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Abstract

Modern financial markets increasingly rely on complex financial prod-

ucts. These products often change hands even though the buyers acquire

little information about the underlying structure of the financial asset.

The greater the complexity of the asset structure, the more opaque it

tends to be in the sense that acquiring information about the structure

is difficult and thus more costly. But are these opaque assets socially

beneficial?

To address this question, we construct a environment in which agents

trade assets that have random returns. The buyer of the asset has the

opportunity to inspect the asset, at some cost, to assess its fundamental

value. In short, the buyer chooses to perform due diligence or not prior to

accepting the asset. We use a mechanism design approach to determine

when it is socially optimal to have opaque assets and when it is not.

We characterize the set of allocations that satisfy sequential participation

constraints for both buyers and sellers of the assets.

1 Introduction

Most people consider information as a good, in the sense that more should

always be preferred to less. This view is undoubtedly correct from the individual

perspective. Since at least Hirshleifer (1971), however, economists have known

that more information can sometimes be detrimental from a social perspective.

This is perhaps not too surprising from what we know can follow in second-best

environments (Lipsey and Lancaster, 1956).

The Hirshleifer perspective leads us to re-examine the issue of nondisclosure

practices in the financial sector. Consider, for example, the fact that banks do

not always disclose the market value of their assets. Consider as well the fact

that bank regulators do not disclose their assessments of individual banks and

that central banks do not disclose the identity of those agencies making use of

1



the discount window. In the shadow-banking sector, some of the private assets

that circulated as collateral in repo exchanges were criticized as being “too

complicated and opaque”—properties that almost seemed purposely designed to

discourage due diligence. The question is whether practices like these possess

some underlying efficiency rationale.

We think that the answer to this question has some bearing on what we

understand to be good properties for exchange media to possess (by exchange

media, we include the collateral objects that circulate in the repo market). One

desirable property of a monetary instrument is that it passes easily from hand

to hand with little or no due diligence. Indeed, the need to inspect an asset

before accepting as payment literally destroys its liquidity value.

Gary Gorton calls this property “information insensitivity.” U.S. dollars and

U.S. Treasury debt are good examples of this property. That is, little if any

resources are devoted to inspecting the underlying properties of U.S. debt when

it is accepted in payment (or used as collateral in a short-term lending arrange-

ment). This is not the same thing as saying that U.S. debt is risk-free. What

it means is that no one has an incentive to generate private information about

an asset (the way that is commonly done for equity, for example). Historically,

the private sector seems to go to great length to manufacture “informationally

insensitive” debt. Private banknotes in the past, for example, were designed as

senior claims to bank assets (in addition to being made redeemable on demand

for specie). More recently, the AAA rated tranches of MBS that circulated

as collateral in the repo market were arguably designed to be “informationally

insensitive”—even though this latter example turned out to be a spectacular

failure.

Let us now describe what we do in a little more detail. We construct an

environment where, because of a limited commitment friction, an asset is neces-

sary to facilitate intertemporal exchange. The return to the asset is stochastic.

More importantly, the expected return is stochastic—conditional forecasts are ra-

tionally updated as new information arrives (according to a separate, exogenous

stochastic process). This new information—or news, for short—has, by construc-

tion, zero social value.

We assume that society is in possession of an “information switch” that can

turn the news flow on or off. Turning the switch off corresponds to the nondis-

closure of (privately valuable) information. In our second-best world (limited

commitment), bad news events lead to credit crises, with tightening debt con-

straints. This is because bad news depresses asset prices and hence contracts

the market value of collateral. If news is not disclosed, asset prices do not re-

act, and economic welfare is improved. Hence, it is optimal in the environment

described thus far to have an “opaque” asset circulate as an exchange medium.

We extend this basic environment in an important and realistic way by

assuming that individuals possess their own information gathering technology.

If the cost of operating this technology is small enough, individuals will have
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an incentive to generate information about the asset in the event that the news

is not disclosed (information switch is off). We call such an activity “undue

diligence” because while information gathering of this sort is privately beneficial,

it is socially detrimental.

Our main findings are as follows. If the cost of gathering information is

sufficiently high for individuals, then the nondisclosure of information is socially

optimal (information switch off). This is because news has no social value and

is potentially detrimental, but individuals have no incentive to acquire it when

it is privately too costly to do so.

If, on the other hand, the cost of gathering information is sufficiently low,

then information disclosure is socially optimal (information switch on). This is

because releasing information prevents wasteful information gathering activities.

