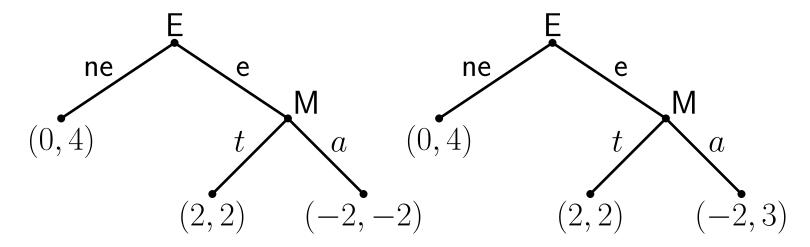
KAP 15. Spiele unter unvollständiger Information

- Bisher angenommen: jeder Spieler kennt alle Teile des Spiels
 - seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen
 Nutzen etc.
- Oft kennt man aber z.B. den Nutzen seines Gegenspielers nicht
 - Kostenstruktur des Konkurrenten
 - Diskontfaktor des Verhandlungspartners
 - Wertschätzung anderer Bieter in einer Auktion
- Dann herrscht unvollständige Information über die Nutzenfunktion der Gegenspieler

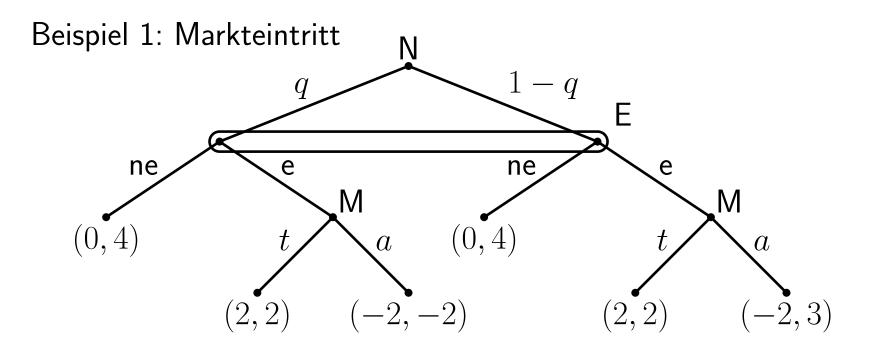
Beispiel 1: Markteintritt



- Links: M ist "dünnhäutig" (D)
- Rechts: M ist "hartnäckig" (H)
- Falls E weiss nicht, ob M "D" oder "H" ist, verfügt E nur über ...
 - ... unvollständige Information

Unvollständige versus unvollkommene Information

- Unter <u>unvollkommener</u> Information kann ein Spieler nicht alle Züge seines Gegenspielers beobachten
 - Unsicherheit darüber, was der Gegenspieler macht
 - in Beispiel 1 herrscht also vollkommene Information
- Unter unvollständiger Information weiss ein Spieler nicht, ...
 - ... von welchem "Typ" sein Gegenspieler ist
 - externe oder exogene Unsicherheit
- In Bsp 1: E wird Wkts-Beliefs über D und H formulieren
 - Sei $q = \text{die Wkt, mit der } M \text{ vom Typ D ist } \rightarrow \text{dann } \dots$



- Wir modellieren die Unsicherheit von E über M als einen Zufallszug
 - E kann den Zug von N nicht beobachten, aber M kann
 - Also: M weiss, ob er vom Typ D oder H ist
- Damit: Spiel unter unvollständiger Info über Nutzenfunktion ...
 - ... als Spiel unter <u>unvollkommener</u> Info (mit Zufallszug) dargestellt

Andere Arten unvollständiger Information

- Auf diese Weise können wir alle Spiele unter unvollständiger Info über Nutzenfunktion als Spiel unter unvollkommener Info (mit Zufallszug) darstellen
- Es gibt aber noch andere Arten von unvollständiger Information
 - Wie viele Gegenspieler? (eBay)
 - Welche Aktionen hat ein Gegenspieler?
 - Wie hängt der Spielausgang von den Aktionen ab?

