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Abstract

The paper studies procurement contracts with pre–project investigations in the pres-

ence of adverse selection and moral hazard. To model the procurer’s problem, we extend

a standard sequential screening model to endogenous information acquisition with moral

hazard. The optimal contract displays systematic distortions in information acquisition.

Due to a rent effect, adverse selection induces too much information acquisition to prevent

cost overruns and too little information acquisition to prevent false project cancelations.

Moral hazard mitigates the distortions related to cost overruns yet exacerbates those

related to false negatives. The optimal mechanism is a menu of option contracts that

achieves the dual goal of providing incentives for information acquisition and truthful in-

formation revelation.
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1 Introduction

Practitioners in managing procurement projects stress the importance of pre–project planning.

Based on a number of case studies, Gibson and Hamilton (1994) conclude that “there does exist

a positive, quantifiable relationship between effort expended during the pre-project planning

phase and the ultimate success of a project.”1 The goal of pre–project investigations is to obtain

more accurate cost estimates, which allow the procurer to decide more carefully about whether

to implement the project. In other words, pre–project planning is a process of information ac-

quisition before the final implementation decision is taken.2 The project management literature

not only stresses the importance of effective pre–project planning but also warns procurers to

keep as much control over this process as possible. For instance, Gibson et al. (2006, p.41)

write in their empirical appraisal that procurers frequently “decide to delegate the pre-project

planning process entirely to contractors, often with disastrous results”. Given the importance

of pre–project planning and these observed “disastrous results” from delegation, we develop

and analyze an economic model of pre–project planning to enhance our understanding of this

process.

Our starting point is the observation that the reported “disastrous results” from delegation

point to conflicting interests and incentive problems. Due to the contractor’s superior exper-

tise, we can identify three sources of incentive problems in pre–project investigations. First,

the contractor is already in a better position to estimate the project’s cost from the very out-

set. Hence, the procurer–contractor relationship typically exhibits ex ante adverse selection.

Second, the contractor, as the expert, is often in the better position to evaluate the additional

information which the pre–project investigation reveals. Hence, pre–project investigations lead

to additional adverse selection at an interim stage. Third, the amount of information that

results from pre–investigations will largely depend on the contractor’s own actions such as his

advice and expertise on how to perform the investigations. Hence, pre–project investigations

also involve a moral hazard problem.

1See also, e.g., Turner (1993), Gibson et al. (2006), Kähkönen (1999) and Dahlin, Bjelm, and Svensson

(1999).
2Gibson et. al. (1995) define pre–project planning “as the process of developing sufficient strategic informa-

tion for owners to address risk and decide whether to commit resources to maximize the change for a successful

capital facility project”.
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The presence of these three different types of incentive problems leads us to view the pro-

curement problem as a dynamic mechanism design problem. To capture adverse selection, we

adopt a sequential screening approach as in Courty and Li (2000) and Esö and Szentes (2007b).

To capture moral hazard, we allow for unobservable interim information acquisition by the

agent. Our results are as follows. First, we derive as a benchmark the first–best solution with-

out any incentive problems. In this case, the principal uses pre–investigations to mitigate one

of two implementation errors: If the initial information about the project is favorable and indi-

cates a positive social value, then the principal uses pre–investigation to prevent cost overruns.

For this case, we say that information acquisition prevents false positives (or type I errors).

In contrast, if the initial cost information is unfavorable, then she uses pre–investigations to

correct for a possibly false cancelation of the project. Information acquisition then prevents

false negatives (or type II errors).

Second, we characterize the optimal contract when information acquisition is still observable

but there are adverse selection problems. In this case, the principal implements the optimal

contract by a menu of contracts that offers a fixed price contract and a range of option con-

tracts. The fixed price contract obliges the contractor to carry out the project in all cost

circumstances for a fixed price. The option contract gives the contractor the right to first

conduct a pre–investigation and then decide whether to complete the project for an exercise

price or, alternatively, quit the project. Consistent with our analysis, option contracts feature

prominently in a range of real world contractual relations.

Third, we treat the case with unobservable information acquisition and characterize the

conditions under which the implied moral hazard problem causes additional agency costs. In

particular, we find that additional agency costs do not arise when the contractor’s additional

information is uncorrelated with his initial information. In general, however, moral hazard does

cause additional agency costs. We demonstrate that, in this case, the principal has to adapt

the contract in ways that leads to bunching and less information acquisition.

Finally, the comparison of the optimal contract under the three different contracting en-

vironments allows us to characterize the systematic distortions in information acquisition and

attribute them to the different incentive problems. We first demonstrate that the adverse selec-

tion problem leads to too much information acquisition to prevent false positives (type I errors)
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and too little information acquisition to prevent false negatives (type II errors). Moreover, we

show that the moral hazard problem unambiguously exacerbates distortions with respect to

type II errors and mitigates distortions with respect to type I errors. As a result, the welfare

effects of the additional moral hazard problem are ambiguous. While the principal always loses

from additional agency costs, the agent’s utility and, in fact, total welfare may go up in the

presence of a moral hazard problem. In this case, the moral hazard problem mitigates some of

the inefficiencies from adverse selection.

Our paper contributes to the growing literature on optimal dynamic mechanism design.

This literature studies optimal contract design in environments in which information is privately

revealed to the agents over time.3 A recent paper by Pavan et al. (2008) provides a general

framework that encompasses earlier contributions on dynamic price discrimination (e.g., Baron

and Besanko (1984), Laffont and Tirole (1990, 1996), Battaglini (2005)), or on sequential

screening (e.g. Courty and Li (2000), Dai et al. (2006), Esö and Szentes (2007a, b)). Our

contribution to this literature is to extend the analysis to endogenous information acquisition

with moral hazard.

Our basic setup is most similar to the sequential screening model by Courty and Li (2000)

who study monopolistic price discrimination when consumers are uncertain about their subse-

quent demand but obtain additional information before actual consumption.4 Similar to Courty

and Li (2000), we impose a first order stochastic dominance ranking condition on the family of

the conditional cost distributions conditional on the initial signal.5 A well–known, fundamen-

tal problem is that, unlike in static problems, incentive compatibility in sequential screening

problem cannot be characterized in terms of monotonicity of the allocation rule. Courty and

Li (2000) therefore first uncover necessary conditions for incentive compatibility from “local”

constraints and then use the stochastic dominance ranking to verify implementability. We give

a new proof for the validity of this approach by showing that for deterministic contracts, incen-

tive compatibility can actually be characterized in terms of monotonicity. This property then

allows us to treat the case when information acquisition is endogenous. The optimal contract

3A number of papers deals with the design of efficient mechanisms in dynamic environments. See, e.g., Athey

and Segal (2007a, 2007b), Bergemann and Välimäki (2008).
4Esö and Szentes (2007a) extends Courty and Li (2000) to a multi–agent setting.
5In contrast, Dai et al. (2006) study an environment with second order stochastic dominance ranking.
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derived by Courty and Li (2000) also displays a menu of option contracts. Thus, our analysis

makes clear that option contracts are a robust feature of optimal sequential screening contracts

also if information acquisition is endogenous and, possibly, involves moral hazard problems.

In fact, such options not only work to screen consumers, but serve the additional purpose of

inducing information acquisition.

Closely related is also the model by Esö and Szentes (2007b), where the principal can

acquire costly, additional information which only the agent can interpret. We differ from

Esö and Szentes (2007b) in at least three respects: first, in our model it is the agent who

acquires additional information. More importantly, while Esö and Szentes (2007b) restrict

attention to observable information acquisition, we also analyze the natural case when it is

unobservable. This leads to a moral hazard problem that changes the analysis fundamentally.

A final difference is that we characterize and give an intuitive explanation for the distortions

in information acquisition that are implied by adverse selection and moral hazard.6

Our work is also related to the literature on information acquisition in principal–agent

problems (e.g., Lewis and Sappington 1997, Cremer et al. 1998, Kessler 1998, Szalay 2009).

The key difference is that this literature studies the incentives of an agent to acquire private

information before he accepts or rejects the contract. Therefore, there is only a single screening

stage.

The rest of the paper is organized as follows. The next section introduces the model. Section

3 discusses the first–best benchmark. In Section 4, we present the principal’s problem. In

Section 5, we solve the principal’s problem when information acquisition is publicly observable

and derive the distortions implied by optimal contracting. In Section 6, we treat the case with

unobservable information acquisition. Section 7 concludes.

2 Model

A principal seeks to procure one unit of a good from an agent. The principal’s valuation for

the good is v > 0. There are two periods. In period 1, contracting takes place, and in period

2, the agent produces the good. Before contracting, the agent privately observes a noisy signal

6See also Hoffmann and Inderst (2009), who study the distortions in information acquisition due to adverse

selection only.
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about true costs. Let the noisy signal be given by the random variable γ̃ and let true costs be

given by the random variable c̃. The agent privately observes the realization γ of γ̃, and it is

common knowledge that γ̃ is distributed with distribution function F and density f = F ′ on

the support Γ = [0, γ̄]. We assume that f is strictly positive and differentiable on Γ and that

the hazard rate h(γ) ≡ F (γ)/f(γ) is non–decreasing in γ.

True costs are equal to the signal plus a random shock s̃: c̃ = γ̃ + s̃. The cost shock

has support R and has zero conditional mean so that γ̃ is an unbiased estimate of costs:

E[c̃|γ] = γ + E[s̃|γ] = γ.7 In general, the distribution of c̃ conditional on γ is given by G(·|γ)

with the conditional density g(·|γ).8 We assume that the family {G(·|γ)}γ is ranked in terms

of first order stochastic dominance. That is, G(·|γ) first order stochastically dominates G(·|γ′)

whenever γ > γ′. A low γ therefore indicates a low actual cost c.

A specific version of our model is the independent case, where the distribution of the shock

is independent of γ. Formally,

G(c | γ) = Ĝ(c− γ), (1)

where Ĝ is the distribution function of the shock s. For expositional clarity, we focus on the

independent case whenever this does not affect results qualitatively. The independent case is

natural when the cost shock is independent of the agent’s average efficiency characteristics such

as expertise, experience, or internal organization. A specific example is an infrastructure project

and the uncertainty pertaining to soil conditions or ground water levels. The independent case

automatically satisfies the first order stochastic dominance ranking of {G(·|γ)}γ.

