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Abstract

We introduce intention-based social preferences into a Bayesian mechanism design frame-
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welfare implications of kindness sensations. Finally, we turn to an environment without com-
mon knowledge of social preferences and introduce the notion of a psychologically robust
mechanism. Such a mechanism can be implemented without information about the type or
the intensity of social preferences. We show that the mechanisms which have been the focus
of the conventional mechanism design literature can be modified to achieve psychological
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1 Introduction

We study the problem of mechanism design under the assumption that players have intention-
based social preferences. They are willing to give up own material payoffs in order to either
reward behavior by others that they attribute to good intentions, or to punish behavior that
they attribute to bad intentions. The behavioral relevance of such preferences is by now well
established. In this paper we explore their implications for the theory of mechanism design.

The procedural nature of intention-based social preferences has a profound impact on the
analysis. For an assessment of intentions, it does not only matter what players do, but also
what they could have done instead. Hence, a first contribution of the paper is to develop a
theory of mechanism design in which the interpretation of behavior is crucial. This implies, in
particular, that the revelation principle does not hold. In our model, a truth-telling strategy
may appear selfish in a direct mechanism but it may appear kind in the context of a mechanism
in which the set of actions is larger than the set of conceivable payoff functions. We show
that one can enlarge the set of implementable social choice functions by means of actions that
ultimately remain unchosen. A second contribution of the paper is to allow for a discussion of
procedural questions. We show that two mechanisms which induce the same economic outcome
can be compared according to the attitudes that they induce among the players. Specifically,
we formalize the problem to implement a given outcome with a maximal degree of kindness and
clarify the conditions under which such an ideal mechanism exists. The third contribution of the
paper is to introduce the idea of psychologically robust mechanisms, which implement economic
outcomes when interdependent preferences might exist but are not common knowledge. We
provide robust possibility results for many of the outcomes that the conventional mechanism
design literature has focussed on.

For clarity of exposition, our analysis is based on one particular model of intention-based
social preferences. Specifically, we adapt the model by Rabin (1993) to games of incomplete
information and work with the solution concept of a Bayes-Nash fairness equilibrium in the
context of an otherwise conventional independent private values model of mechanism design. This
approach makes it possible to get very clear-cut theoretical results. We discuss the sensitivity
of these results to modelling details throughout the paper.

Our formal analysis has two main parts, which differ with respect to the information available
about social preferences. In the first part, we assume that individuals have private information
only about their material payoffs. The process by which kindness sensations are generated and
traded off against material payoffs is assumed to be common knowledge. We refer to this case
as mechanism design with known kindness generating process. In the second part, we relax
this assumption. This part of the analysis comes under the heading of psychologically robust
mechanism design.

Part I: Mechanism Design with Known Kindness Generating Process. We first show
that the revelation principle is not available in our framework. There exist social choice functions
that cannot be implemented by direct mechanisms with a truth-telling Bayes-Nash fairness
equilibrium, but that can be implemented by means of a non-direct mechanism. With a direct
mechanism, every available message is used in a truth-telling equilibrium. Put differently, this
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class of mechanism-equilibrium-pairs excludes unused actions from the analysis, which restricts
the set of implementable social choice functions. We can show, by contrast, that an augmented
revelation principle (Mookherjee and Reichelstein 1990) holds. Accordingly, it is without loss
of generality to focus on mechanisms where each player’s action set includes the set of possible
types, and which possess truth-telling equilibria. Hence, while the restriction that every action
must be used in equilibrium would involve a loss of generality, the restriction that every used
action is a truthfully communicated type is without loss of generality.1

We then turn to the welfare implications of intention-based social preferences. In partic-
ular, we explore various approaches to the treatment of kindness sensations for assessments
of economic welfare. First, kindness sensations and psychological payoffs might be considered
as relevant from a behavioral but not from a welfare perspective. We are then left with the
question what one can say about the implementability of social choice functions that are in a
conventional sense efficient. We show in Theorem 1 that every efficient social choice function
can be implemented by an appropriately chosen augmented mechanism. Intention-based social
preferences render conventional incentive-compatibility constraints innocuous and enlarge the
set of implementable social choice functions in a drastic way. When intentions matter, the inter-
pretation of equilibrium play can be influenced by adding actions to the mechanism that would
trigger redistribution among players. The challenge in the design of such actions is that they
must be tempting to the players but nevertheless remain unused. Our proof of Theorem 1 makes
use of the possibility to engineer kindness sensations in such a way that every individual’s util-
ity function is turned into a utilitarian welfare function. The construction is akin to a Groves
mechanism, in that it aligns private and social interests. The key difference is that it is not
based on a suitable choice of payments that individuals have to make in equilibrium, but on a
suitable choice of payments that individuals refuse to make in equilibrium. The mechanism that
we construct in order to prove Theorem 1 also satisfies voluntary participation constraints, for
any status quo that is not efficient. Hence it not only eliminates any tension between incentive
compatibility and efficiency, but also any tension between efficiency, incentive compatibility and
voluntary interim participation.

We then turn to the possibility of treating the individuals’ overall utility, which aggregates
material payoffs and kindness sensations, as the relevant criterion of welfare. We show that
there are mechanisms that implement a trivial economic outcome – i.e. an outcome that is unre-
sponsive to the individuals’ private information, so that there is no real reason to let individuals
communicate in the mechanism – but which generate positive kindness and hence also positive
utility, possibly even at unbounded levels. The observation shows that, if this welfare criterion
is accepted, there is scope for institutions which serve no allocative purpose but which make
people feel good. From the perspective of mechanism design theory, however, such institutions
are probably not the most interesting ones. As an alternative to welfare based on overall utilities,
we therefore consider a lexicographic approach. We first fix a social choice function, i.e. the

1The empirical relevance of unchosen actions for kindness judgements has been illustrated by Andreoni et al.
(2002) and Falk and Fischbacher (2006), among others. For instance, Falk and Fischbacher (2006) report on how
individuals assess the kindness of proposals for the division of a cake of fixed size. They show that this assessment
depends on the choice set that is available to the proposer. An offer of 20 per cent of the cake, for instance, is
considered very unfair if better offers such as 50 per cent or 80 per cent were also possible. It is considered less
unfair if it was the only admissible offer, and even less unfair if only worse offers were possible otherwise.
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material outcome that we want to achieve. We then compare all the different mechanisms that
may be used to implement this social choice function, and ask whether they can be ranked in the
kindness dimension. In particular, we ask whether there exists a mechanism that implements
the given social choice function with maximal kindness. For environments with two players,
Theorem 2 clarifies the conditions under which such a best mechanism exists. A necessary and
sufficient condition is that the social choice function gives rise to bilateral externalities, implying
that the expected payoff of player 1 varies with the type of player 2 and vice versa.

Part II: Psychologically Robust Mechanism Design. The previous results relied on the
possibility to fine-tune out-of-equilibrium transfers so that players are either turned into max-
imizers of the sum of material payoffs, or, for a given material outcome, into maximizers of
kindness. In the second part of the paper, we investigate the design problem under the assump-
tion that such fine-tuning is impossible, due to lack of common knowledge about the kindness
generating process.

Common knowledge can be violated in several ways. The players could have private infor-
mation about their psychological payoffs, in addition to their private information about material
payoffs. Even if the kindness generating process remains common knowledge among players, the
designer might be uninformed about the extent of the individuals’ concern for reciprocity, or
the exact determination of equitable reference payoffs. Instead of trying to solve complicated
multi-dimensional design problems for each of these cases, we propose a notion of psychological
robustness that speaks to all of them simultaneously. Our formal analysis is based on a simple
robustness property. Suppose that, for some social choice function, the expected payoff of any
one player i does not unilaterally depend on the type of any other player j, so that each player
is insured against the randomness of each other player’s type. If this insurance property holds,
then players cannot affect each other’s payoff by unilateral deviations from truth-telling in the
direct mechanism. If truth-telling is an equilibrium with selfish preferences, then it continues
to be an equilibrium for a large class of interdependent preference models, because the insur-
ance property renders those preferences behaviorally irrelevant. The social choice function can
hence be implemented without any need to worry about the details of multidimensional design.
Importantly, the insurance property implies robustness of the direct mechanism even with re-
spect to interdependent preferences that are not modelled in this paper, such as outcome-based
inequality aversion or spitefulness.

Theorem 3 states that to any social choice function that is incentive compatible in the conven-
tional sense, there exists an “equivalent” one that also has the insurance property. Equivalence
holds with respect to the decision rule, the interim expected payoffs of players, and the expected
deficit or surplus. The theorem covers essentially any application of the independent private
values model that has been studied in the literature. In particular, it also covers the study of
optimal mechanisms with participation constraints, because interim payoffs are preserved by
our construction of insurance. We show how these mechanisms can be modified to make them
psychologically robust.

A limitation of Theorem 3 is that ex post budget deficits and surpluses may become un-
avoidable. One cannot insure individuals against the risk in the other individuals’ types and
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simultaneously balance the budget in each and every circumstance. Theorem 4 therefore states
sufficient conditions under which psychological robustness is compatible with ex post budget
balance. At the core of this result lies the observation that the expected externality mechanism
due to d’Aspremont and Gerard-Varet (1979) and Arrow (1979), which respects ex post budget
balance, satisfies the insurance property under an assumption of symmetry. This follows by
construction of the mechanism, which requires each agent to compensate all others for the ex-
pected implications of a change in his type. We conclude part II of the paper by discussing the
robustness of various social choice functions that are of interest in general equilibrium theory,
public finance and contract theory.