Andere Arten unvollständiger Information und Harsanyi

- Harsanyi (1967) hat gezeigt:
- Man kann <u>alle</u> Arten unvollständiger Information ...
 - ... als unvollständige Info über die Nutzenfunktion darstellen
- Damit kann man <u>alle</u> Spiele unter unvollständiger Information ...
 - ... als Spiele unter unvollkommener Information darstellen (Harsanyi-Doktrin)
- (Dennoch gibt es einen Bedeutungsunterschied der beiden Spielklassen)

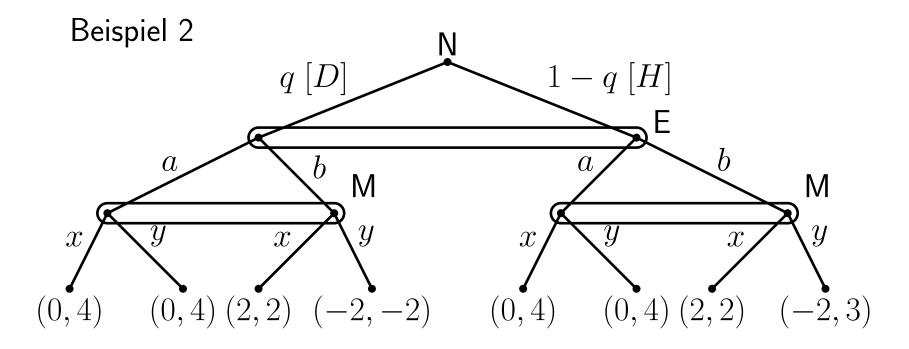
Der Ansatz von Harsanyi

- Spiele unter unvollständiger Info vollziehen sich wie folgt:
- ullet Am Anfang wählt Natur per Zufallszug einen Parameter t

 - ♦ Die Wkt, mit der ein Zufallszug erfolgt, ist common knowledge
- Die Spieler können den Parameter t nur teilweise beobachten
 - ♦ t bildet also die externe Unsicherheit der Spieler ab
- Dieser Ansatz überführt Spiele unter unvollständiger ...
 - ... in Spiele unter unvollkommener Information

Kap. 16: Statische Spiele unter unvollständiger Information

- Wir betrachten zunächst statische Spiele
- ullet Dabei wählt Natur zuerst ein Typenprofil $t=(t_1,\ldots,t_n)$ gemäss einer Wkt-Verteilung p(t)
- ullet Spieler i beobachtet <u>seinen</u> Typen t_i
- Dann ziehen alle Spieler simultan
 - d.h. jeder Spieler i wählt eine Aktion aus der Menge S_i
- Als Beispiel betrachten wir die <u>statische</u> Version des Markteintrittspiels
 - Für E gibt es nur einen (trivialen) Typen
 - Für M gibt es zwei Typen: $t_2 \in \{D, H\}$



- Aktionen: $S_E = \{a, b\}, S_M = \{x, y\}$
- Strategien: E hat eine Info-Menge so viele wie Typen
 - also zwei Strategien: a und b
- M hat zwei Info-Mengen so viele wie Typen
 - also vier Strategien: (x,x) (x,y) (y,x) (y,y)

Beschreibung statischer Spiele unter unvollst Info

Definiere allgemein: ein statisches Spiel unter unvollst. Info umfasst:

- n Spieler $i = 1, \ldots, n$
- ullet Für jeden Spieler eine <u>Aktionen</u>menge S_i
- ullet Für jeden Spieler einen Typenraum T_i
 - $\diamond t_i \in T_i$ ist ein Typ von Spieler i
 - \diamond Sei $T = T_i \times \ldots \times T_n$ der gesamte Typenraum
 - \diamond Sei $t=(t_1,\ldots,t_n)\in T$ ein Typenprofil
- ullet Für jeden Spieler eine Nutzenfunktion $u_i(s,t)\in\mathbb{R}$
- ullet Eine Wkts-Verteilung p auf T
 - $\diamond p(t)$ ist die Wkt, dass N das Typenprofil t wählt

Beschreibung statischer Spiele unter unvollst Info

• Damit definieren wir die Normalform:

$$G = \{S_1, T_1, u_1(\cdot), \dots, S_n, T_n, u_n(\cdot), p(\cdot)\}$$

- \bullet In Bsp 2 besteht G ...
 - ... aus zwei Bi-Matrizen
 - eine für Typ D und eine für Typ H
 - $-\dots$ sowie der Wkts-Verteilung: q= Wkt, dass Natur Typ D zieht

