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Abstract

We consider a multi-sender cheap talk model, where the receiver faces

uncertainty over whether senders have aligned or state-independent pref-

erences. This uncertainty generates a trade-off between giving sufficient

weight to the most informed aligned senders and minimizing the in-

fluence of the unaligned. We show that preference uncertainty dimin-

ishes the benefits from specialization, i.e., senders receiving signals with

more dispersed accuracy. When preference uncertainty becomes large, it

negates them entirely, causing qualified majority voting to become the

optimal form of communication. Our results demonstrate how political

polarization endangers the ability of society to reap the benefits of spe-

cialization in knowledge.
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1 Introduction

Consider a receiver, who must decide on an action, but who relies on multiple senders, to

obtain relevant information.1 Senders are imperfectly informed through private signals,

which have more and less informative realizations. They have private preferences that are

either aligned with the receiver’s, we call those advisory senders, or are independent of

the information relevant to the receiver, we call those partisans. What is the best way the

receiver can communicate with senders, given that their preferences are unknown to her?

How does the effect of this uncertainty depend on the information available to senders?

Lastly, how does optimal communication relate to simple and frequently used tools to

aggregate information, such as voting?

To illustrate these questions, let us consider the example of a judge trying to decide

whether a defendant is guilty or innocent. After hearing multiple conflicting testimonies,

she must decide the case, knowing that some witnesses, might give her false information,

due to relations with the defendant or other suspects. If one person claims to have seen the

crime, can the judge believe him, knowing that he might make such a claim to maximize

his influence?

A similar situation arises when a government agency relies on expert advice for regu-

latory decisions, such as approving a new drug. In these cases, scientists hold information

that is valuable in making the decision, yet they might also have private interests owing

to financial ties to the pharmaceutical companies.2 Due to different specializations and

experiences with the particular drug, it is likely that the scientists in the advisory bodies

are differently informed. In such a situation, should the regulator give more weight to

those scientists who express high confidence in their positions? This allows her to account

for the heterogeneity of information, but it also increases the possibility of scientists with

conflicts of interest exerting greater influence by falsely claiming high confidence. Or

should she simply decide by the numbers of individual votes for and against approval?

Lastly, how should individuals adjust their learning when they might be lied to by in-

terested parties? This concern extends beyond commercial interest, and has recently been

at the center of political debates, most notably that of “fake news.” We will therefore try

to understand the impact of a voter struggling to distinguish between interest-led rhetoric

and reputable news. Will critical information still be heard, or will public discourse be

1Throughout the paper, we refer to the receiver with the female and the senders with the male pronoun.
2In an article in Science, Piller [2018] discusses the specific case of approval of a drug designed to

prevent heart attacks and strokes. He finds that one scientist on the admission panel received more than
$2 million for various purposes from the drug manufacturing pharmaceutical company. Further, Piller
[2018] documents that the majority of 107 scientists who advised the Food and Drug Administration in
the United States on the approval of 28 drugs from 2008 to 2014 received payments from makers of the
drugs or competing firms.
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reduced to deciding which side has gathered sufficient numbers?

In this paper, we examine such decision problems using a multi-sender cheap talk

model in which senders receive conditionally independent information. In contrast to

most models in the literature, ours does not assume that senders have a fixed and known

bias. Instead, we assume that they have either aligned interests or state-independent

preferences. This assumption works well to capture situations like the above, in which

there is a clear common interest objective typically trumped by the private considerations

of the senders (if there are any). As is standard in the literature, we focus throughout on

the most informative equilibrium. We view the information transmitted in this equilibrium

as a natural benchmark to voting games in which agents are restricted to two messages

and the receiver has ex-ante committed herself to a threshold rule to translate messages

into actions.

To understand the precise effect of partisanship in our model, we need to analyze

senders’ information structures. To illustrate this, let us briefly return to the example of

the scientists advising a regulator on a new drug. Any information a scientist receives has

both a direction, i.e., it favors either approval or rejection of the drug, and an intensity,

i.e., how much it moves the scientist’s belief away from the prior. We will call the mean

intensity of a scientist’s signal his average informativeness. Holding this average intensity

constant, we will further differentiate between more specialized scientists that receive

signals with very heterogeneous intensities and more generalized ones. In our example, a

specialized scientist will learn whether the question is in his field of expertise and hence

update his posterior more or less than his generalist colleague.

When interest is common, specialization has enormous benefits. One sender who

happens to receive a perfect signal is more informative than five with fairly accurate

signals. In the presence of partisanship, however, any differential treatment of messages

based on the claimed intensity of the underlying signal also increases partisans’ ability to

pick messages that have more weight in the decision.

Equilibrium behavior in the presence of this uncertainty is characterized by senders

with aligned interest stating their true beliefs, while partisans send messages indepen-

dently of their information, mimicking senders that receive the most informative signals

in their preferred direction. The receiver acts on the central trade-off to use as much infor-

mation from aligned senders as possible while limiting the influence of partisans, and puts

caps on the influence any one message can have on her decision. However, between these

caps communication between aligned senders and the receiver remains perfect. This is a

notable difference from the usual coarsening of messages in cheap talk games with known

bias. As a consequence, partisanship has two distinct effects on information transmission,

which relate to our two concepts of informational content.
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The first effect is that the information held by partisans is lost, since they message

independently of the signal they receive. This leads to a proportional loss in average

informativeness. Such a loss is due to the mere existence of partisans and is equally

effective if senders’ preferences are known to the receiver; hence partisan messages can

be ignored. It is also similar to viewing partisan types as incompetent and simply losing

their signal.

The second effect is caused by the indistinguishability of advisory and partisan experts.

Partisanship is thus created for the receiver and results in the uninformative messages of

the partisans, being treated the same as the messages from those senders with the most

valuable signals. This leads to a loss in effective specialization, since the best signals are

now diluted by signals that are on average uninformative, making the message appear

more homogeneous overall.

If partisanship becomes sufficiently large, all gains from specialization are wiped out

and senders reduce their messages to a mere indication of the direction of their informa-

tion, while the receiver bases her decision on whether the number of messages in favor of

one alternative meets a fixed threshold. This binary communication between senders and

receiver resembles a form of qualified majority voting. Consequently even in situations

where it is natural to assume some senders have more to contribute than others arises as

an optimal way of communication. In these environments, the average informativeness of

each sender becomes the decisive predictor of the receiver’s ability to match the state with

her decision, while specialization becomes worthless. This can lead to a reversal where a

group of expert advisors with more heterogeneously distributed posteriors is preferable to

a receiver, when partisanship is low, but performs worse when partisanship is high. We

are thus worried that increasing political polarization might substantially diminish the

gains society can reap from increases in the specialization of knowledge.

Lastly, we discuss how we can generalize our analysis to the case where the receiver

already has some information that distinguishes senders. She might be more or less sure

about some senders’ preferences and might also have information differentiating the type of

information certain senders have access to. Again it becomes apparent that specialization

is only valuable as long as it is accompanied by a high level of certainty over preference

alignment.

The paper continues as follows. In the rest of this section, we review the literature. In

section 2, we introduce our model. Section 3 analyzes the special case in which all senders

have aligned interests. We use this natural benchmark to contrast our later findings.

Section 4 introduces concepts to analyze both senders’ information structure and the

information that is transmitted to the receiver. We apply these concepts to our general

model in section 5 and derive our main results. Section 6 concludes.
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Related Literature

We place our paper between the literatures on cheap talk and information aggregation in

voting. The former builds on the seminal work of Crawford and Sobel [1982] and analyzes

strategic communication between a better-informed sender and a receiver whose action

determines the payoff of both. In their original setup, the sender has private and perfect

information on a one-dimensional state of the world and a bias known to the receiver.

We depart from this classical model in three central ways, with multiple senders, who

are imperfectly informed, and whose preference are unknown to the sender.

Gilligan and Krehbiel [1989] have been the first to study a model with multiple senders.

In their model two privately and perfectly informed senders with publicly-known biases

communicate with a receiver. The focus of their analysis is the comparison of three

communication protocols that comprise different forms of cheap talk. Similarly, Krishna

and Morgan [2001] study a setting with two senders that sequentially send public messages

to a receiver. The degree of information revelation depends on whether the senders have

aligned or opposing biases.

Austen-Smith [1990] is the first to study a cheap talk problem in which senders are

imperfectly informed about a binary state of the world. While he identifies circumstances

under which a cheap talk phase alters the decision, Wolinsky [2002] solves for the most

efficient communication structure.

In Alonso et al. [2008] and Hummel et al. [2013], uncertainty about senders’ preferences

arises endogenously, since each sender is interested in the decision matching his type, while

the receiver wants to match the decision to the average of senders’ types. Hence a sender’s

type contains both relevant information about the state, i.e., the average of types, as well

as the bias, i.e., the distance of the individual sender’s type from the average.