After the contract has been signed and before production takes place, the agent can, at a

cost k > 0, perfectly observe s and therefore learn the actual cost c. While the value of k is

common knowledge, the principal cannot observe which information the agent receives. Hence,

from the principal’s perspective, there is adverse selection at the contracting as well as after the

information acquisition stage. We will consider both observable and unobservable information

7The additive specification is without loss of generality because the shock can always be defined as the

difference between true and expected costs. The assumption that the support of the shock, and thus of true

costs, is R is for convenience only and standard in the literature.
8Throughout we assume, for technical reasons, that all partial derivatives of h, G, and g exist and are

bounded.
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acquisition. In the latter case, there is an additional moral hazard problem at the information

acquisition stage. Finally, we assume that at the contracting stage the principal makes a take–it

or leave–it offer. If the agent rejects, he gets a type–independent outside option of zero.

3 First–best

As a benchmark, we first consider a first–best world, in which information acquisition and all

available information is publicly observable. In a first–best world, the two crucial questions

are for which cost estimates γ the agent should acquire additional information and when to

execute the public project. Hence, a first–best contract specifies, first, for each agent type γ a

probability αFB(γ) with which the agent acquires information. Second, it specifies a probability

qFB(γ, c) with which the project is executed by an agent who has acquired information and

whose true costs turn out to be c. Finally, the contract determines a probability q̄FB(γ) with

which an agent who has not acquired information executes the project.

The answer to the question when to execute the project is straightforward. Depending on

whether true or expected costs are above or below the valuation v, the production probabilities

in the first best are either zero or one. Formally,

qFB(γ, c) =







1 if v ≥ c

0 if v < c
, q̄FB(γ) =







1 if v ≥ γ

0 if v < γ
. (2)

With these efficient implementation decisions, we can determine the first–best information

acquisition levels and understand how, in a first best world, information is used.

Depending on the implementation decision in the absence of additional information, the

acquisition of information plays one of two roles. First, if the decision without information

acquisition is to implement the project, then the procurer commits a type I error if c turns out

to be larger than v. In this case, a loss v − c is realized. Information acquisition prevents this

error. Formally, the (gross) expected value of information to prevent type I errors is

JFB
I (γ) ≡

∫ ∞

v

(c− v) dG(c | γ). (3)

Second, if the decision without information acquisition is to cancel the project, then the

procurer makes a type II error if c turns out to be smaller than v. Information acquisition

7



prevents this error, and thus the (gross) expected value of information to prevent type II errors

is

JFB
II (γ) ≡

∫ v

−∞

(v − c) dG(c | γ). (4)

According to the first–best implementation decision (2), the procurer optimally implements

the project without additional information whenever γ ≤ v. Hence, the first–best value of

information is

JFB(γ) ≡







JFB
I (γ) if γ ∈ [0, v]

JFB
II (γ) if γ ∈ (v, γ̄].

(5)

Because γ is an unbiased estimate of actual costs, JFB is continuous at γ = v.9 Moreover,

the first order stochastic dominance ranking of {G(·|γ)}γ implies that JFB is increasing in the

range γ ∈ [0, v] and decreasing in the range γ ∈ (v, γ̄]. Hence, JFB is single peaked with its

maximum at γ = v. Let kFB ≡ JFB(v) denote this maximum. Figure 1 illustrates the typical

shape of the curve JFB.

Information acquisition is efficient for all γ with JFB(γ) ≥ k. Because JFB attains a

maximum at γ = v, information acquisition is never efficient if k ≥ kFB. Whenever k < kFB,

single–peakedness of JFB implies that there exist exactly two cut–offs γFB
1 < v < γFB

2 , which

satisfy

JFB
I (γFB

1 ) = k, JFB
II (γFB

2 ) = k. (6)

Thus information acquisition is efficient if γ ∈ [γFB
1 , γFB

2 ]. The next proposition summarizes

these results, and Figure 1 illustrates.

Proposition 1 The first–best implementation probabilities are given by (2). Moreover, it holds:

(i) If k < kFB, the first–best information acquisition probabilities are

αFB(γ) =







1 if γ ∈ [γFB
1 , γFB

2 ]

0 if γ 6∈ [γFB
1 , γFB

2 ]
. (7)

(ii) If k ≥ kFB, the first–best information acquisition probability is αFB(γ) = 0 for all γ.

9Note:
∫∞

v
(c− v)dG(c | γ) =

∫ v

−∞
(v − c)dG(c | γ) ⇔

∫∞

−∞
(c− v)dG(c | γ) = 0 ⇔ γ − v = 0.
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info acq. to prevent
type I errors

info acq. to prevent
type II errors

no info acq. no info acq.

Figure 1: First–best information acquisition

4 The principal’s problem

We now return to the original problem with asymmetric information and look for the contract

that maximizes the principal’s payoff. A contract specifies a transfer and the probability with

which the agent has to produce the good in period 2, which, in principle, can be made contingent

on arbitrary forms of communication between the parties. A crucial step to reduce the number

of possible contracts is to apply the revelation principle for multistage games (Myerson 1986),

which asserts that the optimal contract can be found in the class of direct, incentive compatible

mechanisms.

A direct mechanism has the following structure: First, it requires the agent to submit a

report γ̂ ∈ Γ in period 1. Subsequently, the mechanism gives a contingent, possibly proba-

bilistic, recommendation to the agent whether or not to acquire information. Let α(γ̂) be the

probability with which the contract recommends information acquisition. For the case that

information acquisition is not recommended, the contract specifies the transfers t̄(γ̂) from the

principal to the agent and the probability of production q̄(γ̂). When information acquisition

is recommended, the agent is required to submit a second report ĉ ∈ R in period 2, result-

ing in transfers t(γ̂, ĉ) and the probability of production q(γ̂, ĉ). Thus, a direct contract is a

combination (α, t̄, q̄, t, q).

A direct contract is incentive compatible when it induces truthtelling and obedience. Truth-

telling means that, on the equilibrium path, the agent has an incentive to report his new

information truthfully. Obedience means that, on the equilibrium path, the contract must
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give the agent an incentive to follow the contract’s recommendation whether or not to acquire

information.

Formally, let ΓI = {γ ∈ Γ | α(γ) > 0} denote the set of agent types that acquire information

with a strictly positive probability. Then truthtelling in period 2 requires for all γ ∈ ΓI that

t(γ, c)− cq(γ, c) ≥ t(γ, ĉ)− cq(γ, ĉ) ∀c, ĉ ∈ R. (AS2)

To state the first period truthtelling constraints, let U(γ) denote the utility of agent type γ

if he reports truthfully and obeys the contract’s recommendation:

U(γ) ≡ α(γ)

[
∫ ∞

−∞

{t(γ, c)− cq(γ, c)}dG(c | γ)− k

]

+ (1− α(γ))[t̄(γ)− γq̄(γ)]. (8)

Incentive compatibility means that the agent cannot attain a higher utility than U(γ) by

adopting an untruthful reporting and/or disobedient information acquisition strategy. Notice

that whatever the agent does in period 1, if he is required to submit a report in period 2,

the second period constraints (AS2) guarantee that he reports truthfully in period 2.10 Hence,

even though the revelation principle does not require it, our setup yields truthtelling also off

the equilibrium path.11 With this in mind, we now consider all the deviations which incentive

compatibility is meant to prevent and classify them in three different groups.

First, an agent type γ must not gain by reporting some type γ̂ and, subsequently, obey the

contract’s information acquisition recommendation:

U(γ) ≥ α(γ̂)

[
∫ ∞

−∞

{t(γ̂, c)− cq(γ̂, c)}dG(c | γ)− k

]

+(1−α(γ̂))[t̄(γ̂)−γq̄(γ̂)], ∀γ, γ̂ ∈ Γ. (AS1)

Moreover, an agent type γ must not gain by reporting γ̂ and then disobeying when the contract

requires him to acquire information:

U(γ) ≥ α(γ̂)[t(γ̂, γ)− γq(γ̂, γ)] + (1− α(γ̂))[t̄(γ̂)− γq̄(γ̂)] ∀γ, γ̂ ∈ Γ. (MH)

Finally, an agent type must not gain by disobeying when the contract requires him not to

acquire information. However, this cannot be optimal for any agent type, because when no

10E.g., expected utility of a type γ, who is ignorant of his actual costs c and reports some costs ĉ, is t(γ, ĉ)−

q(γ, ĉ)
∫

cdG(c|γ) = t(γ, ĉ)− q(γ, ĉ)γ. According to (AS2) his payoff is maximized for a report ĉ = γ.
11This would be different if the support of final costs c depended on the first period information γ. See

Krähmer and Strausz (2008) for a discussion of the case when the supports of final costs do not overlap.
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information acquisition is recommended, transfers and implementation probabilities do not

condition on the additional cost information c so that the value of information for the agent is

zero. Thus, the agent would only lose k.

The classification into truthtelling and obedience constraints allows us to distinguish be-

tween observable and unobservable information acquisition. If information acquisition is ob-

servable, the contract can enforce the agent’s obedience directly. In this case, we are left with

the truthtelling constraints (AS2) and (AS1) while the constraints (MH) are redundant. Con-

sequently, we refer to (AS2) as second period and to (AS1) as first period adverse selection

constraints. Because the obedience constraints (MH) only arise when information acquisition

is unobservable, we refer to them as moral hazard constraints.

To guarantee the agent’s participation in an incentive compatible contract, it needs to be

individually rational:

U(γ) ≥ 0 ∀γ ∈ Γ. (IR)

As is standard in the sequential screening literature, we require individual rationality from an

ex ante perspective only. We call an incentive compatible contract that is individually rational

feasible.

The principal’s payoff from a feasible contract is the difference between the total surplus

and the agent’s utility. That is, when the agent is of type γ, the principal’s payoff is

W (γ) ≡ α(γ)

[
∫ ∞

−∞

[v − c]q(γ, c) dG(c | γ)− k

]

+ (1− α(γ))[v − γ]q̄(γ)− U(γ), (9)

and the principal’s objective is his expected payoff

W ≡

∫ γ̄

0

W (γ) dF (γ). (10)

The principal’s problem with unobservable information acquisition, referred to as P, can there-

fore be stated as follows:

P : max
(α,t̄,q̄,t,q)

W s.t. (AS2), (AS1), (MH), (IR). (11)

With observable information acquisition, the principal’s problem is a relaxed version of P,

referred to as R:

R : max
(α,t̄,q̄,t,q)

W s.t. (AS2), (AS1), (IR). (12)
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5 Observable Information Acquisition

We first solve the principal’s problem R where information acquisition is observable. Our

procedure is similar to the well–known approach for solving static screening problems without

additional ex post information.12 In static problems, when the agent’s cost function satisfies the

single–crossing property, then incentive compatibility is equivalent to a monotone allocation rule

and the fact that, up to the utility of the least efficient agent, the agent’s utility is determined

by the allocation alone. We begin by showing that this property carries over to the second

period adverse selection constraints.