Zugfolge in statischen Spielen unter unvollst Info

- Das Spiel vollzieht sich wie folgt
 - Zuerst wählt Natur zufällig ein Typenprofil $t=(t_1,\ldots,t_n)$
 - Jeder Spieler i beobachtet <u>seinen</u> Typ t_i
 - Wir sagen: t_i ist private Information für Spieler i
 - Dann wählt jeder Spieler i eine Aktion aus seiner Aktionsmenge S_i
- Wir nennen ein statisches Spiel unter unvollst. Info

Statisches Bayesianisches Spiel

Strategien in statischen Bayesianischen Spielen

- In einem statischen Bayesianischen Spiel entspricht ...
 - ... jeder Typ t_i von Spieler i einer Info-Menge von Spieler i
- ullet Also: Eine Strat. für i spezifiziert für jeden Typ t_i eine Aktion aus S_i
- Formal: Eine (reine) Strategie für Spieler i ist eine Funktion

$$\sigma_i:T_i\to S_i$$

- Entsprechend: gemischte Strategie
 - spezifiziert für jeden Typ t_i eine Wkt-Verteilung auf S_i
- In Bsp 2: $\sigma_E = (\alpha, \beta)$ $\sigma_M = ((\xi_D, \theta_D), (\xi_H, \theta_H))$

Nutzenbestimmung in statischen Bayesianischen Spielen

- Was ist der Nutzen eines Spieler aus einer bestimmten Strategie?
- Wir unterscheiden zwei Perspektiven:
- 1. Vor dem Zug von Natur: <u>Ex-ante</u> Perspektive
 - Erwartungsnutzen in bezug auf die unbedingte (a priori) Wkt $p(\cdot)$
- 2. Nach dem Zug von Natur (aber vor dem Zug der Spieler): <u>Ex-post</u> Perspektive
 - Erwartungsnutzen in bezug auf die bedingte (a posteriori) Wkt $p(\cdot|t_i)$
- Werden sehen: beide Perspektiven eng verbunden

Ex-ante Perspektive in Bsp 2

- ullet Nimm an, E spielt $\sigma_E=(lpha,eta)$
- Was ist der ex-ante Nutzen für M, wenn M mit ...

...
$$\sigma_M = ((\xi_D, \theta_D), (\xi_H, \theta_H))$$
 auf σ_E antwortet?

$$U_M(\sigma_M, \sigma_E) = q \cdot [\alpha \xi_D \cdot 4 + \alpha \theta_D \cdot 4 + \beta \xi_D \cdot 2 + \beta \theta_D \cdot (-2)]$$
$$+ (1 - q) \cdot [\alpha \xi_H \cdot 4 + \alpha \theta_H \cdot 4 + \beta \xi_H \cdot 2 + \beta \theta_H \cdot 3]$$

Analog:

$$U_E(\sigma_M, \sigma_E) = q \cdot [\alpha \xi_D \cdot 0 + \alpha \theta_D \cdot 0 + \beta \xi_D \cdot 2 + \beta \theta_D \cdot (-2)]$$
$$+ (1 - q) \cdot [\alpha \xi_H \cdot 0 + \alpha \theta_H \cdot 0 + \beta \xi_H \cdot 2 + \beta \theta_H \cdot (-2)]$$

Ex-post Perspektive in Bsp 2

- ullet Nimm an, E spielt $\sigma_E=(lpha,eta)$
- Was ist der Nutzen für M, wenn er Typ D ist, und wenn M mit ...

...
$$\sigma_M = ((\xi_D, \theta_D), (\xi_H, \theta_H))$$
 auf σ_E antwortet?

$$U_M(\sigma_M, \sigma_E \mid D) = \alpha \xi_D \cdot 4 + \alpha \theta_D \cdot 4 + \beta \xi_D \cdot 2 + \beta \theta_D \cdot (-2)$$

• Analog, wenn er Typ H ist:

$$U_M(\sigma_M, \sigma_E \mid H) = \alpha \xi_H \cdot 4 + \alpha \theta_H \cdot 4 + \beta \xi_H \cdot 2 + \beta \theta_H \cdot 3$$

 Für E ist in Bsp 5 die ex-ante und ex-post Perspektive gleich (da nur ein Typ)