In contrast to this approach and in line with our own, Li and Madarász [2008] analyze

a single-sender game with private bias that does not enter the receiver’s payoff. They

find that both players can benefit from the privacy of the sender’s bias when it is not too

large. This does not hold in our model, since we assume that private biases are such that

senders’ preferences become state-independent.

Lastly, the research closest to our own contribution is the independent working paper

by Glazer et al. [2019] modeling internet recommendation systems. Their work, like ours,

studies a model with multiple imperfectly informed senders; however, not all senders in

their model are strategic. “Honest” senders always communicate their true signal, while

only unaligned senders act strategically. Since we find in our model that the most infor-

mative equilibrium is one in which aligned senders strategically decide to be honest, the

equilibria in both models are similar. However, given the different economic motivations

of the two works, the analyses building on these equilibria are distinct.
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The second body of literature we relate to is on information aggregation in voting.

It goes back to Condorcet [1785] and his famous jury theorem, stating that large groups

of independently informed senders select the correct alternative with near certainty. He

assumes that senders vote sincerely, while Feddersen and Pesendorfer [1997] establish a

similar result for strategic senders. They show that when the number of voters grows

large, privately-held information leads to the same decision as public information.

Despite the effectiveness of voting for information aggregation in large populations,

the same literature has brought up effects like the swing voter’s curse, first discussed in

Feddersen and Pesendorfer [1996], that illustrate a loss of information in small populations.

This loss is mainly due to the nature of the voting game, with its limited amount of

messages, usually two or three, and its fixed threshold. Any such voting rule can be

interpreted in our model as a behavioral type of receiver to which strategic voters optimally

react. We therefore believe, that our model with its strategic receiver, provides a natural

benchmark for voting systems and helps to distinguish which losses of information are

necessary consequences of conflicts of interest and which are due to the specific features

of real-world voting systems.

Previously, McMurray [2017] and Azrieli [2018] have worked on the limits of elections

with few available messages. McMurray [2017] studies a common interest election of ex-

ante symmetric candidates by a fixed number of heterogeneously informed senders. In

equilibrium, voters coordinate around specific candidates to transmit information. His

model can be interpreted as a cheap talk game with a restricted number of messages. If

the number of candidates becomes large, the model converges to our common interest

setting. Azrieli [2018] analyzes the loss of anonymous voting rules if senders are publicly

known to be differently well-informed. The common-value analysis is also closely related

to ours. However, we assume that signals are private information and focus on their

interplay with private interests.

2 The Model

There is a set of senders {1, ..., n} and a receiver indexed by 0. Each sender i receives a

signal about the unknown state of the world ω = {0, 1}. Signals are identically distributed

and independent, conditional on the true state of the world. There is a common prior

p0 = P[ω = 1] ∈ (0, 1) that the state of the world is 1. Since signals are conditionally

independent, all information is contained in the resulting posterior distribution and we

will shift attention completely to the latter. Each sender draws his posterior from the

probability mass function µ, which is consistent with p0. We assume that the information

structure is such that it leads to a finite number of possible posteriors P = supp µ.
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For some results, we assume that no signal is uninformative, i.e., µ(p0) = 0. We call a

distribution µ that fulfills this assumption never-ignorant. The receiver shares the prior

but observes no signal.

In addition to different signals, players are heterogeneous with respect to their pref-

erences, as described by a parameter λ ∈ {0, λ0, 1} with λ0 ∈ (0, 1). Each sender i

independently draws a preference parameter λi that is independent of the posteriors and

distributed according to probability mass function γ. The decision-maker has the com-

monly known preference parameter λ0. We call the tuple (pi, λi) the type of sender i, and

denote with µ× γ the distribution over types.

After observing the signal, each sender i simultaneously sends a cheap talk message ti ∈

[0, 1] to the receiver. We denote the potentially mixed strategy by mi : P × {0, λ0, 1} →

∆[0, 1], where ∆[0, 1] denotes the set of all probability measures over [0, 1]. We denote

the probability that sender i with type (pi, λi) sends message ti by mi(pi, λi)(ti). We call

a strategy truthful if mi(pi, λi)(pi) = 1 for all types (pi, λi). The tuple of messages of all

senders is denoted by t = (t1, ..., tn).

The receiver processes the messages of all senders according to Bayes’ rule. We denote

the belief of the receiver accounting only for sender i’s message ti by q(ti) and call it the

virtual posterior of sender i.3 The posterior of the receiver incorporating the messages t

of all senders is denoted by q(t). After processing all messages, the receiver takes action

a ∈ {0, 1}. Utilities for senders and the receiver are given by

u(a, ω, λi) = (1− λi)✶{a = 0}+ λi✶{a = 1}+ ✶{a = ω},

where ✶ is the indicator function, i.e., ✶{A} is 1 if event A is true and 0 otherwise.

A player i prefers action 1 if and only if his belief that the state of the world is 1

is larger than or equal to 1 − λi. A higher preference parameter λi leads to a higher

expected utility of player i given that the action is equal to 1. Senders with preference

parameters 0 and 1 weakly prefer the action that matches their preference parameter

irrespective of the posterior. We call senders with these preference parameters partisans.

The remaining senders with λi = λ0 have the same interests as the receiver. We call these

senders advisors.

Before we proceed, we summarize the timing of the game. First, nature draws a state

of the world ω. Second, every sender i randomly draws a type (pi, λi) according to the

conditional type distribution µω × γ. Third, each sender i sends a message ti to the re-

ceiver. Last, the receiver takes an action a and payoffs are realized. We assume that the

3Different strategies mi induce different virtual posteriors qi(·). Anticipating that senders play sym-
metric strategies in an optimal equilibrium, we drop the subscript i of the virtual posterior qi(·) to simplify
notation.
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receiver does not have commitment power, i.e., she can not credibly commit to a deci-

sion rule before getting the messages of the senders.4 Consequently, we solve for perfect

Bayesian equilibria.

In the following, we split the analysis into three parts. We start by studying the

common interest case in section 3. Here, all senders have aligned preferences. The special

case of our setting serves as a benchmark and allows us to get familiar with how the

receiver processes the signals from the senders. In section 4, we focus on the information

structure of senders, introduce the concept of specialization and illustrate its significance

in the common interest case. Lastly, in section 5 we apply these concepts in our analysis

of the general case, in which we allow for private interests.

3 Common Interest

In this section, we derive a benchmark equilibrium that maximizes the utility of the re-

ceiver when all senders have aligned preferences, i.e., γ(λ0) = 1 and γ(0) = γ(1) = 0. In

the common interest case, such an equilibrium maximizes the utility of the senders, too.

The general idea of this equilibrium is straightforward. The receiver needs to perform

Bayesian updating given senders’ messages, and the senders, knowing that their informa-

tion will be aggregated in a statistically correct way, can state their posteriors, revealing

all their information.

In the description of this equilibrium that follows, we focus on the statistical properties

and interpretation of how the receiver updates the information and how she translates it

into her decision.

Definition 1. A receiver follows a weighted majority rule if her strategy a : [0, 1]n →

{0, 1} is of the form

a(t) =







1 if
∑n

i=1 w(ti) > τ

0 else

for messages t = (t1, ..., tn) of senders, a weighting function w : [0, 1] → R, and a threshold

τ .

Under a weighted majority rule, the receiver transforms every message ti into a weight

w(ti) and takes decision 1 if the sum of weighted messages is larger than a threshold τ .

One can interpret this as the receiver giving the senders free choice over the weights in

the image of w and limiting herself to the application of a simple rule. When the size of

the image is equal to 2, this comes down to proposing a decision by qualified majority

4In particular, this excludes equilibria of the kind discussed in Gerardi et al. [2009].
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voting. We will come back to this analogy in section 5.3. The next proposition translates

the above-described equilibrium into this language.

Proposition 1. The following describes a receiver-optimal perfect Bayesian equilibrium:

• Advisors message truthfully, i.e., mi(pi, λ0)(ti) = 1, for ti = pi.

• The receiver follows a weighted majority rule with weighting function

w(x) =







ln x
1−x

− ln p0
1−p0

if x ∈ P

0 else

and threshold τ = −
(

ln λ0

1−λ0
+ ln p0

1−p0

)

.

Proof. See Appendix A.