Let uI(γ, c) ≡ t(γ, c)− cq(γ, c)− k denote the agent’s utility when he is informed. It then

follows:

Lemma 1 Let γ ∈ ΓI . Then there are transfers t(γ, c) such that (AS2) holds if and only if

q(γ, c) is non–increasing in c, (MON2)

∂uI(γ, c)/∂c = −q(γ, c) a.e. (13)

The proof of Lemma 1 is standard and therefore omitted. In static screening problems, the

characterization of incentive compatibility in terms of monotonicity and the agent’s utility

implies that in the principal’s problem, transfers can be eliminated both in the objective and

in the constraints. In contrast, the first period adverse selection constraints (AS1) cannot be

characterized in terms of monotonicity conditions of the allocation rule. The reason is that the

agent’s utility is given by an expectation over his cost function and so depends on the whole

schedule of allocations instead of a single, type specific allocation only. This leaves the single–

crossing property without bite. However, the next lemma demonstrates that (AS1) together

with (13) still imply that the agent’s utility is determined by the allocation alone. This will

later allow us to eliminate transfers in the principal’s objective but not in the constraints.

Lemma 2 Under (AS1) and (13), the derivative U ′(γ) exists for almost all γ ∈ Γ and whenever

it exists, it equals

U ′(γ) = α(γ)

∫ ∞

−∞

∂G(c | γ)

∂γ
q(γ, c) dc− (1− α(γ))q̄(γ). (14)

12This approach is also adopted in Courty and Li (2000).
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Lemma 2 follows by a standard envelope argument. Since U(γ) = −
∫ γ̄

γ
U ′(z)dz + U(γ̄), the

agent’s utility is thus determined up to the least efficient agent’s utility U(γ̄) which leaves us

to determine U(γ̄). In a standard static problem, the single–crossing condition implies that

the utility of the least efficient type is pinned down by the individual rationality constraint.

Again, since in our context the agent’s utility is given by an expectation over a whole range of

allocations, the single–crossing property cannot be used to determine U(γ̄). Instead, we exploit

that {G(· | γ)}γ is ranked by first order stochastic dominance. It implies that ∂G(c | γ)/∂γ ≤ 0,

and so by Lemma 2, U ′(γ) ≤ 0. We therefore obtain the following result.

Lemma 3 Under (AS1) and (13), (IR) is equivalent to U(γ̄) ≥ 0.

Clearly, at the optimal contract it must hold that U(γ̄) = 0. This condition then takes

care of the individual rationality constraint and determines agent type γ’s utility by Lemma 2.

Hence, we can substitute out U(γ) in the objective W . By applying a common integration by

parts argument, we obtain the objective as a function of the implementation and the information

acquisition probabilities only.13 This allows us to re–state the problem R as follows:

R : max
(α,t̄,q̄,t,q)

∫ γ̄

0

{

α(γ)

(
∫ ∞

−∞

[

v − c+
∂G(c | γ)/∂γ

g(c | γ)
h(γ)

]

q(γ, c) dG(c | γ)− k

)

(15)

+ (1− α(γ))[v − γ − h(γ)]q̄(γ)

}

dF (γ)

s.t. (AS1), (MON2).

We stress again that even though we have inserted the utility expression (14) derived from (AS1)

into the objective, this does not eliminate the constraint (AS1), because it is not equivalent to

a monotonicity condition of the allocation. This is different for the constraint (AS2) which is

equivalent to the constraints (MON2) and (13). Since we have inserted (13) into the objective,

we are left with (MON2).

Before we solve the principal’s problem, it is helpful to interpret the objective (15). We

can think of the principal as maximizing total surplus where, instead of true costs, he faces

higher virtual costs that arise because an information rent has to be conceded to the agent. If

information acquisition does not take place, the virtual costs are γ + h(γ). They are the same

13The details of the derivation are presented in the Appendix.

13



as the virtual costs in the static screening problem in which additional information cannot

be acquired. As usual, the hazard rate h(γ) measures the extent of asymmetric information

between the agent and the principal about the expected costs γ. If information acquisition does

take place, the virtual costs are c− ψ(γ, c)h(γ) with

ψ(γ, c) ≡
∂G(c | γ)/∂γ

g(c | γ)
. (16)

They are the same as the virtual costs in a sequential screening problem in which each agent

type exogenously observes the cost shock. Baron and Besanko (1984) interpret ψ as an in-

formativeness measure which captures how the agent’s private knowledge about the true cost

distribution G changes across types. For the independent case, where the signal and the cost

shock are independent, we have ψ(γ, c) = −1 so that virtual costs are simply c + h(γ). This

means that the possibility that the agent receives additional information in period 2 does not

change the degree of asymmetric information in period 1. Because with observable information

acquisition our qualitative results do not depend on the shape of ψ, we will, for expositional

clarity, focus on the independent case. We return to the general case in Section 6, where we

show that the effect of unobservable information acquisition depends crucially on ψ. For this

reason, we nevertheless prove all our results for the general case.

We now turn to the solution of the principal’s problem R. In Subsection 5.1 we solve the

unconstrained version of problem R where we ignore the constraints (AS1) and (MON2). In

Subsection 5.2, we then check whether the solution actually satisfies these omitted constraints.

5.1 Solution to the unconstrained problem

The solution to the unconstrained version of problem R can be obtained by point–wise max-

imization for each γ in two steps. In the first step, the optimal implementation probabilities

are determined for fixed α(γ). Clearly, this step amounts to setting the allocation q(·) to zero

if the associated term in the squared brackets in (15) is strictly negative and setting it to one

otherwise. This procedure yields:

Lemma 4 For each γ there is a unique c0(γ) ≤ v and there is a unique γ0 ≤ v given by14

v = c0(γ) + h(γ), v = γ0 + h(γ0), (17)

14In the general case, c0(γ) is determined by v = c0(γ)− ψ(γ, c0(γ))h(γ).
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such that the optimal implementation probabilities in the solution to the unconstrained version

of problem R are given by

q∗(γ, c) =







1 if c ≤ c0(γ)

0 if c > c0(γ)
, q̄∗(γ) =







1 if γ ≤ γ0

0 if γ > γ0
. (18)

Lemma 4 reveals the typical distortions that are implied by the rent–efficiency trade–off that

the principal faces. Observe that the second best (expected) cost thresholds γ0 and c0(γ) are

both smaller than the first–best cost threshold v. Hence, the principal distorts the implemen-

tation probabilities downwards relative to the first–best. The downward distortion lowers the

information rent the principal needs to concede to the agent, because it reduces the extent to

which a relatively efficient type could gain by mimicking a relatively inefficient type.

The second step is to determine the optimal information acquisition probabilities. Similarly

to the first–best, the purpose of information acquisition is to prevent type I or type II imple-

mentation errors. Indeed, suppose that the principal implements the project in the absence of

further information. In this case her payoff is v − γ − h(γ). If information is available, the

project is implemented if costs are smaller than c0(γ) in which case the principal obtains the

payoff v − c+ ψ(γ, c)h(γ). Thus, the principal’s (gross) value of information is

J∗
I (γ) ≡

∫ c0(γ)

−∞

v − c− h(γ) dG(c | γ)− [v − γ − h(γ)] (19)

=

∫ ∞

c0(γ)

(c+ h(γ)− v)dG(c | γ), (20)

where we have used that v − γ − h(γ) =
∫∞

−∞
v − c − h(γ)dG(c|γ). Expression (20) reveals

that, due to information rents, the principal’s value of information is distorted relative to the

first–best: From the principal’s perspective, a type I error occurs if virtual costs, c+ h(γ), are

larger than v, whereas from a first–best perspective, it occurs if true costs, c, are larger than v.

Note that the definition (17) implies that c0 is non–increasing in γ because h is non–increasing

in γ and c. Moreover, h is non–decreasing so that the first order stochastic dominance ranking

of {G(· | γ)}γ implies that J∗
I (γ) is increasing.

Similarly, suppose that in the absence of information acquisition, the principal cancels the

project. In this case, information acquisition prevents a type II error whenever the value of the

project v exceeds the virtual costs c+ h(γ), and the principal’s (gross) value of information is

J∗
II(γ) ≡

∫ c0(γ)

−∞

(v − c− h(γ))dG(c | γ). (21)
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Because h is non–decreasing and c0 is non–increasing, the first order stochastic dominance

ranking of {G(· | γ)}γ implies that J∗
II(γ) is decreasing.

According to Lemma 4, the principal executes the project without additional information

exactly when γ ≤ γ0. Consequently, the principal’s (gross) value of information is

J∗(γ) ≡







J∗
I (γ) if γ ∈ [0, γ0]

J∗
II(γ) if γ ∈ (γ0, γ̄].

(22)

Notice that J∗ is continuous in γ = γ0.
15 Moreover, since J∗

I is increasing and J∗
II decreasing,

J∗(γ) is single–peaked with a maximum at γ0 of

k∗ ≡ J∗(γ0) =

∫ c0(γ0)

−∞

(v − c− h(γ0))dG(c | γ0).

Information acquisition by an agent type γ is optimal for the principal if and only if J∗(γ) ≥

k. Since J∗ is at most k∗, information acquisition is never optimal if k ≥ k∗. If k < k∗, then

single–peakedness of J∗ implies that there are exactly two cut–offs γ∗1 < γ0 < γ∗2 , which satisfy

J∗(γ∗1) = k, J∗(γ∗2) = k. (23)

Thus, it is optimal to induce information acquisition if γ ∈ [γ∗1 , γ
∗
2 ]. The following lemma

summarizes these results.

Lemma 5 The optimal information acquisition probabilities in the solution to the uncon-

strained version of problem R are given as follows:

(i) If k < k∗, then

α∗(γ) =







1 if γ ∈ [γ∗1 , γ
∗
2 ]

0 if γ 6∈ [γ∗1 , γ
∗
2 ]

. (24)

(ii) If k ≥ k∗, then α∗(γ) = 0 for all γ.

5.2 Solution to the constrained problem

We now address the question whether our solution to the relaxed version of R actually satisfies

the constraints (AS1) and (MON2). In static problems, this simply amounts to checking a

15Recall that by definition of γ0: v − γ0 − h(γ0) = 0. Hence, by (19) and (21), J∗
I (γ0) = J∗

II(γ0).
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monotonicity condition, which in turn is guaranteed by a monotone hazard rate. Recall from

our earlier discussion that in a sequential screening problem, the first period adverse selec-

tion constraints (AS1), in general, cannot be characterized in terms of monotonicity. It turns

out, however, that what prevents such a characterization is that contracts are allowed to be

stochastic. In fact, our next result demonstrates that for deterministic contracts, (AS1) can be

characterized by a monotonicity condition.16 Since the solution to the unconstrained problem

is deterministic, this implies that it also solves the constrained problem.

