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Innsbruck, Karlsruhe, Mainz, Mannheim, and Tübingen for discussion. All errors are our own. A

former version of this paper was called “The Birth and Burst of Asset Price Bubbles.”
†University of Bonn, BGSE, Adenauerallee 24-42, D-53113 Bonn, zeno.enders@uni-bonn.de
‡University of Bonn, Adenauerallee 24-42, D-53113 Bonn, hakenes@uni-bonn.de



1 Introduction

Under what conditions are asset price bubbles possible? Which policies can prevent

them? In the light of recent economic experience, these questions seem important

and topical. The last 15 years have seen at least two prominent market developments

that are now considered as bubbles. Both the so-called dot-com bubble in the late

1990s and the recent housing bubble in the United States and elsewhere produced

large reallocations of wealth during their buildup and after their crashes, thereby

affecting real macroeconomic variables. Although the phenomenon of bubbles has

long been recognized, economic policy has not been able to prevent their repeated

occurrence. Neither does a commonly accepted model of bubbles exist that can be

generally used for policy advice. Our paper contributes to the development of such

an understanding, which might eventually help guide policymakers. To this end, we

build a theoretical model, derive conditions under which multiple pricing equilibria

occur, and discuss policy measures that help prevent such bubbles.

Our simple workhorse model of a bubble is based on the assumption that the poten-

tial amount of liquidity in the market is not precisely known. Assuming imprecise

information about market potential seems natural in the light of increasingly com-

plex and opaque financial markets. In our model, within a bubble, a trader is only

willing to invest if she believes there can be yet another market participant in the

future to whom he can sell at an even higher price. As observed by Tirole (1982),

if the maximum market liquidity were known, the highest possible price of an asset

could be computed by the traders. By backward induction, no bubble could emerge

in the first place. On the other hand, Blanchard (1979) shows that bubbles are al-

ways possible if liquidity is infinite. Our assumption of finite but unknown liquidity

is an intermediate case.1

1Also, Santos and Woodford (1997) show that the conditions for the existence of bubbles are

very restrictive if one assumes a fixed number of households that participate in the asset market

and own finite aggregate endowments. Tirole (1985) analyzes “rational” bubbles that are possible
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The second important feature of our model is limited liability. In addition to invest-

ing their own funds, traders borrow. Being protected by limited liability, traders

behave as if they were risk-loving. They profit strongly from advancing stock prices,

but their losses are limited. The same results obtain if one assumes that some

investor delegates investment to a fund manager, whose compensation includes

bonus payments that cannot become negative.2 Hence the model directly applies

to any kind of intermediated finance with limited liability, such as through banks,

investment banks, insurance companies, and private equity firms, as well as to non-

intermediated, debt-financed investments. Looking at the effects of limited liability

alone, we find that the induced risk appetite of traders pushes asset prices above

their fundamental values (as already shown by Allen and Gale, 2000). Because of

limited liability in case of a low or zero return, the trader can increase her expected

payoff by engaging in riskier assets. Equilibrium asset prices are therefore driven

above fundamentals, but in a static way. These price deviations are not induced by

expectations and are not subject to sudden corrections (bursts).

Adding the assumption of uncertain market liquidity extends the space of possible

price paths drastically: expectations-induced bubbles with a dynamic price paths

may emerge. In such a bubble, traders are aware that they are in a bubble.3 A

high price reduces the probability that current asset holders will find future buyers

in overlapping-generations models if the real interest rate is smaller than the growth rate of the

economy. The present paper does not require this assumption. Note that a stochastic growth rate

would induce an uncertain future market size as is assumed here.
2According to the OECD database on institutional investors’ assets, in 2007 institutional in-

vestors in the U. S. managed assets worth 211.2% of GDP, showing their prominent role in in-

vestment decisions. Furthermore, their size has grown steadily over the last decade, with a yearly

average growth rate of 6.6% from 1995-2005 within the OECD(17) area (see Gonnard, Kim, and

Ynesta, 2008).
3Referring to the dot-com bubble, Brunnermeier and Nagel (2004) provide evidence that hedge

funds were riding the bubble, a result similar to a previous finding by Wermers (1999). They relate

this to, among others, a short-term horizon of the managers. This is in line with our model.
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at a yet higher price. Given this increased risk, they demand a higher expected

gain from the asset. This accelerator mechanism drives prices up over time until the

bubble collapses because either the previously unknown maximum market liquidity

is reached or the underlying fundamental breaks down (e. g., due to bankruptcy of

the issuing firm).4

Importantly, the model allows for bubbles in some parameter ranges, but not in oth-

ers. The above-explained feedback between higher prices and an increased fragility

of the bubble may not have a fixed point, at some future date or right from the

start. In either case, there is no possible price path besides the one induced by fun-

damentals; bubbles are unfeasible. Depending on the interaction of limited liability,

4Note that in this model the existence of a bubble requires neither heterogeneous traders nor

asymmetric information among them. This stands in contrast to a series of existing papers on

bubbles. In Allen, Morris, and Postlewaite (1993), private information can drive a price above

its fundamental value. Scheinkman and Xiong (2003) and Bolton, Scheinkman, and Xiong (2006)

assume that buyers of an asset hope to sell it to overoptimistic agents in the next period. This is

only possible in the case of heterogeneous beliefs. In Hong, Scheinkman, and Xiong (2006), the

presence of overoptimistic agents and short-sale constraints create bubbles, where prices drop after

an increase in asset float. Allen and Gorton (1993) and Barlevi (2008) show that asymmetry of

information between investors and heterogeneous managers can lead to deviations of prices from

fundamentals if liquidity needs are stochastic. The model of Brunnermeier and Abreu (2003) relies

on dispersed opinions that, in combination with coordination failure, can trigger bubbles. Also,

in Pástor and Veronesi (2006, 2009), there is initial noisy information and learning over time,

leading to stock price behavior that can be confused with a bubble. Froot, Scharfstein, and Stein

(1992) analyze which information can influence trading, potentially leading to herding equilibria.

In DeLong, Shleifer, Summers, and Waldmann (1990), rational traders’ behavior is influenced by

noise traders, who follow positive-feedback strategies. Allen, Morris, and Shin (2006) highlight the

role of higher-order expectations if traders have asymmetric information. Liquidity needs of firms

that are not fully met by uninformed investors can lead to bubbles in Farhi and Tirole (2011). In

Plantin and Shin (2010), not all traders have market access at a given point in time. A different

strand of literature relies on near-rational investors. In Conlon (2004), agents are rational to the

nth degree, giving bounded rationality a crucial role. Agents in Adam and Marcet (2010) use

Bayesian updating about asset price movements, leading to bubbles.
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uncertainty about the market size, riskiness of the asset, and the risk-free interest

rate, the prerequisites for bubbles can be fulfilled or not.5 We can thus analyze poli-

cies to prevent bubbles. One of the widely discussed possible policy measures is a

financial transaction (Tobin) tax. We find that such a measure can actually backfire

and enlarge the parameter range where bubbles are possible, if levied on all finan-

cial assets. If imposed on potential bubble-assets only, it prevents the emergence of

bubbles. Similarly, a system that reduces bonus payments can actually backfire and

increase the parameter range where bubbles are feasible. Only a low enough cap

on bonuses will effectively prevent the emergence of bubbles. Also a monetary pol-

icy rule that takes asset price inflation into account can render bubbles impossible.