In the optimal equilibrium, senders play the truthful strategy to transmit their pos-

terior to the receiver. The receiver has correct beliefs about this and can deduce from

the posteriors the entirety of their information. She then translates it into the optimal

decision via Bayesian updating, which takes the form of a weighted majority rule. Hence,

there cannot be an equilibrium with higher payoffs for the receiver.5

The strategy of the receiver is a generalization of the decision rule derived in Theorem

1 in Nitzan and Paroush [1982]. They study a non-strategic setting with a symmetric

prior p0 = 1
2
. In the proof of Proposition 1, the common prior and the conditional

i.i.d. posteriors allow to write the updating process of the receiver as a product formula

of posteriors. Applying the logarithm to the equation gives the problem an additive

structure. Every posterior can be mapped onto a weight that is the log-likelihood ratio

of the posterior ln pi
1−pi

minus the log-likelihood ratio of the prior ln p0
1−p0

. The threshold

is the log-likelihood ratio of the receiver’s preference parameter ln λ0

1−λ0
minus the log-

likelihood ratio of the prior ln p0
1−p0

. This way, the prior p0 is taken into account only once

(in the threshold) and all other weights are taken as the net of the information from the

prior. The log-likelihood ratio of the preference parameter ln λ0

1−λ0
guarantees that action

1 is taken if and only if the final posterior q(t) is larger than (1− λ0). Thus, the decision

rule in the receiver-optimal equilibrium can be interpreted as a weighted majority rule

with weighting function w(x) = ln x
1−x

− ln p0
1−p0

and threshold τ = −
(

ln λ0

1−λ0
+ ln p0

1−p0

)

.

Figure 1 illustrates the weighting function with prior p0 =
3
4
for the common interest

case. A posterior pi of sender i that equals the prior p0 gets weight 0 because it does

not transmit any additional information. In contrast, a posterior pi ∈ {0, 1} means that

sender i knows the state of the world perfectly. This sender’s information is sufficient to

5 McLennan [1998] studies optimality of equilibria in common interest games more generally.

8



0.25 0.5 0.75 1

−4

−3

−2

−1

1

2

3

4

x

w(x)

Figure 1: Weighting function w(x) = ln x
1−x

− ln p0
1−p0

with prior p0 = 3
4
for the common

interest case.

make an optimal decision, and he should outweigh all other senders. Thus, as pi goes to 1

(0), the corresponding weight tends to ∞ (−∞). The unrestrictedly high weight encodes

the extraordinary value of perfect information.

In the next section, we refer to the receiver-optimal equilibrium when we assess dif-

ferent distributions of sender types. The expected utility of the receiver u⋆(q(t)) with the

posterior q(t) is given by

u⋆(q) =







λ0 + q if q > 1− λ0

2− λ0 − q else.

We now turn to the analysis of the senders’ information structure.

4 Specialization

The posterior distribution of the senders is a crucial object in our model. In this section,

we explore its effect on the receiver’s ability to match her decision to the state of the world.

To this end, we introduce a novel conceptualization of specialization in knowledge as a

particular case of Blackwell domination, which we characterize as learning more about

the quality of one’s signal. To start let us recall this well-known incomplete order.

Definition 2. Let µ and ν be two posterior distributions with cdfs F and G, respectively.

We say that µ is more informative than ν, denoted by µ ≻ ν, if

∫ y

0

F (x)dx ≥

∫ y

0

G(x)dx for all y ∈ [0, 1]. (1)
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Blackwell [1950] establishes the concept of informativeness and gives a series of charac-

terizations. The one we use in the above definition is the inverse of the second stochastic

order used in decision theory6. We will also refer to some of the other equivalent formu-

lations and have gathered them in Appendix B. By the common prior assumption, both

distributions have an expected value of p0.

A second method to compare posterior distributions is through their average informa-

tiveness.

Definition 3. The average informativeness π(µ) of a sender’s posterior distribution µ is

π(µ) = E [|pi − p0|] .

The average informativeness of a distribution measures the expected distance of the

posterior from the prior p0. Mathematically, it is the first absolute central moment.

The greater the difference between prior and posterior, the more precise the information

of a sender. A distribution µ with π(µ) = 0 does not contain any information at all,

whereas the maximal average informativeness is 2p0(1 − p0). Note that higher average

informativeness of µ compared to ν is a necessary but not a sufficient condition for µ to

be more informative than ν.

Lastly, we combine the two previous concepts in order to define specialization.

Definition 4. Let µ and ν be two posterior distributions. We say that µ is more specialized

than ν, denoted by µ ≻s ν, if µ ≻ ν and π(µ) = π(ν).

By this definition, a specialist, is more informed not because his posterior is on average

further away from the prior, but because his posteriors are more heterogeneous. To

illustrate this, let us give a basic example of two senders with symmetric priors. The less

specialized sender receives a signal that is accurate 60% of the time in both states, and

thus its average informativeness is 0.1. The other sender may receive perfect information

20% of the time and pure noise otherwise. His average informativeness is also 0.1, but

his information structure is more informative than the first sender’s. The easiest way to

see this is to imagine that both receive the same signal, yet the more specialized sender

also receives information on which 20% of signals are perfect and 80% are pure noise. We

will formalize this idea of specialization as learning about the quality of signals in the

following proposition.

Proposition 2. Let µ and ν be two posterior distributions. Then µ ≻s ν if and only

if there exists a coupled measure Π on [0, 1]2 with marginals µ and ν s.t. the random

posterior vector (p, p′) drawn from Π fulfills, the following conditions:

6A “riskier” posterior distribution contains more information.
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• p is a mean-preserving spread of p′: E[p− p′|p′] = 0 for all p′.

• The spread never changes the direction of information: P (p ∈ [0, p0]|(p
′ ∈ [0, p0]) =

P (p ∈ [p0, 1]|(p
′ ∈ [p0, 1]) = 1

Proof. See Appendix A.

A more specialized sender receives a signal indicating the wrong state just as often

as his less generalized counterpart, yet is better informed about its intensity. For a

specialist, judging whether the question at hand is in one of his fields of expertise is

very informative. The same is not true for a complete generalist, since the quality of his

judgment is uniform across all subjects. Given this characterization, we can now deduce

the maximal and minimal elements of the specialization order.

Corollary 1. We denote with δx a Dirac mass at point x. The posterior distribution

µ̂α =
α

2p0
δ0 +

(

1−
α

2p0(1− p0)

)

δp0 +
α

2(1− p0)
δ1

is more specialized than any other posterior distribution µ with the same average in-

tensity π(µ) = α.

Further, the posterior distribution

µ̄α,β = βδ 2βp0−α

β

+ (1− β)δ 2p0−2βp0+α

2−2β

is less specialized than any other posterior distribution µ with average intensity π(µ) =

α and µ([0, p0]) = β.

Proof. See Appendix A.

The most specialized information structures only contain perfect or pure noise signals,

while the most generalized ones have exactly one realization indicating each state.

These extreme elements of the specialization order lend themselves to simple inter-

pretations of the ensuing play in the optimal equilibrium under common interest. Under

the most specialized measure µ̂α, the decision is effectively delegated to all senders, with

the possibility to abstain7, and a default option that is optimal given the prior. In con-

trast, under the least specialized measure, the receiver’s optimal decision is equivalent

to a qualified majority rule. Specifically, in the optimal equilibrium, the receiver takes

action 1 if
∑n

i=1 w(ti) > τ with w(ti) and τ as in Proposition 1. If the distribution has

only two mass points l ∈ [0, p0) and r ∈ (p0, 1], there are only two weights κl = w(pl) and

7Note that there will never be two conflicting messages by senders on path.
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κr = w(pr) in equilibrium. We denote the number of senders whose message is left (right)

of the prior by nl (nr). The receiver takes action 1 if

nlκl + nrκr > τ.

This corresponds to a qualified majority rule with threshold n1(n), where n is the total

number of senders. The receiver takes action 1 if and only if

n1(n) >
τ − nκl

κr − κl

.

In the remainder of this subsection, we apply the above insights to obtain the bounds

of the receiver’s utility. As discussed, the most and least specialized distributions µ̂α and

µ̄α,β have a particularly simple form. Since more informativeness of individuals’ posterior

distributions produces more informativeness overall Blackwell and Girshick [1979] (see

Proposition C in Appendix B), the utility of the receiver increases with the specialization

of posteriors. Thus, the next corollary links corollary 1 with the utility of the receiver.

Corollary 2. Let µ be a posterior distribution. The utility of the receiver facing senders

with posterior distribution µ is bounded above by the utility of a receiver facing senders

with µ̂π(µ), and below by the utility of a receiver facing senders with µ̄π(µ),µ[0,p0].