We define a contract as deterministic when the decision to implement the project and the

information acquisition recommendation are deterministic: α, q̄, q ∈ {0, 1}. We say that a

deterministic allocation (α, q̄, q) is non–increasing w.r.t. (q̄, q) if there are γ1, γ2 with γ1 ≤ γ2

and a non–increasing cutoff ĉ0 : [γ1, γ2] → R such that

α(γ) =







1 if γ ∈ [γ1, γ2]

0 if γ 6∈ [γ1, γ2]
, q̄(γ) =







1 if γ < γ1

0 if γ > γ2
, q(γ, c) =







1 if c ≤ ĉ0(γ)

0 if c > ĉ0(γ).
(25)

We call an allocation that satisfies (25) non–increasing w.r.t. (q̄, q) because the implemen-

tation probabilities (q̄, q) are non–increasing in γ and c. The following lemma states our char-

acterization result for deterministic contracts.

Lemma 6 There are transfers (t̄, t) such that a deterministic contract (α, t̄, q̄, t, q) satisfies the

adverse selection constraints (AS1) and (MON2) if and only if (α, q̄, q) is non–increasing w.r.t.

(q̄, q).

Because our solution to the relaxed version of R displays a deterministic, non–increasing

allocation w.r.t. (q̄, q), the lemma implies that transfers exist so that the corresponding contract

satisfies (AS1) and (MON2).17

Proposition 2 There are transfers (t̄∗, t∗) such that the contract C∗ = (α∗, t̄∗, q̄∗, t∗, q∗) solves

problem R and is, therefore, optimal.

16To our knowledge, this characterization result is new to the sequential screening literature.
17 In a model where q corresponds to a divisible quantity (and so a quantity between zero and one is still

deterministic), incentive compatibility does, in general, not imply that q is non–increasing in γ and c. However,

under standard regularity conditions, the optimal contract will still be deterministic. This holds also if the

value of output is not linear in quantity.
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5.3 Option contracts

In this subsection, we show that the implied transfers of Lemma 6 allow a reinterpretation

of the contract as a menu that gives the agent the choice between a fixed price contract and

various option contracts. Consequently, any deterministic, direct mechanism that satisfies the

adverse selection constraints can also be implemented by an indirect, empirically more natural

contract. This is true in particular of the optimal contract C∗.

To demonstrate this, we first show how the adverse selection constraints pin down transfers

in Lemma 6. Consider first the range of agent types who do not acquire information. Since

all types in (γ2, γ̄], do not execute the project, (AS1) implies that all these types have to get

the same transfer. If the individual rationality constraint is binding, this transfer is zero. On

the other hand, all types in [0, γ1) execute the project with certainty. Therefore, (AS1) implies

that transfers have to be the same for all types in [0, γ1), say t̄. Hence, the first period adverse

selection constraints (AS1) imply that the transfer schedule t̄(γ) exhibits

t̄(γ) =







t̄ if γ < γ1

0 if γ > γ2.
(26)

Next, consider an agent type γ who acquires information. The transfer t(γ, c) is now pinned

down by the second period adverse selection constraints (AS2). Indeed, the project is executed

if the cost realization c is smaller than the cutoff ĉ0(γ). Thus, (AS2) implies that all cost

types c ≤ ĉ0(γ) who execute the project have to get the same transfer, say t0(γ). Similarly,

all cost types who abandon the project (c > ĉ0(γ)) have to get the same transfer, say t1(γ).

Moreover, the critical cost type ĉ0(γ) has to be indifferent between executing and abandoning

the project. Otherwise, some types close to ĉ0(γ) would have incentives to lie. This pins down

the difference between t0(γ) and t1(γ) so that t1(γ) = t0(γ) + ĉ0(γ). Hence, the second period

adverse selection constraints (AS2) imply that the transfer schedule t(γ, c) exhibits

t(γ, c) =







t0(γ) if c > ĉ0(γ)

t0(γ) + ĉ0(γ) if c ≤ ĉ0(γ).
(27)

Finally, the levels of t0 and t̄ are pinned down by the condition that the boundary type γ1

(resp. γ2) has to be indifferent between acquiring information and implementing (resp. not

implementing) the project without acquiring information. If this was not the case, there would

18



be types close to γ1 (resp. γ2) with an incentive to misreport. Observe that in pinning down

transfers, we employed the local adverse selection constraints only, that is, that no type mimics

a type close by. The proof of Lemma 6 shows that with a deterministic allocation which is

non–increasing w.r.t. (q̄, q), these transfers actually satisfy the adverse selection constraints

globally.

The shape of transfers allows the principal to implement the direct contract indirectly

through a menu of contracts that consists of a fixed price contract and a range of option

contracts. To see this, consider first what happens if the agent announces a type who does

not acquire information. Announcing γ > γ2 simply amounts to rejecting the contract, as it

entails not executing the project and zero transfers. Announcing γ < γ1 amounts to picking a

fixed price contract which obliges the agent to complete the project at all cost circumstances

for the price t̄. Next, consider what happens if the agent announces a type who does acquire

information. After his first report γ, the agent subsequently faces a choice between announcing

a type c > ĉ0(γ̂) or a type c ≤ ĉ0(γ̂). In the first case, the project is canceled and the agent

receives t0(γ̂), while in the second case the project is implemented and the agent receives

t0(γ̂) + ĉ0(γ̂). Hence, effectively the agent receives the transfer t0(γ̂) upfront and then has two

options: walk away or complete the project for the price ĉ0(γ̂).

It consequently follows that the outcome of the optimal direct mechanism C∗ is also im-

plemented by the indirect menu contract C ′ ≡ {(α = 0, t̄∗), (α = 1, c0(γ), t
∗
0(γ))γ∈[γ∗

1 ,γ
∗

2 ]
}.

The menu consists of the fixed price contract (α = 0, t̄∗) and a range of option contracts

(α = 1, c0(γ), t
∗
0(γ))γ. We summarize this discussion in the next proposition for the non–trivial

case k < k∗.18

Proposition 3 If k < k∗, then the outcome under the optimal contract C∗ also obtains with

the contract C ′ = {(α∗ = 0, t̄∗), (α∗ = 1, c0(γ), t
∗
0(γ))γ∈[γ∗

1 ,γ
∗

2 ]
}.

5.4 Distortions in information acquisition

We next investigate the distortions in information acquisition. Recall that the principal, instead

of maximizing overall surplus, is only interested in the share of the surplus that she can extract.

Due to asymmetric information, the principal must leave a part of the surplus — the information

18For k ≥ k∗, no information acquisition takes place, and the optimal contract is simply a fixed price contract.
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rents — to the agent, and consequently she is also interested in how the amount of information

acquisition affects the size of these rents. We now show that this information rent effect is

intimately linked to the type of errors that information acquisition is meant to prevent. This

allows us to identify the unambiguous direction of the distortions and develop a straightforward

intuition for them.

First, suppose that information acquisition is used to prevent type I errors. In this case,

the social value of information is JFB
I (γ) while the value to the principal is J∗

I (γ). Because

h(γ) ≥ 0 and c0(γ) = v − h(γ) < v, it follows

JFB
I (γ) =

∫ ∞

v

(c− v)dG(c | γ) (28)

≤

∫ ∞

v

(c− v + h(γ))dG(c | γ) ≤

∫ ∞

c0(γ)

(c− v + h(γ))dG(c | γ) (29)

= J∗
I (γ). (30)

The inequality shows that the principal overvalues information acquisition relative to the first

best. That is, for preventing type I errors there is a positive information rent effect which

increases the principal’s value above the first best value of information.

The intuition is as follows. When additional information prevents type I errors, some

projects are turned down that would otherwise have been implemented. This means that,

from an ex ante perspective, information acquisition reduces the implementation probability

q. A reduction in q for some cost type implies that, from a period 1 perspective, it becomes

less worthwhile for a more efficient cost type to mimic this cost type. Hence, the principal

has to pay lower information rents to the more efficient cost types when inducing information

acquisition. As a result, the optimal contract displays excess information acquisition to prevent

type I errors: γ∗ ≤ γFB
1 .

Next, suppose information acquisition is used to prevent type II errors. In this case, the

social value of information is JFB
II (γ) and the value to the principal is J∗

II(γ). Because of

h(γ) ≥ 0 and c0(γ) = v − h(γ) < v, it now follows

JFB
II (γ) =

∫ v

−∞

(v − c)dG(c | γ) (31)

≥

∫ v

−∞

(v − c− h(γ))dG(c | γ) ≥

∫ c0(γ)

−∞

(v − c− h(γ))dG(c | γ) (32)

= J∗
II(γ). (33)
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Figure 2: Distortions in information acquisition

The inequality shows that the principal undervalues information acquisition relative to the first

best. That is, for preventing type II errors there is a negative information rent effect which

decreases the principal’s value below the first best value of information.

Although the sign of the information rent effect is now negative, the intuition behind the

result follows from the same logic. When additional information prevents type II errors, some

projects are implemented that would otherwise have been canceled. Hence, from an ex ante

perspective, information acquisition increases the implementation probability q, and so the

principal has to pay higher information rents to the more efficient cost types when inducing

information acquisition. As a result, the optimal contract displays too little information ac-

quisition to prevent type II errors: γ∗2 ≤ γFB
2 . We summarize this key result in Proposition

4.

Proposition 4 Under the optimal contract, information acquisition is distorted so that there

is excess (resp. insufficient) information acquisition to prevent types I (resp. type II) errors:

γ∗1 ≤ γFB
1 and γ∗2 ≤ γFB

2 .

Figure 2 illustrates the distortions. The curve J∗
I lies higher than the curve JFB

I , whereas

the curve J∗
II lies below the curve JFB

II . This implies that for a given k, the set of types who

acquire information the second–best, [γ∗1 , γ
∗
2 ] lies to the left of the set of types who acquire

information in the first–best, [γFB
1 , γFB

2 ]. It further shows how the two sets shrink as k rises.