A comprehensive view on Parts I and II. Our results on psychological robustness are
reassuring from the perspective of conventional mechanism design theory. Even if individuals
are inclined to respond to the behavior of others in a reciprocal way, this will in many cases not
upset implementability of the outcomes that have been the focus of this literature. For many
applications of interest, there is a way to design mechanisms so that the transmission channel
for reciprocal behavior is simply shut down. If it is shut down, then individuals are, by design,
acting as selfish payoff maximizers, and incentive compatibility in the traditional sense is all
that is necessary to ensure the implementability of a social choice function. By contrast, our
analysis under the assumption of a known kindness generating process shows the potential of
exploiting the reciprocity channel, rather than shutting it down. Every efficient social choice
function becomes implementable, and there is no longer a tension between efficiency and volun-
tary participation. Moreover, the question whether there exists a best mechanism for a given
social choice function becomes meaningful. With an analysis that is based exclusively on conse-
quentialist preferences, it would be impossible to even ask this question.

The paper is organized as follows. The next section gives a more detailed discussion of the related
literature. Section 3 states the mechanism design problem and introduces the solution concept of
a Bayes-Nash fairness equilibrium. Section 4 deals with the analysis of mechanism design when
the kindness generating process is known. It also contains several examples that illustrate the
main results. Section 5 contains our analysis of psychologically robust mechanism design. The
last section contains concluding remarks, in particular on avenues for future research. Several
proofs and extensions are relegated to the Appendix.

2 Related Literature

Our work is related to several strands in the literature, (i) a literature which tries to model and
to empirically identify interdependent preferences, (ii) a literature that studies the implications
of interdependent preferences for various applications, and (iii) the theory of mechanism design.

Interdependent Preferences. Models of interdependent or social preferences are usually
distinguished according to whether they are outcome-based or intention-based.2 Prominent

2See Sobel (2005) for an excellent survey, with a focus on reciprocity.
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examples for the first class are Fehr and Schmidt (1999) and Bolton and Ockenfels (2000), while
Rabin (1993) and Dufwenberg and Kirchsteiger (2004) belong to the second class of models. An
extensive experimental literature – examples include Andreoni et al. (2002), Falk et al. (2003)
and Falk et al. (2008) – has concluded that behavior is most likely influenced by both types of
considerations.3 The theoretical models proposed by Levine (1998), Charness and Rabin (2002),
Falk and Fischbacher (2006) and Cox et al. (2007) combine outcomes and intentions as joint
motivations for social behavior. In this paper, we consider intention-based social preferences
only. We do this for a methodological reason. The distinguishing feature of intention-based
preferences is their procedural nature, i.e., sensations of kindness are endogenous to the game
form. This is a challenge for mechanism design theory, which is concerned with finding optimal
game forms. With outcome-based social preferences, this methodological issue would not arise.4

To keep the exposition straight, we refrain from also modelling outcome-based social preferences.
That said, enriching our framework so that also outcome-based social preferences come into play
would in principle be possible.

The formal framework for modelling intentions is provided by psychological game theory
(Geanakoplos et al. 1989) which allows payoffs to depend on higher-order beliefs.5 To the best
of our knowledge, the literature does not yet contain a general treatment of intention-based social
preferences for games of incomplete information. Rabin (1993) focusses on normal form games
and Dufwenberg and Kirchsteiger (2004) consider extensive form games, but both contributions
assume complete information.6 Our mechanism design approach requires a general theory of
intentions for Bayesian games, and we will outline such a theory in Section 3.2.

Applications. Interdependent preferences have been modeled theoretically and investigated
empirically within a wide range of applications to contracts, firms, and other relevant fields.

There are numerous applications of outcome-based social preferences. Some focus on unob-
served behavior or moral hazard. Examples include Englmaier andWambach (2010) and Bartling
(2011). Others focus on unobserved characteristics or screening problems, such as Cabrales et al.
(2007), Cabrales and Calvó-Armengol (2008) or Kosfeld and von Siemens (2011). The literature
on auctions has investigated, among other behavioral phenomena, spiteful preferences (Morgan
et al. 2003) and their role for the empirical phenomenon of overbidding.

Intention-based social preferences have been applied in the context of moral hazard problems
(Englmaier and Leider 2012, Netzer and Schmutzler 2010), as an explanation of wage rigidity
(Dufwenberg and Kirchsteiger 2000), in models of political competition (Hahn 2009), and the

3See Stanca (2010) for an instance where only outcomes matter, and McCabe et al. (2003) for evidence in
favor of purely intention-based models. Offerman (2002) distinguishes between positive and negative intentions
and finds stronger evidence for the latter.

4Frey et al. (2004) provide a general discussion of procedural preferences and their potentially important role
for the design of institutions. Gaspart (2003) provides a formalization of fair game forms.

5The framework of Geanakoplos et al. (1989) has been further developed by Battigalli and Dufwenberg (2009).
Psychological game theory has been used to study AIDS policy in the presence of fear (Caplin and Eliaz 2003),
preferences over the timing of information (Caplin and Leahy 2004), feelings of guilt (Battigalli and Dufwenberg
2007), adherence to social norms (Li 2008), or framing effects (Dufwenberg et al. 2011a).

6Segal and Sobel (2007) generalize the model of Rabin (1993) and provide an axiomatic foundation. They also
illustrate that deleting unused actions can affect the equilibrium structure. A series of papers, including Sebald
(2010) and Aldashev et al. (2010), introduce randomization devices into psychological games, but still under the
assumption of perfect observability. Von Siemens (2009, online appendix) contains a model of intentions for a
two-stage bargaining game with incomplete information about the second-mover’s social type.

5



study of the hold-up problem (von Siemens 2009, Dufwenberg et al. 2011c). Nishimura et al.
(2011) investigate the impact of intention-driven reciprocal responses to spiteful behavior in
different auction formats under complete information.

Experimental studies have emphasized that the design of incentive contracts is often facili-
tated in an environment with reciprocal individuals (e.g. Fehr et al. 1997, Fehr and Falk 2002).
Recent studies have revealed that, in laboratory studies of the principal-agent-problem, princi-
pals do in fact adapt their contract offers to the agents’ degree of reciprocity (Fehr et al. 2007,
Cabrales et al. 2010). However, reciprocity is not necessarily beneficial from the perspective of
contract design. In Hart and Moore (2008), for instance, negative reciprocal reactions by at least
one party can be inevitable and generate outcomes that are ex post inefficient. Experimental
evidence by Fehr et al. (2011a) supports this prediction. These mixed findings motivate our
theoretical treatment of the problem of mechanism design for reciprocal agents.

Mechanism Design Theory. Our underlying mechanism design framework, the independent
private values model with quasilinear utilities, corresponds to standard textbook treatments (e.g.
Mas-Colell et al. 1995). We limit ourselves to the basic question of mechanism design: For which
social choice functions can we find a mechanism with an equilibrium that generates the social
choice function?7

Several authors have investigated mechanism design problems under behaviorally motivated
assumptions. One of the first contributions is Glazer and Rubinstein (1998), who study the prob-
lem of aggregating information across experts. Experts may not only care about consequences,
but might want their own recommendation to be accepted. As in our model, this introduces
procedural aspects into the design problem. Glazer and Rubinstein (1998) show that the optimal
decision can be implemented in unique equilibrium if and only if such egoistic motives exist. In
Alger and Renault (2006), procedural issues arise because the mechanism and its equilibrium
influence the agents’ propensity to lie. Intrinsically honest agents may become willing to mis-
represent their private information when other agents also benefit from lying. In some situations
this makes non-direct mechanisms optimal, while conventional mechanisms remain optimal in
other cases.8 In general, the possibility that institutions affect preferences has received some
attention (Bowles 2008).9 We add to this literature because in our model kindness sensations
and hence the willingness to trade-off own and others’ payoffs depend on the mechanism.

In an environment with symmetric information, Eliaz (2002) studies implementation under
the assumption that some players behave in an unpredictable “faulty” way, and Renou and
Schlag (2011) apply minimax regret equilibrium as solution concept. Yet another strand of

7The literature on full or unique implementation asks for which social choice functions there exists a mechanism
in which every equilibrium generates the social choice function (see e.g. Mookherjee and Reichelstein 1990,
Jackson 2001). This question is beyond the scope of this paper.

8Matsushima (2008a,b) also assumes that agents dislike lying, in frameworks with symmetric and private
information, respectively. These papers are also related to our robustness approach in Section 5, because they
share the goal of designing mechanisms which do not rely on details of the environment (Matsushima 2005).

9Bowles and Hwang (2008) investigate a public goods game where attitudes towards voluntary contribution
may interact with the level of a subsidy. A common pool game where the shares of different social types are affected
by extrinsic incentives is analyzed theoretically and experimentally by Rodriguez-Sickert et al. (2008). The
contributions by Bar-Gill and Fershtman (2004, 2005) and Heifetz et al. (2007) are based on the assumption that
preferences – including outcome-based social preferences in the first two papers – are affected by the institutional
framework due to an underlying evolutionary adaptation process.
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literature is concerned with the design of mechanisms that exhibit good learning and stability
properties. Recent examples include Mathevet (2010) and Cabrales and Serrano (2011). Ro-
bustness requirements in mechanism design are of course not limited to behavioral assumptions.
Bergemann and Morris (2005), for instance, require robustness with respect to the individuals’
probabilistic beliefs about the types and the beliefs of other players.

A few papers have looked at mechanism design problems with outcomes-based social pref-
erences. Desiraju and Sappington (2007) allow for inequality aversion in a model where a
profit-maximizing principal faces two agents with private information about their production
costs. Inequality aversion has no impact on optimal employment contracts when the agents
are symmetric, but modifies their structure otherwise. A related model, with additional pri-
vate information about social preferences, is presented by von Siemens (2011), who studies the
optimality of excluding agents from the firm and hence the social reference group. Jehiel and
Moldovanu (2006) provide a survey of papers that deal with a general structure of external-
ities, some of which might be viewed as resulting from interdependent or social preferences.
Finally, Kucuksenel (2011) introduces altruism in an environment similar to ours. Standard
tools such as the revelation principle remain available in this context. Increasing degrees of
altruism help to achieve efficiency, because individual utilities already internalize social goals.
With intention-based social preferences, internalization through preferences is not given by im-
plication. Instead, it is the task of the mechanism to endogenously generate the right levels of
kindness for the purpose of internalization.