Finally, mandatory long-term compensation and/or capital requirements fulfill the

same purpose.

The remainder of this paper is organized as follows. Section 2 introduces the model.

Section 2.2 develops a steady-state (rational expectations) equilibrium price process.

Section 3 constructs a simple example of a non-steady-state (rational expectations)

equilibrium price process, which we call a bubble. We give a necessary and sufficient

condition for the existence of such example bubbles. In section 4, we show that this

very condition is necessary and sufficient for the existence of bubbles in general. The

condition lends itself to basic policy analysis, which is done in section 5 by discussing

several policy measures. Interpreting the trader’s payoff scheme as a compensation

package that pays bonuses but does not let traders participate in losses, allows us

to evaluate the policy measures of a cap on bonuses and long-term compensation in

section 5.4. Section 6 concludes. All proofs are in the appendix.

5Taking the housing bubble as an example, we find that all conditions that are favorable for the

emergence of bubbles were fulfilled. Low interest rates prevailed for a long period, while increasingly

international financial flows and more complex financial instruments obscured the potential market

liquidity. Furthermore, the 2004 decision of the Securities and Exchange Commission to allow

the large investment banks to take on more debt increased their limited liability and increased

uncertainty about the maximum market liquidity even further.
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2 The Model

2.1 Setup

Consider an infinite horizon economy with overlapping generations of traders.6 In

period t, a continuum of measure N traders is born, each with an initial endowment

of E dollars. N is stochastic but fixed over time, i. e., the distribution F (N) and

density f(N) are public information, but not the actual realization of N . Traders

invest in period t. They earn their returns, withdraw from the market, and consume

in the next period, t + 1. To undertake investment, they borrow additional funds.

Each trader, owning E dollars, can borrow D dollars at an interest rate rD, where

D,E and rD are exogenous. Thus, the trader can invest E + D. If y is the gross

return rate, then the income from investment is y (E +D), and the profit is y (E +

D)−(1+rD)D if that is positive, otherwise the profit is zero due to limited liability.

The trader’s target function is thus

max{α (y − β); 0} (1)

with α ≡ (E + D) and β ≡ (1 + rD)D/(E + D). Traders maximize the expected

target function. In section 5.4, we will interpret α and β as parts of a compensation

contract in a delegation problem.

There are two assets, a safe asset (short: storage) of unlimited supply and a single

risky asset (short: asset) of volume 1. Storage bears a risk-free net interest of r.7

The risky asset can be interpreted as shares of a firm. This firm pays dividends of d

in each period.8 However, in each period, there is a probability 1 − q that the firm

6Like Allen and Gale (1997), we use the OLG structure as a metaphor for other sources of

non-modeled market imperfections, such as heterogeneous liquidity preferences.
7We assume r > rD > 0, such that the trader has an incentive to take up outside financing.
8One may also interpret the asset as real estate. If the house is used as rental property, d is the

rent per period.
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will go bankrupt and cease to pay dividends forever; its shares are then no longer

traded. Hence, the time of bankruptcy is determined by a Poisson process. The

risky asset is traded on a competitive market in each period. Its price follows an

endogenous time-discrete stochastic process {p̃t}t≥0.

2.2 The Steady-State Price

Consider the following simple stochastic process {p̃t}t≥0. The price of the asset is a

constant, p̃t = p̄. Only if the underlying firm goes bankrupt (with probability 1− q)

and cash ceases to flow, the price drops to p̃t = 0. Hence, the price follows a simple

binomial process with Prt{p̃t+1 = p̄|pt = p̄} = q. Zero is an absorbing state. Let us

derive the price p̄ for which this process is a rational expectations equilibrium.

In a market equilibrium, prices must be such that the traders’ expected return

is the same for storage and for the risky asset. If a trader opts for storage, her

compensation is max{α (1 + r − β); 0} = α (1 + r − β). If the trader buys shares

of the firm at a price pt = p̄, she benefits from the dividend with probability q. She

thus earns d/pt with probability q. In absence of a bankruptcy, the price remains at

p̃t+1 = p̄, and the trader additionally gets pt+1/pt = p̄/p̄ = 1 from selling the asset.

This stochastic process is depicted in figure 1.

In the steady state, a trader’s expected compensation from holding the risky asset

on date t is

Et max
{

0; α
( p̃t+1

pt

+
d

pt

− β
)}

= q α
( p̄+ d

p̄
− β

)

(2)

For the market to clear, traders must be indifferent between storage and the risky

investment,

α (1 + r − β) = q α
( p̄+ d

p̄
− β

)

, (3)

⇒ p̄ =
d q

(1 − β) (1 − q) + r
. (4)
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Figure 1: The Price Process in Steady State.

Parameters are β = 0.9, q = 95%, d = 1, and r = 10%.

The steady-state price p̄ price depends therefore on the compensation scheme (β).

The fundamental value obtains in the absence of limited liability,

p :=
d q

1 − q + r
. (5)

Hence, only if β = 0 (unlimited liability) or if q = 1 (no risk), fundamental value and

steady-state price are equal, p = p̄.9 The effect that traders with limited liability

push prices of risky assets above their fundamental levels has been analyzed before

by Allen and Gale (2000). This systematic deviation from fundamentals is not driven

by expectations, hence it is no “speculative” bubble in the sense of Harrison and

Kreps (1978). We get the following comparative statics.

Remark 1 The ratio between steady-state price and fundamental value p̄/p is higher

for a low risk-free rate r, high fundamental risk (large q), and substantial limited

liability (high β).

Let us make one important clarification. In the numerical example for figure 1,

the fundamental value is p = 6.33, but the steady-state price is p̄ = 9.05. This

price deviation is due to the limited liability of traders. However, it is a static

9Remember that β = 0 if traders use only their own funds E for investments.
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deviation, which is driven by fundamentals (q, d, and r) and the traders’ financial

contract (β and α, where α is irrelevant). The price deviation is hence driven by

future risk (q) and dividends (d), but not by traders’ expectations about future price

developments. The deviation is constant over time and cannot burst, so its existence

is less interesting from a financial stability perspective. Nevertheless, this deviation

can magnify price movements resulting from, e. g., changing dividend payments. By

contrast, the bubble described in the following section is dynamic by nature. It

can be sustained only if the price is expected to continue increasing in the future.

Increasingly large price deviations will be fueled by the expectation that future

traders will buy at an even higher price. A bubble grows dynamically, and it can

burst at any time.

3 An Example of a Bubble

Consider now a situation where the price pt is above the steady-state price p̄ at some

date t. The only conceivable reason to buy is that traders expect the price to rise

even further, at least with some probability. Otherwise, it would be a dominant

strategy for traders to store rather than to invest in the asset. We will call this

expectations-driven price deviation a bubble. In this section, we discuss the existence

of bubbles under two specific assumptions, one concerning possible price paths {p̃t}t

and one concerning the distribution of liquidity F (N). Both assumptions will be

generalized in section 4.