As of k̄ the sets [γ∗1 , γ
∗
2 ] and [γFB

1 , γFB
2 ] are disjoint: none of the types who acquire information
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in the second best acquire information in the first best. This demonstrates that distortions

may lead to qualitatively different outcomes.19

6 Unobservable information acquisition

In this section, we examine the case when information acquisition is unobservable, and thus the

optimal contract must also satisfy the moral hazard constraints (MH). The two key questions

are whether the moral hazard problem causes the principal additional agency costs and how

this affects distortions. We proceed in two steps. We first characterize when the optimal

contract with observable information acquisition automatically satisfies (MH). Whenever this

is the case, we say that the moral hazard problem does not cause additional agency costs. In

the second step, we discuss how the optimal contract changes when the moral hazard problem

causes additional agency costs and affects distortions.

Because subsequent results depend crucially on the conditional cost distributions G(c|γ),

there is a loss in restricting attention to the independent case. For this reason, we now consider

more general distributions G for which the informativeness measure ψ(γ, c) is no longer con-

stant. In order to extend Lemma 4 to more general distributions, we impose the regularity con-

ditions that ∂ψ/∂c ·h < 1 and that ψ is non–increasing in γ. The proof of Lemma 4 shows that

the first condition guarantees a unique cost type c0(γ) that solves v−c0(γ)+ψ(γ, c0(γ))h(γ) = 0.

The second condition then implies that c0(γ) is non–increasing in γ.20 Since {G(c|γ)}γ is ranked

by first order stochastic dominance, ψ(γ, c) is negative. Finally, we require that for all γ ∈ Γ:
∫ ∞

−∞

ψ(γ, c) dG(c | γ) = −1. (34)

This is only a mild, technical condition. It is satisfied for any family of distribution functions

with bounded support and, therefore, is a natural continuity requirement.21 It guarantees that,

similar to (22), the value of information J∗ is the respective integral over the virtual surplus.

19Observe that in Figure 2, the first best and the optimal critical cost values are identical: kFB = k∗. This

is a special feature of the independent case which implies that J∗(γ) = JFB(γ + h(γ)). The derivation of this

relation is in the appendix.
20Differentiating the identity with respect to γ yields: c′

0
(1− ∂ψ/∂c · h) = ∂ψ/∂γ · h+ ψ · h′. Hence, c′

0
≤ 0.

21For this reason, a sufficient condition for (34) is that G(c|γ) converges fast enough to 1 as c → +∞ and

fast enough to 0 as c→ −∞. It then follows by integration by part:
∫∞

−∞
ψ(γ, c) dG(c|γ) = ∂

∂γ

∫∞

−∞
G(c γ)dc =

∂
∂γ

[cG(c|γ)]∞−∞ − ∂
∂γ

∫∞

−∞
c dG(c | γ) = −1.
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6.1 Agency costs through moral hazard

We turn to the question when the optimal contract with observable information acquisition,

C ′, automatically satisfies the moral hazard constraints (MH). In what follows we refer to C ′

as the benchmark contract. For the non–trivial case k < k∗, we provide two conditions for

the benchmark contract to satisfy (MH), one in terms of transfers and one in terms of the

informativeness measure ψ.

We first establish two straightforward necessary conditions on the cutoff c0(γ) and transfers

t̄∗ and t∗0(γ) so that the moral hazard problem does not cause additional agency costs. The

first condition is that t∗0(γ) ≤ 0 for all γ ∈ [γ∗1 , γ
∗
2 ]. The condition is necessary, because if t∗0(γ)

were strictly positive for some γ, then a type γ′ ≥ γ∗2 , instead of rejecting the contract and

receiving zero, would have a strict incentive to announce type γ in order to receive the upfront

transfer t∗0(γ) > 0 and, subsequently, quit the project without acquiring information. The

second condition is that the net transfer when executing the project must not be higher than

the transfer under the fixed price contract, that is, t̄∗ ≥ c0(γ) + t∗0(γ) for all γ ∈ [γ∗1 , γ
∗
2 ]. The

condition is necessary, because if t̄∗ were smaller than c0(γ)+ t
∗
0(γ) for some γ, then a relatively

efficient type γ′ < γ∗1 would have a strict incentive to report type γ rather than his true type

γ′ and then, without acquiring information, choose the option to implement the project. This

strategy would allow him to complete the project for an overall transfer c0(γ) + t∗0(γ) instead

of the lower transfer t̄∗.

We now argue that these two conditions are not only necessary but also sufficient for the

moral hazard problem to not cause additional agency costs. To show sufficiency, it remains to

be checked that an agent type, γ ∈ [γ∗1 , γ
∗
2 ], who is supposed to acquire information actually

does so. There are two deviations to consider. First, suppose that such an agent type picks

an option contract but deviates by quitting the project without acquiring information. The

deviator ends up with the non–positive transfer t∗0(γ) and rejecting the contract would be a

weakly better deviation. But since C ′ is individually rational, rejecting the contract cannot

be profitable. Second, suppose that an agent type γ ∈ [γ∗1 , γ
∗
2 ] picks an option contract but

deviates by completing the project without acquiring information. If this deviation is profitable,

then, due to t̄∗ ≥ c0(γ) + t∗0(γ), an even more profitable deviation is to pick the fixed price

contract. But because the benchmark contract satisfies the adverse selection constraints (AS1),
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this second deviation is also not profitable. Thus, we have established:

Lemma 7 The moral hazard problem does not cause additional agency costs if and only if for

all γ ∈ [γ∗1 , γ
∗
2 ]:

t̄∗ ≥ c0(γ) + t∗0(γ) and t∗0(γ) ≤ 0. (35)

While intuitive, the previous condition has the drawback that it depends on transfers which

are endogenous. In the next lemma, we, therefore, give a sufficient condition that is only based

on the primitive ψ.

Lemma 8 If ∂ψ/∂c < 0, then the moral hazard problem causes additional agency costs. If

∂ψ/∂c ≥ 0, then the moral hazard problem does not cause additional agency costs. In particular,

the moral hazard problem does not cause additional agency costs in the independent case.

Lemma 8 shows that the sign of the partial derivative ∂ψ/∂c determines whether or not the

moral hazard problem causes additional agency costs. We shall explain the intuition behind

this result in detail, as it will guide us in constructing the optimal contract when the moral

hazard problem causes additional agency costs.

Intuitively, the agent has an incentive to acquire information when his value of information

exceeds acquisition costs k. Note that when the agent chooses an option contract, information

is valuable to the agent, because the contract allows him to choose the best option according

to true cost conditions. Hence, the crucial question is to what extent the agent’s value of

information coincides with the principal’s. To answer this, consider the value of information to

some agent type γ. Given an option contract, type γ’s next best alternative without information

is either to execute the project for a price p = c0(γ) or to quit the project. Under the first

alternative, an informed type γ saves p − c when the additional information reveals that the

cost c exceeds p. Therefore, the agent’s value of information in this case is

JA
I (p, γ) =

∫ ∞

p

c− p dG(c | γ), (36)

where, under the benchmark contract, p equals c0(γ). When the next best alternative is to quit

the project, an informed type γ gains p − c when the additional information reveals that the

cost c is smaller than the price p. Hence, the agent’s value of information in this case is

JA
II(p, γ) =

∫ p

−∞

p− c dG(c | γ). (37)
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Now, the moral hazard problem does not cause additional agency costs when the agent’s

value of information is sufficiently large. More precisely, suppose that the agent type γ’s value

of information is larger than k whenever the principal’s value of information J∗(γ) is also

larger than k. In that case, the agent’s and the principal’s incentives to acquire information

are aligned, and the agent voluntarily acquires information. Hence, if JA
I (c0(γ), γ) ≥ k and

JA
II(c0(γ), γ) ≥ k for all γ ∈ [γ∗1 , γ

∗
2 ], then there are no additional agency costs.

In order to see that the sign of ∂ψ/∂c determines whether this is the case, consider a

situation where both the principal’s and the agent’s best alternative without information is to

abandon the project. In that case, the principal’s value of information is her virtual valuation

integrated over the cost range c < c0(γ) while the agent’s value of information is his “gross ex

post rent” c0(γ)− c integrated over the same range. Now observe that both the virtual surplus

and the gross ex post rent are exactly zero at c0(γ), and in the range c < c0(γ) the ex post

gross rent increases at a rate of +1 as c becomes smaller, while the principal’s virtual surplus

increases at the rate of 1− ∂ψ/∂c · h. Hence, for the independent case ∂ψ/∂c = 0, these rates

coincide and therefore also the agent’s and the principal’s value of information. For ∂ψ/∂c > 0,

the agent’s value of information is actually larger than the principal’s so that the agent has a

strict incentive to acquire information whenever the principal wants him to do so. If, on the

other hand, ∂ψ/∂c < 0, then the principal’s value of information is larger than the agent’s.

In that case, incentives for information acquisition are misaligned for some types γ, and the

benchmark contract has to be adapted to account for the moral hazard problem. We now turn

to this issue.

6.2 Optimal contract when moral hazard causes agency costs

Finding the optimal contract when the moral hazard problem causes additional agency costs

is complicated in general because the adverse selection constraint cannot be characterized in

terms of monotonicity. However, as shown in Lemma 6, for deterministic contracts such a

characterization is possible. This will allow us to solve the problem when we restrict attention

to deterministic contracts. In light of Lemma 6, we can associate with any deterministic contract

that satisfies the adverse selection constraints a non–increasing cutoff ĉ0 : [γ1, γ2] → R. Recall

from section 5.3 that any such contract can be implemented by a menu of option contracts
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where the option price to execute the project coincides with the cutoff ĉ0(γ). In what follows,

we therefore use the terms price and cutoff interchangeably.

With deterministic contracts there are, in effect, two ways how to modify the benchmark

contract when it violates the moral hazard constraints. First, the principal could limit infor-

mation acquisition to those agent types whose value of information is already high enough. In

this case, additional agency costs arise since information acquisition sometimes does not take

place even though the principal’s value of information exceeds k. The other possibility is to

adapt the price p = c0(γ) so as to raise the agent’s value of information. Due to incentive

compatibility, a price increase (resp. decrease) means, however, that the agent executes (resp.

abandons) projects with a negative (resp. positive) virtual surplus. Hence, additional agency

costs also arise from this second possibility. The intuitive idea for finding the optimal contract

is to adapt the information acquisition interval and the price so that the two different types of

agency costs are optimally balanced.

We now formalize this idea. We first characterize all prices that give agents a positive

incentive to acquire information and look for the optimal price in this set. Given these optimal

prices, we can then determine the optimal range of information acquisition [γ1, γ2]. We begin by

showing that prices that induce information acquisition by the agent lie between two bounds,

pI and pII . Recall from (36) and (37) that confronted with a price p, the agent acquires

information if both JA
I (p, γ) and J

A
II(p, γ) are larger than k; otherwise he would be better off

by taking the next best alternative without information. We have:

Lemma 9 Let i = I, II.