3 Fairness Equilibria and Mechanism Design

3.1 Environment, Social Choice Functions, Mechanisms

An environment E = [I, A, (Θi, πi)i∈I , p] is defined by the following characteristics. There is a
finite set of agents denoted by I = {1, . . . , n} and a set of feasible allocations A. Player i has a
type θi which belongs to a finite set Θi. If an allocation a ∈ A is chosen then player i realizes
a material payoff given by πi(a, θ), where θ = (θ1, . . . , θn) is a vector that lists the individuals’
types. Types are random, described by a probability distribution p with support Θ =

∏n
i=1 Θi,

so that p(θ) is the probability of type vector θ. We use expressions like p(θi) or p(θ−i) for the
marginal distributions and p(θ−i|θi) for conditional distributions. Under independence we have
p(θ−i|θi) = p(θ−i) for all players and types.

We focus on the conventional textbook environment with quasilinear preferences and inde-
pendent private values, by making the following assumptions.10 First, types are independently
distributed and privately observed by the agents. Second, an allocation a = (q1, . . . , qn, t1, . . . , tn)
specifies for each individual a consumption level qi of a private or public good and a monetary
transfer ti. Finally, material payoffs take the form πi(a, θ) = vi(qi, θi) + ti. Possible production
costs associated with a profile (q1, ..., qn) ∈ Q are, without loss of generality, assumed to be
shared equally among individuals, so that the payoff functions vi(qi, θi) are interpreted as net
valuations. The set of feasible allocations is A = Q × T . Here, Q ⊆ Rn specifies all possible

10That said, some of our results, for instance those on solution concepts in the next subsection, hold more
generally and require neither independence nor quasilinearity.
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consumption profiles. The set T ⊆ Rn then describes the possible transfers to the agents. If
not mentioned otherwise, we rule out subsidies from outside, that is, we assume T = T̄ where
T̄ = {(t1, ..., tn) ∈ Rn|∑n

i=1 ti ≤ 0}.
A social choice function f : Θ → A specifies an allocation as a function of the individuals’

types. We also write f = (qf
1 , . . . , qf

n, tf1 , . . . , tfn). Material efficiency of an SCF f requires the
allocation f(θ) to be Pareto efficient in A, for every type profile θ ∈ Θ. In our quasilinear
framework this is equivalent to saying that

∑n
i=1 vi(qi, θi) must be maximized by qf

1 (θ), ..., qf
n(θ)

and that budget balance,
∑n

i=1 tfi (θ) = 0, must hold, for every profile θ ∈ Θ.
A mechanism Φ = [M1, . . . , Mn, g] contains a message set Mi for each player i and an outcome

function g : M → A which specifies an allocation for each message profile m = (m1, . . . ,mn) ∈
M =

∏n
i=1 Mi. We also write g = (qg

1 , . . . , q
g
n, tg1, . . . , t

g
n). Players privately observe their types

and hence can condition their message on their type. Therefore, a pure strategy for player i in a
mechanism Φ is a function si : Θi → Mi. Throughout, we focus on pure strategies. The set of all
pure strategies of player i is denoted by Si. We also use the conventional notation S =

∏n
i=1 Si

and S−i =
∏

j 6=i Sj , and we write s = (si, s−i) ∈ S for strategy profiles.
We will shortly define what it means that a strategy profile s is a Bayes-Nash equilibrium

(BNE) or a Bayes-Nash fairness equilibrium (BNFE). We then obtain the following definition of
an implementable social choice function: A social choice function f is implementable in BNE/
BNFE if there exists a mechanism with a BNE/ BNFE strategy profile s∗ so that, for all θ ∈ Θ,
g(s∗(θ)) = f(θ).

3.2 Solution Concepts

Bayes-Nash Equilibrium. As a benchmark, we first introduce the familiar solution concept
of a BNE. To facilitate the comparison to BNFE, we state the definition in a way that emphasizes
the role of the players’ beliefs about their opponents’ strategies. Since we focus on pure strategy
equilibria, we can, without loss of generality, assume that player i’s beliefs about player j’s
strategy put unit mass on a particular strategy in Sj . In the following, we denote this strategy
by sb

ij ∈ Sj . We denote by sb
i = (sb

ij)j 6=i the collection of player i’s first order beliefs. Analogously,
we denote by sbb

ijk ∈ Sk player i’s belief about j’s belief about k’s strategy. We use sbb
ij = (sbb

ijk)k 6=j

as a shorthand notation for the collection of i’s belief about j’s first-order beliefs. Likewise,
sbb
i = (sbb

ij )j 6=i is the collection of all of player i’s second order beliefs.
Given an environment E and a mechanism Φ, player i’s expected material payoff from

following strategy si, given his beliefs, then equals

Πi(si, s
b
i) =

∑

θ∈Θ

p(θ)πi(g(si(θi), sb
i(θ−i)), θ) .

Definition 1. A BNE is a strategy profile s∗ such that, for all players i ∈ I,
(1) s∗i ∈ arg maxsi∈Si Πi(si, s

b
i), and

(2) sb
i = s∗−i.

Bayes-Nash Fairness Equilibrium. Rabin (1993) has introduced the notion of a fairness
equilibrium for normal form games of complete information. In the following we adapt this
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solution concept to normal form games of incomplete information. In particular, we follow
Rabin in that we enrich the individuals’ payoff functions by psychological components which
capture the desire to reward kind and punish unkind behavior.

Given an environment E and a mechanism Φ, player i’s expected utility is given by

Ui(si, s
b
i , s

bb
i ) = Πi(si, s

b
i) +

∑

j 6=i

yij κij(si, s
b
i) κji(sb

ij , s
bb
ij ) .

The first source of utility is the expected material payoff Πi(si, s
b
i). In addition, player i’s in-

teraction with any other player j gives rise to sensations of kindness (or unkindness). This is
captured by yij κij(si, s

b
i) κji(sb

ij , s
bb
ij ). In this expression, yij is an exogenous parameter, inter-

preted as the weight that kindness in the relationship with player j has in player i’s utility
function. The term κij(si, s

b
i) provides a measure of how kindly player i wants to treat player

j. Whether i’s intended kindness enters the utility function with a positive or a negative sign
depends on i’s beliefs about the kindness intended by j, which is given by κji(sb

ij , s
bb
ij ).

Following the literature, we treat the kindness that i intends towards j, given that he has
beliefs sb

i and behaves according to si, as the difference between j’s actual expected material
payoff and an equitable reference payoff,

κij(si, s
b
i) = Πj(si, s

b
i)− πei

j (sb
i) .

The equitable payoff πei
j (sb

i) is to be interpreted as a norm, or the payoff that j deserves from
i’s perspective, given that the behavior of all players different from i is given by sb

i . Following
Rabin (1993), we model this reference payoff as the average of the best and the worst that player
i could do to player j, i.e.

πei
j (sb

i) =
1
2

(
max

si∈Eij(sb
i )

Πj(si, s
b
i) + min

si∈Eij(sb
i )

Πj(si, s
b
i)

)
, (1)

where Eij(sb
i) is the set of bilaterally Pareto efficient strategies.11 The restriction to efficient

strategies ensures that kindness is generated only by choices that involve a non-trivial trade-off
between players i and j. This is important for mechanism design, as it implies that kindness
cannot be generated by merely adding non-tempting punishment options to a mechanism.

Consequently, κji(sj , s
b
j) is the kindness intended by j towards i, if j behaves according to

sj and believes everybody else to behave according to sb
j . Replacing all arguments by beliefs of

higher order, we obtain κji(sb
ij , s

bb
ij ) for player i’s belief about the kindness of player j.

Definition 2. A BNFE is a strategy profile s∗ such that, for all i ∈ I,
(1) s∗i ∈ arg maxsi∈Si Ui(si, s

b
i , s

bb
i ),

(2) sb
i = s∗−i, and

(3) sbb
i = (s∗−j)j 6=i.

Observe that the definition of a BNFE becomes equivalent to the definition of BNE whenever
yij = 0 for all i, j ∈ I, j 6= i, i.e. if concerns for reciprocity are absent.

11A strategy si belongs to Eij(s
b
i ) if and only if there is no alternative strategy s′i ∈ Si so that Πi(s

′
i, s

b
i ) ≥

Πi(si, s
b
i ) and Πj(s

′
i, s

b
i ) ≥ Πj(si, s

b
i ), with at least one of those inequalities being strict.
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Discussion of Alternative Modelling Choices. In Rabin’s approach the fairness norm is
modeled in a particular way. Given her beliefs about the behavior of others, player i considers the
Pareto-frontier of possible material payoff combinations of herself and player j. The equitable
payoff for player j is then simply the average of the best and the worst outcome for j along
this frontier. We will be able to derive precise and transparent results based on this approach.
However, we also want to discuss some of the conceivable alternative modelling choices and their
potential impact on our analysis.

For an assessment of i’s kindness towards j it does not matter how painful it is for player i

to generate the best outcome for j, nor does it matter how much i would gain from generating
the worst outcome for j. This has some implications that may appear implausible. From a
design perspective, it may appear too easy to generate kindness. A designer could modify the
Pareto-frontier so that the worst outcome for j is made much worse, while player i is just given
a little extra payoff. As a consequence, player j’s equitable payoff decreases by a lot, and i’s
kindness goes up by a lot. Our results are not overly sensitive to that particular feature of the
model. For instance, in our analysis of a simple version of the bilateral trade problem and in
the proof of Theorem 1, we work with the additional condition of budget balance, which makes
it impossible to take a lot from one player without giving it to the other player.