If individuals have a private incentive to acquire information, society may as well

make it freely available. This corresponds to rendering an exchange medium

perfectly transparent. The result is the occasional credit crunch, but this is the

constrained efficient solution.

To sum up in one sentence, this paper advocates institutions to disseminate

information only when information acquisition costs for individuals are suffi-

ciently small. Transparent exchange media are needed when it is necessary to

prevent undue diligence.

2 The environment

2.1 Basics

Our basic framework is the quasilinear model developed by Lagos and Wright

[1]. Time is discrete and the horizon is infinite. Each time period is divided into

two subperiods, labeled day and night.

The economy is populated by two types of agents, labeled  and  and referred

to as ‘buyers’ and ‘sellers,’ respectively. Agents are infinitely-lived and there is

an equal measure (a continuum) of each agent type. Agent types are defined by

their characteristics at night. Let  ∈ R+ denote output at night. Type  agents
want to consume this output, while type  agents have an ability to produce it.

Let () denote the utility associated with consumption and −() the utility
associated with production. We apply the standard restrictions; 00  0  0

and 0 00  0 In addition, assume (0) = (0) = 0 0(0) =∞ and 0(0) = 0.
There is a unique 0  ∗ ∞ satisfying 0(∗) = 0(∗).

During the day, all agents can produce general goods  with a constant

returns to scale production technology where one unit is produced with one

unit of labor generating one unit of disutility. Consumption of general goods

yields utility  () =  where negative values are interpreted as production. All

agents have a common discount factor 0    1. The objectives, for type 
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and  agents respectively, are given by:

 = 0

∞X
=0

 [ + ()] (1)

 = 0

∞X
=0

 [ − ()] (2)

Agents are centrally located during the day, but disperse to form random

pairwise meetings at night. Agents of different types meet each other with

probability one at night. The match process is such that individuals will (almost

surely) never meet each other again.1

There is a single asset in the economy; a “Lucas tree.” The asset generates

a stochastic flow of nondurable output  ≥ 0 at the beginning of each day. For
simplicity, this dividend is assumed to take on two values, 0 ≤     ∞

Let  ≡ Pr
£
 = 

¤
denote the probability of a high dividend, and let ̄ ≡

 + (1− )  denote the unconditional expected level of the dividend flow.

Feasibility at night requires  =  =  ≥ 0 for all . Restricting atten-
tion to stationary allocations, and assuming that buyers and sellers are treated

symmetrically within their type, the resource constraints in the day are given

by:

 +  =  (3)

 +  =  (4)

Defining ̄ =  + (1− )  and ̄ =  + (1− )  these resource con-

straints imply

̄ + ̄ = ̄ (5)

An allocation (stationary) is denoted by the list
¡
   


  


 




¢
. A

feasible allocation is denoted by
¡
   




¢
since it is an allocation that

satisfies  ≥ 0, (3), and (4).
We distinguish between two types of allocations; one in which  is state-

contingent (separating) and one in which it is not (pooling). A pooling allocation

is an allocation where  =  = . In a pooling allocation, agents do not know

the dividend state but they can calculate the expected payoff ̄ and ̄ since

they know  

  


 


 and the probability distribution . To reduce notation,

we denote a pooling allocation by the tuple ( ̄). A separating allocation is an

allocation with  6= . In any separating allocation, agents know the dividend

state.

Finally, an efficient allocation is a feasible allocation that satisfies  =  =

∗, where ∗ satisfies 0(∗) = 0(∗). It is then clear that an efficient allocation
is always a pooling allocation.

1This assumption rules out bilateral intertemporal trading relationships.
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This basic environment will subsequently be modified to incorporate an in-

spection technology; see Section 4.

3 Incentive-feasible allocations

An incentive-feasible allocation is a feasible allocation that satisfies a set of

sequential participation (SP) constraints. We now describe these sets for the

pooling allocations and then for the separating allocations.

3.1 Incentive-feasible pooling allocations

Because sellers incur sacrifice (production) at night, and buyers incur sacrifice

in the day, there are two relevant SP constraints to consider. Consider a feasible

pooling allocation ( ̄). The SP constraint for a seller at night is given by:

− () +  (̄ + ) ≥  (6)

where

 =
− () + ̄

1− 
(7)

Here,  is the continuation value for a seller who follows a recommended pooling

allocation. The parameter  governs the severity of the punishment associated

with noncompliance. Setting  =∞, for example, implies perpetual ostracism.
Combining (6) and (7) yields,2

− () + ̄ ≥ 0 (8)

Let  ≡ {( ̄) : − () + ̄ ≥ 0} denote the set of allocations ( ̄) that
induce SP for the seller. Given the assumed properties for , the set  is clearly

non-empty and strictly convex.