First, let us concentrate on a trinomial process with

p̃t+1 =



















0, with probability 1 − q

p̄, with probability q −Qt

pt+1, with probability Qt

(6)
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with Qt ≤ q.10 All variables {pt, Qt}t will be determined endogenously. For our pur-

poses, trinomial processes are the simplest ones, allowing for a fundamental default

of the firm (case one), a bursting of the bubble (case two), and the continuation of

the bubble (case three).

Assumption 1 For now, consider only trinomial price processes, as in (6).

Second, let us concentrate on a parameterized version of the number of traders

F (N). To be concrete, we assume that logN is exponentially distributed; thus,

F (N) = 1 − e−γ (log N−log N0) = 1 − (N/N0)
−γ for some N0 > 0 and γ > 1. Here,

N0 is a lower bound on the number of investors, and γ measures the thinness of the

tail.11 Because traders borrow additional money, the aggregate amount of liquidity

L is (E +D)N , which has the distribution function

Pr{(E +D)N ≤ L} = Pr{N ≤ L/(E +D)} = F
(

L/(E +D)
)

= 1 −
( L

(E +D)N0

)−γ

= 1 −
( L

L0

)−γ

. (7)

with L0 ≡ (E + D)N0. Slightly abusing notation, we call F (L) the distribution

of liquidity. γ measures the precision of the information on liquidity; for γ → ∞,

liquidity is L = L0 with certainty.

Assumption 2 For now, assume that logN is exponentially distributed.

Because each trader can invest D + E dollars, an asset’s price p can never exceed

L = N (E + D). Hence, L can be interpreted as an unknown upper bound on

liquidity in the market. The following figure 2 shows the distributions and density

functions for N0 = 20 and shape parameters γ = 2 (solid) and γ = 4 (dashed).

10Note the notational difference between p̃t+1 and pt+1. p̃t+1 is the stochastic price at date t+1

that can assume three different values. pt+1 > pt is the largest of these realizations.
11The unlimited support of the function implies that in a bubble agents can never be 100% sure

that liquidity will be exhausted in the next period, which seems realistic.
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Figure 2: Examples of Density and Distribution Functions

Construction of a Bubble. Now we turn to the discussion of bubble paths. A

possible price process is depicted in figure 3. The process starts at some price p0 > p̄;

the resulting bubble can then grow further and further, p0 < p1 < p2 < . . . For a

given price increase from pt to pt+1, more liquidity will be absorbed by the market in

t+1 than in t. As a consequence, pt+1 may exceed the liquidity potential L at some

date. In this case, the price hits a ceiling, no further price increases are possible,

i. e., traders cannot expect to sell the asset at a higher price in the future. Hence,

the bubble must collapse back to the steady-state price p̃t+1 = p̄. This ceiling L is

not pictured in the figure as it is unknown. The date at which the bubble bursts

is (and must be) unknown, but with certainty the ceiling will be hit at some date.

Initially, the amount of liquidity absorbed by the risky asset is relatively small. But

as the bubble grows, more and more traders are attracted by the risky asset, and

it sucks in more and more liquidity. This liquidity is diverted from investment into

the safe asset (storage).

Alternatively, if the underlying firm goes bankrupt, the price will drop to p̃t+1 = 0.

Consequently, the conditional probability of a continuation (non-collapse) of the

bubble is

Qt = q Pr{pt+1 ≤ L|pt ≤ L} = q
1 − F (pt+1)

1 − F (pt)

= q
Lγ

0/p
γ
t+1

Lγ
0/p

γ
t

= q pγ
t /p

γ
t+1, (8)
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Figure 3: A Trinomial Price Process with a Bubble

As in figure 1, parameters are γ = 2, β = 0.9, q = 95%, d = 1, and r = 10%.

where q is the probability that a firm continues to operate and Qt is the probability

that the firm’s asset price continues to rise. The probability that the bubble bursts

although the firm is still solvent is thus 1−Qt − (1− q) = q−Qt = q (1− pγ
t /p

γ
t+1).

Since no dividends are paid and the shares are no longer traded if the firm is in-

solvent, the bonus to the trader is α max {0/pt + 0/pt − β; 0} = 0 in this case. If,

alternatively, the share price falls because a bubble bursts, the price will drop to p̄.

For now, let us simply assume that there is no bonus if a bubble bursts. We give a

condition and analyze the alternative in the proof of proposition 1 in the appendix.

The asset market can only be in equilibrium if a modified version of (3) holds, taking

into account the probability of a burst and the increased bonus if the bubble does

not burst,

α (1 + r − β) = Qt α
(pt+1 + d

pt

− β
)

,

= q
( pt

pt+1

)γ

α
(pt+1 + d

pt

− β
)

,

⇒
1 + r − β

q
=

( pt

pt+1

)γ
(

pt+1

pt

+
d

pt

− β

)

. (9)

Equation (9) implicitly determines a price process in a rational expectations equilib-

rium. For any given p0 > p̄, (9) implicitly defines p1, and (8) defines the according

Q0, so all variables for p̃1 in (6) are defined. Then, starting from p1 in a next step,

11



(9) and (8) define p2 and Q1, so p̃2 is defined. Following this procedure gives the

complete process recursively. One such process is shown in figure 3.

Existence of Bubble Processes. Equation (9) does not necessarily yield a solu-

tion for any set of parameters. As discussed above, the higher the potential future

price pt+1, the more likely it is that the maximum liquidity L will be hit and the

bubble will burst. But the more likely a bursting of the bubble is, the larger the

expected price increase must be to compensate traders for the risk they face. A feed-

back multiplier effect evolves, which does not necessarily reach an equilibrium price

pt+1 for all pt. In this case, there is a p̂ above which potential future price increases

cannot compensate for the accompanying higher risk of a burst. Because all market

participants can calculate the date t at which this p̂ is reached, if it exists, a bubble

will burst with certainty at some date t + 1, i. e., Qt = 0. If the bubble cannot be

sustained at a date t + 1, traders will anticipate this. By backward induction, the

bubble will not be sustainable right from the start. An example is given in figure 4.

At date 7, the price has risen too high, i. e., above the dashed line representing p̂,

and the hypothetical bubble can no longer be sustained. Consequently, the accord-

ing initial price p0 cannot be part of a rational expectations equilibrium process in

the first place.

We are interested in conditions under which a bubble can or cannot be sustained. In

order to be sustainable, the implicit equation (9) must have a solution at any date

t, or equivalently, for any initial price pt. Rewriting (9) by defining the auxiliary

variable φt = pt+1/pt as the relative price increase yields

φγ
t (1 + r − β) = q

(

φt +
d

pt

− β
)

(10)

The left-hand side of the equation is independent of pt (it only depends on its ratio

to pt+1), but the right-hand side depends on the starting point pt. Figure 5 shows

the left-hand side (thick blue curve) and the right-hand side for two starting prices,

pt = p̄ (dashed black line) and pt = ∞ (thin black line). First, consider pt = p̄.
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Figure 4: A Trinomial Price Process with a Non-sustainable Bubble

Parameters are γ = 2, β = 0.9, q = 95%, and d = 1, but now r = 20%. Note that this

hypothetical bubble bursts with certainty after date 7, so it cannot emerge in the first place.

From the figure, one can see that the intersection with the thick curve is at φt = 1,

which implies that pt+1 = φt pt = pt, so there is no price increase. Starting with

pt = p̄, we are of course in steady state, and the price does not change over time.