The literature agrees to define the equitable payoff as a value between the largest and the
smallest material payoff that one player can give to another when varying the own strategy,
where attention is restricted to a set of strategies that are efficient. Different authors invoke
different efficiency concepts, however. Rabin (1993) defines efficiency conditional on the oppo-
nents’ strategies: A strategy is efficient if it induces a Pareto efficient material payoff profile,
given the fixed strategies of the opponents. Dufwenberg and Kirchsteiger (2004) define efficiency
unconditionally: A strategy is inefficient only if it is Pareto dominated by some other strategy for
all opponent strategies. Our efficiency notion follows Rabin (1993). However, this choice seems
to be inconsequential for our results. In Appendix D we demonstrate that, for all examples in
our formal analysis, we get to the same results when we apply the notion of Dufwenberg and
Kirchsteiger (2004).

Rabin (1993) considers two player games only. When moving to more than two players, the
efficiency concept can be applied bilaterally or population-wide. As much of the earlier literature,
we model social preferences as purely bilateral. In the assessment of the kindness in his relation
to player j, player i does not care about how j treats a third player k. In our formalism, this
also shows up in the definition of the bilateral efficiency set Eij(sb

i). Our reason for using the
bilateral efficiency concept is twofold. First, this enables us to generalize some of Rabin’s (1993)
results in a straightforward way. Second, as argued above, it fits well with the bilateral notion
of reciprocity, and we avoid the reintroduction of more complicated interpersonal effects.

In our approach, like in Dufwenberg and Kirchsteiger (2004) but in contrast Rabin (1993),
player i’s psychological payoff

∑
j 6=i yij κij(si, s

b
i) κji(sb

ij , s
bb
ij ) is not bounded relative to the ma-

terial payoff. This choice is made for ease of exposition. We comment on how it affects our main
results as we go along.

Finally, the definitions of a BNE and a BNFE are based on an ex ante perspective, that is, on
the perspective of players who have not yet discovered their types but plan to behave in a type-
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contingent way. As is well known, for the case of a BNE there is an equivalent definition which
evaluates actions (as opposed to strategies) from an interim perspective, where each player has
learned his own type, but lacks information about the types of the other players. In Appendix
B.1 we develop an analogous ex interim version of a BNFE and provide conditions on the fairness
norm under which the ex interim and the ex ante version are equivalent.

4 Mechanism Design with Known Kindness Generating Process

In the following we will study the problem of mechanism design when then kindness generating
process is common knowledge among players and the mechanism designer. In particular, we
consider a designer who knows how individuals compute equitable payoffs, πei

j , to what extent
they are willing to trade-off material payoffs and mutual kindness, yij , etc. We are interested
in two main questions. First, are standard tools of mechanism design theory still available in a
model with intention-based social preferences? Second, to what extent can kindness sensations
enter efficiency considerations as an own source of individual well-being?

In models in which individuals care only about their material payoffs, the revelation principle
is the main tool for the analysis of mechanism design problems. Accordingly, it is without loss
of generality to focus on outcomes that can be obtained as the truth-telling equilibrium of a
direct mechanism. This approach makes it possible to separate outcomes from the procedures
according to which they are obtained: incentive compatibility becomes a property of a social
choice function that can be investigated without recourse to specific institutions. We show
that this is no longer true if psychological considerations are introduced into the model. The
reason is that individuals do no longer care exclusively about the outcomes that are obtained
in equilibrium, but also about alternatives that might have been chosen instead. Consequently,
with the solution concept of a BNFE, procedures matter in the following two senses: First,
the revelation principle does not hold. Second, as will be studied in more detail in Section 4.3
below, different mechanisms which implement the same social choice function might differ in the
kindness sensations that they generate. We can therefore ask which mechanism performs best
in the kindness dimension.

4.1 Failure of the Revelation Principle

We start the discussion of why the revelation principle fails for the solution concept of a BNFE
by recalling why it holds for the solution concept of BNE.

Proposition 1 (Myerson 1979). Suppose a mechanism Φ = [M1, . . . , Mn, g] implements the
social choice function f in some BNE s∗. Then the direct mechanism Φd = [Θ1, . . . ,Θn, f ] also
implements f , in the BNE sT where sT

i (θi) = θi for all i ∈ I and θi ∈ Θi.

The logic is as follows: Suppose we start with some abstract mechanism Φ that has an
outcome function g and which gives rise to some Bayes-Nash equilibrium s∗. We can, as a first
step, delete, for every player i, all actions in Mi which are never used, i.e. which do not belong
to s∗i (Θi). This yields a new mechanism Φ′ and an outcome function g′ which is the restriction
of g to the domain

∏n
i=1 s∗i (Θi). Now, s∗ is still an equilibrium of the game induced by Φ′:

11



If s∗i is a best response to s∗−i when player i can choose from a large set of strategies, then it
must be the case that s∗i is also a best response to s∗−i when i can choose from the smaller set
of strategies that includes s∗i . As a second step, we can now construct a direct mechanism Φd

with an outcome function gd. If individuals communicate a type profile θ = (θ1, . . . , θn) under
the direct mechanism, then the outcome is the one that results under Φ′ if individuals send the
message profile s∗(θ). Consequently, for any player i, deviating from s∗i under Φ′ has the same
consequences as deviating from truthtelling under Φd. If there is no reason to deviate from s∗i in
Φ′, then there is also no reason to deviate from truthtelling in Φd. The revelation principle now
follows from the observation that the equilibrium allocation of the direct mechanism is the same
as the equilibrium allocation of the mechanism Φ from which we started. We use the following
bilateral trade example to illustrate why this logic fails with the solution concept of a BNFE.

Example 1. There are two agents, referred to as the buyer and the seller, I = {b, s}. The
buyer’s material payoff is vb(q, θb) = θbq + tb, where q ∈ [0, 1] is the consumption of a good
that is produced by the seller. We refer to θb as the buyer’s valuation of the good, and assume
that it can take two values, Θb = {θb, θ̄b}, with equal probability. The seller’s material payoff is
vs(q, θs) = −θsq+ts. We refer to θs as the seller’s marginal cost, and assume that it can also take
two values, Θs = {θs, θ̄s}, again with equal probability. We assume that 0 ≤ θs < θb < θ̄s < θ̄b.

In this setting, a social choice function f specifies, for all (θb, θs) ∈ Θb ×Θs, the amount of
the good to be traded, qf (θb, θs), and the accompanying payments tfb (θb, θs) and tfs (θb, θs). Given
the assumption on parameters, f is efficient if and only if

qf (θb, θs) =

{
0 if (θb, θs) = (θb, θ̄s) ,

1 if (θb, θs) 6= (θb, θ̄s) ,

and tfs (θb, θs) = −tfb (θb, θs) for all (θb, θs).
For particular parameter constellations – for instance θs = 0, θb = 20, θ̄s = 80 and θ̄b = 100

– this setup gives rise to a discrete-type version of the impossibility result by Myerson and
Satterthwaite (1983): There is no social choice function which is efficient, implementable in
BNE, and yields a non-negative expected material payoff for every type of every player.

We will be interested in a particular social choice function f∗ = (qf∗ , tf
∗

b , tf
∗

s ), which is
efficient and splits the gains from trade equally between the buyer and the seller,

tf
∗

s (θb, θs) = −tf
∗

b (θb, θs) =
(

θb + θs

2

)
qf∗(θb, θs) .

Under this social choice function we have that, for every θ = (θb, θs),

πs(f∗(θ), θ) = πb(f∗(θ), θ) =
(

θb − θs

2

)
qf∗(θb, θs) ,

which implies that every agent’s material payoff is always non-negative. As we will see below,
this social choice function is not implementable in BNE.

Our first observation shows that, whatever the individuals’ reciprocity concerns, social choice
function f∗ in Example 1 cannot be implemented in a truthful BNFE of a direct mechanism.
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Since we have only two players, we can simplify notation and write yi for the reciprocity weight
of player i toward player j 6= i. We also write y = (yb, ys) for the collection of reciprocity
weights.

Observation 1. Consider Example 1 and the direct mechanism for f∗. For every y ∈ [0,∞[2,
the strategy profile (sT

b , sT
s ) is not a BNFE.

A formal of proof of this observation (and of all other observations) can be found in part
C of the appendix. The logic is as follows: One can show that in a hypothetical truth-telling
equilibrium both the buyer and the seller realize their equitable payoff. This implies that all
kindness terms are zero, so that all players focus solely on their material payoffs. But if they focus
on their material payoffs, truth-telling is not an equilibrium because the buyer would benefit
from understating his valuation and the seller would benefit from exaggerating his marginal cost.

