed, the relative volatility of national saving in Germany is 4.62,10

much closer to the U.S. number for investment, and what the model predicts.11

Could the mild effects of firm-level risk shocks be driven by general equilibrium price12

adjustments? After all, ‘wait-and-see’ is a partial equilibrium mechanism. The partial13

equilibrium counterparts of the general equilibrium output volatilities in columns (1)-(4) in14

Table 5 (the baseline, the lower and the upper bound calibration, as well as the RBC style15

model) are, respectively, 3.18%, 3.16%, 3.79%, and 3.17%. These numbers show that general16

equilibrium effects as usual dampen aggregate fluctuations, but that they are not causing17

firm-level risk shocks to be essentially neutral, when introduced into a standard RBC model18

– ‘Baseline’ and ‘RBC model’ behave also in partial equilibrium almost identical.19

5.2. Risk Shocks Alone20

Column (5) of Table 5, ‘Risk Model’, shows business cycle statistics for the same set21

of risk shocks as in the baseline model, but with aggregate productivity shocks shut down.22

Column (6), ‘Psych. Risk’, studies the same case, but here risk shocks only change the23

risk perceptions of firms, yet never materialize. This model specification features purely24

subjective uncertainty, whose fluctuations have almost no effects on aggregate volatility.25

The ‘Risk model’, featuring actual shocks to firm-level risk but no aggregate productivity26

shocks, produces in terms of standard deviations 15% of the output volatility in the data27

(i.e. 2% of its variance).28

19



Result 2. The literature has argued that firm-level risk fluctuations, propagated through1

capital adjustment frictions, might generate cycles through the concentration of economic2

activity in periods of relatively stable economic environments. We show that this mechanism3

is unlikely to be a major driver of the business cycle.4

Risk shocks alone also lead to a lack of comovement between consumption and the other5

macroeconomic aggregates. When a firm-level risk shock hits the economy, aggregate in-6

vestment demand declines through the ‘wait-and-see’ mechanism, which leads to declining7

interest rates and higher consumption on impact. The opposite lack of comovement for an8

aggregate risk shock – decreased consumption due to increased precautionary saving and9

increased investment – has recently been discussed in a model without capital adjustment10

frictions by Basu and Bundick (2011). They argue that nominal rigidities can fix this lack11

of comovement. We surmise that the same line of argument applies to our model setup.12

In the short run, risk shocks decrease aggregate investment demand at all real rates. With13

nominal rigidities, it depends on monetary policy reactions whether the resulting multiplier14

on output is large enough to also cause a consumption decline.15

5.3. Extensions: Correlated Shocks16

Consider now the more general correlation structure between risk shocks and aggregate17

productivity shocks in the data. It will be shown that this not only makes the model fit18

better the conditional responses of various macroeconomic aggregates to an innovation in19

firm-level risk,18 but it also reveals a new potential mechanism how risk shocks can generate20

aggregate fluctuations: they negatively predict aggregate productivity in the future.21

To obtain conditional responses, three-variable VARs are estimated with the natural22

logarithm of aggregate Solow residuals, idiosyncratic risk and various aggregate activity23

variables. This ordering is then used in a simple Choleski-“identification”. This is similar to24

the VAR in Bloom (2009), who orders stock market returns before stock market volatility,25

18See Curdia and Reis (2011), who argue that allowing for correlated shocks in a standard medium-scale
DSGE model leads to a better fit to U.S. macroeconomic data.
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in order to identify pure second-moment shocks after controlling for first-moment shocks.1

While not deeply structural, this is as a different, but convenient and instructive way to2

summarize the data.3

Figure 2 shows this exercise for aggregate output, aggregate investment, total hours, and4

consumption for the ‘Baseline’ specification with orthogonal productivity and risk shocks.5

The impact responses in the data of output, hours, investment and consumption to a risk6

innovation are positive, positive, positive and negative, respectively. The model responses7

for the ‘Baseline’ calibration, i.e. independent first and second moment shocks, are just8

the opposite; they feature relatively short-run ‘wait-and-see’ dynamics, similarly to Bloom9