This steady state is a limiting case.

If the initial price is slightly above p̄ due to higher expectations, the straight line

shifts downward, implying that it intersects with the curve at some φt > 1. In

the next period, the price will be higher still, so the intersection φt+1 will be even

higher. A bubble emerges, and the growth rate φt = pt+1/pt increases with time.

For lim pt → ∞, the limiting line q (φ − β) is reached (solid line). Because the

intersection point moves right as pt increases, the bubble becomes less and less

stable; the probability of a burst, 1 −Qt = 1 − q/φt increases.

Remark 2 In a bubble process, the relative price increase φt = pt+1/pt grows over

time and Qt falls over time, so the bubble becomes less stable.

In figure 4, we saw a hypothetical example of a bubble that was not feasible. Plot-

ting the left and right sides of equation (10) for this set of parameters yields figure 6.

Here, as the asset price increases and the straight line moves downward, at some

13
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Figure 5: Possibility of a Bubble

As in figure 3, parameters are γ = 2, β = 0.9, q = 95%, d = 1, and r = 10%.

point an intersection between the line and the bold curve ceases to exist. As a conse-

quence, the asset price cannot rise without bounds. However, because of the upper

bound, a backward induction argument applies, and no rational price deviation can

exist in the first place.

A Condition for Existence. In order to show that a bubble can be sustained

in a market, it therefore suffices to consider large prices pt. In the limit of pt → ∞,

equation (10) simplifies to

φγ (1 + r − β) = q (φ− β). (11)

The equation does not depend on time, so we have dropped the index t. If (11) has

a solution for φ > 1, the corresponding market can sustain a bubble.12 This implies

that for arbitrarily high prices pt, there is always a price pt+1 that is high enough to

make traders buy at date t. If (11) does not have a solution for φ, then there exists

a price p̂ beyond which no further increase is impossible. Nobody will buy, and the

12There are at most two solutions to (11) with φ ≥ 1 (values of φ < 1 would stand for bubbles

with falling prices and, formally, negative probabilities of a burst). We do not consider the high

solution in the following because the corresponding equilibrium is unstable.
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Figure 6: Non-Existence of Bubbles

Like in figure 4, parameters are γ = 2, β = 0.9, q = 95%, d = 1, and r = 20%.

bubble will burst. Hence, using backward induction, the bubble cannot begin to

form at date t = 0. The only possible initial price is then p0 = p̄.

In figure 5, one can see that the solution for φ ceases to exist if the thin black line

no longer intersects with the thick blue curve, like in figure 6. Although one cannot

give a closed-form solution of 11, one can give a necessary and sufficient condition

for existence. This leads to the following proposition, illustrated in Figure 7.

Proposition 1 Under assumptions 1 and 2, in a rational expectations equilibrium,

a price process can exhibit a trinomial bubble if and only if γ < q/(1 + r − β) and

γγ
( β

γ − 1

)γ−1

≤
q

1 + r − β
. (12)

Remark 3 Bubbles tend to be possible for a low risk-free rate r, low fundamental

risk (large q), large uncertainty about liquidity γ, and substantial limited liability

(high β).

Remember that a higher risk of a bubble bursting implies a larger potential price

increase to compensate traders and that a larger potential price increase makes

bursting more likely. If and only if this problem has a fixed point at all times, a
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Figure 7: Parameter Range where Bubbles are Possible

Here, γ = 2. For parameters below the surface, bubbles are possible.

bubble can emerge. If risk-free rates are higher, storage becomes more attractive

to traders; they need to be compensated by a larger potential price increase of the

risky asset in order to hold it. But this makes a burst yet more likely, which impedes

the convergence to a new fixed point. Hence, for a larger risk-free rate r, bubbles

may cease to be possible. This is in line with the intuitions that central banks can

puncture bubbles by increasing interest rates and that bubbles are especially likely

to exist if interest rates are low. Furthermore, bubbles can exist especially if q is

high; that is, if the underlying asset is rather safe, which decreases the likelihood of

a burst. The parameter γ captures the uncertainty in the market. The smaller the

value of γ, the larger are the mean and variance of the distribution, and the more

uncertain is the potential market size. The parameter N0 does not appear in the

analysis, which shows that, for the existence of a bubble, only the shape of the upper

tail matters; bubbles tend to exist for smaller values of γ. In the extreme case of

γ → 1, the expected market size becomes infinite, and γγ (β/(γ−1))γ−1 → 1. Hence,

a bubble can emerge if q > 1 + r − β. On the other hand, if γ → ∞, the market

liquidity is almost certainly L0, and a bubble can never be sustained independent of
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Static deviation Bubble condition

(Remark 1) (Remark 3)

γ — ց

r ց ց

β ր ր

q ց ր

d —
(but multiplier)

—

Table 1: Effects of Variations of Parameters

the values of other parameters. This is the traditional backward induction argument

of Tirole (1982). Finally, the parameter β describes the degree of limited liability

or leverage. The larger the value of β, the more traders rely on external financing,

and the more prominent the effect of the limited liability of the trader becomes.

Hence, we have the result that the emergence of bubbles may become possible in

the context of high degree of leverage.

Note again the difference between the dynamic price deviation from the steady-

state price in this section and the static deviation of the steady-state price from the

fundamental value of section 2.2. Table 1 summarizes comparative statics for both.

An upward arrow means that the static deviation (left column) becomes larger or

that the necessary condition for a bubble to emerge is met for a larger range of all

other parameters (right column).

There is one major difference between the two columns. A static deviation is larger

for inherently risky assets, but bubbles tend to emerge for inherently safe assets.

Note one subtle but important difference between the inherent and the financial risk

of an asset. To give an example, building a house may be inherently safer than buy-

ing stock in a firm. But taking into account financial risk, a house may be a riskier

investment, especially if it is built during a bubble. Our model distinguishes between

these notions of risk. Inherent risk is captured by 1 − q, the risk of failure of the
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underlying asset. Additional financial risk can occur if movements in fundamentals

are strongly magnified because the asset price deviates from the fundamental value

in a static way or because condition (12) holds and a bubble can form. Interestingly,

the two sources of financial risk react similarly to most parameter changes, but their

reactions with respect to the underlying risk 1 − q are directly opposed.