(i) For each γ, there is a unique solution pi(γ) to J
A
i (p, γ) = k.

(ii) pi is increasing in γ.

(iii) JA
I (p, γ) ≥ k if and only if p ≤ pI(γ), and J

A
II(p, γ) ≥ k if and only if p ≥ pII(γ).

Lemma 9 implies that the set of prices for which the agent has a positive incentive to acquire

information is the band between the two pi–curves:

P ≡ {(γ, p) | pII(γ) ≤ p ≤ pI(γ)}. (38)

We can now provide a characterization analogous to Lemma 6 which includes the moral

hazard constraints. The additional requirement is that the endpoints of ĉ0 are in P .
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Lemma 10 There are transfers (t̄, t) such that a deterministic contract (α, t̄, q̄, t, q) satisfies

the adverse selection constraints (AS2), (AS1) and the moral hazard constraints (MH) if and

only if (α, q̄, q) is non–increasing w.r.t. (q̄, q) and

(γ1, ĉ0(γ1)), (γ2, ĉ0(γ2)) ∈ P. (39)

As explained earlier, the moral hazard constraints are satisfied if the whole schedule ĉ0 is

in P . The reason why we only have to consider the endpoints is that the two pi-curves are

increasing, whereas ĉ0 is necessarily non–increasing.22

Restricting attention to deterministic contracts, we can now treat problem P as usual.

By Lemma 1 and 2, the agent’s utility U is given by (14) and, therefore, decreasing in γ.

Optimality then requires that the individual rationality constraint is binding for the highest

type γ̄. Together with (14), this pins down the agent’s utility, which we can then insert in

the principal’s objective. Integration by parts transforms the principal’s objective into the

expected virtual surplus as stated in (15). Finally, by Lemma 10 and exploiting the structure

of an allocation (α, q̄, q) which is non–increasing w.r.t. (q̄, q) we can restate the problem P as

follows.

S : max
γ1,γ2,ĉ0

∫ γ1

0

v − γ − h(γ)dF (γ) +

∫ γ2

γ1

[

∫ ĉ0(γ)

−∞

v − c+ ψ(c, γ)h(γ) dG(c | γ)− k]dF (γ)(40)

s.t. (39) and ĉ0 : [γ1, γ2] → R is non–increasing.

We can find a solution to S by the following two–step procedure: First, determine the opti-

mal price schedule ĉ0 for given thresholds γ1 ≤ γ2 and, subsequently, determine the optimal

thresholds γ1 and γ2 by optimizing over all optimal price schedules ĉ0. We call ĉ0 optimal with

respect to a pair (γ1, γ2) if ĉ0 is a solution of S for given thresholds γ1 and γ2. The next lemma

characterizes the optimal price schedule ĉ0 given a pair (γ1, γ2).

Lemma 11 The price schedule c̃0 is optimal with respect to a pair (γ1, γ2) where

c̃0(γ) ≡ min{pI(γ1),max{c0(γ), pII(γ2)}}. (41)

22Related to the discussion in footnote 17, it is an open question whether an analogous characterization holds

in a model with divisible quantity where deterministic allocations are not either zero or one.
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Figure 3: Bunching due to moral hazard

Intuitively, the optimal schedule c̃0 coincides with the benchmark schedule c0 whenever

the price c0(γ) automatically induces type γ to acquire information, i.e., whenever c0(γ) lies

in between pI(γ1) and pII(γ2). Otherwise, the price has to be adapted so as to increase the

agent’s value of information. Adapting the price implies a suboptimal decision by the agent in

period 2 and entails losses in virtual surplus. Hence, the optimal new price is the one closest

to the original price c0(γ) among all prices that are incentive compatible, i.e. non–increasing

and in P . As illustrated in Figure 3, the optimal schedule c̃0 can, therefore, be found by a

bunching or ironing procedure, which flattens parts of the benchmark schedule c0, leading to

price bunching for different γ types. The remaining problem is, then, to determine over which

ranges bunching takes place. The solution to this problem yields the optimal thresholds γ1 and

γ2. While the exact optimal thresholds γ1 and γ2 depend on the details of the primitives, the

following proposition shows how the moral hazard problem affects information acquisition:

Proposition 5 When the moral hazard problem causes agency costs, the range of information

acquisition shrinks relative to the case with observable information acquisition:

γ1 ≥ γ∗1 and γ2 ≤ γ∗2 . (42)

The intuition for Proposition 5 is that outside the interval [γ∗1 , γ
∗
2 ], information acquisition

costs k exceed, by definition, the principal’s value of information. Hence, even if a price could

be found that induces information acquisition by agent types outside of [γ∗1 , γ
∗
2 ], this would be

suboptimal because information acquisition would cause a loss to the principal.
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Proposition 5 allows us to identify the impact of the moral hazard problem on the distortions

in information acquisition beyond those caused by adverse selection. When the moral hazard

problem causes agency costs, then, relative to the case with observable information acquisition,

both more type I and more type II errors are committed. Hence, information acquisition to

prevent type I errors become less distorted and more efficient, while information acquisition

to prevent type II errors becomes more distorted and less efficient. Consequently, the welfare

effects of the additional moral hazard constraints are ambiguous and it could be that the first

effect outweighs the second. In this case, the presence of the moral hazard problem would

actually increase overall efficiency. Because the moral hazard problem unambiguously raises

the agency costs of the principal, an increase in efficiency means that the agent gains more

than the principal loses.

7 Conclusions

We study how a principal optimally deals with the incentive problems in project management

when, due to large cost uncertainties, procurement projects require pre–project planning. These

incentive problems typically involve both adverse selection and moral hazard. To model the

procurement problem, we extend the standard sequential screening model to endogenous infor-

mation acquisition with moral hazard. Our analysis offers a number of theoretical insights. In

particular, we identify systematic distortions on the amount of information acquisition under

the optimal contract and disentangle the distinct impact of adverse selection and moral hazard

on these distortions. Moreover, we show how a bunching procedure can be employed to account

for moral hazard. In doing so we present a new characterization of incentive compatibility for

deterministic contracts in dynamic screening models.

From a more applied angle, our analysis extends beyond procurement to other domains.

Classical examples of contracts with option clauses that adapt contracting terms to new infor-

mation are labor contracts, securities such as put or call options, or ticket pricing. The existence

of such contracts can be rationalized by straightforward reinterpretations of our model (e.g.

viewing the agent as the buyer with uncertain demand and the principal as the seller). Option

contracts are prevalent also in business-to-business procurement. Refund or buy–back contracts

play a key role in vertical manufacturer retailer relations in which there is uncertainty (about
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demand or costs) during a sales period. The management literature reports the widespread use

of option contracts in publishing, CD retailing (Kandel, 1996), for fashion goods such as apparel

(Eppen and Iyer, 1997), in the semiconductor and consumer electronic industries (Milner and

Rosenblatt, 2002), or in catalogue retailing (Donohue, 2000). In all these examples, private

information and active, unobservable information acquisition are often intertwined.

Earlier work on dynamic mechanism design already demonstrates that option contracts

represent optimal contractual structures in dynamic screening problems. Our results strengthen

this view by demonstrating that option contracts do not only serve the purpose of screening

agents after they obtain their additional information, but also provide the correct incentives

for agents to obtain this additional information in the first place.
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Appendix

Proof of Lemma 2 Let

Ũ(γ̂; γ) ≡ α(γ̂)

∫ ∞

−∞

uI(γ̂, c) dG(c | γ) + (1− α(γ̂))[t̄(γ̂)− γq̄(γ̂)] (43)

be the agent type γ’s utility when he reports γ̂ in period 1. Note that Ũ(γ̂; γ) is decreasing

in γ. This follows from two observations: first −γq̄(γ̂) is decreasing in γ. Second, the integral

is decreasing in γ because of the first order stochastic dominance ranking of {G(c | γ)}γ and

since uI(γ̂, c) is non–increasing in c by (13). Moreover, we have

U(γ) = max
γ̂∈Γ

Ũ(γ̂, γ). (44)

As the maximum over decreasing functions, U is decreasing and thus differentiable almost

everywhere. We now compute the derivative for all γ at which it exists. Let δ > 0. Incentive

compatibility (AS1) implies

1/δ · [U(γ + δ)− U(γ)] ≥ 1/δ · [Ũ(γ, γ + δ)− Ũ(γ, γ)], (45)

1/δ · [U(γ)− U(γ − δ)] ≤ 1/δ · [Ũ(γ, γ)− Ũ(γ, γ − δ)]. (46)

As δ → 0, the right hand sides of the two previous inequalities converge to

α(γ)

∫ ∞

−∞

uI(γ, c)
∂g(c | γ)

∂γ
dc− (1− α(γ))q̄(γ). (47)

Therefore U ′(γ) equals (47). We conclude the proof by re–writing (47). By integration by

parts, and since ∂uI/∂c = −q by Lemma 1, we can write the integral as

uI(γ, c)
∂G(c | γ)

∂γ

∣

∣

∣

∣

∞

−∞

+

∫ ∞

−∞

q(γ, c)
∂G(c | γ)

∂γ
dc. (48)

Now note that limc→−∞G(c | γ) = 0 for all γ so that limc→−∞ ∂G(c | γ)/∂γ = 0. Similarly,

limc→+∞ ∂G(c | γ)/∂γ = 0. Thus, the first term in the previous expression vanishes, and we

arrive at

U ′(γ) = α(γ)

∫ ∞

−∞

q(γ, c)
∂G(c | γ)

∂γ
dc− (1− α(γ))q̄(γ), (49)

which is the expression stated in Lemma 2. Q.E.D.
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Derivation of the objective in (15) Integration by parts delivers

∫ γ̄

0

U(γ) dF (γ) = U(γ)F (γ)|γ̄0 −

∫ γ̄

0

U ′(γ)
F (γ)

f(γ)
dF (γ) (50)

= −

∫ γ̄

0

U ′(γ)h(γ) dF (γ), (51)

where we have used that U(γ)F (γ)|γ̄0 = U(γ̄) = 0. Inserting this in the objective (10) yields

that

W =

∫ γ̄

0

α(γ)[

∫ ∞

−∞

[v − c]q(γ, c) dG(c | γ)− k] + (1− α(γ))[v − γ]q̄(γ) + U ′(γ)h(γ) dF (γ).(52)

If we now use the expression for U ′ stated in Lemma 2, we obtain the objective in (15). Q.E.D.