We illustrate Proposition 2 in Figure 2. The x-axis represents the number of senders

and the y-axis the expected utility of the receiver. The receiver matches the state of the

world with probability close to 1 as the number of senders tends to infinity. This holds

for any distribution µ with positive average informativeness π(µ). Thus, the blue line

(representing the most specialized distribution) and the red line (representing the least

specialized distribution) converge to the utility in a setting where the state of the world

is known by the receiver. Yet under the most specialized measure, the receiver’s utility

is higher for any fixed number of senders, illustrating the benefits she reaps from having

more specialized senders.

We now turn to the general setting that allows for private interest. We return to a

discussion of specialization in the general setting in subsection 5.3.

5 Fake Experts - Private Interest Analysis

In this section, we turn to the case with private interests. In subsection 5.1, we solve for

the receiver-optimal equilibrium. In subsection 5.2 we contrast our results with a scenario

12
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Figure 2: Receiver’s utility for n senders given a prior p0 =
1
2
, average informativeness 1

10

and λ0 = 3
4
. The blue line represents the utility of the most specialized distribution µ̂ 1

10

and the red line the least specialized symmetric distribution µ̄ 1

10
, 1
2

.

in which the receiver observes preferences. This allows us to decompose the total loss

of information into a loss of signals on the one hand and a despecialization of remaining

signals on the other. Lastly, in subsection 5.3, we present two consequences of despe-

cialization. We find that voting is optimal if preferences are sufficiently heterogeneous.

Further, average informativeness becomes more and specialization less important as the

number of partisans increases.

5.1 Receiver-Optimal Equilibrium

We start by sketching the argument that the strategies in Proposition 1 no longer form

an equilibrium in the presence of private interests. Given the strategy of the receiver,

partisans maximize the probability that their preferred action is taken by sending the

message with the highest possible weight in the respective direction. But then the re-

ceiver cannot rationally believe that these messages only come from senders who indeed

received the corresponding signals. Consequently, players adapt their strategies. We cap-

ture partisans’ strategies to choose messages by maximizing their weight in the following

definition.

Definition 5. A sender’s strategy, conditional on being partisan, imitates and devalues

expertise if a 0- (1-) partisan only mixes over messages with the lowest (highest) virtual

posteriors. We denote the resulting lowest (highest) virtual posteriors by b, b ∈ [0, 1] and

refer to them as expertise bounds.

Since the average posterior of a partisan sender still equals the prior, their strategy

shifts virtual posteriors towards the prior. It turns out that the best way for the aligned

13



senders to counteract this loss of information is to message truthfully, as summarized in

the following theorem.

Theorem 1. The following describes a receiver-optimal perfect Bayesian equilibrium.

There exist unique expertise bounds b, b ∈ [0, 1], s.t.

• Advisors message truthfully, i.e., mi(pi, λ0)(ti) = 1, for ti = pi.

• Partisans imitate and devalue expertise:

mi(pi, 0)(ti) =







γ(λ0)µ(ti)(b−ti)
γ(0)(p0−b)

if ti ∈ P ∧ ti ≤ b

0 else

mi(pi, 1)(ti) =







γ(λ0)µ(ti)(ti−b)

γ(1)(b−p0)
if ti ∈ P ∧ ti ≥ b

0 else

• The receiver uses weighted majority rule with weight function

w(x) =































ln b

1−b
− ln p0

1−p0
if x ∈ P ∧ x < b

ln x
1−x

− ln p0
1−p0

if x ∈ P ∧ x ∈ [b, b]

ln b

1−b
− ln p0

1−p0
if x ∈ P ∧ x > b

0 else

and threshold τ = −
(

ln λ0

1−λ0
+ ln p0

1−p0

)

.

In the equilibrium, advisors play the truthful strategy, as in Proposition 1. It is in

their best interest to transmit as much information as possible. Partisans interfere in this

communication. Their strategy is independent of their signals. They do not transmit

any information to the receiver, but maximize their influence by imitating advisors with

the most informative signals. Therefore, the receiver needs to discount these messages.

This way, expertise bounds b and b arise. They constitute bounds on the highest (lowest)

possible virtual posteriors associated with any messages. The weights w(b) and (w(b)) are

the lowest and highest weights used in the weighted majority rule of the receiver. They

are endogenously determined by the sender type distribution.

Between the expertise bounds, communication between advisors and the receiver is

noise-free, because partisans do not imitate advisors with imprecise signals. Thus, com-

munication is perfect within these bounds, as in the equilibrium from Proposition 1.

Off-equilibrium messages receive weight 0. Figure 3 depicts an example of a weighting

function of virtual posteriors with upper and lower expertise bounds. The dashed line is

the weighting function of the receiver in the absence of partisans.
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with prior p0 =
3
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, b = 1

4
, and b = 7

8
.

In the following, we focus on the proof of the optimality of the equilibrium we describe.

The proofs regarding the expertise bounds and the fact that the strategies described form

an equilibrium are detailed in Appendix A.

Proof of the Optimality of the Equilibrium in Theorem 1. We show that the equi-

librium in Theorem 1 is optimal for the receiver. We proceed in two steps. First, we

introduce a technique that allows us to compare equilibria in the common interest case.

We could have used this technique to prove Proposition 1, but found the proof above

more constructive. Second, we show that the comparison carries over to the case with

partisans. More concretely, we show that if an equilibrium in which advisors play the

truthful strategy is more informative than another one in the case without partisans, it

continues to be more informative than the other one in the presence of partisans.

The receiver bases her decision on the virtual posteriors q(ti) which she infers from

messages ti of senders i = {1, ..., n}. The same set of virtual posteriors leads to the same

decision. The distribution of virtual posteriors q(ti) for sender i is determined by the

distribution of posteriors µ and the sender i’s strategy mi.

Definition 6. Let µ be a distribution of posteriors and mi the strategy of sender i. We

denote the distribution of virtual posteriors of sender i by µγ
mi

and define it by its cdf

F γ
mi
(x) = P[q(ti) ≤ x]

where ti is sender i’s message. We suppress superscript γ in the common interest case,

i.e., we write µmi
and Fmi

if γ(λ0) = 1.

In the following, we compare the virtual posterior distribution of the equilibrium in

which advisors play the truthful strategy with virtual posterior distributions of other

15



equilibria. We know from Proposition 1 that playing the truthful strategy is part of a

receiver-optimal equilibrium for the common interest case. Using the concept of virtual

posterior distributions helps us generalize this observation to the case with partisans.

We start with the analysis of the common interest case. Note that other equilibria

lead to the same distribution of virtual posteriors as in Proposition 1. Consequently, these

equilibria induce the same ex-ante expected utility of the receiver. For example, consider

strategies m̃i characterized by m̃i(pi, λi) = 1 −mi(pi, λi) for senders i = {1, ..., n} and a

receiver strategy in which she uses a weighting function w̃ characterized by w̃(x) = w(−x).

We select the equilibrium in which advisors play the truthful strategy as representative

of all equilibria that induce this distribution of virtual posteriors.

Lemma 1. Let µ be a posterior distribution, m⋆
i the truthful strategy, and m′

i any other

strategy. Then it holds that µm⋆
i
is more informative than µm′

i
, i.e., µm⋆

i
≻ µm′

i
.

Proof. See Appendix A.

The proof of Lemma 1 builds on the machinery of Blackwell and Girshick [1979]. If m⋆
i

is the truthful strategy, any distribution µm′

i
that is induced by another strategy m′

i can

be constructed from the distribution µm⋆
i
by an application of garblings. The only way in

which the virtual posterior distribution µm′

i
can differ from µm⋆

i
is that a sender i might

send a message ti for two different posteriors pi and p′i. The virtual posterior p(ti) is a

weighted average of posteriors that induce sending ti. Hence, strategy m⋆
i is a garbling

of m⋆
i which implies that µm′

i
is a garbling of µm⋆

i
. Under Theorem 12.3.2 in Blackwell

and Girshick [1979] (see Proposition B in Appendix B), the sender-wise comparison is

sufficient to permit the conclusion that the posterior distribution q(t) in the equilibrium

in which senders play the truthful strategy is more informative than that in any other

equilibrium. Proposition 1 follows by Theorem 12.2.2 (4) in Blackwell and Girshick [1979]

(see Proposition C in Appendix B). More informative distributions imply higher ex-ante

expected utility for the receiver.

In the last step, we show that the argument can be generalized to the case with

partisans. In particular, this implies that the virtual posterior distribution µ
γ
m⋆

i
is more

informative than any other distribution µ
γ

m′

i
.

Lemma 2. Let µ be a posterior distribution, m⋆
i a strategy in which advisors play truth-

fully, and m′
i any other strategy. Then, if µm⋆

i
is more informative than µm′

i
, it follows

that µγ
m⋆

i
is more informative than µ

γ

m′

i
, i.e.

µm⋆
i
≻ µm′

i
⇒ µ

γ
m⋆

i
≻ µ

γ

m′

i
.
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Proof. See Appendix A.