The SP constraint for the buyer in the day is given by,

 + () +  ≥  for  ∈ { } (9)

where

 =
̄ + ()

1− 
(10)

Here,  is the continuation value for a buyer who follows a recommended

pooling allocation.

2To see this, use (7) to replace   in (6) to get

[− () + ̄]


1 +

 − 

1− 


≥ 0.

Since

1 + −

1−

 0, we get (8).
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Lemma 1 If a feasible pooling allocation ( ̄) satisfies the sequential partici-

pation constraint for the buyer (9), it also satisfies the inequality

̄ ≤ ̄ + () (11)

Proof. A buyer is just willing to accept a pooling allocation if  + () +³
 − 

´
 = 0 in state  and 


+()+

³
 − 

´
 = 0 in state .

3 Thus,

to derive the set of pooling allocations that make him indifferent between partic-

ipating and not participating, we can set  =  = ̄ = −()−
³
 − 

´
.

If  =  = ̄, he is accepting if

̄ + () +  ≥  (12)

This condition also applies if  6=  . Why is this? Consider a pooling allo-

cation with  6=  and associated expected value ̄ =  + (1− ) . If

condition (9) holds for  =  , then (12) will also hold. If, on the other hand,

condition (9) is violated for  =  , then there is no combination of ( 

 )

that yield the same expected value ̄ and satisfies (12). Finally, if condition

(9) holds for only one  =   and (12) holds then it is possible to transfer the

reward in the slack state to the tight state without altering ̄. In particular,

one may as well set  =  = ̄.

Thus, we can set  =  = ̄ without loss in generality. Then conditions

(12) and (10) imply ̄ + () ≥ 0. Finally, replacing ̄ = ̄ − ̄, we get (11).

Definition 2 An incentive-feasible pooling allocation is a feasible allocation

( ̄) that satisfies the SP constraints (8) and (11).

Let  ≡ {( ̄) : ̄ ≤ ̄ + ()} denote the set of allocations ( ̄) that
induce SP for the buyer. Given the assumed properties of , the set  is clearly

non-empty and convex.

The set of incentive-feasible pooling allocations is given by  ∩ ; which is
clearly a non-empty and compact set. Together, conditions (8) and (11) imply

that any incentive-feasible pooling allocation ( ̄) must satisfy,
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() ≤ ̄ ≤ ̄ + () (13)

Definition 3 Let Ψ () ≡  [̄ + ()]− () and define   0 by Ψ () = 0

Note that the quantity   0 is unique since Ψ is strictly concave with

Ψ (0) = ̄.

3Lemma 1 also applies for a separating allocation since the dividende state is observed at

the beginning of the day.
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Proposition 4 An incentive-feasible pooling allocation ( ̄) exists for any  ∈
[0 ].

Proof. Given the properties of Ψ (), there is an unique maximizer ̂ that

solves 0 (̂) − 0 (̂) = 0. It follows that Ψ is increasing in  ∈ (0 ̂) and
decreasing for   ̂. For , the incentive feasible allocation is unique and

satisfies ( ̄) = [ ̄ + ()]. For any 0 ≤   , condition (13) implies

()   [̄ + ()] and so there exists a continuum of incentive-feasible pooling

allocations ( ̄) with ̄ ∈
h
1

() ̄ + ()

i
 The expected transfer ̄ only

affects how the surplus is shared.

The quantity  is the maximal value of  such that the SP constraints of

buyers and sellers hold. Whether ∗ belongs to this set depends on parameters.
Evidently, if ∗ ≤ , the first-best quantity can be implemented. Condition

(13) suggests that we can choose parameters  and ̄ so that the following

condition holds:

−1(∗) = ̄∗ = ̄ + (∗) (14)

That is, condition (14) identifies parameters such that the efficient allocation is

just implementable; i.e., it leaves both seller and buyer on their respective SP

constraints. In what follows, we will use this parameterization as a benchmark

and refer to it as assumption [A1].

[A1]  = ∗ ≡ (∗)
̄+(∗) (The efficient allocation is just implementable.)

It is clear that if  ≥ ∗, then ∗ is implementable.

3.2 Incentive-feasible separating allocations

Consider a feasible separating allocation
¡
    




¢
. Let ̄

¡
 

¢ ≡ 
¡

¢
+

(1− )
¡

¢
and ̄

¡
 

¢ ≡ 
¡

¢
+(1− )

¡

¢
, where we sometimes omit

the arguments and only write ̄ and ̄. In a separating allocation agents know

the dividend state at night, but not in the day.