Proof of Lemma 4 For later reference, we prove the result for the more general case, where

i) ∂ψ/∂c · h < 1, ii) ∂ψ/∂γ ≤ 0, and iii) ψ(γ, c) < 0. From i) it follows that c− ψ(γ, c)h(γ) is

strictly increasing in c so that there is a unique solution c0(γ) to v − c + ψ(γ, c)h(γ) = 0, and

v − c + ψ(γ, c)h(γ) > 0 if and only if c < c0(γ). From iii), we have that c0(γ) ≤ v. Similarly,

since h(γ) is non–decreasing by assumption, there is a unique solution γ0 to v − γ − h(γ) = 0,

and v − γ − h(γ) > 0 if and only if γ < γ0. Clearly, γ0 ≤ v. For the independent case, where

ψ(γ, c) = −1, condition (17) follows. In light of the objective (15), this implies that q∗ and q̄∗

are optimal. Q.E.D.

Proof of Lemma 6 “⇒”: Since the contract is deterministic, the second period adverse

selection constraints (AS2) imply that q(γ, c) is given by a cut–off rule ĉ0(γ), where the project

is implemented if and only if costs c are smaller than the cut–off. Moreover, this implies that

the transfers when information is acquired are piece–wise constant: t(γ, c) = t0(γ) if c > ĉ0(γ)

and t(γ, c) = t1(γ) if c ≤ ĉ0(γ), where the cut–off type himself has to be indifferent between

implementing and quitting the project: t1(γ) = ĉ0(γ) + t0(γ).

We now show that the allocation is non–increasing w.r.t. (q̄, q). The argument is by

contradiction. Suppose first that ĉ0 is not non–increasing. Then there are γ, δ > 0 with

γ, γ + δ ∈ [γ1, γ2] and ĉ0(γ) < ĉ0(γ + δ). Given the transfers t1 = t0 + ĉ0 and t0, and the

deterministic allocation rule the utility of agent type γ is

U(γ) =

∫ ĉ0(γ)

−∞

(t1(γ)− c)dG(c | γ) +

∫ ∞

ĉ0(γ)

t0(γ)dG(c | γ)− k (53)

= t0(γ) +

∫ ĉ0(γ)

−∞

(ĉ0(γ)− c)dG(c | γ)− k. (54)
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The first period adverse selection constraints (AS1) imply:

U(γ) ≥ t0(γ + δ) +

∫ ĉ0(γ+δ)

−∞

(ĉ0(γ + δ)− c)dG(c | γ)− k, (55)

U(γ + δ) ≥ t0(γ) +

∫ ĉ0(γ)

−∞

(ĉ0(γ)− c)dG(c | γ + δ)− k. (56)

Adding the two inequalities and re–arranging terms yields:
∫ ∞

−∞

(ĉ0(γ)− c)1(−∞,ĉ0(γ))(c)− (ĉ0(γ + δ)− c)1(−∞,ĉ0(γ+δ))(c) dG(c | γ) (57)

≥

∫ ∞

−∞

(ĉ0(γ)− c)1(−∞,ĉ0(γ))(c)− (ĉ0(γ + δ)− c)1(−∞,ĉ0(γ+δ))(c) dG(c | γ + δ), (58)

where 1(a,b)(c) is an indicator function that is 1 if c ∈ (a, b) and 0 otherwise. Notice that

the integrand under the two integrals is the same. Since ĉ0(γ) < ĉ0(γ + δ) by assumption, the

integrand is increasing and strictly so in the range of (ĉ0(γ), ĉ0(γ+δ)). Hence, since G(c | γ+δ)

first order stochastically dominates G(c | γ), the second integral is strictly smaller than the

first one, a contradiction. Thus, we have shown that ĉ0 is non–increasing, as desired.

Next, we show that if there are γ, γ′ with γ < γ′ and α(γ) = 1, α(γ′) = 0, then we must

have that q̄(γ′) = 0. Indeed, suppose this is not true. Then for δ = γ′−γ > 0 we have α(γ) = 1

and α(γ + δ) = 0, but, since q̄ is deterministic, q̄(γ + δ) = 1. (AS1) implies that

t0(γ) +

∫ ĉ0(γ)

−∞

(ĉ0(γ)− c)dG(c | γ)− k ≥ t̄(γ + δ)− γ, (59)

t̄(γ + δ)− (γ + δ) ≥ t0(γ) +

∫ ĉ0(γ)

−∞

(ĉ0(γ)− c)dG(c | γ + δ). (60)

Adding the two inequalities and re–arranging terms yields:
∫ ∞

−∞

(ĉ0(γ)− c)1(−∞,ĉ0(γ))(c) + c dG(c | γ) ≥

∫ ∞

−∞

(ĉ0(γ)− c)1(−∞,ĉ0(γ))(c) + c dG(c | γ + δ).(61)

Here, we have used γ =
∫∞

−∞
cdG(c | γ). Now notice that the integrand under the two integrals

is the same, increasing, and strictly increasing for c > ĉ0(γ). Hence, since G(c | γ + δ) first

order stochastically dominates G(c | γ), the first integral is strictly smaller than the second

one, a contradiction.

In a similar way, it can be shown that if there are γ, γ′ with γ < γ′ and α(γ) = 0, α(γ′) = 1,

then we must have that q̄(γ) = 1.

The previous two statements jointly imply that α can equal 1 only over an interval [γ1, γ2],

and q̄ is 1 (resp. 0) to the left (resp. right) of the interval. But this means that the allocation

is non–increasing w.r.t. (q̄, q), and this completes the proof of the “⇒”–part.
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“⇐”: We proceed in two steps. We first define transfers and then verify all incentive

constraints.

STEP 1: (i) For γ > γ2, we set for some constant τ ∈ R:

t̄(γ) = τ. (62)

(ii) For γ ∈ [γ1, γ2], we define t(γ, c) piece–wise constant:

t(γ, c) =







t0(γ) if c ≥ ĉ0(γ)

t1(γ) if c < ĉ0(γ)
, (63)

where t0 and t1 are defined by:

t0(γ2) = k −

∫ ĉ0(γ2)

−∞

(ĉ0(γ2)− c)dG(c | γ2) dc+ τ, (64)

t0(γ) = t0(γ2) +

∫ γ2

γ

ĉ′0(z)G(ĉ0(z) | z) dz, (65)

t1(γ) = t0(γ) + ĉ0(γ). (66)

(Note that ĉ′0 is well–defined for almost all γ since ĉ0 is decreasing by assumption.)

(iii) For γ < γ1, we define t̄(γ) equal to the constant t̄:

t̄(γ) = t̄ = t0(γ1)− k + γ1 +

∫ ĉ0(γ1)

−∞

(ĉ0(γ1)− c) dG(c | γ1). (67)

STEP 2: We now verify that (α, t̄, q̄, t, q) satisfies (AS1) and (MON2). By definition of a de-

terministic allocation which is non–increasing w.r.t. (q̄, q), q(γ, c) satisfies (MON2). To demon-

strate (AS1), let Ũ(γ̂; γ) be defined as in (43). We have to show that

∆ ≡ U(γ)− Ũ(γ̂; γ) ≥ 0 ∀γ, γ̂. (68)

Indeed, observe first that, by construction, transfers are continuous on Γ and differentiable with

respect to γ for all γ except at γ1 and γ2. Together with the fact that (α, q̄, q) is deterministic,

this implies that U and Ũ are continuous on Γ and differentiable almost everywhere. Hence,

with U(γ̂) = Ũ(γ̂; γ̂), we can write

∆ = U(γ)− U(γ̂) + Ũ(γ̂; γ̂)− Ũ(γ̂; γ) =

∫ γ

γ̂

U ′(z) dz −

∫ γ

γ̂

∂Ũ(γ̂, z)

∂γ
dz. (69)

Next, we compute U ′ and ∂Ũ/∂γ. As for U ′, note that for γ ∈ (γ2, γ̄], we have U(γ) = τ ,

thus U ′(γ) = 0. For γ ∈ [0, γ1), we have U(γ) = t̄ − γ, thus U ′(γ) = −1. Finally, consider
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γ ∈ (γ1, γ2). Note that by the definition of transfers, U(γ) = t0(γ) +
∫ ĉ0(γ)

−∞
(ĉ0(γ)− c)dG(c | γ).

Hence, by Leibniz’ rule

U ′(γ) = t′0(γ) +

∫ ĉ0(γ)

−∞

ĉ′0(γ) dG(c | γ) +

∫ ĉ0(γ)

−∞

(ĉ0(γ)− c)
∂g(c | γ)

∂γ
dc. (70)

If we differentiate t0, we get t
′
0(γ) = −ĉ′0(γ)G(ĉ0(γ) | γ), which cancels with the second term in

(70). Now apply integration by parts on the third term in (70) to get

U ′(γ) = (ĉ0(γ)− c)
∂G(c | γ)

∂γ

∣

∣

∣

∣

ĉ0(γ)

−∞

+

∫ ĉ0(γ)

−∞

∂G(c | γ)

∂γ
dc (71)

=

∫ ĉ0(γ)

−∞

∂G(c | γ)

∂γ
dc, (72)

where the second equality follows because limc→−∞ ∂G/∂γ(c | γ) = 0.

In sum, U ′ exists for all γ ∈ Γ except at γ1 and γ2. Because (α, q̄, q) is deterministic, we

can write U ′ as a function over the whole interval [0, γ̄] as

U ′(γ) = α(γ)

∫ ∞

−∞

q(γ, c)
∂G(c | γ)

∂γ
dc− (1− α(γ))q̄(γ). (73)

Moreover, similar steps that we used to derive (49) yield that for all γ, γ̂:

∂Ũ(γ̂; γ)

∂γ
= α(γ̂)

∫ ∞

−∞

q(γ̂, c)
∂G(c | γ)

∂γ
dc− (1− α(γ̂))q̄(γ̂). (74)

Therefore, we obtain

∆ =

∫ γ

γ̂

∫ +∞

−∞

[α(z)q(z, c)− α(γ̂)q(γ̂, c)]
∂G(c | z)

∂γ
dc dz (75)

−

∫ γ

γ̂

[(1− α(z))q̄(z)− (1− α(γ̂))q̄(γ̂)] dz. (76)

Now observe that in the independent case ∂G(c|z)/∂γ
g(c|z)

= −1. In the non–independent case, we

will assume
∫ ∂G(c|z)/∂γ

g(c|z)
dG(c | z) = −1 (see (34)). Therefore, the second line is

∫ γ

γ̂

∫ +∞

−∞
[(1 −

α(z))q̄(z)− (1− α(γ̂))q̄(γ̂)]∂G(c|z)/∂γ
g(c|z)

dG(c | z) dz, and re–arranging terms yields

∆ =

∫ γ

γ̂

∫ +∞

−∞

{[(1− α(z))q̄(z) + α(z)q(z, c)] (77)

−[(1 − α(γ̂))q̄(γ̂) + α(γ̂)q(γ̂, c)]}
∂G(c | z)/∂γ

g(c | z)
dG(c | z) dz. (78)

We now show that ∆ is non–negative if γ̂ < γ. Indeed, by assumption, (α, q̄, q) is deterministic

and non–increasing w.r.t. (q̄, q). This implies that (1−α(z))q̄(z)+α(z)q(z, c) is non–increasing
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in z for all c. Therefore, with γ̂ < γ, the term in the curly brackets under the integral is

non–positive. Recall also that first order stochastic dominance ranking of {G(· | γ)}γ implies

∂G/∂γ ≤ 0. These two observations imply that the integrand is non–negative so that ∆ ≥ 0.