(2009). Given the short time series available, some of these impact estimates, notably for10

investment and consumption, are obtained with some imprecision. Eventually uncertainty11

shocks lead to protracted declines of economic activity in all four major macroeconomic12

aggregates. This finding is consistent with the results in Bond and Cummins (2004), Gilchrist13

et al. (2010) as well as Bachmann, Elstner and Sims (2011). Nevertheless, the risk responses14

of the ‘Baseline’ calibration appear broadly inconsistent with the data: they are not as15

pronounced and protracted.16

However, the ‘Baseline Model’ abstracts from one important feature of the data: aggre-17

gate productivity and idiosyncratic risk are not orthogonal processes. We therefore solve18

and simulate an alternative model specification with correlated firm risk and aggregate pro-19

ductivity processes and feed into the model the joint dynamics estimated from the data for20

these two time series (‘Correlated Processes’), see Figure 3. In this alternative specification,21

the impulse responses estimated on simulated model data are much closer to those in the22

data and qualitatively match the shape of the impulse responses from actual data for all four23

macroeconomic quantities.24

–Figure 2 about here –25

–Figure 3 about here –26
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A forecast error variance decomposition of the same VAR (see Table 6) both on the1

actual data and on the model simulated data supports the conclusion from Section 5.1 and2

from the impulse responses. In the data, risk fluctuations contribute a significant amount3

to the fluctuations of output, investment and total hours, especially at longer horizons. Yet,4

the ‘Baseline’ with only ‘wait-and-see’ dynamics does not generate the rising forecast error5

variance contribution profile found in the data; the ‘Correlated Processes’ calibration does.6

– Table 6 about here –7

Why does the ‘Correlated Processes’ calibration generate this better fit to the data? The8

introduction of risk shocks in ‘Correlated Processes’ also changes the stochastic properties of9

aggregate productivity – a feature absent in the calibrations with orthogonal shock processes.10

Shocks to risk change the conditional expectation of future productivity – higher risk signals11

a productivity decline as the coefficient of risk today on aggregate productivity tomorrow12

is negative (−1.9735) – which, in turn, has important general equilibrium implications: a13

general equilibrium wealth effect makes agents consume less and work more,19 which on14

impact drives up output and – through a decrease in the real interest rate – investment.15

To better understand the consequences of assuming a richer contemporaneous and dy-16

namic correlation structure between aggregate productivity and firm-level risk, we also17

compute a specification, where actual firm-level risk is fixed at σ̄(ε) and where σ(ε′) is re-18

interpreted as a latent state variable that jointly evolves with z as in ‘Correlated Processes’.19

This specification is denoted ‘Forecast Model’, because “risk” today then merely predicts20

productivity tomorrow, but does not change the idiosyncratic stochastic environment of the21

firms. In other words, in this case “risk” is exclusively a signal of future productivity. The22

impulse responses of ‘Correlated Processes’ and ‘Forecast Model’ in Figure 3 are similar,23

19The real wage decreases after a risk shock both in the data and in the model simulated data from
‘Correlated Processes’.
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which suggests that the conditional effects of risk on aggregate activity are mainly driven by1

this signalling effect.2

In a second specification, ‘Naive Model’, the same joint process for aggregate productiv-3

ity and firm risk is used as in the ‘Forecast Model’, but the agents in the economy – naively4

– continue to use the univariate process for productivity from the ‘RBC Model’ when com-5

puting their optimal policies. Table 7 shows how the unconditional business cycle moments6

evolve from the ‘RBC Model’ to ‘Correlated Processes’. The changes from the ‘Forecast7

Model’ to ‘Correlated Processes’ identify the specific effects of time-varying firm risk on8

aggregate fluctuations.9

– Table 7 about here–10

It is mostly volatilities that are affected by introducing the second shock. Output fluc-11

tuates more, but these output fluctuations are dampened, when actual risk shocks hit the12

economy. The responsiveness of the economy to productivity shocks decreases in the volatil-13

ity of risk shocks. The correlations of aggregate quantities are the same across models, and14

the increase in persistence from the ‘RBC Model’ to a model with risk shocks is largely15

mechanical, as it is manifest already in the ‘Naive Model’.16

Result 3. The conditional impulse responses of aggregate quantities to a risk innovation in17

a model where risk and productivity shocks are uncorrelated appear to be inconsistent with18

their data counterparts. A model with correlated risk and productivity shocks matches the19

data better in terms of conditional impulse responses.20

5.4. Extensions: Aggregate Risk21

Finally, in column (5) of Table 7, we add time-varying aggregate risk (‘Aggregate-Risk22