This fine differentiation suggests different explanations for the two most prominent

bubbles in recent decades. Real estate and mortgages are inherently safe, so ac-

cording to proposition 1, a speculative bubble on these assets should be feasible. In

this sense, the theory matches the recent real estate bubble.13 On the other hand,

dot-com firms are inherently risky. According to proposition 1, a speculative bubble

may be impossible, but the static deviation above potentially changing fundamen-

tals will be especially large. As a consequence, following our theory, the bursting of

the dot-com “bubble” may have been the correction of expectations, bloated by a

large multiplier.14

The Half-Life of a Bubble. Building on the above discussion, we can calculate

the half-life of a bubble. Note first that the firm itself can default. In each period,

it survives with probability q; hence, after t periods, it survives with probability

qt. The half-life T is the period after which firms have collapsed with probability

50%, so qT = 1/2 and thus T = log 1
2
/ log q. Given that a bubble can burst for

two reasons, one fundamental (the firm defaults) and one financial (market liquidity

13As argued in footnote 5, the development of the housing bubble was also promoted by the

constellation of the remaining parameters, i. e., low interest rates, opaque financial markets, and

the 2004 decision of the Securities and Exchange Commission to allow the large investment banks to

take on more debt, which corresponds to a higher β (see section 5.2). Allen and Gale (2000), among

others, also point to an empirical connection between financial liberalization, credit expansion, and

bubble emergence.
14Pástor and Veronesi (2009) model the learning process about the productivity of new tech-

nologies and apply it to the introduction of railroad and internet technologies. The mentioned

multiplier is then an amplification of movements generated by learning.
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is exhausted), the half-life of a bubble will always fall short of T . The conditional

bursting probability increases over time, and it has no closed-form solution. How-

ever, we can derive comparative statics for a bubble that is fully developed, thus for

large pt. For this limit, φ = pt+1/pt is implicitly defined by (11), and Q = q/φγ, so

the half time T ′ of the bubble is given by

T ′ =
log 1

2

logQ
=

log 1
2

log q − γ log φ
< T. (13)

Ceteris paribus, as φ increases, the half time decreases. In calculating the effects of

parameter changes on the half-life of a bubble, we find that the same changes that

can impede a bubble’s formation also shorten the half-life of a bubble.

Remark 4 The half-life of a bubble is shorter for a low risk-free rate r, low fun-

damental risk (large q), large uncertainty about liquidity γ, and substantial limited

liability (high β).

4 Bubbles in General

This section delivers the main results of the paper. We have already shown that

if liquidity logL is exponentially distributed (assumption 2), a trinomial process

(assumption 1) can develop a bubble if and only if condition (12) holds. More

formally, if (12) holds, there are multiple rational expectations equilibria within the

class of trinomial processes; otherwise, the equilibrium is unique.

This section shows that the condition is more general. First, and most importantly,

we can generalize assumption 1. Hence, if (12) is not satisfied, the steady-state equi-

librium is unique, without further qualifications. No bubbly equilibria are possible,

whether trinomial or of any other shape. Second, we can also generalize assump-

tion 2 about the probability distribution of liquidity.
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4.1 Generalizing the Bubble Price Path

We have argued that a very special kind of bubble process, the trinomial bubble

according to assumption 1, exists if and only if (12) holds. We now generalize this

result by showing that if (12) fails to hold, the only rational expectations equilibrium

process is the non-bubble process with the steady-state price p̄. There are then no

conceivable bubble paths. The argument is intuitive and proven in the appendix.

A trinomial bubble does not exist if the thick curve and the thin straight line in

figure 6 do not intersect, i. e., if there is no solution for φ, and hence prices in the

bubble eventually increase too quickly to be sustainable. The point in the graph

where the line and the curve are closest corresponds to the price increase with the

lowest ratio of risk (of a bubble burst, related to φγ) to potential gains (of a price

increase, related to φ). Concentrating all probability mass on this point maximizes

the attractiveness of an investment in the risky asset, thereby creating favorable

conditions for the emergence of bubbles. Distributing probability mass to other

price increases, i. e., deviating from the assumption of a trinomial price process,

reduces the willingness of traders to invest in the risky asset and can therefore

eliminate the possibility of bubbles. Thus if, for a given set of parameters, not even

a trinomial bubble path exists, no bubble can exist at all.

Proposition 2 Under assumption 2, in a rational expectations equilibrium, a price

process can exhibit a general bubble if and only if γ < q/(1 + r − β) and

γγ
( β

γ − 1

)γ−1

≤
q

1 + r − β
, (14)

hence if (12) holds.

4.2 Generalizing the Distribution of Liquidity

Up to now, we have assumed in assumption 2 that logN , and therefore also logL, is

exponentially distributed. In this subsection, we will derive a bubble condition for
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general distributions of the liquidity constraint L. However, the bubble condition

(12) used the distribution-specific parameter γ. Most importantly, γ described the

fatness of the tail of the distribution, thereby measuring the uncertainty about

the maximum market liquidity. The following proposition states that only the tail

behavior of F (L) is relevant.

Proposition 3 For a general distribution F (L) with density f(L), define

γ := min
{

n : lim
x→∞

xn f(x) 6= 0
}

− 1. (15)

Then, in a rational expectations equilibrium, a price process can exhibit a general

bubble if and only if γ < q/(1 + r − β) and

γγ
( β

γ − 1

)γ−1

≤
q

1 + r − β
, (16)

hence, if (12) holds. If γ = ∞, bubbles are impossible.

We now discuss some intuitions for equation (15). We already know that the pos-

sibility of a bubble depends on the shape of the distribution f(L) for large L, thus

for large prices. When logL is exponentially distributed, the parameter γ actually

gives the order of convergence of F (L) → 1 for L → ∞. It also gives the order

of convergence if f(L) → 0 for L → ∞, less one. Intuitively, for a density func-

tion f(N) of any other shape, the relevant statistic for the potential existence of a

bubble is the order of convergence towards zero, as defined by (15). If f(L) decays

very quickly, the information about an upper liquidity ceiling is rather precise, so a

bubble cannot exist. If f(L) decays slowly, there is always room for further price

increases without hitting the liquidity ceiling with high probability, which makes

the emergence of bubbles possible. The proof of the proposition in the appendix is

a more accurate version of this intuition.
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5 Policy Measures

In this section, we examine whether certain policy measures that have been suggested

in the public debate can prevent the creation of bubbles in our model. Specifically,

we look at an asset-price augmented Taylor rule, capital requirements, and a fi-

nancial transaction (Tobin) tax. In section 5.4, we interpret α and β as parts of a

compensation package. We can then also discuss caps on bonuses and mandatory

long-term compensation as possible policy measures.

5.1 Monetary Policy

We have already seen that a central bank can puncture a bubble by increasing

interest rates. Let us now analyze the impact of an automatic, pre-announced

interest rate increase in the case of a bubble, following a Taylor rule that takes

asset price inflation into account. Specifically, assume a version of the rule used in

Bernanke and Gertler (1999, 2001),

rt = r̄ + ψπ (πt − π̄) + ψ (pt/pt−1 − π̄), (17)

where πt is gross consumer price index (CPI) inflation and pt/pt−1 asset price in-

flation of the only risky asset in the economy, as defined above. For simplicity, we

neglect the influence of asset price inflation on CPI inflation by setting CPI inflation

equal to its target rate π̄, which is itself set to unity.15 This does not influence our

conclusions below. As in the above analysis, in a bubble, pt+1/pt converges towards

a constant φ. Inserting (17) into (11) yields

φγ
(

1 + r̄ + ψ (φ− 1) − β
)

= q (φ− β). (18)

15Hence, rt is the real interest rate. We implicitly assume that the central bank has at least

some impact on short-term real rates, as it is standard in monetary economic theory.
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Figure 8: Effects of the Taylor Rule

As for (12), we can derive a condition for parameters r̄, ψ, β, γ and q to determine

whether (18) has a solution for φ > 1. Unfortunately, the condition is algebraically

complex. A bubble equilibrium exists if and only if

q (φ−β) ≥ φγ
(

1 + r̄ + ψ (φ− 1) − β
)

with

φ =
1

2ψ γ

(

(1 − β − γ)(1 − ψ) + r̄ + βγ − r̄γ + βγψ

+
√

(

r̄+(1−β)(1−ψ)
)(

(1−γ)2(1+r̄−ψ)−β((1+γ2)(1−ψ) − 2γ(1+ψ))
)

)

> 1.