For γ̂ > γ, the argument is analogous. Q.E.D.

Derivation of the relationship in footnote 19 Consider first the case γ > γ0. Then in

the independent case, J∗(γ) =
∫ c0(γ)

−∞
[v − c − h(γ)]ĝ(c − γ)dc. Consider the change of variable

a(c) = c+ h(γ). Recall that c0(γ) = v − h(γ) so that a(c0(γ)) = v. Moreover, a′(c) = 1. Thus,

J∗(γ) =

∫ v

−∞

[v − a]ĝ(a− [γ + h(γ)])da =

∫ v

−∞

[v − a]dG(a | γ + h(γ))da = JFB(γ + h(γ)).(79)

The argument for the case γ ≤ γ0 is identical. Q.E.D.

Proof of Lemma 8 We begin with the proof of an auxiliary statement: The moral hazard

problem does not cause additional agency costs if and only if jointly:

∫ ∞

c0(γ∗

1 )

[ψ(γ∗1 , c0(γ
∗
1))− ψ(γ∗1 , c)]h(γ

∗
1) dG(c | γ

∗
1) ≥ 0, (80)

∫ c0(γ∗

2 )

−∞

[ψ(γ∗2 , c)− ψ(γ∗2 , c0(γ
∗
2))]h(γ

∗
2) dG(c | γ

∗
2) ≤ 0. (81)

To see this, recall that c0(γ) = v + ψ(γ, c0(γ))h(γ). Therefore, from (64) with τ = 0:

t∗0(γ
∗
2) = k −

∫ c0(γ∗

2 )

−∞

(v − c+ ψ(γ∗2 , c0(γ
∗
2))h(γ

∗
2)) dG(c | γ

∗
2). (82)

By definition of γ∗2 , we have that k =
∫ c0(γ∗

2 )

−∞
(v − c+ ψ(γ∗2 , c)h(γ)) dG(c | γ

∗
2). Hence,

t∗0(γ
∗
2) =

∫ c0(γ∗

2 )

−∞

[ψ(γ∗2 , c)− ψ(γ∗2 , c0(γ
∗
2))]h(γ

∗
2) dG(c | γ

∗
2). (83)

A similar computation based on (67) and the definition of γ∗1 reveals that

t̄∗ − (c0(γ
∗
1) + t∗0(γ

∗
1)) = t̄∗ − t∗1(γ

∗
1) =

∫ ∞

c0(γ∗

1 )

[ψ(γ∗1 , c0(γ
∗
1))− ψ(γ∗1 , c)]h(γ

∗
1) dG(c | γ

∗
1). (84)

¿From (83) and (84) it then follows that (35) implies (80) and (81). To see the reverse, recall

that (65) implies t∗
′

0 (γ) = −c′0(γ)G(c0(γ) | γ) ≥ 0 (since c′0 ≤ 0 as shown in footnote 20).

Moreover, from (66) it follows t∗
′

1 (γ) = t∗
′

0 (γ) + c′0(γ) = (1 − G(c0(γ) | γ))c
′
0(γ) ≤ 0. In other

words, t∗0 is non–decreasing and t∗1 non–increasing in γ. Hence, (35) is actually equivalent to

t̄∗ ≥ t∗0(γ
∗
1)+c0(γ

∗
1) and t

∗
0(γ

∗
2) ≤ 0, which is implied by (80) and (81). This completes the proof

of the auxiliary statement.
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By inspection of the integrands in (80) and (81), it can now easily be seen that the moral

hazard problem does not (does) cause agency costs if ∂ψ/∂c ≥ (<)0. Q.E.D.

Proof of Lemma 9 (i) Fix γ. Since ∂JA
I /∂p = −(1 −G(p | γ)) < 0, JA

I is strictly decreasing

in p. Moreover, for p → −∞, JA
I becomes unboundedly large, and for p → +∞, JA

I converges

to zero. Therefore, JA
I = k has a unique solution pI(γ). The argument for i = II is similar.

(ii) First order stochastic dominance ranking of {G(· | γ)}γ implies that JA
I is increasing in

γ. Together with the fact that JA
I is decreasing in p, this implies that pI is increasing in γ. The

argument for pII is analogous.

(ii) The claim follows since JA
I is decreasing and JA

II is increasing in p. Q.E.D.

Proof of Lemma 10 We first show that there are transfers (t̄, t) so that (α, t̄, q̄, t, q) satisfies

(AS2), (AS1) if and only if (α, q̄, q) is non–increasing w.r.t. (q̄, q). The “only if”-part follows

from Lemma 6 and the fact that (AS2) implies (MON2) (by Lemma 1). As for the “if”-part,

suppose that (α, q̄, q) is non–increasing w.r.t. (q̄, q). By Lemma 6, this implies (AS1) and

(MON2) for the transfers defined by (62)-(67). It is easy to verify that the resulting uI satisfies

(13). Together with (MON2) this implies (AS2) by Lemma 1.

Next, we turn to the moral hazard constraints. Given the transfers (62)-(67), the same

arguments that establish Lemma 7 demonstrate that the contract satisfies the moral hazard

constraints (MH) if and only if

t̄ ≥ ĉ0(γ) + t0(γ) and t0(γ) ≤ τ for all γ ∈ [γ1, γ2]. (85)

Because ĉ0 is non–increasing, it follows as in the proof of Lemma 8 that t0 is non–decreasing

and t1 non–increasing in γ. Therefore, the previous condition is actually equivalent to t̄ ≥

ĉ0(γ1) + t0(γ1) and t0(γ2) ≤ τ . Yet by definition of transfers and JA
I , J

A
II , this is equivalent to

(39). Q.E.D.

Proof of Lemma 11 Suppose, by contradiction, that c̃0 is not optimal, then there exists

some other schedule ĉ0 that satisfies the constraints in S and yields a strictly higher value for

its objective (40). In particular, since ĉ0 satisfies (39), we have ĉ0(γ) ∈ [pII(γ), pI(γ)] for γ ∈

{γ1, γ2}. Because ĉ0 is non–increasing, it also follows pI(γ1) ≥ ĉ0(γ1) ≥ ĉ0(γ) ≥ ĉ0(γ2) ≥ pII(γ2)

for all γ ∈ [γ1, γ2]. Hence, pI(γ1) ≥ pII(γ2) and ĉ0(γ) ∈ [pII(γ2), pI(γ1)] for all γ ∈ [γ1, γ2].

Define the sets

Γ+ ≡ {γ ∈ [γ1, γ2] | ĉ0(γ) > c̃0(γ)} and Γ− ≡ {γ ∈ [γ1, γ2] | ĉ0(γ) < c̃0(γ)}.
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If γ ∈ Γ+, then, due to ĉ0(γ) ∈ [pII(γ2), pI(γ1)], we must have c̃0(γ) < pI(γ1), which is only

the case if c0(γ) < pI(γ1). Hence, γ ∈ Γ+ implies ĉ0(γ) > c̃0(γ) ≥ c0(γ). By the definition of c0

this then implies v− c+ψ(γ, c)h(γ) < 0 for all c ∈ (c̃0(γ), ĉ0(γ)). Similar arguments show that

γ ∈ Γ− implies v − c+ ψ(γ, c)h(γ) > 0 for all c ∈ (ĉ0(γ), c̃0(γ)).

The difference in the objective (40) between the schedule ĉ0(γ) and c̃0(γ) is

∫

γ∈Γ+

∫ ĉ0(γ)

c̃0(γ)

(v − c+ ψ(γ, c)h(γ))dG(c|γ)dγ +

∫

γ∈Γ−

∫ c̃0(γ)

ĉ0(γ)

(c− v − ψ(γ, c)h(γ))dG(c|γ)dγ (86)

The terms under the integrands are all negative so that we obtain the contradiction that (40)

is weakly smaller for ĉ0 than for c̃0. Q.E.D.

Proof of Proposition 5 We show that any solution to problem S exhibits γ1 ≥ γ∗1 and

γ2 ≤ γ∗2 . By contradiction, suppose the optimal contract with cut–off ĉ0 has γ1 < γ∗1 . Consider

the alternative contract which differs from the optimal contract only in that q̄ = 1 on [γ1, γ
∗
1 ],

that is, its cut–off ĉ†0 takes on the same values as ĉ0 but its domain is [γ∗1 , γ2]. We derive a

contradiction by showing that the alternative contract is feasible and yields the principal more

than the optimal contract.

As for feasibility, recall that pi, i = I, II is increasing in γ. Because ĉ0 satisfies (39) and is

non–increasing, this implies that the whole graph of ĉ0 is in P . Hence, also the whole graph of

ĉ†0 is in P , in particular ĉ†0 satisfies (39), which establishes feasibility.

To complete the argument, notice the two contracts yield the same virtual surplus except

in the range [γ1, γ
∗
1). The payoff difference between the alternative and the optimal contract is

∫ γ∗

1

γ1

v − γ − h(γ)dF (γ)−

∫ γ∗

1

γ1

[

∫ ĉ0(γ)

−∞

v − c+ ψ(c, γ)h(γ) dG(c | γ)− k]dF (γ). (87)

By the definition of c0 and γ
∗
1 we have the following ordering of virtual surpluses for γ ∈ [γ1, γ

∗
1):

v − γ − h(γ) >

∫ c0(γ)

−∞

[v − c + ψ(c, γ)h(γ)dG(c | γ)− k (88)

≥

∫ ĉ0(γ)

−∞

[v − c + ψ(c, γ)h(γ)dG(c | γ)− k. (89)

Hence, the alternative contract yields the principal a higher profit than the optimal contract,

a contradiction. The argument for γ2 ≤ γ∗2 is symmetric. Q.E.D.
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