Model’) to the ‘Baseline’ calibration with time-varying firm-level risk and aggregate produc-23

tivity shocks, but maintain the independence assumption between the latter. To save on one24

state variable in the computation, this additional shock is introduced as perfectly correlated25

with the state of firm-level risk. This way, the impact of time-varying aggregate risk can be26
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expected to be maximized. The impact of time-varying risk – wait-and-see – can only be1

diluted, when both types of risk can move in opposite directions. Thus, in the implementa-2

tion, whenever σ(ε′) moves around on its 5-state grid, centered around σ̄(ε) = 0.0905, σ(z′)3

moves around in the same way on a 5-state grid, centered around σ̄(z) = 0.0121. The grid4

width of the latter is used to calibrate the time series coefficient of variation of aggregate5

risk to roughly 36%.20 Relative to its average, aggregate risk is thus more than seven times6

as variable as idiosyncratic risk. One might expect large aggregate effects from these risk7

fluctuations. Table 7 shows that again the effects are mild. The business cycle statistics of8

the ‘Baseline’ with time-varying aggregate and idiosyncratic risk are very similar to those9

from the ‘RBC Model’, with some increase in aggregate volatility.10

To understand this result note that the average idiosyncratic risk, σ̄(ε) = 0.0905, is11

almost an order of magnitude larger than the average aggregate risk, σ̄(z) = 0.0121. Since12

standard deviations are not additive, the combined small aggregate and large idiosyncratic13

risk, i.e. the standard deviation of the combined productivity shock, is close to the one of14

idiosyncratic productivity. For example, starting from a situation of average aggregate and15

idiosyncratic risk, the combined risk the firm faces is 0.0913. Jumping from here to a situation16

with highest aggregate risk (and average idiosyncratic risk) would lead to a combined risk17

of 0.0935, a 2.4% increase. Moving from the average situation to a situation with highest18

idiosyncratic risk (and average aggregate risk), leads to an increase in the combined risk to19

0.1048 or almost 15%.20

Result 4. Aggregate risk fluctuations added to aggregate productivity shocks and idiosyn-21

cratic risk fluctuations lead to similar business cycle dynamics as RBC models.22

20We use rolling window standard deviation estimates for the growth rates of aggregate output and em-
ployment in Germany and the U.S. The precise number is somewhat sensitive to the data frequency and
window size used - higher frequencies and larger window sizes tend to give lower coefficients of variation for
aggregate volatility. Yet, most results lie between 30 and 40 percent.
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6. Conclusion1

Shocks to firm-level risk, mediated through physical capital adjustment frictions, are un-2

likely to be major drivers of the business cycle. We arrive at this conclusion by studying3

a heterogeneous-firm dynamic stochastic general equilibrium model with persistent idiosyn-4

cratic shocks, fixed capital adjustment costs and time-varying firm-level risk. The model5

features a ‘wait-and-see’ effect for investment after surprise increases in firm-level risk. The6

model is disciplined using a rich German firm-level data set. Relative to the literature this7

data set allows us to uncover upward biases, when the volatility of firm-level risk, and thus its8

importance for aggregate fluctuations, is measured from data that focus on manufacturing or9

publicly traded firms. However, the main reason why this paper arrives at a somewhat differ-10

ent conclusion from the literature is our focus on the unconditional business cycle dynamics11

generated by firm-level risk fluctuations. On its own, time-varying firm-level risk does not12

produce quantitatively realistic business cycle volatility, and when juxtaposed to standard13

aggregate productivity shocks it does little to alter business cycle fluctuations. Correlated14

firm-level risk and aggregate productivity shocks improve the model fit, which suggests as a15

direction for future research to understand better the precise structure underlying the dy-16

namic correlations and the direction of causality between first- and second-moment shocks.17
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Table 1: The (Cyclical) Properties of Firm-Level Risk