Figure 8 shows parameters r̄ and ψ for which bubbles can exist for γ = 2, β = 0.9

and r = 10%. The figure shows that, to prevent the emergence of bubbles, the

central bank can either raise the steady-state interest rate r̄ or threaten to raise

interest rates in the future if a bubble should occur by committing to a Taylor rule

with a positive ψ. If the central bank opts for the latter option, it never actually

needs to raise interest rates: interest rate increases occur only as a consequence

of asset price movements, but because of the credible announcement of this policy

(with a sufficiently large ψ), asset prices do not rise and bubbles are prevented.16

Remark 5 Monetary policy that systematically reacts to asset price increases re-

16In this respect, the model differs from Bernanke and Gertler (1999, 2001), who show that

monetary policy should not react to asset prices based on the assumption of exogenous bubbles.
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duces the range of parameters under which bubbles are possible.

This argument shows that an augmented Taylor rule could cause fewer distortions

than discretionary interest-rate policies do. However, if the central bank cannot

differentiate between price movements due to bubbles and changes in the underly-

ing fundamentals (such as the probability of bankruptcy, 1 − q) or if it is uncertain

which assets to monitor, it faces a tradeoff between preventing bubbles and the risk

of unnecessarily changing the interest rate in times without bubbles. A thorough ex-

amination of this trade-off would require a fully specified dynamic stochastic general

equilibrium model, which is beyond the scope of this paper.

5.2 Capital Requirements

Capital requirements are straightforward to discuss. For E dollars of equity, a trader

can borrow D dollars. The balance sheet total is thus E+D, and the equity ratio is

thus E/(E+D). If the regulator stipulates stricter capital requirements, the equity

ratio must increase, hence D must drop. Because β ≡ (1+rD)D/(E+D), a smaller

D leads to a smaller β. But from proposition 1, we know that a smaller β tends to

allow only for a unique rational expectations equilibrium, without a bubble.

Remark 6 Bubbles can be prevented by stricter capital requirements.

Remember that, if the price path is too steep, the reason why bubbles do not exist

is that the potential bubble is very likely to burst. Therefore traders cannot be

compensated for an investment into an overpriced asset by further phantasies about

price increases. But if traders are highly leveraged, they do not shun investment

into overpriced assets and can easily be compensated. Because capital requirements

push down leverage, they can eliminate potential bubbles.
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5.3 Financial Transaction Tax

There are several possible ways to implement a so-called Tobin tax. In the following,

assume that the tax must be paid by the buyer of an asset. We denote the tax rate

on transactions of the safe asset τ and the potentially different tax rate on the risky

asset τ ′. Under such a tax regime, the no-arbitrage condition (11) changes to

φγ (1 + r − β − τ) = q (φ− β − τ ′). (19)

The modified conditions for the existence of bubbles are then γ < [q (1 − τ ′)]/[1 +

r − β − τ ] and

γγ
(β + τ ′

γ − 1

)γ−1

≤
q

1 + r − β − τ
. (20)

The derivative of the left-hand side of the above expression with respect to τ ′ is

positive, i. e., increasing the tax on transactions of the risky asset can make bubbles

impossible. However, the way in which the tax is implemented is important. If it is

levied on all financial assets, including the safe one, τ equals τ ′ and the derivative

of the right-hand side w. r. t. the common tax rate is larger than the derivative of

the left-hand side. Hence, in such a case, the possibility of bubbles can actually be

created by the Tobin tax.

Remark 7 If the financial transaction tax is levied on the risky asset only, bubbles

can be prevented. However, placing the tax on the safe and the risky assets alike can

make bubbles possible.

5.4 Policy Measures for Intermediated Investment

In the following, we want to evaluate two more frequently proposed policy measures:

caps on bonuses and long-term compensation. For this purpose, we interpret the

above payoff scheme as a contract in an intermediated-investment setup. Assume
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that households do not have direct access to investment, but must employ institu-

tional traders. These traders are compensated according to (1).17 The parameter β

is then the hurdle rate the trader has to surpass in order to get a bonus, which is

proportional to her success according to the parameter α.

Caps on Bonuses. After the financial crisis, the amount of bonus payments has

been heavily debated. In this context, we want to analyze whether bubbles can

be prevented by cutting bonus payments. The bonus payment to a trader is B =

α
(

φt + d/pt − β
)

if the underlying asset continues to pay off (probability q) and if

the bubble does not burst (probability 1−Q). Absent a bubble, this bonus payment

is a constant. Let us first ask whether a potential cap on this bonus would bind

early or late in the life of a bubble. In both cases, the bubble would have to burst

with probability 1 at some date t̄, so a backward induction argument would show

that the bubble cannot exist in the first place. In terms of the bonus payment, φt

increases over time, but d/pt decreases. Summing up, due to (10), we have

Bt = α
(

φt + d/pt − β
)

= αφγ
t (1 + r − β)/q.

Hence, bonuses increase over time in a bubble, and caps on bonus payments become

binding in later stages of a bubble. As a consequence, we can concentrate on large

prices pt so that φt approaches a constant and the maximum bonus is

B = α
(

φ− β
)

= αφγ (1 + r − β)/q.

Now assume that the regulator puts restrictions on the bonus. There are several

ways in which the regulation can be implemented. First, the compensation scheme

could be adjusted such that bonuses are uniformly lower, for example by reducing

17There are several ways to endogenize such a contract. For example, a model with costly state

verification, moral hazard or risk aversion on the side of households would lead to this kind of

compensation scheme. In the latter case, the parameters α and β, and the shape of the contract,

are then the solution of an optimal risk-sharing problem.
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α or increasing β. However, α does not have an effect on the existence of bubbles,

and an increase in β would favor the emergence of bubbles. Hence, this policy could

backfire and render bubbles possible.

Second, one could put a cap B̄ on bonuses. The compensation scheme accordingly

adjusts to min{max{α
(

(pt+1 + d)/pt − β
)

; 0}; B̄}. The bubble will then burst with

certainty at some specific point if α
(

φ−β
)

> B̄, thus if φ > B̄/α+β. Economically

speaking, from a certain point onwards, traders’ bonuses cannot rise further to

compensate them for the still-increasing risk of a bursting bubble. Consequently,

for a given compensation scheme with parameters α and β, a cap on bonus payments

B̄ will render a bubble unfeasible if B̄/α+ β < φ, with φ implicitly defined by (11).

Remark 8 To prohibit the emergence of a bubble by cutting bonuses, raising β

is counterproductive, reducing α is irrelevant, and putting a cap B̄ on bonuses is

effective if the cap is low enough.

The model can indicate which types of assets might need a cap on bonus payments

and for which assets the cap must be lower. First, relatively safe assets (high q) tend

to develop bubbles, and the price increase φ is especially low for safe assets. This

implies that traders trading in markets with relatively safe assets (e. g., mortgages,

bond markets) should have a ceiling in their bonus contracts that should be relatively

low. Second, bubbles can emerge especially for high hurdle rates β, and the limit

price increase φ is lower for large β. Because B̄ < α (φ− β), the minimal effective

cap B̄ depends negatively on β. With a more ambitious benchmark, the cap must

be stricter.