The set of state-contingent SP constraints for the seller at night are given

by:

− ¡¢+ 
¡
 + 

¢ ≥ ,  =   (15)

where  = (1− )
−1 ¡−̄+ ̄

¢
is the continuation value for a seller who

follows a recommended separating allocation.

The set of state-contingent SP constraints for the buyer in the day are given

by:

 + ̄+  ≥  for  ∈ { } (16)
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where

 =
̄ + ̄

1− 
(17)

Here,  is the continuation value for a buyer who follows a recommended

separating allocation. Note that ̄ replaces () in (16) because the buyer does

not yet know the state that will prevail at night.

Lemma 5 If a feasible separating allocation (   

 ) satisfies the sequen-

tial participation constraint for the buyer (16), it also satisfies the inequality

̄ ≤ ̄ + ̄ (18)

Proof. A buyer is just willing to accept a separating allocation if  + ̄ +³
 − 

´
 = 0 in state  and 


+ ̄+

³
 − 

´
 = 0 in state .

4 Thus, to

derive the set of separating allocations that make him indifferent between par-

ticipating and not participating, we can set  =  = ̄ = −̄−
³
 − 

´
.

If  =  = ̄, he accepts if

̄ + ̄+  ≥  (19)

This condition also applies if  6=  . Why is this? Consider a pooling allo-

cation with  6=  and associated expected value ̄ =  + (1− ) . If

condition (9) holds for  =  , then (12) will also hold. If, on the other hand,

condition (9) is violated for  =  , then there is no combination of ( 

 )

that yield the same expected value ̄ and satisfies (12). Finally, if condition

(9) holds for only one  =   and (12) holds then it is possible to transfer the

reward in the slack state to the tight state without altering ̄. In particular,

one may as well set  =  = ̄.

Thus, we can set  =  = ̄ without loss in generality. Then conditions

(12) and (10) imply ̄ + ̄ ≥ 0. Finally, replacing ̄ = ̄ − ̄, we get (18).

Definition 6 An incentive-feasible separating allocation is a feasible allocation¡
   




¢
with  6=  that satisfies the SP constraints (15) and (18).

We want to characterize the set of incentive-feasible separating allocations.

To do this, we assign zero surplus to the buyer. In this manner, the seller can

be allocated maxiumum incentive to produce output ( ) at night. Conse-

quently, we set

̄ = ̄ + ̄ (20)

in what follows.

4Lemma 1 also applies for a separating allocation since the dividende state is observed at

the beginning of the day.
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Furthermore, the resource constraints then imply  = +̄ and  = +̄.

We can use (20) to write the state-contingent SPs for the seller as follows:

− ¡¢+ 
¡
̄+ 

¢ ≥
³
 − 

´
 (21)

− ¡¢+ 
¡
̄+ 

¢ ≥
³
 − 

´
 (22)

Let

 ≡
n
( ) : − ¡¢+ 

¡
̄+ 

¢− ³ − 
´
 ≥ 0

o
 ≡

n
( ) : − ¡¢+ 

¡
̄+ 

¢− ³ − 
´
 ≥ 0

o
denote the set of quantities ( ) that induce SP for the seller in states  and

, respectively. Given the assumed properties for  () and  ()  the set 

and  are clearly non-empty and strictly convex. The set of incentive-feasible

quantities is given by  ∩ ; which is clearly a non-empty and compact set.

3.3 Constrained-efficient allocation

In this section, we characterize the constrained-efficient allocation. To do so, we

need to compare the welfare properties of the pooling and separating allocations.

It is clear that for  ≥ ∗, an incentive-feasible pooling allocation with  =

 = ∗ exists. In this case, the constrained-efficient allocation is a pooling
allocation with  =  = ∗. When   ∗ the nature of the constrained-
efficient allocation is less obvious.

We use the discounted expected utility to compare the welfare properties of

different allocations. For any allocation, our welfare criterion is


¡
 

¢ ≡ £̄( )− ̄( ) + ̄
¤
(1− )

−1
(23)

Proposition 7 The constrained-efficient allocation is a pooling allocation with

 =  =

½
∗ if  ≥ ∗

 if   ∗

Proof. For  ≥ ∗, an incentive-feasible pooling allocation with  =  = ∗

exists. Hence, the constrained-efficient allocation is a pooling allocation with

 =  = ∗. From Lemma 1, if   ∗ the constrained-efficient pooling
allocation satisfies

 ( ) ≡ [()− () + ̄] (1− )
−1
,

where  satisfies

 [̄ + ()]− () = 0
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From (21) and (22), the constrained-efficient separating allocation satisfies

−̄+  (̄+ ̄) ≥ 0 (24)

To see this, multiply both sides of (21) by  and both sides of (22) by 1 − .