Ex-ante Perspektive allgemein

- Betrachte ein Strategienprofil $\sigma = (\sigma_1, \dots, \sigma_n) \dots$
 - ... und ein Aktionenprofil $s=(s_1,\ldots,s_n)$
- ullet Sei $\sigma_i(t_i)(s_i)$ die Wkt, mit der i die Aktion s_i spielt, wenn er t_i ist
- Dann ist

$$\pi^{\sigma}(s|t) = \sigma_1(t_1)(s_1) \cdot \ldots \cdot \sigma_n(t_n)(s_n)$$

die Wkt, mit der s gespielt wird, wenn N das Typenprofil $t=(t_1,\ldots,t_n)$ gezogen hat

- ullet In diesem Fall erzielt Spieler i den Bernoulli-Nutzen: $u_i(s,t)$
- Also ist sein ex-ante Erwartungsnutzen

$$U_i(\sigma_i, \sigma_{-i}) = \sum_{t \in T} u_i(s, t) \cdot \pi^{\sigma}(s|t) \cdot p(t)$$

Ex-post Perspektive allgemein

- ullet Betrachte nun Spieler i, <u>nachdem</u> er seinen Typ t_i beobachtet hat
- Dann aktualisiert er seinen Wkts-Belief über die Typen der Gegenspieler via Bayes' rule
- Für ein bestimmtes Typenprofil t_{-i} der Gegenspieler ist

$$p(t_{-i} \mid t_i) = \frac{p(\ (t_i, t_{-i})\)}{p_i(t_i)}$$

die bedingte Wkt, dass N das Gegenspielertypenprofil t_{-i} gezogen hat,

- \dots bedingt darauf, dass N den Typen t_i von SPi gezogen hat
- Dabei bezeichnet $p_i(\cdot)$ die Randverteilung von t_i
- ullet Nun berechnet SPi seinen E-nutzen mit der bedingten Wkt $p(\cdot|t_i)$

Ex-post Perspektive allgemein

• D.h. der ex-post Erwartungsnutzen von Spieler *i* ist:

$$U_{i}(\sigma_{i}, \sigma_{-i}|t_{i}) = \sum_{t_{-i} \in T_{-i}} u_{i}(s, t) \cdot \pi^{\sigma}(s|t) \cdot p(t_{-i}|t_{i})$$

- ullet Beachte: Summation geht nun über t_{-i}
 - denn Spieler i kennt ja seinen Typ t_i
- Wir nehmen immer an, dass die Typen stochastisch unabhängig sind

- dann:
$$p(t_{-i} \mid t_i) = p_1(t_1) \cdot \ldots \cdot p_{i-1}(t_{i-1}) \cdot p_{i+1}(t_{i+1}) \cdot \ldots \cdot p_n(t_n)$$

Verbindung zwischen ex-ante und ex-post Perspektive

Behauptung: Der ex-ante Erwartungsnutzen ist der Erwartungswert des ex-post Erwartungsnutzens, d.h.

$$U_i(\sigma_i, \sigma_{-i}) = \sum_{t_i} U_i(\sigma_i, \sigma_{-i}|t_i) \cdot p_i(t_i)$$

"Beweis": Einfach Formel für bedingte Wahrscheinlichkeit einsetzen Intuitive Interpretation:

- Mit ex-ante Wkt $p_i(t_i)$ ist Spieler i vom Typ t_i
- In diesem Fall erzielt er den ex-post Nutzen $U_i(\sigma_i, \sigma_{-i}|t_i)$
- Also: Ex-ante Nutzen ist Mittel über alle möglichen ex-post Nutzen

Lösungskonzepte für statische Bayesianische Spiele

- Was ist nun ein Gleichgewicht in einem stat. Bayesianischen Spiel?
- Idee:
 - Spieler beobachten zuerst ihren Typ ...
 - ... und wählen dann eine sequentiell rationale Strategie
 - Wir verlangen sequentielle Rationalität für alle möglichen Typen
 - wie bei PBG
- Ein solches GG nennt man Bayesianisches Nash-Gleichtgewicht

Bayesianisches Nash-Gleichgewicht

Definition: Ein Bayesianisches Nash-Gleichgewicht ist ein Strategienprofil $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$, so dass für jeden Spieler i und jeden Typ t_i gilt:

$$U_i(\sigma_i^*, \sigma_{-i}^* \mid t_i) \ge U_i(\sigma_i, \sigma_{-i}^* \mid t_i)$$
 für alle σ_i

• Im GG spielt jeder Spieler eine (<u>ex-post</u>) beste Antwort gegen die Strategie des Gegenspielers