Observation 1 shows that efficient trade with an equal sharing of the trade surplus is out
of reach if only direct mechanisms are considered. Since it covers the case where yb = ys = 0,
the revelation principle for BNE implies that f∗ cannot be implemented in BNE. We will now
show that, whenever there are mutual reciprocity concerns, there exists a non-direct mechanism
Φ′ which implements the social choice function f∗ in BNFE. More specifically, consider the
mechanism Φ′ = [M ′

b,M
′
s, g

′] in which the buyer has the extended message set M ′
b = {θ

b
, θb, θ̄b}

and the seller has the extended message set M ′
s = {θs, θ̄s,

¯̄θs}. The outcome of the mechanism
is, for every pair of messages (mb,ms) ∈ M ′

b × M ′
s, a decision on trade qg′(mb,ms) ∈ [0, 1]

and transfers tg
′

s (mb,ms) = −tg
′

b (mb,ms), i.e. the price to be paid by the buyer. Table 1 gives
the pair (qg′ , tg

′
s ) for every possible pair of messages. The mechanism Φ′ works like a direct

mechanism with outcome function f∗ as long as messages are in {θb, θ̄b}× {θs, θ̄s}. If the buyer
chooses the message θ

b
, the consequence is the same as when announcing a low valuation θb,

except that, when there is trade, he gets an additional discount of δb. Intuitively, announcing θ
b

amounts to the claim that the valuation is even lower than θb. If the seller chooses the message
¯̄θs, the consequence is the same as when announcing a high cost θ̄s, except that, when there is
trade, the price he receives is increased by δs. Announcing ¯̄θs can, analogously, be interpreted
as claiming a marginal cost somewhat above θ̄s.

ms

mb

θs θ̄s
¯̄θs

θ
b

(1, θb+θs
2 − δb) (0, 0) (0, 0)

θb (1, θb+θs
2 ) (0, 0) (0, 0)

θ̄b (1,
θ̄b+θs

2 ) (1, θ̄b+θ̄s

2 ) (1, θ̄b+θ̄s

2 + δs)

Table 1: The non-direct mechanism Φ′.

In the non-direct mechanism Φ′, player i’s set of pure strategies equals S′i = M ′
i ×M ′

i . A
generic element s′i of S′i is a tuple in which the first entry is the message chosen in case of having
a low type, and the second entry is the message chosen in case of having a high type. Note
that, for both players, the strategy set of the direct mechanism, Si = Θi×Θi, is a subset of the
extended strategy set S′i, and that the outcome of Φ′ under the strategy pair (sT

b , sT
s ) is still the

outcome stipulated by the SCF f∗.
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Observation 2. Consider Example 1 and the non-direct mechanism Φ′ in Table 1. For every
y ∈ ]0,∞[2, there exist numbers δi > 0, i ∈ {b, s}, so that (sT

b , sT
s ) is a BNFE.

Starting from a hypothetical equilibrium (sT
b , sT

s ), we can, in order to derive the seller’s
equitable payoff, solve for the set of efficient strategies of the buyer if he believes the seller
to behave according to sT

s . The best that the buyer can do for the seller is to exaggerate his
willingness to pay, which leads both to more trade and to trade at a higher price. The worst
outcome for the seller is obtained if the buyer behaves according to (θ

b
, θ

b
), i.e. if the buyer

insists on the discount of δb. Straightforward computations then yield the equitable payoff

πeb
s (sT

s ) = Πs(sT
b , sT

s )− 1
4
δb .

Therefore, the buyer’s kindness in the hypothetical truth-telling equilibrium, where he does not
insist on the discount, is strictly positive:

κbs(sT
b , sT

s ) = Πs(sT
b , sT

s )− πeb
s (sT

s ) =
1
4
δb .

A symmetric argument implies that the seller is kind when he does not use the action ¯̄θs and
therefore does not ask for the very high price:

κsb(sT
b , sT

s ) =
1
4
δs .

Given these observations, we can now calibrate the numbers δb and δs so as to turn every player’s
utility-maximization problem into a problem of welfare-maximization. To see how this works,
consider the seller’s problem. If the buyer chooses sT

b , the seller chooses ss in order to maximize

Πs(sT
b , ss) + ysκbs(sT

b , sT
s )Πb(sT

b , ss).

Now let κbs(sT
b , sT

s ) = 1/ys, or, equivalently, δb = 4/ys. Then the problem becomes: choose ss

in order to maximize expected utilitarian welfare Πs(sT
b , ss)+Πb(sT

b , ss). Since the social choice
function f∗ is efficient, sT

s is a solution to this problem. Truthtelling ensures that, for every θ,
the outcome is the one which maximizes the sum of material payoffs. Similarly, player b chooses
sb in order to maximize

Πb(sb, s
T
s ) + ybκsb(sT

b , sT
s )Πs(sb, s

T
s ).

Now let κsb(sT
b , sT

s ) = 1/yb, or, equivalently, δs = 4/yb. Then the problem becomes: choose sb

in order to maximize expected utilitarian welfare Πb(sb, s
T
s ) + Πs(sb, s

T
s ). Again, sT

b solves this
problem.

Observations 1 and 2 together imply the failure of the revelation principle for the solution
concept of a BNFE. Efficient trade with an equal sharing of the trade surplus is not possible with
a direct mechanism, but is possible with a non-direct mechanism. The actions which remain
unused in the non-direct mechanism affect the interpretation of equilibrium behavior. In the
truth-telling equilibrium of the non-direct mechanism, both players refrain from exploiting the
possibility to enrich themselves at the expense of the other player. Consequently, truth-telling
is now interpreted as kind, and this makes it possible to implement the desired outcome.
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Since f∗ ensures non-negative material payoffs for all players and types, Observation 2 also
illustrates that the problem of voluntary participation can be overcome, provided that interim
material payoffs are considered as relevant for participation decisions. We will discuss this matter
in greater detail after Theorem 1 below.

4.2 The Augmented Revelation Principle

In the example above, the non-direct mechanism Φ′ that can be used to implement f∗ in BNFE
still resembles a truthful direct mechanism. The set of messages includes the set of types and
truth-telling is an equilibrium. This is not a coincidence. In the following, we will show that if
implementation of a social choice function is possible at all, then it is also possible in the class
of augmented revelation mechanisms (Mookherjee and Reichelstein 1990). A mechanism Φ is
called an augmented revelation mechanism for a social choice function f whenever Θi ⊆ Mi for
all i ∈ I, and g(m) = f(m) for all m ∈ Θ, i.e., whenever the individual message sets include
the type sets and the SCF f is realized in the event that all messages are possible types. An
augmented revelation mechanism Φ truthfully implements f in BNFE if the truth-telling profile
sT is a BNFE of Φ. Hence, the difference between truthful direct and augmented revelation
mechanisms is the existence of unused actions in the latter.

Mookherjee and Reichelstein (1990) have shown that an augmented revelation principle holds
when uniqueness of the BNE or of the equilibrium outcomes is required. In their construction,
additional messages are used to destroy unwanted equilibria in the direct mechanism. In contrast,
we seek to prove an augmented revelation principle for BNFE, according to which a social
choice function f is implementable in BNFE if and only if there exists an augmented revelation
mechanism that truthfully implements it in BNFE. It is more convenient, however, to first
state explicitly the property of strategic equivalence of arbitrary mechanisms and augmented
revelation mechanisms. The augmented revelation principle for BNFE – as well as for the
equilibrium concepts to be considered later – will follow immediately from this property.

We start from an arbitrary mechanism Φ = (M1, ...,Mn, g) and some strategy profile s̃, inter-
preted as an equilibrium of some type. We then construct an augmented revelation mechanism
Φ′ = Φ′(Φ, s̃) based on Φ and s̃, with the property that the outcome of Φ′ under truthtelling
is the same as the outcome of Φ under s̃.12 We then establish that Φ and Φ′ are strategically
equivalent, in the sense that any outcome that can be induced by some action under Φ can be
induced by some action under Φ′ and vice versa.

Formally, consider an arbitrary pair (Φ, s̃) and let f be the social choice function induced
by s̃ in Φ, i.e. f(θ) = g(s̃(θ)) for all θ ∈ Θ. We now construct new message sets M ′

i for every
player. Any action from Mi that is used by s̃i is relabelled according to the type θi ∈ Θi that
uses it. Any unused action from Mi is kept unchanged. Formally, let M ′

i = Θi ∪ (Mi\s̃i(Θi))
be the message sets of the new mechanism Φ′. To define the outcome function g′ of Φ′, we first
construct for every player a surjective function hi : M ′

i → Mi that maps actions from M ′
i back

12Mookherjee and Reichelstein (1990) use the same construction, starting from an arbitrary mechanism with
a unique BNE or a unique BNE outcome.
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into actions from Mi. Formally,

hi(m′
i) =

{
s̃i(m′

i) if m′
i ∈ Θi ,

m′
i if m′

i ∈ Mi \ s̃i(Θi) .

Now we let

g′(m′) = g(h(m′)) (2)

for all message profiles m′, which completes the definition of the new mechanism Φ′. In words,
announcing a type θi ∈ Θi in Φ′ has the same consequences as choosing the action s̃i(θi) in Φ,
and choosing an action from Mi\s̃i(Θi) in Φ′ has the same consequences as choosing that same
action in Φ. Observe that Φ′ is in fact an augmented revelation mechanism for f , because by
construction g′(sT (θ)) = g′(θ) = g(s̃(θ)) = f(θ) for all θ ∈ Θ.

Proposition 2. The mechanisms Φ and Φ′(Φ, s̃) are strategically equivalent, in the sense that,
for every i ∈ I and any two profiles m−i ∈ M−i and m′

−i ∈ M ′
−i with m−i = h−i(m′

−i), it holds
that Gi(m−i) = G′

i(m
′
−i), where

Gi(m−i) = {a ∈ A | ∃mi ∈ Mi so that g(mi, m−i) = a}

and
G′

i(m
′
−i) = {a ∈ A | ∃m′

i ∈ M ′
i so that g′(m′

i,m
′
−i) = a}.

The sets Gi(m−i) and G′
i(m

′
−i) contain all allocations that player i can induce by varying

his message, holding fixed the other players’ messages. According to the proposition, these sets
are the same in both mechanisms, for message profiles that are associated by the function h.
Proposition 2 has the following implication. If we start from an arbitrary mechanism Φ with
BNFE s∗ that implements an SCF f , the above construction yields an augmented revelation
mechanism Φ′ in which truth-telling induces f and is a BNFE as well. This conclusion follows
from the observation that unilateral deviations from sT in Φ′ can achieve exactly the same
outcomes as unilateral deviations from s∗ in Φ. The equivalence of achievable deviation outcomes
implies in particular that the kindness terms associated to s∗ and all unilateral deviations in Φ
are identical to those of sT and all corresponding deviations in Φ′.