No matter the strategy of advisors, partisans imitate and devalue expertise. This

effect can only be diminished if advisors have already garbled the most valuable signals

themselves, but in sum, this can never increase the informativeness of the virtual posterior

distribution.

We have shown that the virtual posterior of sender i is most informative if types with

λi = λ0 play the truthful strategy. Again, under Theorem 12.3.2 in Blackwell and Girshick

[1979] (see Proposition B in Appendix B), the sender-wise comparison carries over to the

overall information structure. By Theorem 12.2.2 (4) in Blackwell and Girshick [1979] (see

Proposition C in Appendix B), we conclude that there cannot be any better equilibrium

for the receiver than the equilibrium described in Theorem 1. This concludes the proof.

5.2 Lack of Trust versus Lack of Competence

In this subsection, we contrast the equilibrium we just described to the case in which

the preferences of senders are known to the receiver. In this latter case, partisans cannot

transmit any information via cheap talk, since their preferences are known to be state-

independent. As in the case with unknown preferences, their signal is lost to the receiver.

From her perspective, it is as if partisans are incompetent, i.e., never receive a signal.

However, the situation is still better than that under unknown preferences, in which

partisans exert influence by imitating and thereby undermining trust in aligned senders

with the most informative signals. In that sense, lack of trust in an expert is worse than

his potential lack of competence.

Theorem 2. Let µ
γ
unknown and µ

γ
known be the virtual posterior distribution in the equi-

librium above and the most informative equilibrium with known preferences respectively.

The loss of average informativeness in both situations is identical and equal to the share

of partisan senders:

π(µγ
unknown) = π(µγ

known) = γ(λ0)π(µ)

Yet the virtual posteriors under unknown partisanship are less informative than under

known partisanship:

µ
γ
unknown ≺s µ

γ
known

Proof. See Appendix A
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The result allows us to decompose the effect of unknown partisanship into a loss

of signals and a loss in specialization. While the first phenomenon affects all posterior

distributions in very similar ways, the effect of despecialization is strongest for senders

with very specialized posterior measures. We have illustrated this in Figure 4.
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(a) Most specialized senders: µ̂ 1
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(b) Least specialized symmetric senders: µ̄ 1
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, 1
2

Figure 4: Receiver’s utility for n senders given prior p0 = 1
2
, average informativeness 1

10

and λ0 =
3
4
. The blue lines represent the common interest benchmark. The red and green

lines represent the case with γ(0) = γ(1) = 1
8
, where partisanship is known and unknown

to the receiver, respectively.

Having studied the two distinct parts of information loss, we continue by pointing out

two rather stark consequences of high degrees of partisanship. We demonstrate that suf-

ficiently heterogeneous preferences can prevent any differentiating weighting of messages.

Further, we show that the value of specialization vanishes and average informativeness

becomes more important as the share of partisans rises.

5.3 A Justification for Voting

In this subsection, we illustrate the effect of private interests on information aggregation

and the utility of the receiver. We begin with a result that states that a sufficient number

of partisans can prevent transmission of any information that is finer than the mere

direction of the preferred alternative. In other words, all senders send one of only two

messages in the optimal equilibrium. This small message space can be interpreted as

voting.

Proposition 3. Let µ be never-ignorant. Then there exists c0, c1 ∈ (0, 1) with c0+c1 < 1,

s.t. for all γ with γ(0) ≥ c0 and γ(1) ≥ c1 the receiver forms only two expected posteriors,

i.e., voting is the most informative equilibrium.

Proof. See Appendix A.
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The proof of Proposition 3 exploits properties of the expertise bounds. We find c0

and (c1) such that the lower (upper) expertise bound coincides with the highest (lowest)

possible posterior that is smaller (greater) than the prior. This means that all posteriors

on one side of the prior get the same weight. To guarantee that c0 + c1 < 1, we need

to assume that µ is never-ignorant. Note that if c0 + c1 = 1 all posteriors get the same

weight w(p0), because all senders are partisans who do not send informative messages.

Figure 5 illustrates the effect of different levels of partisans. Panel (a) and (b) depict

the case without partisans. A 1% share partisans (Panels [c] and [d]) devalues the weight

of advisors with the most precise posteriors. A 5% share of partisans (Panels [e] and [f])

prevent the differentiation of advisors with the two most precise posteriors on both sides

of the prior. Any differentiation between advisors of one side of the prior breaks down if

the share of partisans is 25% (Panels [g] and [h]) or more. Then, only the direction of the

posterior can be transmitted. This case corresponds to the situation in Proposition 3.

The next result points out that average informativeness becomes more important as

the share of partisans increases and the effects of heterogeneously-distributed posteriors

decreases. Concretely, a posterior distribution with higher average informativeness leads

to higher receiver utility if the share of partisans is sufficiently high.

Proposition 4. Let µ and ν with π(µ) > π(ν) be never-ignorant posterior distributions

with cdfs F and G, respectively. Then there exist c0, c1 ∈ (0, 1) with c0 + c1 < 1, s.t. for

all γ with γ(0) ≥ c0 and γ(1) ≥ c1 and any number of senders n the ex-ante expected

utility of the sender is greater under posterior distribution µ than under ν.

Proof. See Appendix A.

The proof of Proposition 4 builds on Proposition 3. Suppose there are sufficiently

many partisans so that voting is the optimal equilibrium for both distributions. The

virtual posterior of any message of senders with the higher average informativeness is

more precise, i.e., further away from the prior p0. This implies that the ex-ante utility of

the sender is higher under the posterior distribution with higher average informativeness.

Proposition 4 contrasts the observation on the value of specialization in the common

interest case in section 4. Without partisans, experts with more heterogeneously dis-

tributed posteriors but lower average informativeness can be better for the receiver. This

statement is not true if the share of partisans increases sufficiently. Then, higher average

informativeness is all that matters and all value from specialization is lost. We illustrate

this effect in Figure 6.
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Figure 5: Equilibrium weighting function and virtual probability mass functions for prob-
ability mass function µ with P

[

p = 1
20

]

= P
[

p = 19
20

]

= 1
40
, P

[

p = 1
5

]

= P
[

p = 4
5

]

= 3
40
,

and P
[

p = 7
20

]

= P
[

p = 13
20

]

= 4
10
. This pmf is symmetric around prior p0 =

1
2
.
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Figure 6: The blue lines correspond to a pmf µF with P [p = 0] = P [p = 1] = 0.025, and
P
[

p = 1
5

]

= P
[

p = 1
2

]

= 0.95. The red lines correspond to a pmf µG with P
[

p = 2
5

]

=
P
[

p = 3
5

]

= 1
2
. Both pmfs imply that both states of the world are equally likely, i.e.,

p0 =
1
2
.

5.4 Asymmetric Senders

In the previous discussion, we have focused on the scenario in which all senders are ex-ante

symmetric. However, in some of the applications, it stands to reason that the receiver can

discriminate between the senders based on prior knowledge. A regulator might understand

that one of his advising doctors has previously worked on the approval of similar drugs

and might hence believe his posterior distribution to be more informative than average.

Similarly, a judge might rightly assume that a relative of the defendant is more likely to

be biased in the defendant’s favor than against it.

As we have seen in our discussion of the symmetric senders, the receiver’s learning

from messages happens sender by sender, i.e., the message of one sender does not change

how the message of another is processed. Consequently, all that changes in our model,
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when we allow for asymmetric senders, is the weighting function that the receiver uses

needs to be individualized based on each sender’s posterior and preference distribution.

Learning about the informativeness and preferences of senders can of course only

improve the receiver’s situation, since she always can choose to ignore that information

regardless. Hence, our symmetric case can also be interpreted as a worst-case benchmark

for the effect of partisanship on information transmission.

Departing from that benchmark, our previous analysis suggests that the largest gains

from knowledge about individual sender’s informativeness and preferences are generated

by the possibility of finding a specialist with a low probability of partisanship. As we

have seen, specialization can have great benefits as long as the expert is also well trusted.

6 Conclusion

Our ambition in this research has been to understand the optimal communication of

a decision-maker with multiple advising experts when she faces uncertainty about ex-

perts’ preferences. In particular, we have been interested in how these uncertainties effect

changes between senders with different information structures.

We have found that communication that discriminates between messages, indicat-

ing different degrees of confidence, is potentially very informative for the receiver, but

also highly vulnerable to strategic manipulation by partisan experts. Consequently, such

communication is not optimal in a case with high levels of partisanship. In contrast,

binary communication protocols such as voting prove to be very robust, explaining their

prevalence as a means for information aggregation.