Bsp 2 Die folgenden Strategien sind ein Bayes N-GG

- E: spiele a wenn $q \le 1/2$
- M: spiele x, wenn Typ D; spiele y, wenn Typ H

Verifikation

- Betrachte E: Gegeben die Strategie von M:
 - a liefert $q \cdot 0 + (1-q) \cdot 0$; b liefert $q \cdot 2 + (1-q) \cdot (-2)$
 - Damit: a optimal, wenn $q \leq 1/2$
- ullet Betrachte M: Nimm an, E spielt a mit beliebiger Wkt α
 - Falls M Typ D: x liefert $\alpha \cdot 4 + (1-\alpha) \cdot 2$; y liefert $\alpha \cdot 4 + (1-\alpha) \cdot (-2)$
 - Falls M Typ H: x liefert $\alpha \cdot 4 + (1-\alpha) \cdot 2$; y liefert $\alpha \cdot 4 + (1-\alpha) \cdot 3$
 - Damit: x optimal, wenn Typ D; y optimal, wenn Typ H

Beispiel 3: Gefangenendilemma mit Reziprozität

- Wir betrachten ein GD, in dem die Präferenzen der Spieler ...
 - ... nicht auf Geld beschränkt sind
- Vielmehr hängt der Nutzen eines Spielers von seinem eigenen Typ ...
 - ... und vom Typ des Gegenspielers ab
 - ♦ Man sagt: die Präferenzen sind interdependent
- Es gibt zwei Typen von Spielern
 - $\diamond t_i = R$: "reziprok" (Wkt q), und $t_i = E$: "egoistisch"
- Der Nutzen für den reziproken Typ steigt, wenn der ...
 - ... andere Spieler auch reziprok ist; aber fällt, wenn dieser egoistisch ist

Beispiel 3: Gefangenendilemma mit Reziprozität

ullet Die monetären Auszahlungen $m_i(s_1,s_2)$ sind durch das GD gegeben

(m_1, m_2)	С	D
С	2,2	0,3
D	3,0	1, 1

• Gesamtnutzen von Spieler 1:

$$\diamond u_1(s_1, s_2 \mid E, t_2) = m_1(s_1, s_2) \quad \forall t_2$$

$$\diamond u_1(s_1, s_2 \mid R, R) = m_1(s_1, s_2) + \alpha \cdot m_2(s_1, s_2)$$

$$\diamond \quad u_1(s_1, s_2 \mid R, E) = m_1(s_1, s_2) - \beta \cdot m_2(s_1, s_2)$$

- $\diamond \alpha, \beta$ sind positive Parameter
- Symmetrisch für Spieler 2

Beispiel 3: Gefangenendilemma mit Reziprozität

Behauptung: Falls $q \ge (1 + 2\beta)/(2\alpha + 2\beta)$, dann sind die folgenden Strategien ein Bayesianisches N-GG:

 $\diamond t_i = E$: spiele D

 $\diamond t_i = R$: spiele C

Verifikation

- Betrachte Typ $t_i = E$
 - -D ist dominante Strategie
- ullet also D in der Tat optimal für Typ $t_i=R$

<u>Verifikation</u>: Betrachte nun Typ $t_i = R$

• Gemäss der Strategie im Kandidaten-GG spielt Gegenspieler ...

...
$$C$$
, wenn $t_{-i} = R$ (Wkt q)

... D, wenn
$$t_{-i} = E$$
 (Wkt $1 - q$)

Also:

$$\diamond C$$
 liefert: $q(2+\alpha\cdot 2)+(1-q)(0-\beta\cdot 3)$

$$\diamond D$$
 liefert: $q(3 + \alpha \cdot 0) + (1 - q)(1 - \beta \cdot 1)$

• Also: C optimal, wenn ...
$$q \ge (1+2\beta)/(2\alpha+2\beta)$$

• Falls $q \leq (1+2\beta)/(2\alpha+2\beta)$, dann anderes GG:

 \diamond spiele stets D unabhängig von Typ

Stetige Typenverteilungen

- Oft ist es analytisch einfacher, wenn der Typenraum stetig ist
 - z.B. $T_i = [0, 1]$
- Konzeptuell ändert sich dadurch nichts
 - $\diamond p$ wird eine Verteilungsfunktion bzw. Dichte
 - und man muss Summen durch Integrale ersetzen
- Durch den Übergang von diskreten zu stetigen Typen wird man häufig gemischte Strategien los und kann GG via BeO ausrechnen