Long-term Compensation. In the recent political discussion, it has often been

argued that traders’ incentives should be made more sustainable such that they

concentrate more on long-term goals and avoid short-termism. The same argument

might apply to the traders in our model. To analyze this question, let us assume
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that the trader receives max{0; α (y − β)} as before, but that she is liable with

her compensation for potential future losses. Hence, she will get nothing if the

accumulated yield is negative in the next period. In steady state, the market price

will be

α (1 + r − β) = q2 α
(

(pt + d)/pt − β
)

,

pt = p̄ :=
d q2

(1 − β) (1 − q2) + r
,

i. e., smaller than without long-term liability. If a bubble exists, the probability that

the bubble does not burst after two periods is

Q = q2 pt/pt+2 = q2/φ2γ .

As a consequence, the one-period price increase φ is determined by

α (1 + r − β) = Qα
(

φ− β
)

= q2/φ2 γ α
(

φ− β
)

,

φ2 γ (1 + r − β) = q2
(

φ− β
)

.

The equation is similar to (11), but γ is replaced by 2 γ, and q is substituted by q2.

Because bubbles exist especially for small γ and large q, according to proposition 1,

we find that long-term liability prevents the formation of bubbles. For an even

longer liability period, the effect would be larger.

Remark 9 If traders are liable for future developments with their bonuses, bubbles

can be prevented.

6 Conclusion

Our model endogenizes two reasons why the price of an asset may deviate from its

fundamental value. First, as also analyzed by Allen and Gale (2000), fund managers

may drive up the price of risky assets because of their limited liability. This effect
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is larger for riskier assets. The price deviation is not driven by expectations and

is constant over time; it involves no dynamics. Second, a fund manager may be

willing to spend more than the fundamental value on an asset because she expects

to earn even more when she sells the asset. This price deviation is completely driven

by expectations and is dynamic, typically involving large, unpredictable abnormal

returns until the bubble bursts.

These two stories are in line with anecdotal evidence. During the dot-com bubble

(1998–2001), fantasies about the potential of internet firms were exuberant. The

asset prices of these firms may have been even more exaggerated due to the lim-

ited liability of traders. Hence, traders’ limited liability let the exuberance appear

magnified. When expectations became more realistic, asset prices collapsed because

the correction of expectations was again magnified. This complete argument follows

from the first story. According to our model, it is applicable especially for risky

assets, just like the stock of dot-com firms.

Following the “as long as the music is playing, you’ve got to get up and dance”

explanation for the recent U. S. housing bubble, managers bought securities because

they assumed they could sell them at a higher price later, driving up prices. This

argument follows the second story. According to our model, it is applicable especially

for fundamentally safe assets, just like real estate.

Our model suggests some possible ways to avoid such bubbles. One can increase

interest rates, implement a Taylor rule that reacts to asset-price developments, or

put a ceiling on bonus payments to fund managers. By virtue of its relative simplic-

ity, the model lends itself to further discussions. For example, one could consider

multiple assets and discuss whether the collapse of a bubble in one market can be

contagious for other markets. One could also plug bubbles into macro models and

investigate business cycle and growth effects. Especially after the recent burst of

the housing bubble, possible applications seem numerous and relevant.
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Appendix

Proof of remark 1. We have

p̄

p
=

(1 − q) + r

(1 − β)(1 − q) + r
.

Simple analysis proves the remark. �

Proof of proposition 1. In the exposition in the main text, we have treated only

the case in which no bonus is paid if a bubble bursts. Hence, we start the proof of

the proposition by giving a condition for this case and analyzing the alternative.

If a bubble bursts, the firm still pays the dividend, so the bonus payment to the

manager is

α max

{

d

pt

+
p̄

pt

− β; 0

}

= α max

{

d+ d q

(1−β) (1−q)+r

pt

− β; 0

}

. (21)

This implies that, if the price is only slightly above the steady-state price p̄ (i. e.,

the bubble is small), the manager will earn a bonus even when the bubble bursts.

The corresponding condition is

pt < p̂ :=
(

d+
d q

(1 − β) (1 − q) + r

)

/

β. (22)

Now, if pt is less than p̂ such that (22) is satisfied, a modified version of (9) applies.

In market equilibrium,

α (1 + r − β) + S = Qt α
(

(pt+1 + d)/pt − β
)

+ (q −Qt)α
(

(p̄+ d)/pt − β
)

+ S,

1 + r − β

q
=

( pt

pt+1

)γ pt+1

pt

+
(

1 −
( pt

pt+1

)γ) p̄

pt

+
d

pt

− β. (23)

Again, starting from pt, we have an implicit equation for pt+1 in a rational expecta-

tions equilibrium. Substituting pt+1 = φt pt, we obtain

φγ
t

1 + r − β

q
= φt + (φγ

t − 1)
p̄

pt

+ φγ
t

( d

pt

− β
)

. (24)
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However, in a bubble, the price pt increases over time and eventually exceeds the

threshold p̂. Therefore, to find out whether bubbles are feasible, it suffices to consider

the case pt > p̂, as we have done in the main text.

We have already argued that the probability that a bubble bursts increases with pt.

However, because pt is an increasing function of t, a bubble is sustainable if and

only if it is sustainable for pt → ∞. Hence, if (11) has a solution for φ, the bubble

is sustainable. Now consider the limiting case in which the line q (φ − β) and the

curve φγ (1 + r − β) only just touch. At the point of contact, the slopes must be

equal, so

(1 + r − β) γ φγ−1 = q,

which implies that the point of contact is φ = β γ/(γ−1). Substituting this solution

into (11), we find that the limiting case is reached at

( β γ

γ − 1

)γ

(1 + r − β) = q
( β γ

γ − 1
− β

)

.

Some algebra yields (12). We have checked the conditions under which (11) has a

solution. However, in a bubble, prices must increase, so φ > 1. Considering the

geometry of the problem, this is the case if the right-hand side of (11) is steeper in φ

than the left-hand side is at the point φ = 1. Otherwise, the curves would intersect

for φ < 1. Evaluating the derivatives of the left and right-hand sides of (11) at the

point φ = 1, we obtain the condition γ < q/(1 + r − β). �

Proof of remark 3. There are two conditions that may become increasingly strict

or lax. First, condition (12) is satisfied iff

(1 + r − β) γγ
( β

γ − 1

)γ−1

− q ≤ 0.

The derivative of this term with respect to q is negative, so the condition is more

likely to be satisfied for large q. The derivative with respect to r is positive; hence,
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(12) holds for small r. The derivative with respect to γ is

(1 + r − β) γγ
( β

γ − 1

)γ−1

log
β γ

γ − 1
.

Now remember that the point at which the curves touch is φ = β γ/(γ − 1). The

above logarithm is therefore positive, and the complete derivative with respect to γ

is positive. A larger γ makes bubbles less likely. Finally, the derivative with respect

to β is

γγ
( β

γ − 1

)γ−1 (1 + r) (γ − 1) − β γ

β
.