Our research has also opened the gate for questions regarding political lobbying. Much

of the literature on the subject (see for example Buchanan et al. [1980] and Baye et al.

[1993]) has focused on lobbying as a way in which special interest groups try to provide

incentives for political actors, in order to sway them in their favored direction. It is, how-

ever, just as plausible for such groups to buy influence with advising experts to influence

politicians’ beliefs rather than offer direct incentives. Our work shows that this can be

effective even if politicians are aware of it, as long as they remain ignorant about the

exact identity of the experts who have been compromised. In particular, interest groups

may seek to sometimes influence experts against their own favored decision to create the

justified belief that some experts advocating the other side are not trustworthy. When

talk is cheap, trust is s valuable yet vulnerable asset.
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A Appendix: Proofs

Proof of Proposition 1. As noted in the text, in the following we use the proof tech-

nique of Theorem 1 in Nitzan and Paroush [1982], who derive the optimal non-strategic

processing of signals with a symmetric prior λ0 =
1
2
.

In the main text, we use the same notation for random variables and their realizations.

For this proof, it is useful to introduce a separate notation. We use upper-case characters

for random variables and lower-case characters for their realizations.

The receiver processes messages t to update her posterior. She prefers the action that

yields the higher expected utility given her posterior q(t). More precisely, an optimal

decision rule selects action 1 if

λ0 + P[ω = 1|T = t] > (1− λ0) + P[ω = 0|T = t]

⇔ λ0P[ω = 1|T = t] > (1− λ0)P[ω = 0|T = t]

⇔ λ0
P[P = p|ω = 1] · P[ω = 1]

P[P = p]
> (1− λ0)

P[P = p|ω = 0] · P[ω = 0]

P[P = p]

⇔ λ0p0
∏

i

P[Pi = pi|ω = 1] > (1− λ0)(1− p0)
∏

i

P[Pi = pi|ω = 0]

⇔ λ0p0
∏

i

pi

p0
> (1− λ0)(1− p0)

∏

i

1− pi

1− p0

⇔
∏

i

(

pi

1− pi

1− p0

p0

)

>
1− λ0

λ0

1− p0

p0

⇔
∑

i

(

ln
pi

1− pi
− ln

p0

1− p0

)

> −

(

ln
λ0

1− λ0

+ ln
p0

1− p0

)

.

The first equivalence is a simple algebraic consequence of the fact that the first factors

and the second factors each add to one. For the second equivalence, we apply Bayes’ rule

and exploit the fact that senders play the truthful strategy. In the third step, we use the

conditional independence of signals. We arrive at the fifth equation by applying Bayes’

rule once again. The sixth equation is a simple reformulation of the fourth. Finally, we

obtain the last equation by taking the logarithm on both sides. The resulting decision

rule can be interpreted as a weighted majority rule with weighting function

w(ti) =







ln ti
1−ti

− ln p0
1−p0

if ti ∈ P

0 else,

and threshold τ = −
(

ln λ0

1−λ0
+ ln p0

1−p0

)

.
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It is optimal for senders to play the truthful strategy since senders and the receiver have

the same utility function. With the truthful strategy, senders can transmit all available

information. Any beneficial transformation of messages can be done by the receiver.

Lemma 3. Let c ∈ R be a constant and Z be a random variable with E[Z] = 0. Then

E[|c+ Z|] ≥ |c|.

and further equality holds if and only if P (c + Z ≥ 0) = 1 for c ≥ 0 and P (c + Z ≤

0) = 1 for c ≤ 0.

Proof of Lemma 3. Suppose c ≥ 0. We then have:

E[|c+ Z|] =P (c+ Z > 0)E[c+ Z|c+ Z > 0] + P (c+ Z ≤ 0)E[−c− Z|c+ Z ≤ 0]

=P (c+ Z ≥ 0)E[c+ Z|c+ Z ≥ 0]− P (c+ Z ≤ 0)E[−c− Z|c+ Z ≤ 0]

+ 2P (c+ Z ≤ 0)E[−c− Z|c+ Z ≤ 0]

=c+ 2P (c+ Z ≤ 0)E[−c− Z|c+ Z ≤ 0]

The last term equals |c| if and only if P (c + Z ≤ 0) and is otherwise strictly greater.

The argument for c < 0 is symmetrical.

Proof of Proposition 2. We rely heavily on a similar characterization by Rothschild

and Stiglitz [1970], which the reader can find in Appendix B.

From this statement, we can directly deduce:

Let µ and ν be two posterior distributions. Then µ ≻ ν if and only if there exists

a coupled measure Π on [0, 1]2 with marginals µ and ν s.t. the random posterior vector

(p, p′) drawn from Π fulfills: p is a mean-preserving spread of p′: E[p − p′|p′] = 0 for all

p′.

Hence, it remains to be shown that provided µ ≻ ν, we have π(µ) = π(ν) if and

only if the corresponding mean-preserving spread preserves the direction of information:

P (p ∈ [0, p0]|(p
′ ∈ [0, p0]) = P (p ∈ [p0, 1]|(p

′ ∈ [p0, 1]) = 1.

π(µ) =Ep[|p− p0|] = Ep[|p− p′ + p′ − p0|] = Ep[Ep′ [|p− p′ + p′ − p0| |p
′]]

≥Ep′ [|p
′ − p0|] = π(µ)

The inequality follows from Lemma 3, and by the same lemma, holds with equality if

and only if the mean-preserving spread preserves the direction of information.
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Proof of Corollary 1. We start with our claim about µ̂α. Under Proposition 2, any

posterior measure with mass in the interval (0, p0) or (p0, 1) gets more specialized when

this mass is spread, while preserving the mean on {0, p0} and {p0, 1} respectively. The

resulting posterior distribution necessarily fulfills the following three conditions:

1. Unit-mass: µ̂(0) + µ̂(p0) + µ̂(1) = 1

2. Identical prior: 0 · µ̂(0) + p0 · µ̂(p0) + 1 · µ̂(1) = p0

3. Identical average informativeness: p0 · µ̂(0) + (1− p0) · µ̂(1) = α

These three conditions characterize µ̂α, as stated.

Let us now analyze µ̄α,β. Note first that any posterior measure µ is less specialized

than a posterior measure that is constructed by contracting some or all mass from one

of the intervals [0, p0] and [p0, 1] to the mean of that mass. This is simply the inverse

operation of the mean-preserving spreads that are restricted to one side. One can iterate

this process as long as there are more than two mass points in either of [0, p0] or [p0, 1].

The positions of the mass-points for the least specialized measure are determined by the

mass allocated to these two intervals and the average intensity. Denote by l and r the

position of the left and right mass-points. We then get the following four equations that

characterize µ̂α,β, as stated.

1. Unit-mass: µ̄(l) + µ̄(r) = 1

2. Identical prior: pl · µ̄(l) + pr · µ̄(r) = p0

3. Identical average informativeness: (p0 − pl) · µ̄(l) + (pr − p0) · µ̄(r) = α

4. Ratio of 0-favoring signals: µ̄(l) = β

Lemma 4. For posterior distribution µ with cdf F and preference distribution γ, the

lower expertise bound b in the receiver-optimal equilibrium is determined by

γ(0) (p0 − b) =

∫ b

0

(b− x)dµ = γ(λ0) ·

∫ b

0

F (x) dx,

and the upper expertise bound b is determined by

γ(1)
(

b− p0
)

=

∫ !

b

(X − b)dµ = γ(λ0) ·

∫ 1

b

1− F (x) dx.
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Proof. To guarantee that the mixing probabilities as laid out in the strategy for 0-partisans

in Theorem 1 are probabilities, it must be the case that

γ(λ0)µ(ti)(b− ti)

γ(0)(p0 − b)
≥ 0 for all ti ≤ b ∧ ti ∈ P , and

∑

ti≤b∧ti∈P

γ(λ0)µ(ti)(b− ti)

γ(0)(p0 − b)
= 1.

The first condition is fulfilled for all ti ≤ b. The second condition implies that

γ(0)(p0 − b) =γ(λ0)

∫ b

0

(b− x)dµ

=γ(λ0) · F (b) · b− γ(λ0) ·

(

F (b) · b−

∫ b

0

F (x)dx

)

=γ(λ0) ·

∫ b

0

F (x)dx,

where we obtain the second equation by integration by parts.

The calculation for the upper expertise bound is analogous.

Proof of existence and uniqueness of expertise bounds in Theorem 1. With Lemma

4 the characterization of the lower expertise bound b is given by

γ(0) (p0 − b) = γ(λ0) ·

∫ b

0

F (x) dx.

Note that the left side of the equation is strictly decreasing in b ∈ [0, p0] and is 0 only

if b = p0. The right side is weakly increasing in b and is 0 for b = 0. Further, both sides

are continuous in b. Thus, there is a unique b that fulfills the equation.