Anwendung: Erstpreisauktion mit zwei Bietern

- Spieler: Zwei Bieter, B1, B2, (ein Auktionator)
 - Bieter bieten für ein Objekt
- Typen:
 - Der Typ t_i von Bi ist seine Bewertung des Objekts (Z-bertschft)
 - Sei t_i gleichverteilt auf [0, 1]
 - Die Typen t_1 und t_2 sind stochastisch unabhängig
- Aktionen: jeder Bieter gibt ein Gebot $s_i \in [0,1]$ ab
- Regeln: Objekt geht an das höchste Gebot (Münzwurf falls $s_1 = s_2$)
 - Gewinner zahlt sein Gebot (Erstpreisauktion)

Anwendung: Erstpreisauktion mit zwei Bietern

ullet Bernoulli-Nutzen von B1 aus Aktion (s_1,s_2) und Typ (t_1,t_2)

$$u_1(s_1, s_2, t_1, t_2) = \begin{cases} t_1 - s_1 & \text{falls } s_1 > s_2 \\ .5(t_1 - s_1) & \text{falls } s_1 = s_2 \\ 0 & \text{falls } s_1 < s_2 \end{cases}$$

- Beachte: hängt nur vom eigenen Typen ab ("private value")
- Strategie
 - für jeden Typ t_i ein Gebot $s_i \in [0, 1]$
 - Also reine Strategie: $\sigma_i : [0,1] \rightarrow [0,1]$

Satz: Ein Bayesianisches Nash-GG der Erstpreisauktion mit zwei Bietern ist gegeben durch die Bietstrategien $\sigma_i^*(t_i) = (1/2) \cdot t_i$

Beweis:

- \bullet Wir müssen zeigen: Gegeben σ_2^* , ist es eine BA für B1, ...
 - -... das Gebot $s_1 = (1/2) \cdot t_1$ abzugeben, wenn er Typ t_1 ist
- ullet Berechne ex-post Erw-Nutzen aus einem beliebigen Gebot s_1 gegen σ_2^*
- ullet Gibt B1 das Gebot s_1 ab, gibt es drei mögliche Auktionsausgänge
 - 1. $(1/2) \cdot t_2 < s_1 \rightarrow B1$ gewinnt und erzielt $t_1 s_1$
 - 2. $(1/2) \cdot t_2 = s_1 \rightarrow \text{Münzwurf und B1 erzielt} .5(t_1 s_1)$
 - 3. $(1/2) \cdot t_2 > s_1 \rightarrow B1$ verliert und erzielt 0

Beweis:

• Die drei Fälle ereignen sich mit den W-keiten:

- Fall 1 hat Wkt $2s_1$ (da t_2 gleichverteilt)

- Fall 2 hat Wkt 0 (da t_2 stetig verteilt)

- Fall 3 hat Wkt $1-2s_1$ (da t_2 gleichverteilt)

• Damit ergibt sich der ex-post Erw-Nutzen von B1:

$$U_1(s_1, \sigma_2^*|t_1) = (t_1 - s_1) \cdot 2s_1 + (.5(t_1 - s_1)) \cdot 0 + 0 \cdot (1 - 2s_1)$$

• Ausklammern: $U_1(s_1, \sigma_2^* | t_1) = 2s_1t_1 - 2s_1^2$

• Optimales Angebot s_1^* ergibt sich nun via BeO: $\partial U_1/\partial s_1=0$

• Also $s_1^* = (1/2) \cdot t_1$ (damit alles gezeigt)

Bemerkung:

- Gebote liegen unterhalb der wahren Bewertung des Gutes
 - → Bieter erzielen einen positiven Nutzen (ex-ante und ex-post)
- Man sagt: Bieter erzielen <u>Informationsrente</u>
- Beachte: Wenn der Auktionator t kennen würde ...
 - ... könnte er die gesamte Zahlungsbereitschaft abschöpfen (wie bei Bertrand oder bei Ultimatum-Verhandlungen)
- Man kann zeigen: Wenn die Zahl der Bieter steigt ...
 - ... dann konvergieren die Gebote gegen die wahre Bewertung
 - Also: Wettbewerb reduziert Informationsrenten