Again, at the touching point, φ must exceed 1, so β ≥ (γ − 1)/γ. For the limiting

β = (γ − 1)/γ, the numerator of the above fraction becomes (1 + r) (γ − 1) −

β γ = −r (γ − 1) < 0. Hence, for any β larger than the limiting (γ − 1)/γ, the

numerator must be negative. Thus, the whole derivative is negative, and a larger β

makes bubbles more likely. The second condition, γ < q/(1 + r − β), has the same

comparative statics. �

Proof of remark 4. We start by discussing dT ′/dr. Because φ is implicitly given

by (11), let us define Ψ = φγ (1+r−β)−q (φ−β), such that Ψ = 0 at the equilibrium

φ. Then, the implicit function theorem yields

dφ

dr
= −

∂Ψ/∂r

∂Ψ/∂φ
= −

φγ

γ φγ−1 (1 + r − β) − q
.

Because ∂Ψ/∂φ < 0 and φγ > 0, we know that dφ/dr > 0. Now, because in (13),

dT ′/dφ < 0, the half life of a bubble drops as interest rates increase, dT ′/dr < 0.

Now consider dT ′/dβ. Following the same procedure as above, note that ∂Ψ/∂β =

q − φγ . Because q ≤ 1 but φ > 1, the term is negative. Consequently, dφ/dβ < 0,

and thus dT ′/dβ > 0.

Now let us turn to dT ′/dq. There are two effects. As a direct effect, considering

(13), T ′ increases as q increases. A real default of the firm would also make the
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bubble burst. Hence, as the real half life of the firm increases, the half life of the

bubble is also lengthened. The second effect is indirect. ∂Ψ/∂q = β − φ < 0, which

implies dφ/dq < 0, implying a longer half life. Thus, both effects go in the same

direction, which implies that dT ′/dq > 0.

Finally, consider dT ′/dγ. The total derivative of Q is

dQ

dγ
=
∂Q

∂γ
+
∂Q

∂φ
·
dφ

dγ
=
∂Q

∂γ
−
∂Q

∂φ
·
∂Ψ/∂γ

∂Ψ/∂φ

=
q2 φ−γ logφ

(1 + r − β) γ φγ−1 − q
.

The numerator is negative, so the whole fraction dQ/dγ is negative. As a result, the

half life decreases as γ increases, dT ′/dγ < 0. Remembering that the variance of

the distribution is inversely related to γ, we can state that the half life of a bubble

increases with rising uncertainty about aggregate liquidity. �

Proof of proposition 2. Assume that a price process exhibits a bubble, that

pt > p̄ at a date t, and that p̃t+1 is distributed with distribution F (p̃t+1). Then, in

a rational expectations equilibrium,

α (1 + r − β) + S =

∫ ∞

0

Qt α max
{ p̃t+1 + d

pt

− β; 0
}

df(p̃t+1) + S,

1 + r − β

q
=

∫ ∞

0

h(p̃t+1) df(p̃t+1), where (25)

h(p̃t+1) = max
{ pγ

t

p̃γ
t+1

( p̃t+1 + d

pt

− β
)

; 0
}

is an auxiliary function. The pt+1 implicitly defined by (9) solves this equation

for a distribution that has probability mass only at one point pt+1 (and zero and

p̄). The question is, from this three-point distribution, can we shift probability

mass to other prices such that the above (25) still holds? The answer depends

on the shape of h(p̃t+1). Some straightforward analysis shows that h(p̃t+1) is zero

up to p̃t+1 = β pt − d, then increases and decreases again. For p̃t+1 → ∞, it

again approaches zero asymptotically. The maximum of the integral is reached if all
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probability mass is located at

p̃∗t+1 = γ
β pt − d

γ − 1
> β pt − d.

Hence, a trinomial process with the possible events p∗t+1, p̄, and 0 maximizes the

right-hand side of (25). Shifting probability mass to other parts of h(p̃t+1) reduces

the value of the integral. Note that no bubble can emerge if the left-hand side of

(25) is larger than the right side for any price path. We can therefore conclude that

if no trinomial bubble process exists, no other bubble process can exist either. On

the other hand, if a trinomial bubble process exists, it is an example of a general

bubble process. As a consequence, (12) is the general condition for the existence of

bubble processes in rational expectations equilibrium. �

Proof of proposition 3. For general F (L) with infinite support, (11) reads

lim
p→∞

1 − F (p)

1 − F (φ p)
(1 + r − β) = q (φ− β).

Define the first term as

G(φ) := lim
p→∞

1 − F (p)

1 − F (φ p)
= q

φ− β

1 + r − β
.

If this equation has a solution for φ > 1, bubbles are feasible. We know that for

φ = 1, the left-hand side exceeds the right-hand side,

G(1) = 1 > q
1 − β

1 + r − β
(26)

because 1+r−β > q (1−β). Therefore, bubbles are feasible if and only ifG(φ) crosses

q φ−β

1+r−β
from above for some φ. A necessary condition would be G′(φ) < q

1+r−β
for

some φ > 1. Let us delve deeper into the possible structure of G(φ). L’Hôpital’s

rule yields

G(φ) = lim
p→∞

1 − F (p)

1 − F (φ p)
= lim

p→∞

f(p)

φ f(φ p)
=

1

φ
lim
p→∞

f(p)

f(φ p)
. (27)

In the original example, under assumption 2, f(p) = γ Lγ
0 p

−(1+γ), so G(φ) = φγ.

Now what shapes can G(φ) potentially take if assumption 2 is dropped? Because of
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(15), γ+1 is the smallest number such that xγ f(x) does not converge to zero. In Lan-

dau notation, f(L) = c1 x
−γ−1+O(|x|−c2), where c1 is a constant, and c2 > γ+1 such

that the error term decays faster than the main component x−γ−1. Consequently,

with this approximation,

G(φ) = lim
p→∞

=
1

φ
lim
p→∞

c1 p
−γ−1 +O(|p|−c2)

c1 (φ p)−γ−1 +O(|φ p|−c2)
= φγ. (28)

Thus, the behavior of G(φ) only depends on the order of convergence of f(p) towards

zero for large p. �

Proof of remark 7. Let a tax on transactions of the safe asset be denoted by τ , a

tax on selling the risky asset by τ ′′, and a tax on buying the risky asset by τ ′. Hence,

τ ′′ = 0 means that the buyer of an asset has to pay the tax (the case analyzed in the

main text), while τ ′ equals zero if the seller pays the tax. The equilibrium condition

(11) is then

φγ (1 + r − β − τ) = q [φ (1 − τ ′′) − β − τ ′].

Following the steps taken in the proof of proposition 1 yields φ = γ(β + τ ′)/[(γ −

1)(1− τ ′′)] as the touching point of both sides of the above equation. The condition

for φ > 1 turns into

γ <
q (1 − τ ′′)

(1 + r) − β − τ
. (29)

The modified condition for the existence of bubbles is then

(

γ

1 − τ ′′

)γ
(β + τ ′

γ − 1

)γ−1

≤
q

1 + r − β − τ
.

The right-hand side of this equation increases in τ , while the left-hand side increases

in τ ′′ and τ ′. Considering equal tax rates on the risky and the safe assets, one can use

equation (29) to show that the derivative of the right-hand side w. r. t. the common

tax rate is larger than the derivative of the left-hand side for both cases, τ = τ ′′ and

τ ′ = 0, or alternatively that τ = τ ′ and τ ′′ = 0. �
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