Then, add the two equations and rearrange to get

−̄+  (̄+ ̄) ≥
³
 − 

´


Next, replace  and rearrange to get

£−̄+  (̄+ ̄)
¤Ã
1 +

 − 

1− 

!
≥ 0

Since 1 +
³
 − 

´
(1− )

−1
 0, condition (24) follows immediately.

Concavity of  () and convexity of  () imply that any separating allocation

satisfies

− (̄) +  [ (̄) + ̄]  −̄+  (̄+ ̄) ≥ 0
where ̄ =  + (1− ) . The term on the LHS of the strict inequality is

equal to zero at ̄ = . But this implies that in any separating allocation, we

must have ̄  . Welfare in any separating allocation satisfies

[(̄)− (̄) + ̄] (1− )
−1


¡
̄− ̄+ ̄

¢
(1− )

−1


Then, since ̄   we have

[()− () + ̄] (1− )
−1

 [(̄)− (̄) + ̄] (1− )
−1


¡
̄− ̄+ ̄

¢
(1− )

−1


Thus, we have just proved that if   ∗ the constrained-efficient allocation is
a pooling allocation with  = .

The results to this point suggest that nondisclosure is optimal (pooling is

efficient). Several other papers have similar results (cite). But they abstract

from information acquisition. While information here has no social benefit, it

does possess private benefit. And one would expect that agents might want to

acquire this information, if it is not too costly to do so.

To explore this, we endow sellers with information acquisition technology

and explore the implications. In particular, does nondisclosure continue to be

socially desirable?

4 Information acquisition

Imagine now that there is an information acquisition technology available to

each agent at the beginning of each night. The utility cost  ≥ 0 is incurred
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if the technology is operated. Operating the technology generates information

about the dividend to be realized the next day. For simplicity, assume that the

signal thus received reveals the future dividend with exact precision. Assume

that it is in no way possible to communicate this information publicly.

Except for actions relating to information acquisition, individual trading his-

tories are observable. Thus, whether an agent chooses to operate the information

acquisition technology, together with what he learns from its operation, remains

private information. To be specific, we are assuming that nothing related to in-

formation acquisition (including the information itself) can be communicated

to the public (though communication within a match remains feasible).

In this environment, information acquisition constitutes a social waste. The

information has no social benefit and there is an acquisition cost. Nevertheless,

there may exist private incentives to acquire information. Moreover, its acqui-

sition may inhibit ex ante efficient trades from occurring. What is the intuition

for this?

Consider a incentive-feasible pooling allocation with    . Note that the

constrained-efficient allocation under [A1] is one such allocation. For any such

allocation, the seller is asked to produce  at night, essentially, in exchange for

promised (expected) utility ̄ the next day. One property of this allocation

is that, ex post, the seller faces a greater reward in the high-dividend state.

Consequently, it is conceivable that the seller might not want to produce at

level  if he knew beforehand that the asset is expected to generate a low yield.

If the cost of acquiring this information is sufficiently low, then he will have an

incentive to acquire it for the purpose of rejecting the trade in the event of “bad

news.”5

4.1 Incentive-feasible pooling allocations with inspection

technology

The incentive to acquire information will be absent if and only if,

−() +  (̄ + ) ≥ − + 
£−() + 

¡
 + 

¢¤
+ (1− ) (25)

The LHS denotes the utility payoff from accepting the recommended pooling

allocation without information acquisition. The RHS denotes the utility pay-

off associated with information acquisition. Gathering information entails the

direct cost  to the seller. The recommendation is then accepted only in the

event of “good news.” That is, it can never be optimal to gather costly infor-

mation and then not condition future behavior on it. Note that rejecting the

5Note that the buyer has no incentive to acquire information. Why is this? Loosely, the

buyer does not have to worry about the credibility of a daytime reward (the way the seller

must). The buyer will, in general, have to be punished in the day and he can deal with his

participation choice at the beginning of the day, after productivity is realized.
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recommendation entails the punishment .

Combining (7) with (25), the “no inspection condition” (NIC) can be rewrit-

ten as follows,

 ≥ (1− )

(
− £ − ()

¤−Ã − 

1− 

!
[̄ −  ()]

)
(26)

Thus, the greater the expected period surplus accruing to the seller [̄ −  ()],

the easier it will be to dissuade him from gathering information. Furthermore,

the greater the period surplus in the -state accruing to the seller
£
 − ()

¤
,

the easier it will be to dissuade him from gathering information.