CV Cyclicality Mean
(1) Baseline - FE and ME 4.72% -0.47 0.09
(2) LB: Smallest 25% firms (capital) - FE and ME 2.73% -0.48 0.11
(3) UB: Size weighted (capital) - FE and ME 8.38% -0.62 0.08
(4) Raw - ME 4.10% -0.44 0.11
(5) Publicly traded - FE and ME 7.34% -0.29 0.08
(6) Largest 5% firms (capital) - FE and ME 7.28% -0.46 0.08
(7) 20 obs. - FE and ME 7.26% -0.38 0.08
(8) Manufacturing - FE and ME 6.08% -0.61 0.08
(9) 20 obs., manufacturing - FE and ME 7.52% -0.50 0.08

Notes: Entries refer to the linearly detrended 1973-1998 series of cross-sectional standard deviation of firm-

specific log Solow residual growth purged of measurement error (‘ME’) and firm-specific as well as industry-

year fixed effects (‘FE’), in short: firm-level risk. Columns displays the time-series coefficient of variation

(“CV”) of firm-level risk, its correlation with HP(100)-filtered series of real gross value added of the non-

financial private business sector (“Cyclicality”), and the time average firm-level risk (“Mean”). Row (1) is

the baseline data treatment; (2) restricts the sample to the 25% smallest firms in terms of capital stock;

(3) considers a capital-weighted cross-sectional standard deviation of Solow residual changes; (4) has no

‘FE’-treatment. Rows (5)-(8) restrict the sample to publicly traded firms, to large firms, to firms with at

least 20 observations of Solow residual changes, and to manufacturing firms, respectively. The last row (9)

combines the last two criteria.
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Table 2: Micro-Level Output Growth Dispersions: Germany - U.S. Comparison

CV Cyclicality Mean
STD IQR STD IQR STD IQR

(1) USTAN Basesample - FE and ME 5.66% -0.45 0.11
(2) USTAN Manufacturing - FE and ME 7.09% -0.59 0.11
(3) USTAN Manufacturing 5.01% 8.00% -0.54 -0.50 0.15 0.16
(4) ASM Manufacturing 9.80% -0.22 0.37

Notes: see notes to Table 1; however, here entries refer to output growth instead of Solow residual growth.

In addition to risk being measured as the cross-sectional standard deviation (‘STD’), rows (3) and (4) also

report the interquartile range (‘IQR’), for which our measurement error correction is not possible. Row

(3) does not correct for fixed effects or measurement error, because the available U.S. evidence in Row (4)

does not either. Row (4) refers to the 1973-2005 IQR series for plant-level output growth rates in the ASM,

available from http : //www.stanford.edu/ nbloom/index files/Page315.htm. The U.S. output measure

is the cyclical component of industrial production.
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Table 3: Model Parameters

Parameter Value Data Source
discount factor β 0.98 standard
disutility of labor A 2 standard
depreciation rate δ 0.094 VGR Data
long-run growth factor γ 1.014 VGR Data
time-average aggregate risk σ̄(z) 0.0121 VGR Data
autocorrelation of aggregate productivity ρz 0.5223 VGR Data
output elasticity of labor ν 0.5565 USTAN
output elasticity of capital θ 0.2075 USTAN
time-average idiosyncratic risk σ̄(ε) 0.095 USTAN
autocorrelation of idiosyncratic productivity ρε 0.95 USTAN
volatility of idiosyncratic risk σσ(ε) 0.0037 USTAN
persistence of idiosyncratic risk ρσ(ε) 0.58 USTAN
adjustment cost parameter ξ̄ 0.2 USTAN

Notes: this table summarizes the values of the model parameters and the data sources used to calibrate

them.
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Table 4: Calibration of Adjustment Costs - ξ̄

ξ̄ Skewness Kurtosis Ψ(ξ̄) Adj. costs/ Fraction
Unit of Output Lumpy Adj.