Corollary 1. Suppose a mechanism Φ implements the social choice function f in BNFE. Then
there exists an augmented revelation mechanism Φ′ that truthfully implements f in BNFE.

4.3 Efficiency and Kindness

The solution concept of a BNFE relies on two sources of utility, material payoffs and kindness
sensations. This raises the question how to treat these from a welfare perspective. This question
can be formulated using the notions of decision utility and experienced utility (Kahneman et al.
1997). Our whole analysis is based on the assumption that the desire to reward kind and to
punish unkind behavior matters for the individuals’ behavior. Hence, behavior is as if individuals
were maximizing Ui. This leaves open the question whether sensations of kindness should be
counted as a source of well-being in addition to the individuals’ material payoffs.

16



If we disregard kindness sensations, we are left with a conventional notion of efficiency based
on material payoffs only. The question is then how the behavioral implications of reciprocity
affect the possibility to implement materially efficient outcomes. We study this question in
subsection 4.3.1, and we return to it in the context of psychological robustness in Section 5.

As an alternative, we also entertain the possibility that kindness sensations are an own
source of well-being, or experienced utility. We thus follow the path outlined by Rabin (1993)
who argues that “welfare economics should be concerned not only with the efficient allocation
of material goods, but also with designing institutions such that people are happy about the
way they interact with others” (p. 1283). We explore two routes for how this can be done.
We will first show that a welfare objective which puts material payoffs and kindness sensations
on an equal footing may lead to paradoxical results. There exist mechanisms which implement
trivial and materially inefficient social choice functions, which are unresponsive to the individ-
uals’ private information, but still achieve large (and possibly unbounded) utility levels. As an
alternative, we therefore consider the utility-efficient implementation of a given SCF. That is,
we consider the class of mechanisms which all implement the same social choice function, and
we ask which of those mechanisms performs best in the kindness dimension.

4.3.1 Material Efficiency

It is a well known result that, with the solution concept of a BNE, some materially efficient
social choice functions can be implemented (d’Aspremont and Gerard-Varet 1979, Arrow 1979).
The ones that are implementable are those which are incentive compatible. Formally, for all
i ∈ I and θi, θ

′
i ∈ Θi it must be true that

Eθ−i [vi(q
f
i (θi, θ−i), θi) + tfi (θi, θ−i)] ≥ Eθ−i [vi(q

f
i (θ′i, θ−i), θi) + tfi (θ′i, θ−i)] , (3)

where Eθ−i [.] is an expectation over θ−i that treats θi as fixed. The following theorem shows
that, with the solution concept of a BNFE, incentive compatibility is no longer a constraint.

Theorem 1. Suppose that y ∈]0,∞[n(n−1). Then, if a social choice function f is materially
efficient, it is implementable in BNFE.

The proof of Theorem 1 is based on a generalization of Observation 2. Consider an efficient
SCF and an augmented revelation mechanism with truth-telling sT as a hypothetical equilibrium.
In this equilibrium candidate, player i maximizes

Πi(si, s
T
−i) +

∑

j 6=i

yijκji(sT )Πj(si, s
T
−i)

by choice of si ∈ Si, where κji(sT ) is treated as fixed. Now, if we had κji(sT ) = 1/yij for
all j 6= i, then the individual’s problem would become the problem of maximizing welfare∑n

k=1 Πk(si, s
T
−i). Since the social choice function to be implemented is materially efficient, i.e.

it maximizes the sum of material payoffs for every profile θ ∈ Θ, truth-telling is clearly a solution
to this problem. Hence, we need to manipulate equitable payoffs and equilibrium kindness to
obtain κji(sT ) = 1/yij for all i and j. To this end, we start from a direct mechanism and intro-
duce additional actions that would trigger redistributive payments among the individuals. We
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calibrate these payments in such a way that they generate the desired degrees of kindness but
ultimately remain unused. This resembles a Groves mechanism, where transfers between individ-
uals are designed so as to align individual interests with the objective of surplus-maximization.
Here, however, out-of-equilibrium payments are used for that purpose.

The construction faces the difficulty that additional messages can have a non-trivial impact
on the set of bilaterally Pareto efficient strategies, and they must yield bilaterally Pareto efficient
outcomes themselves, to have an effect on the kindness norm. The messages that we construct
in the proof of Theorem 1 trigger real redistribution between players, as already illustrated in
Example 1. The resulting augmented mechanism therefore satisfies budget balance also off the
equilibrium and does not rely on implausible threats of punishment.13

It is crucial for our construction that the kindness terms κij are not bounded a priori. If
yij is very small, then κji(sT ) has to become very large. In Rabin’s model, kindness sensations
are bounded. If we introduced an upper bound on kindness, say κ̄, we would have to add the
qualification in Theorem 1 that every efficient social choice function can be implemented provided
that all yij exceed the lower bound 1/κ̄. An analogous argument applies when out-of-equilibrium
payments are bounded due to limited liability of the agents.

Theorem 1 also speaks to the issue of voluntary interim participation. Classical papers on the
conflict between voluntary participation and efficiency, such as Myerson and Satterthwaite (1983)
and Mailath and Postlewaite (1990), have noted that when we consider a Bayesian incentive
compatible and efficient social choice function, then for some types of some players the expected
material payoff might be lower than under a given status quo outcome. Theorem 1 tells us
that incentive compatibility constraints are no longer relevant since every efficient social choice
function is implementable. This implies, in particular, that we can also implement an efficient
social choice function with the property that all players get an equal share of the material surplus,
for every θ. Under such a mechanism all types of all individuals realize a higher material payoff
than under the status quo, as already illustrated in Example 1. Hence, the problem of voluntary
participation is solved, at least if we take material payoffs as the criterion. In our framework,
however, it seems more plausible that individuals agree to play a mechanism if their overall utility,
including kindness sensations, under the mechanism is larger than their overall utility under the
status quo. Theorem 1 can be adapted so that voluntary participation is also guaranteed with
this criterion. The proof of Theorem 1 starts from a direct mechanism – where Mi = Θi for all
i ∈ I – and then adds unused actions to turn every agent’s objective into a utilitarian welfare
function. To respect the requirement that interim participation in the mechanism is voluntary,
we can as well start out from a direct mechanism with veto rights – where Mv

i = Θi ∪ {veto}
for all i ∈ I – with the understanding that, if any one player exercises the veto, then the status
quo outcome prevails. We can then add actions to the message sets Mv

i in exactly the same
way as in the proof of Theorem 1 and align individual preferences with the objective of welfare
maximization. Consequently, if the outcome of the mechanism is materially efficient and the
status quo is not, then all players will refrain from exercising their veto rights and communicate

13Mookherjee and Reichelstein (1990) also maintain budget balance off the equilibrium, but their construction
of “flags” and “counterflags” is otherwise very different from our approach. In our construction, each unused action
has the same consequence as the announcement of a certain type, but with additional pairwise redistribution.
We obtain n|Θi| as an upper bound on the cardinality of player i’s message set.
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their types truthfully to the mechanism.
Theorem 1 can hence be interpreted as a universal possibility result for materially efficient

social choice functions. The theorem does, however, not extend to any social choice function.
The requirement of material efficiency is important. To clarify this point, Appendix A contains
an example of an inefficient social choice function that cannot be implemented in BNFE.

4.3.2 Utility-Efficiency and Implementation with Maximal Kindness

We now seek to define Pareto efficiency based on the entire utility function Ui. Developing this
notion faces a difficulty. In the conventional approach one defines efficient social choice functions
taking only the players’ material payoffs and the economy’s resource constraint into account. A
separate question then is whether there exists a mechanism that implements this social choice
function as the equilibrium outcome. This route is not available if we seek to define a notion of
efficiency based on utilities, because the latter endogenously depend on the mechanism that is
used and the equilibrium that is played. Therefore, we cannot simply define a utility-efficient
social choice function. Instead, we define efficiency for mechanism-equilibrium pairs.

Definition 3. A mechanism-equilibrium-pair (Φ, s∗) is utility-efficient if
(1) s∗ is a BNFE of Φ, and
(2) there is no pair (Φ′, s′) of a mechanism Φ′ with BNFE s′ whose equilibrium utilities Pareto
dominate those of (Φ, s∗).

The following observation demonstrates that it is possible to generate unbounded utility with
a mechanism that implements a degenerate social choice function, i.e. one that stipulates the
same outcome for all θ.

Observation 3. Consider any environment E, any trivial SCF f where f(θ) = ā for all θ ∈ Θ,
and assume y ∈]0,∞[n(n−1). Then, it is possible to implement f in BNFE with arbitrarily large
equilibrium utility levels.

A first implication of this observation is that utility-efficient mechanism-equilibrium-pairs
do not exist. To any given pair we can find another one that gives more utility to all players.
This problem could possibly be overcome by imposing bounds on the kindness terms as in
Rabin (1993), or bounds directly on the set of admissible out-of-equilibrium payments. More
importantly, however, the possibility to generate kindness sensations does not depend on a
meaningful economic allocation problem being solved in the background.14 An efficiency notion
based on the individuals’ utility functions therefore faces the problem that economic allocation
problems may appear insignificant.

We will therefore explore a different route for introducing kindness considerations into welfare
assessments. We fix some SCF and then ask whether or not we can implement it in BNFE. If
we can, we look for the mechanism and the BNFE which implements it with maximal utility
levels. That is, kindness sensations play a subordinate role in our welfare analysis. They are
a good thing, but only to the extent that they do not upset the material outcomes of a given
implementation exercise.