Definition 8 An incentive-feasible pooling allocation that does not promote in-

spection by the seller is a feasible allocation ( ̄) that satisfies the SP con-

straints (8) and (9), and the NIC (26).

It is clear that the set of incentive-feasible allocations that do not promote

inspection by the seller is a subset of  ∩ since we added condition (26). The

question is whether it is a strict subset. The answer is yes if the inspection cost

is sufficiently low. To see this, we can rewrite (26) along the same lines as the SP

constraint of the seller. That is, we smooth the daytime reward (punishment)

for the buyer, so that  =  = ̄. This is without loss in generality since, for a

given , the right-hand side of (26) is minimized by choosing the largest transfers

 and  that are consistent with the buyer’s SP constraint. As before, this

implies that  =  − ̄ =  − (̄ − ̄). Replacing 

 in (26) and rearranging

yields

̄ ≥ −1 () + −1
µ

̄ − 

Ω − 

¶
(27)

where Ω ≡ 1 + (1− )
³
 − 

´
(1− )

−1 ≥ 1 and ̄ ≡  (1− )
¡
 − 

¢
.

Let  ≡
n
( ̄) : ̄ − −1 ()− −1

³
̄−
Ω−

´
≥ 0

o
denote the set of al-

locations ( ̄) that induce no inspection by the seller. Given the assumed

properties for , the set  is clearly non-empty and strictly convex.

Proposition 9 If   ̄,  ⊂  and  ∩ ⊂  ∩

The proof of Proposition 1 is obvious since the seller’s SP constraint is ̄ ≥
−1 (). Hence, if   ̄,  ⊂  which immediately implies that ∩ ⊂ ∩.
From Proposition 1, if   ̄, an incentive-feasible pooling allocation that

does not promote inspection by the seller is in ∩. Hence, conditions (11) and
(27) imply that any incentive-feasible pooling allocation that does not promote

inspection by the seller must satisfy,
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−1 () + −1
µ

̄ − 

Ω − 

¶
≤ ̄ ≤ ̄ + () (28)

Definition 10 Define Ψ1 () ≡ ̄+ (0)− −1 (0)− −1
³

̄−
Ω−

´
and let 0

denote the maximum  satisfying Ψ1(0) = 0

Lemma 11 If   ̄ there exists an incentive-feasible pooling allocation for any

 ∈ [0 0] that does not promote inspection by the seller.

Proof. Note that Ψ1 () has an unique maximum at ̂ ∈ (0 0) satisfying
0 (̂) − 0 (̂) = 0. Therefore Ψ1 () is increasing over   ̂ and decreasing

over   ̂. At 0, the incentive-feasible pooling allocation that does not promote

inspection by the seller is unique and satisfies
¡
  




¢
= [0 ̄ + (0)]. For

any 0 ≤   0,
1

()  ̄ + () and so there exists a continuum of incentive-

feasible allocations that do not promote inspection by the seller which only differ

in the expected transfer ̄

The quantity 0 is the maximal value of  that is incentive-feasible and does

not promote inspection by the seller. Whether ∗ belongs to the set [0 0]
depends on parameters. If ∗ ≤ 0 then the first-best quantity is obviously im-

plementable. Note that condition (28) suggests that we can choose parameters

 and ̄ so that the following condition holds:

−1 (∗) + −1
µ

̄ − 

Ω − 

¶
= ̄∗ = ̄ + (∗) (29)

That is, condition (29) identifies parameters such that the efficient allocation is

just implementable (it leaves the buyer on his SP constraint) and is just sufficient

to discourage inspection by the seller. It is then clear that ∗ is implementable
iff

 ≥
⎡⎣(∗) +

³
̄−
Ω−

´
̄ + (∗)

⎤⎦ ≡ ∗∗

Note that ∗∗  ∗ if   ̄ and ∗∗ = ∗ if  = ̄ since Ω −   0.

Thus, if  ∈ [∗ ∗∗) and   ̄, then ∗ is implementable in the absence of an
inspection technology while it is not implementable if sellers have access to such

a technology. Furthermore, if we impose condition [A1], then for any   ̄ the

efficient quantity is not implementable since it violates the NIC (26).
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Figure 1: Incentive-feasible pooling allocations when   ̄.

change max to 0 and mention that 
∗ = 

4.2 Constrained-efficient pooling allocation

In this section, we continue to restrict our attention to incentive-feasible pooling

allocations that do not promote information acquisition. We impose condition

[A1]. Recall that [A1] implies that the efficient quantity ∗ is just implementable
when  = ̄ and it is not when   ̄.