0 -0.0100 3.5696 18.9638 0% 53.45%
0.01 0.8968 5.1370 10.7881 0.74% 31.80%
0.1 2.2625 9.6529 3.5656 3.53% 15.39%
0.25 (BL) 2.8859 12.3950 2.9202 6.97% 11.44%
0.5 3.3406 14.7488 3.6480 12.09% 9.20%
0.75 3.5964 16.2341 4.5525 16.97% 8.12%
1 3.7739 17.3431 5.4105 21.80% 7.45%
5 4.7614 24.8881 14.4205 110.32% 4.63%
Data 2.1920 20.0355 13.80%

Notes: ‘BL’ denotes the baseline calibration. Skewness and kurtosis refer to the time-average of the cor-

responding cross-sectional moments of firm-level investment rates. The fourth column displays the value

of Ψ, the precision-weighted Euclidean distance of the model’s cross-sectional skewness and kurtosis of

investment-rates to their data counterparts. The fifth column shows the average adjustment costs condi-

tional on adjustment as a fraction of the firm’s annual output. The last column displays the fraction of firms

with lumpy capital adjustments in any given year, i.e. firms with investment rates that are larger than 20

percent in absolute value.
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Table 5: Business Cycle Statistics for the Baseline Results

(1) (2) (3) (4) (5) (6) (7)
Base- Lower Upper RBC Risk Psych. Data
line Bound Bound Model Model Risk
(BL) (LB) (UB) Model

Volatility
of Output 2.07% 2.07% 2.20% 2.07% 0.34% 0.08% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.41 0.41 0.44 0.41 0.79 0.99 0.78
Investment 4.20 4.18 4.50 4.18 7.26 10.29 1.90
Employment 0.69 0.69 0.79 0.68 1.48 2.01 0.78

First-order Autocorrelation
Output 0.30 0.30 0.33 0.31 0.47 -0.01 0.48
Consumption 0.54 0.55 0.51 0.55 0.42 -0.06 0.67
Investment 0.23 0.24 0.23 0.25 0.18 -0.06 0.42
Employment 0.22 0.23 0.21 0.24 0.16 -0.06 0.61

Contemporaneous Correlation with Aggregate Output
Consumption 0.86 0.88 0.72 0.88 -0.12 -0.92 0.66
Investment 0.97 0.97 0.94 0.97 0.86 0.98 0.83
Employment 0.95 0.96 0.89 0.96 0.82 0.98 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment 0.72 0.74 0.46 0.75 -0.62 -0.97 0.60
Employment 0.67 0.70 0.34 0.71 -0.67 -0.98 0.36

Notes: Columns (1),(2),(3) refer to simulations with two orthogonal aggregate shocks, to z and σ(ε′). They

differ in the time series coefficient of variation of σ(ε′). In (1), it is 4.72%, which is halved in (2) and

quadrupled in (3). Column (4) refers to a simulation, where the only aggregate shock is to z, and (5) refers

to a simulation, where the only aggregate shock is to σ(ε′), whose time series coefficient of variation is 4.72%.

‘(6) Psych. Risk Model’ uses the same simulated firm-level risk series as (5), but the risk series enters only

into the firms’ policy functions, whereas actual σ(ε′) is fixed at σ̄(ε). ‘Data’ (except for consumption) refers

to the nonfinancial private business sector’s aggregates. Consumption is aggregate consumption. All series,

from data and model simulations, have been logged and HP-filtered with a smoothing parameter 100.
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Table 6: Forecast Error Variance Decompositions

Forecast Horizon
1Y 2Y 10Y

Data 4.26% 15.93% 35.40%
Output Correlated Processes 0.88% 16.98% 32.31%

Baseline 0.56% 0.53% 0.85%
Data 2.56% 8.24% 27.74%

Investment Correlated Processes 2.97% 18.22% 31.70%
Baseline 2.28% 2.22% 2.80%
Data 12.84% 10.65% 24.51%

Total Hours Correlated Processes 3.79% 18.60% 31.90%
Baseline 3.13% 3.03% 4.11%

Notes: see notes to Figures 2 and 3.
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Table 7: Business Cycle Statistics for the Extensions and Robustness Results

(1) (2) (3) (4) (5) (6)
Correlated Forecast Naive RBC Aggregate Data
Processes Model Model Model Risk