The proof for the upper expertise bound is analogous.

Proof of the equilibrium in Theorem 1. As in the proof of Proposition 1, we use

upper-case characters for random variables and lower-case characters for their realizations.

We start to calculate the virtual posterior q(ti) of the receiver after receiving message

ti. The only senders that send messages within the expertise bounds are advisors. Thus

q(ti) = ti for ti ∈ (b, b) ∩ P . For messages ti ≤ b with ti ∈ P the virtual posterior of the

receiver is

q(ti) = P [ω = 1|Ti = ti]

=

∑

λ∈{0,λ0}
P [Ti = ti|ω = 1 ∧ Λ = λ]P[ω = 1]P [Λ = λ]

P [Ti = ti]
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=
γ(λ0)µ(ti)ti + γ(0)γ(λ0)µ(ti)(b−ti)

γ(0)(p0−b)
p0

γ(λ0)µ(ti) + γ(0)γ(λ0)µ(ti)(b−ti)
γ(0)(p0−b)

= b.

The calculation for the virtual posterior of messages ti ≤ b with ti ∈ P is q(ti) = b by

an analogous calculation. Thus, the receiver’s on-equilibrium beliefs are consistent with

Bayes updating.

The technique of Nitzan and Paroush [1982] and the proof of Proposition 1 teach us

how to process a set of (virtual) posteriors optimally. Again, the best response of the

receiver can be interpreted as a weighted majority rule with weighting function

w(x) = ln
q(x)

1− q(x)
− ln

p0

1− p0
=































ln b

1−b
− ln p0

1−p0
x ∈ P ∧ x ≤ b

ln x
1−x

− ln p0
1−p0

x ∈ P ∧ b ≤ x ≤ b

ln b

1−b
− ln p0

1−p0
x ∈ P ∧ b ≤ x

0 else

and threshold τ = −
(

ln λ0

1−λ0
+ ln p0

1−p0

)

.

We proceed by proving that senders play best responses. Partisans maximize the

probability that the receiver will take the action that matches their preference parameter.

Given the strategy of advisors and the receiver, they send a message with maximal weight

in the preferred direction. In the equilibrium strategy 0-(1-)partisans mix over messages

with weight ln b

1−b
− ln p0

1−p0
(ln b

1−b
− ln p0

1−p0
) which is the highest (lowest) weight assigned

by the receiver. Hence, these partisans play best responses.

We proceed to analyze the best responses of advisors. Suppose an advisor is pivotal,

i.e., two different messages of his induce different actions by the receiver. The advisor and

the receiver have the same utility function and prefer the same action when they have the

same information. Thus, the best the advisor can do is to reveal all his information to the

receiver, who processes it optimally. If the advisory sender is not pivotal, any message is

a best response.

Taken together, the strategies and updating in Theorem 1 are a perfect Bayesian

equilibrium.

Proof of Lemma 1. Let µm⋆
i
be the virtual posterior distribution under the truthful

strategy m⋆
i . Any distribution µm′

i
that is induced by another strategy m′

i can be con-

structed from µm⋆
i
by an application of garblings. We do not restrict strategies to use only
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a finite set of messages. Therefore, we apply a result from Blackwell [1953] that general-

izes Theorem 12.2.2 in Blackwell and Girshick [1979] (see Proposition A in Appendix B)

to the case with continuous signals. Thereby, we conclude that µm⋆
i
is more informative

than µm′

i
.

Lemma 5. Let µ and ν with µ ≻ ν be posterior distributions with cdfs F and G, re-

spectively. Let γ be the distribution of preference parameters. Then, the lower (upper)

expertise bound bµ of µ is weakly smaller (greater) or equal than the lower (upper) expertise

bound bν of ν in the optimal equilibria with partisans.

Proof of Lemma 5. Suppose that bν < bµ, and use Lemma 4 to see that

γ(0) (p0 − bν) = γ(λ0) ·

∫ bν

0

G(x)dx

≤ γ(λ0) ·

∫ bν

0

F (x)dx

≤ γ(λ0) ·

∫ bµ

0

F (x)dx = γ(0)
(

p0 − bµ
)

.

Hence bµ ≤ bν , which is a contradiction. The proof for the upper expertise bound is

analogous.

Proof of Lemma 2. To simplify notation, we denote µm⋆
i
by µ, µm′

i
by ν, µγ

m⋆
i
by µγ,

and µ
γ

m′

i
by νγ. Further, we denote Fm⋆

i
by F , Fm′

i
by G, F γ

m⋆
i
by F γ, F γ

m′

i
by Gγ.

To prove that µγ is more informative than νγ, we show that

∫ y

0

Gγ(x)dx ≤

∫ y

0

F γ(x)dx for all y ∈ [0, 1].

Under Lemma 5, it holds that bµ ≤ bν and bµ ≥ bν . This allows us to check the inequality

separately on the three intervals [0, bν ] ,
[

bν , bν
]

and
[

bν , 1
]

.

For all y ∈ [0, bν ], it holds that

∫ y

0

Gγ(x)dx = 0 ≤

∫ y

0

F γ(x)dx.

For all y ∈
[

bν , bν
]

it holds that

∫ y

0

Gγ(x)dx =

∫ y

bν

γ(0) + γ(λ0)G(x)dx

= γ(0)(y − bν) + γ(λ0)

∫ y

0

G(x)dx− γ(λ0)

∫ bν

0

G(x)dx
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= γ(0)(y − p0) + γ(λ0)

∫ y

0

G(x)dx

≤ γ(0)(y − p0) + γ(λ0)

∫ y

0

F (x)dx

=

∫ y

0

F γ(x)dx.

The first equality follows from the definition of virtual posteriors and the equilibrium

strategies. For the third equality, we apply Lemma 4. The inequality follows from the

assumption that µ ≻ ν.

Since Gγ(x) = 1 for x ≥ bν , it follows that for all y ∈
[

bν , 1
]

it holds that

∫ 1

y

Gγ(x)dx ≥

∫ 1

y

F γ(x)dx.

The expected value of both distributions is consistent with the common prior, i.e.,
∫ 1

0
F γ(x)dx =

∫ 1

0
Gγ(x)dx = 1− p0. Thus, we conclude that

∫ y

0

Gγ(x)dx ≤

∫ y

0

F γ(x)dx,

for all y ∈ [bν , 1], which concludes the proof.

Proof of Theorem 2. Under known partisanship, it is common knowledge between par-

tisan senders and the receiver that the partisan senders will choose whatever message gets

higher weight for their preferred action. Hence, the receiver knows that no message send

by a partisan is informative, and hence the virtual posterior derived from a partisan sender

is always the prior. In contrast, the virtual posterior distribution of known advisors in

the most informative equilibrium is their posterior distribution, as in Proposition 1. We

hence arrive at the following virtual posterior distribution for known partisanship:

µ
γ
known = γ(λ0)µ(x) + (γ(0) + γ(1)) δp0

with average intensity:

π(µknown) = γ(λ0)π(µ)

The virtual posterior distribution derived from the equilibrium in Theorem 1 is given

by
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µ
γ
unknown(x) =































γ(λ0)F (x) + γ(0) if x = b

γ(λ0)µ(x) if x ∈
(

b, b
)

γ(λ0) (1− F (x)) + γ(1) if x = b

0 else

Let us first check that µunknown is less informative then µknown. For this, let us denote

with F
γ
unknown, F

γ
known, and F the cdfs of µγ

unknown, µ
γ
known and µ respectively. We then

have to show that

y
∫

0

Fknown(x)dx ≥

y
∫

0

Funknown(x)dx ∀y ∈ [0, 1].

When y ∈ [0, b], this is true, since Funknown is constant and equal to 0 on this interval.

The case for the interval y ∈ [b, 1] follows by a symmetric argument, since the integrals

become equal to the prior at y = 1. Let us hence focus on y ∈ [b, b]. We then get

y
∫

0

Fknown(x)dx =

y
∫

0

γ(λ0)F (x) + (1− γ(λ0))✶{x ≥ p0})dx

=

b
∫

0

γ(λ0)F (x)dx+

y
∫

b

γ(λ0)F (x) + (1− γ(λ0))✶{x ≥ p0})dx

≥ γ(0)(p0 − b) +

y
∫

b

γ(λ0)F (x) + γ(0)✶{x ≥ p0})dx

≥

y
∫

b

γ(λ0)F (x) + γ(0)dx

=

y
∫

0

Funknown(x)dx.