Definition 12 Let 1 satisfy  [̄ + (1)]−  (1)−max
h
0 ̄−
Ω−

i
= 0

Note that when   ̄ then 1 satisfies Ψ1(1) = 0; so that 1 = 0 When

 ≥ ̄ then 1 satisfies Ψ(1) = 0; in which case, 1 =  Moreover, recall that

 = ∗ under [A1]. It follows that,

Lemma 13 Under [A1], the constrained-efficient pooling allocation that does

not promote inspection by the seller satisfies

( ̄) = [1 ̄ + (1)] (30)

4.3 Constrained-efficient separating allocations

We are now ready to characterize the constrained-efficient separating allocation.

To this end, let ( ) = (0 

0 ) be the quantities that solve (21) and (22) at

equality.

14



Lemma 14 The quantities (0 

0 ) are unique and implement the allocation¡

   



¢
=
£
0,


0 , 

 + ̄(0 

0 ), 

 + ̄(0 

0 )
¤

(31)

where 0  0 solve

− ¡0 ¢+ 
£
̄(0 


0 ) + 

¤
= 0 (32)

− ¡0¢+ 
£
̄(0 


0 ) + 

¤
= 0 (33)

Proof. The quantities  and  solve (21) and (22) at equality. That is,

− ¡¢+ 
¡
̄+ 

¢
=

³
 − 

´
 (34)

− ¡¢+ 
¡
̄+ 

¢
=

³
 − 

´
 (35)

Such as solution exists and is unique. To see this, multiply (34) by  and (35)

by 1− , and add the two equations to get

−̄(0 0 ) + 
£
̄(0 


0 ) + ̄

¤
=
³
 − 

´
.

Since  = −̄(0 0 )+
£
̄(0 


0 ) + ̄

¤
(1− )

−1
 we get (1− ) =

³
 − 

´


which implyies that  = 0; i.e.,

−̄(0 0 ) + 
£
̄(0 


0 ) + ̄

¤
= 0

Finally, setting  = 0 in (34) and (35) yields (32) and (33). It is then straight-

forward to show that (32) and (33) have a unique solution. (Do we wish to

elaborate? Do we need conditions on ?)

It is tempting to suspect that the quantities (0 

0 ) are the welfare maxi-

mizing quantities among the set of all incentive-feasible separating allocations.

In fact, this is true in many cases. For example, one can show that it is true

when  = 1. However, it is not true in general for two reasons.

First, one can have 0  ∗  0 . In this case, in can be optimal to reduce 

0

even when it might involve reducing 0 too. Second, even when 0  0  ∗,
there are cases where one can reduce 0 and increase 0 and attain a better

allocation. Finally, note that under [A1] it can never be the case that ∗  0 

0 since in any separating allocation ̄  1 = ∗.

15
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Figure 2: Separating equilibrium

Change max

4.4 Constrained efficient allocation with inspection tech-

nology

For the following comparison, we do not need to know the exact details of the

constrained-efficient separating allocation. Since the set  ∩  is non-empty
and compact, we know that such an allocation exists; we denote it by,¡

   



¢
=
£
∗, 


∗ , 

 + ̄(∗ 

∗ ), 

 + ̄(∗ 

∗ )
¤

(36)

For the purpose of comparison, it is sufficient to know that the quantities (0 

0 )

will never yield a strictly higher level of welfare than the constrained-efficient

quantities (∗ 

∗ ).

We have two candidates for the constrained-efficient allocation. Either it is

(30) or (36). Welfare for the constrained-efficient pooling allocation is

 (1 1) = [(1)− (1) + ̄] (1− )
−1

Using (28) at equality, we can write this as follows:

 (1 1) = −1
∙
(1) +

̄ − 

(Ω − ) (1− )

¸
(37)

Welfare for the constrained-efficient separating allocation is


¡
∗ 


∗
¢
=
£
̄(∗ 


∗ )− ̄(∗ 


∗ ) + ̄

¤
(1− )

−1
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In what follows we use the fact that


¡
∗ 


∗
¢ ≥

¡
1 


1

¢
=
£
̄(1 


1 )− ̄(1 


1 ) + ̄

¤
(1− )

−1

Using (34) and (35), we can write 
¡
1 


1

¢
as follows:


¡
1 


1

¢ ≡ ̄(1 

1 )
−1 (38)

Proposition 15 Under [A1], there exists a critical value 0  ̂  ̄, such that

if ̄ ≥  ≥ ̂, the constrained-efficient allocation is (30) and if  ≤ ̂, the

constrained-efficient allocation is (36).