Volatility
of Output 2.41% 2.59% 2.25% 2.07% 2.14% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.36 0.33 0.42 0.41 0.41 0.78
Investment 4.36 4.53 4.17 4.18 4.21 1.90
Employment 0.70 0.75 0.68 0.68 0.70 0.78

First-order Autocorrelation
Output 0.38 0.40 0.43 0.31 0.29 0.48
Consumption 0.60 0.65 0.61 0.55 0.53 0.67
Investment 0.31 0.33 0.38 0.25 0.23 0.42
Employment 0.30 0.31 0.38 0.24 0.22 0.61

Contemporaneous Correlation with Aggregate Output
Consumption 0.89 0.87 0.88 0.88 0.87 0.66
Investment 0.98 0.98 0.97 0.97 0.97 0.83
Employment 0.97 0.97 0.96 0.96 0.95 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment 0.80 0.77 0.74 0.75 0.73 0.60
Employment 0.77 0.73 0.70 0.71 0.67 0.36

Notes: see notes to Table 5. Columns (1)-(3) refer to simulations, where there are two correlated exogenous

aggregate states, z and s, which follow ( z
′

s′
) = ( 0.4497 −1.9735

0.0693 0.6753 )( zs ) + ζ with the matrix of standard deviations

and the correlation coefficients for ζ being ( 0.0095 0.2372
0.2372 0.0034 ). In the ‘Correlated Processes’ specification σ(ε′) =

σ̄(ε) + s such that σ(ε′)’s time series coefficient of variation is 4.72% as in ‘Baseline’ in Table 5. In the

‘Forecast Model’ (Column (2)) specification, actual firm-level risk is fixed at σ̄(ε) and s is simply a latent

state variable, which jointly evolves with z. The joint process for z and s is discretized by a two-dimensional

analog of Tauchen’s (1986) procedure. Column (3) is the same as (2), except that agents do not take into

account that latent random variable. Column (4) refers to a variant of the ‘Baseline’ (in Table 5), where

also σ(z′) varies over time. It is perfectly correlated with σ(ε′) and its time series coefficient of variation is

36.05%.
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Figure 1: Response of Aggregate Investment to a Shock in Idiosyncratic Risk
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Notes: impulse responses are computed by increasing σ(ε′) one standard deviation and letting it return

to its steady state value, according to the AR(1) process estimated in Section 4. ‘GE’ stands for general

equilibrium and takes real wage and interest rate movements into account. ‘PE’ stands for partial equilibrium

and fixes the real wage and the interest rate at their time series averages from the ‘GE’ model.
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Figure 2: Impulse Responses to an Innovation in Idiosyncratic Risk - Data and ‘Baseline’ Model
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Notes: impulse response functions from SVARs with the linearly detrended natural logarithm of aggregate

Solow residuals (ordered first), the linearly detrended idiosyncratic risk (ordered second) and HP(100)-

filtered aggregate output/total hours/consumption/investment (ordered third). The dotted red lines reflect

one standard deviation confidence bounds for the estimates on the data from 10,000 bootstrap replications.

We employ a bias correction a la Kilian (1998). Estimates from data are in red, estimates from simulated

model data in blue with squared markers. The model refers to the ‘Baseline’ calibration as in Table 5.
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Figure 3: Impulse Responses to an Innovation in Idiosyncratic Risk - Data and Models with Correlated
Processes
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Notes: see notes to Figure 2. ‘Correlated Processes’ and ‘Forecast Model’ refer to simulations, where there

are two correlated exogenous aggregate states, z and s, which follow ( z
′

s′
) = ( 0.4497 −1.9735

0.0693 0.6753 )( zs ) + ζ with the

matrix of standard deviations and the correlation coefficients for ζ being ( 0.0095 0.2372
0.2372 0.0034 ). In the ‘Correlated

Processes’ specification σ(ε′) = σ̄(ε) + s such that σ(ε′)’s time series coefficient of variation is 4.72% as in

‘Baseline’ in Table 5. In the ‘Forecast Model’ specification, actual firm-level risk is fixed at σ̄(ε) and s is

simply a latent state variable, which jointly evolves with z. The joint process for z and s is discretized by a

two-dimensional analog of Tauchen’s (1986) procedure.
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