The first inequality makes use of Lemma 4. In the last equality, we use the fact that

Funknown is equal to 0 on [0, b]. Lastly, we verify the average informativeness of µunknown

to be

π(µγ
unknown) =

∫ 1

0

|x− p0|dµunknown
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=γ(λ0)

1
∫

0

|x− p0|dµ+ γ(0)(p0 − b) +

b
∫

0

(b− x)dµ+ γ(1)(b− p0) +

1
∫

b

(x− b)dµ

=γ(λ0)π(µ).

Here the last equation is a consequence of Lemma 4.

Proof of Proposition 3. We prove the proposition in two steps. We start to show

that by monotonicity and continuity of b and b, there exists c0, c1 ∈ (0, 1), such that the

receiver can only form two expected posteriors in the optimal equilibrium. Then, we prove

that there exist c0 and c1 such that c0 + c1 < 1. For both parts, we use Lemma 4, which

characterizes the lower expertise bound by the equation

γ(0) (p0 − b) = γ(λ0) ·

∫ b

0

F (x)dx.

The lower expertise bound can take any value in b ∈ [0,max{x : F (x) = 0}] if γ(0) = 0.

Further, it is p0 if γ(0) = 1. Rewriting the above equation yields

γ(0)

γ(λ0)
=

∫ b

0
F (x)dx

p0 − b
(2)

which exhibits that b is monotonically increasing in γ(0), monotonically decreasing in

γ(λ0) and continuous in γ(0), γ(λ0) ∈ (0, 1).

Since µ is never-ignorant, there exists a highest type strictly smaller than the prior,

pL := max{x|x < p0 ∧ x ∈ P}. The proposition is fulfilled if the lower expertise bound

equals this type b = pL. Continuity and monotonicity of b imply that the right-hand

side of Equation (2) is positive and finite, and hence γ(0) < 1 if b = pL. The proof for

the upper part with type pH := min{x|x > p0 ∧ x ∈ P} is analogous, so that constants

c0, c1 ∈ (0, 1) are implicitly given by

c0 (p0 − pL) = γ(λ0) ·

∫ pL

0

F (x)dx and c1 (pH − p0) = γ(λ0) ·

∫ 1

pH

1− F (x)dx. (3)

To see that c0 + c1 < 1 divide Equations (3) by (p0 − pL) and (pH − p0), respectively.

Adding both equations yields

c0 + c1 = γ(λ0) ·

∫ pL

0
F (x)dx

p0 − pL
+ γ(λ0) ·

∫ 1

pH
1− F (x)dx

pH − p0
.
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Since
∫ pL
0

F (x)dx

p0−pL
,

∫
1

pH
1−F (x)dx

pH−p0
> 0, it follows that γ(λ0) > 0. This implies that c0 + c1 =

γ(0) + γ(1) = 1− γ(λ0) < 1, which completes the proof.

Proof of Proposition 4. Let cµ0 , c
ν
0 ∈ (0, 1) constants from Proposition 3 for distribu-

tions µ and ν with cdfs F and G, respectively. Define c0 = max {cµ0 , c
ν
0} as the smallest

constant, such that both virtual posteriors µγ and νγ have only two mass points. Now we

compare the resulting lower expertise bounds bµ
γ

and bν
γ

. The smaller the lower expertise

bound, the better the signal. Thus, it is sufficient to show that bµ
γ

< bν
γ

.

Under Proposition 3 and Lemma 4, it follows that

bµ
γ

= p0 −
γ(λ0)

γ(0)

∫ p0

0

F (x)dx,

Lemma 6 implies that bµ
γ

< bν
γ

which completes the proof for the lower expertise

bound.

The proof for the upper expertise bounds is analogous. Further, c0 + c1 < 1 remains

to be true despite taking the maximum and minimum, respectively, by the same reason

as in the proof of Proposition 3.

Lemma 6. Let µ and ν be posterior distributions with cdfs F and G, respectively. Then,

π(µ) > π(ν) if and only if

∫ p0

0

F (x)dx >

∫ p0

0

G(x)dx and

∫ 1

p0

1− F (x)dx >

∫ 1

p0

1−G(x)dx.

Proof. We rewrite π(µ) until we arrive at an expression from which the result is immediate:

π(µ) = E [|pi − p0|]

=

∫ 1

0

|x− p0| µ(x)dx

=

∫ p0

0

(p0 − x) µ(x)dx+

∫ 1

p0

(x− p0) µ(x)dx

= p0 · F (p0)−

∫ p0

0

x µ(x)dx+

(

p0 −

∫ p0

0

x µ(x)dx

)

− p0 · (1− F (p0))

= 2

(

p0 · F (p0)−

∫ p0

0

x µ(x)dx

)

= 2

∫ p0

0

F (x)dx.

The fourth equation follows from the common prior p0 =
∫ 1

0
x µ(x)dx and the last equality

from integration by parts. The derivation of the second inequality is analogous.
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B Appendix: Comparison of Knowledge Distribu-

tions with Blackwell, Rothschild and Stiglitz

In this part of the Appendix, we collect certain tools from the literature that we use

throughout and that are related to definition 2. This allows us to compare the receiver’s

utility for different posterior distributions of senders. The methods and results in this

subsection are borrowed from Chapter 12 in Blackwell and Girshick [1979] and Rothschild

and Stiglitz [1970]. In order to apply their machinery to our problem, we adjust our

setting, and translate our notation into theirs.

The following results rely on the assumption that the action space of the receiver is a

closed bounded convex subset of R. To fulfill this assumption, we extend the action space

of the receiver from {0, 1} to ∆{0, 1}, so that her action space is the interval [0, 1]. An

action a ∈ ∆{0, 1} corresponds to the probability that the receiver takes action 1. Note

that we can use this extended action space throughout the whole paper without changing

any result. In all statements on best responses of the receiver, one of the two extreme

actions {0, 1} ⊂ ∆{0, 1} is optimal. We use the action space {0, 1} in the main text of

the paper to simplify the exposition.

To present the next results, it is also helpful to introduce some of the notation of

Blackwell and Girshick [1979]8 For a posterior distribution µ, we define a 2 × N matrix

P , where N = |P| is the number of possible posteriors. The rows represent the two states

of the world 0 and 1. Each column represents one possible posterior. The value Pij is

the probability of observing the posterior represented by column j in state i. Note that

matrix P is Markov, which means that Pij > 0 for all i and j and that
∑N

j=1 Pij = 1

for all i. With the notation, we are equipped to remind the reader of Theorem 12.2.2 in

Blackwell and Girshick [1979].

Proposition A (Blackwell and Girshick [1979]). Let P and Q be two 2×N1 and 2×N2

Markov matrices of posterior distributions µ and ν. µ is more informative than ν if and

only if there is an N1 ×N2 Markov matrix M with PM = Q.

Matrix M is said to garble information by transforming matrix P to Q. This means

that distribution ν can be constructed from distribution µ. This interpretation justifies

the statement that µ is more informative than ν.

The next result generalizes the previous proposition by enabling the comparison of sets

of distributions. Each sender sends a conditionally independent posterior. Consider two

sets of senders with different posterior distributions. Then, Theorem 12.3.2 in Blackwell

8We also enjoyed reading the notes of Borgers [2009] on Chapter 12 of Blackwell and Girshick [1979]
and borrow some of his notation.
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and Girshick [1979] allows us to compare the information of both groups in the following

sense.

Proposition B (Blackwell and Girshick [1979]). Let (µi)
n
i=1 and (νi)

n
i=1 be two sets of

posterior distributions. Suppose that µi is more informative than νi for every i. Then,

the combination of posterior distributions (µi)
n
i=1 is more informative than (νi)

n
i=1.

The proposition allows, to compare the information that is transmitted to the receiver

from different distributions. Theorem 12.2.2 (4) in Blackwell and Girshick [1979] allows

us to use this result for a statement on the utility of the receiver.

Proposition C (Blackwell and Girshick [1979]). Let µ and ν be two posterior distributions

such that µ is more informative than ν. Then, for every continuous convex function

φ : [0, 1] → R we have

Eµ [φ(x)] ≥ Eµ′ [φ(x)] .

Note that the utility function u⋆(q) is convex in q. Thus, if there are two posterior

distributions with µ ≻ ν, the proposition implies that the expected utility for the receiver

with distribution µ is at least as high as with distribution ν.

Lastly, we state a result by Rothschild and Stiglitz [1970] that links second-order

stochastic dominance to mean-preserving spreads in a way more suitable for our needs,

than a similar result by Blackwell and Girshick [1979].

Proposition D (Rothschild and Stiglitz [1970]). Let p and p′ be random posteriors drawn

from the measures µ and ν, respectively. Then µ ≻ ν if and only if there exists a random

variable z s.t.

p
d
= p′ + z

and

E[z|p′] = 0 ∀p′.
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