Proof. From Lemma 3, if  = ̄, we have 1 = ∗ so that the constrained-
efficient allocation is the pooling allocation with  =  = ∗

Next note that  (1 1) is strictly increasing in   ̄ To see this, note

that from (28) at equality we get

1


= − 1

[0(1)− 0(1)] (Ω − )
 0

since 0(1)− 0(1)  0. Then,

 (1 1)


= [0(1)− 0(1)]

1


 0

since 1  ∗ if   ̄. Hence, there exists a unique value of   ̄, denoted by

̂, such that  (1 1) =
¡
∗ 


∗
¢
because 

¡
∗ 


∗
¢
is independent of .

We now establish that ̂  0. From (28), at  = 0, 1 satisfies


¡
 − 

¢
= − (1) +  [(1) + ̄] 

Next, consider (35) at equality. Setting  =  =  and rearranging yields


¡
 − 

¢
= − () +  [() + ̄] 

Thus, the quantities  =  = 1 satisfy (35) at equality. Then, (32) and (33)

imply that

1  1  1 . (39)

This, can be also seen from the Figure 3.
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Then, (39) immediately implies that 
¡
1 


1

¢
  (1 1). Finally, since


¡
∗ 


∗
¢ ≥

¡
1 


1

¢
 it follows that ̂  0.

The gist of this Proposition is that if  is sufficiently low, the
economy is better off knowing the true state. In contrast, if the
inspection cost are sufficiently large, then ignorance is optimal.
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4.5 Extensions

In the previous section we have compared an economy with positive inspection

cost  to an economy that has no inspection cost  = 0. We have asked the

question whether the constrained-efficient allocation is in the former or the later.

In some sense we have looked at an economy where sellers have inspection

costs  ≥ 0 and the planner must decide of whether to reveal the true state

and implement the constrained-efficient allocation (36) or hide the state and

implement the constrained-efficient allocation such that sellers have no incentive

to inspect (30).

We can also look at the a different question. Suppose the planer has no

knowledge of the state. In this case he faces a different problem. If he wants

to implement a state-contingent allocation, he needs to take into account the

incentives of the sellers to sacrifice disutility  in order to learn the state. In

what follows we look at this question...... I have stopped here.

We have already derived the state-contingent SPs for the seller. Let us now

derive conditions for which the seller is willing to inspect for   0. The seller

has tree deviations to consider. First, he does not inspect and produces .

This will be detected by the planner in the low state and punished. Second, he

does not inspect and produces . This will be detected and punished in the

high state. Third, he does not inspect and produces  = 0. He is willing to

inspect if6

− − ̄+ ̄ +   ≥ −() + 
¡
 +  

¢
+ (1− )  and(40)

− − ̄+ ̄ +   ≥ −() + (1− )
¡
 +  

¢
+   (41)

− − ̄+ ̄ +   ≥   (42)

where

 =

∙−̄+ ̄ − 

1− 

¸


The left-hand side of each inequality is the expected payoff of the proposed

equilibrium strategy prior to inspection. The right-hand side are the expected

payoffs of the three deviations, respectively.

As always, by making the buyers indifferent, we can write the three condi-

tions as follows

(1− )
h
()− () + 

¡
̄+ 

¢− ³ − 
´
 
i
≥  and

(1− )
h
()− () + 

¡
̄+ 

¢− ³ − 
´
 
i
≥ 

−̄+  (̄+ ̄)−
³
 − 

´
  ≥ 

6Dave: there are more possible deviations. For example: don not inspect and produce

  0 with  6=  . All these deviations make the deviator strictly worse off than any of

the proposed three deviations.
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Definition 16 Let  ≡ ©( ) : such that (21) (22) (40) (41) and (42) holdª
denote the set of allocations

¡
 

¢
that induce SP for buyers and sellers and

inspection by sellers.

It is very hard to characterize this set analytically. All five inequalities

can be binding in
¡
 

¢
space. There is no way that we can reduce the

characterization of this set by eliminating some redundant condition.

I can however program it and look at it for various examples. Here is one:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ql

qh

Note that (max 

max) as defined above is not part of the set. It is in fact

never part of the set if   0. This can be shown analytically. In all my

examples, the welfare maximizing allocation is the ( ) that solves (22) and

(42) at equality.
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