14Rabin (1993) has already shown that there exist games in which psychological payoffs remain bounded away
from zero as material payoffs converge to zero.
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Definition 4. A mechanism-equilibrium-pair (Φ, s∗) implements an SCF f utility-efficiently if
(1) s∗ is a BNFE of Φ which implements f , and
(2) there is no pair (Φ′, s′) of a mechanism Φ′ with BNFE s′ which also implements f , but with
equilibrium utilities that Pareto dominate those of (Φ, s∗).

As Observation 3 has shown, the problem to implement an SCF with a maximal degree
of kindness might not be well-defined in some cases, e.g. for trivial social choice functions. In
general, however, fixing the SCF can yield endogenous bounds on utility levels. To illustrate this,
we first characterize a mechanism which, for Example 1, implements the social choice function
f∗ (efficient trade and equal sharing of the surplus) utility-efficiently. For ease of exposition, we
will make the more specific parameter assumptions mentioned earlier.

Observation 4. Consider Example 1 with θs = 0, θb = 20, θ̄s = 80 and θ̄b = 100, and assume
y ∈ ]0,∞[2. Let Φ′ be the extended mechanism in Table 1 with δb = 44/5ys and δs = 44/5yb.
Then (Φ′, sT ) utility-efficiently implements f∗.

The observation shows, in the context of Example 1, that it is possible to implement efficient
trade with equal sharing of the gains in a utility-efficient way. The proof proceeds as follows. We
first note that an augmented revelation principle applies: Whenever some mechanism implements
f∗ in BNFE, then there exists an augmented revelation mechanism that truthfully implements
f∗ with identical utility levels. We can therefore again restrict attention to augmented revelation
mechanisms and truth-telling. Secondly, we observe that whenever we seek to implement f∗,
kindness has to be bounded in equilibrium. To see why, note that in any augmented revelation
mechanism for f∗, the strategies of always reporting the low parameter (denoted sL

i ) and of
always reporting the high parameter (denoted sH

i ) are available for both players. The conditions
that no player wants to deviate to any of these strategies yields upper and lower bounds on
kindness. For instance, if the seller became too kind, the buyer would deviate to sH

b , i.e. he
would consent to trading at a high price, which would make the seller better off. By contrast, if
the seller became too unkind, the buyer would deviate to strategy sL

b , i.e. he would understate his
willingness to pay. This would maximize his own material payoff. As a last step, we calibrate the
off-equilibrium-transfers δi of mechanism Φ′ from Table 1 so that the upper bounds on kindness
are in fact reached in equilibrium.

In the following, we provide a generalization of this observation for two players, using the
notion of bilateral externalities.

Definition 5. Let n = 2. Given an environment E, a social choice function f exhibits bilateral
externalities if, for each i = 1, 2 and j 6= i, there exist types θ′j , θ

′′
j ∈ Θj such that

Eθi

[
vi(q

f
i (θi, θ

′
j), θi) + tfi (θi, θ

′
j)

]
6= Eθi

[
vi(q

f
i (θi, θ

′′
j ), θi) + tfi (θi, θ

′′
j )

]
. (4)

With bilateral externalities, an agent is not indifferent with respect to the other agent’s type.
The social choice function f∗ in Example 1 satisfies this property: The buyer’s expected payoff
conditional on θs = θs is larger than his expected payoff conditional on θs = θ̄s, and the seller’s
payoff conditional on θb = θ̄b is larger than his expected payoff conditional on θb = θb. Trivially,
degenerate social choice functions as in Observation 3 do not give rise to bilateral externalities,
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since the outcome does not depend on the type of any player. As the following theorem shows,
this is the reason why the SCF f∗ from Example 1 can be implemented utility-efficiently, while
utility-efficient mechanisms do not exist for trivial SCFs.15

Theorem 2. Let n = 2, y ∈ ]0,∞[2, and let f be a materially efficient SCF. Then, there exists
a mechanism that utility-efficiently implements f if and only if f exhibits bilateral externalities.

4.4 Coercion and Kindness

To further illustrate the importance of unused actions in real-world mechanisms, in this section
we will study a public goods example and show that the introduction of veto-rights – so that, by
exercising his veto right, each individual can force a status quo outcome with no public goods
provision – may increase all individuals’ kindness sensations without impeding efficiency. Hence,
in our framework, the introduction of veto rights may be a good thing. People enjoy kindness
sensations if they are not forced to contribute to public goods that they might not like, but
nevertheless voluntarily choose to contribute because they want to reciprocate the kindness of
others. This stands in stark contrast to the view of participation constraints which emerges
with the conventional solution concept of a Bayes-Nash equilibrium. With BNE as opposed to
BNFE, participation constraints are, if anything, bad, because they may render efficient public
goods provision impossible.16

Example 2. There are three individuals, I = {1, 2, 3}, and a decision about the provision of
an indivisible public good has to be taken. Hence q1 = q2 = q3 = q and either q = 0 or q = 1.
Each individual values the public good either at 1 or at 3, Θi = {1, 3}, with equal probabilities.
The per capita cost of public goods provision equals c = 2. Hence vi(1, 3) = 1 and vi(1, 1) = −1,
whereas vi(0, θi) = 0 for all θi ∈ Θi. Material payoff efficiency requires that the public good is
provided if at least two individuals value it highly, and not to provide it otherwise. We seek to
implement this efficient rule without additional transfers, so that costs are shared equally.17

We will compare the performance of two mechanisms which we refer to as “simple majority
voting” and “majority voting with veto rights”. Under simple majority voting, each individual’s
message set is given by Mi = {no, yes} and the public good is provided if and only if at
least two individuals vote “yes”. Since both the set of types and the set of messages is binary,
and the voting mechanism entails no transfers, simple majority voting is equivalent to a direct
mechanism for the SCF we seek to implement. Under majority voting with veto rights, each

15An extension of the theorem to more than two players would have to address the following complication.
Any misreport in an augmented revelation mechanism might affect the opponents in opposite directions, i.e.,
any deviation from truth-telling might make one opponent better off and one opponent worse off. Without
additional assumptions, kindness is then not necessarily bounded, because the desire to reward an increasingly
kind opponent could always be outweighed by the unfortunate necessity to punish another increasingly kind
opponent at the same time.

16In an independent private values model, efficient public goods provision is possible if there are no participation
constraints, see d’Aspremont and Gerard-Varet (1979), but generally impossible if voluntary participation is
required, see Güth and Hellwig (1986) or Mailath and Postlewaite (1990). Our view of participation decisions
is more in line with the findings of Frey and Stutzer (2004), according to which greater political participation
rights lead to increased life-satisfaction.

17The parameters of the example are deliberately chosen in a non-generic way, to simplify calculations. Qual-
itatively identical results can be obtained in more general and generic models.
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individual’s message set is given by M ′
i = {no, yes, veto}. The public good is provided if and

only if no individual chooses the action “veto” and at least two individuals choose the action
“yes”. Majority voting with veto rights is equivalent to an augmented revelation mechanism for
our SCF.

A strategy for player i in the game induced by simple majority voting is a tuple (v1
i , v

3
i ) ∈

{no, yes}2, where v1
i is the vote that is cast by type θi = 1 of individual i, and v3

i is the vote
that is cast by type θi = 3. Likewise, a strategy in the game induced by majority voting with
veto rights is an element (v1

i , v
3
i ) of {veto, no, yes}2. A strategy of particular interest is “sincere

voting” (v1
i , v

3
i ) = (no, yes), which can readily be interpreted as truth-telling. For both voting

mechanisms, material payoff efficiency is reached if and only if all players vote sincerely.
The following observation establishes that, whatever the intensity of the players’ kindness

sensations, sincere voting by all players is an equilibrium under simple majority voting.

Observation 5. In Example 2, sincere voting is always a BNFE under simple majority voting.

Simple majority voting makes it possible to reach material efficiency. Moreover, this comes
without (positive or negative) sensations of kindness. In the given example, if one player unilater-
ally changes his strategy, this does not affect the other players’ expected payoffs. Consequently,
no player has the possibility to be kind or unkind to the other players. Therefore, the only
remaining concern is the own payoff, which is maximized by sincere voting.

The next observation will show that majority voting with veto rights may yield the same
outcome as simple majority voting and, moreover, generate positive kindness. These sensations
are induced because players refrain from exercising their veto power. If a player has a low
valuation of the public good and chooses the action “no” instead of the action “veto”, he takes
the risk of ending up with a payoff of −1, in case the other two players both vote “yes”, instead
of making sure that he gets a payoff of 0. The other players will interpret this behavior as kind,
because the player in question harms himself so as to make it possible for them to benefit from
public goods provision. The willingness to sacrifice own payoff is motivated by the desire to
reciprocate that the other players also refrain from exercising their veto rights if they are in the
same situation.

Observation 6. In Example 2, sincere voting is a BNFE under majority voting with veto rights
if and only if concerns for reciprocity are sufficiently large. Whenever sincere voting is a BNFE,
then equilibrium utilities Pareto dominate those of sincere voting under simple majority voting.

Consequently, in circumstances where both majority voting with veto rights and simple
majority voting work – in the sense of generating the materially efficient outcome – majority
voting with veto rights is preferable because it comes with the extra benefit of positive kindness
sensations.

The explicit introduction of veto rights into the game helps to solve, paradoxically, an ap-
parent participation problem. Sincere voting in the simple majority voting mechanism induces
zero kindness, so that equilibrium utilities coincide with equilibrium material payoffs. Treat-
ing interim participation constraints in the conventional way, one would have to conclude that
voluntary participation fails, because individuals with type θi = 1 prefer to veto the mecha-
nism. Once veto rights are included as part of the game, however, their existence enables the
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appearance of an equilibrium in which they remain unused, in which utilities are increased, and
in which voluntary participation is assured. This can be recast as an application of the Lucas
Critique to the case of endogenous preferences (Bowles and Reyes, 2009). In our example, the
introduction of veto rights changes the players’ preferences towards more social behavior, and
fundamentally alters their participation decisions.

However, majority voting with veto rights yields efficient outcomes only if kindness sensations
carry enough weight in the players’ utility functions. Simple majority voting, by contrast, works
whatever those weights are. It is therefore the more robust procedure. In the following section,
we will make the idea of psychological robustness more precise.

5 Psychologically Robust Mechanism Design

In the preceding section we studied mechanism design problems under the assumption that the
designer and all the players know the kindness generating process and its behavioral implications.
More specifically, common knowledge was assumed about how individuals compute equitable
payoffs, how deviations from those equitable payoffs translate into sensations of kindness or
unkindness, and finally how much own material payoff individuals are willing to sacrifice in
order to reciprocate the kindness of other players. In the following, we seek to complement this
analysis by asking what a designer can accomplish in case such common knowledge assumptions
are not satisfied. This question is motivated by the empirically well-documented individual
heterogeneity in social preferences (Fehr and Schmidt 1999, Engelmann and Strobel 2004, Falk
et al. 2008, Dohmen et al. 2009). In many cases, direct observation of these preferences will be
hard, if not impossible.

There are several directions in which our model could be extended to allow for less compre-
hensive knowledge. For instance, we could assume that the importance y = (yij)i,j∈I,i 6=j which
the players attribute to their psychological payoffs is not observable to the mechanism designer.
However, this is just one of many dimensions in which robustness may be desirable. The designer
could also be uninformed about other aspects of the kindness generating process, such as the
exact definition of the equitable payoffs. The assumption of common knowledge among players
about these aspects might also be too strong. Finally, interdependent preferences beyond those
introduced in Section 3, such as outcome-based inequality aversion or spitefulness, could play a
role in practice.

A rigorous treatment of any such consideration leads to a multi-dimensional design problem.
Such problems are notoriously difficult to solve, and the optimal mechanisms are often compli-
cated. We will proceed differently and investigate psychologically robust social choice functions.
Consider a social choice function with the property that no player can affect the payoff of any
other player by a unilateral deviation from the truth-telling BNE in the direct mechanism. Such
a social choice function will remain implementable with interdependent preferences from a large
class of models, because these preferences become behaviorally irrelevant in equilibrium. The
class includes alternative assumptions on the information available on the weights y or different
definitions of equitable payoffs. It also includes models with outcome-based social preferences.
Finally, it includes models where players have additional private information about their social
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preferences, because psychological considerations will disappear from their optimization prob-
lems in all these cases.

As our main result, we will show that most social choice functions of interest either are,
or can be made, psychologically robust. Consequently, for these social choice functions there
is no need to worry about the details of multidimensional design. Instead, there will be an
easy solution which makes it possible to reach the outcome without knowledge of the correct
behavioral model.

5.1 The Insurance Property

From a player i’s perspective, the types of all other players are random quantities. The social
choice function might, however, provide players with payoff insurance against that randomness.
Formally, insurance can be defined in terms of expected payoffs as follows.

Definition 6. Given an environment E, a social choice function f has the insurance property
if, for all i and j 6= i,

Eθ−j
[vi(q

f
i (θ′j , θ−j), θi) + tfi (θ′j , θ−j)] = Eθ−j

[vi(q
f
i (θ′′j , θ−j), θi) + tfi (θ′′j , θ−j)] (5)

for any pair θ′j , θ
′′
j of possible realizations of j’s type.

Note that insurance is required only bilaterally, taking an expectation over the types of all
remaining players. Changing the types of two or more players simultaneously can still have
an impact on player i’s expected payoff.18 The following proposition provides an alternative
characterization of the insurance property in game-theoretic terms.

Proposition 3. A social choice function f has the insurance property if and only if in the
corresponding direct mechanism we have that, for all i and j 6= i,

Πi(s′j , s
T
−j) = Πi(s′′j , s

T
−j) (6)

for any pair s′j , s
′′
j of possible strategies of player j.

When the insurance property is satisfied, players are unable to affect each others’ payoffs
by unilaterally misreporting the own type in the direct mechanism. The social choice function
then remains implementable with interdependent preferences provided that it is implementable
in BNE. This follows from the more general insight that in situations where players do not
have the possibility to affect the payoffs of others, they will behave as if they were egoistic
maximizers.19 In the following, we will say that a social choice function is psychologically robust
whenever it is implementable in BNE and exhibits the insurance property.

18With only two individuals, the insurance property is virtually the opposite of the bilateral externalities
property from Definition 5. It is possible, however, that an SCF neither exhibits bilateral externalities nor
satisfies the insurance property, whenever only one player is indifferent with respect to the other’s type.

19Similar observations, albeit not in a mechanism design framework, have already been made by Levine (1998),
Fehr and Schmidt (1999), Bolton and Ockenfels (2000) or Segal and Sobel (2007). In mechanism design theory,
the property of “non-bossiness” (Satterthwaite and Sonnenschein, 1981) requires that no agent can ever change
the outcome for another agent without also changing the own outcome. Similarly, Baliga and Sjöström (2011)
conjecture that mechanisms in which players can influence their opponents’ payoffs without own sacrifice “...may
have little hope of practical success if agents are inclined to manipulate each others’ payoffs due to feelings of spite
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We want to illustrate the idea of psychological robustness by introducing a specific and simple
equilibrium concept. It is a robust version of a BNFE which relaxes the assumption that the
parameters y are observable to the mechanism designer.20

Definition 7. A strategy profile s∗ is a psychologically robust equilibrium (PRE) if it is a BNFE
for all y ∈ [0,∞[n(n−1).

Proposition 4. If a social choice function is implementable in BNE and has the insurance
property, then it is implementable in PRE.

In the following sections, we will make heavy use of the insurance property. It will enable
us to show that, in our independent private values environment, we can make essentially any
social choice function psychologically robust, provided that it is implementable in BNE and
provided that we require budget balance only in expected terms. Hence, in these cases, the
requirement of psychological robustness is not more demanding than the conventional notion
of implementability in BNE. We will then show that, in symmetric environments, materially
efficient and symmetric social choice functions can be made psychologically robust even if we
insist on ex post budget balance. Finally, we will use the insurance property to show that social
choice functions that can be made the outcome of a screening procedure or those that admit a
decentralization via a price system are also psychologically robust.

5.2 A Possibility Result Based on Expected Budget Balance

Consider first an environment where both surplus and deficit of a mechanism are possible,
that is, where T = Rn is the unrestricted set of transfers. Budget balance in expectation,
Eθ

[∑n
i=1 tfi (θ)

]
≤ 0, is often a reasonable constraint in such environments. The following

theorem shows that, to any social choice function that is implementable in BNE, there exists
another one that has the insurance property and is essentially equivalent otherwise. In particular,
it entails the same expected transfers and utilities.

Theorem 3. Let f be an SCF that is implementable in BNE. Then there exists an SCF f̄ that
has the following properties:
(a) The decision rule is the same as under f : qf̄

i (θ) = qf
i (θ) for all i ∈ I and θ ∈ Θ.

(b) Expected transfers are the same as under f : Eθ

[∑n
i=1 tf̄i (θ)

]
= Eθ

[∑n
i=1 tfi (θ)

]
.

(c) Interim payoffs of every individual i ∈ I and type θi ∈ Θi are the same as under f :

Eθ−i
[vi(q

f̄
i (θi, θ−i), θi) + tf̄i (θi, θ−i)] = Eθ−i

[vi(q
f
i (θi, θ−i), θi) + tfi (θi, θ−i)].

(d) f̄ is implementable in BNE.
(e) f̄ has the insurance property.

or kindness.” From our perspective, the following qualifications are appropriate. First, with common knowledge
of the kindness generating process, giving players the opportunity to affect each others’ payoffs becomes, quite
to the contrary, an important design instrument. Without common knowledge, the insurance property implies
robustness but it does not contain any requirement about the impact of deviations on own outcomes or payoffs.
Fehr et al. (2011b) report on the behavioral non-robustness of the Moore-Repullo mechanism for subgame-perfect
implementation under symmetric information. This mechanism does not satisfy what would be an appropriate
modification of our insurance property for the Moore-Repullo framework.

20Appendix B.2 contains a detailed discussion of this solution concept. In particular, it is shown that the
revelation principle holds for implementation in PRE.
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The proof is constructive. We start from f and construct a new social choice function f̄

which has the same decision rule as f but a modified transfer scheme (tf̄1 , . . . , tf̄n). This modified
transfer scheme ensures that the payoff of type θi of individual i depends only on θi but not on
θ−i, which implies that the insurance property is satisfied.21 Formally, denote by

ρ(θi) = Eθ−i [vi(q
f
i (θi, θ−i), θi) + tfi (θi, θ−i)] (7)

the ex interim expected payoff of type θi of player i under the initial social choice function f ,
and construct the new transfer scheme so that

vi(q
f
i (θi, θ−i), θi) + tf̄i (θi, θ−i) = ρ(θi) , (8)

for all θ−i. Note that equations (7) and (8) pin down tf̄i (θ), for every i ∈ I and θ ∈ Θ. By
construction, expected payments are the same under both social choice functions, since

Eθ−i [t
f̄
i (θi, θ−i)] = ρ(θi)− Eθ−i [vi(q

f
i (θi, θ−i), θi)] = Eθ−i [t

f
i (θi, θ−i)] .

Now, since consumption levels and expected payments are, for every type of every individual,
identical under the new and the initial social choice function, it follows that the new social choice
function is also implementable in BNE.

Theorem 3 implies that, when budgetary implications matter only in expected terms, we
can psychologically robustly implement any decision rule that would be implementable in BNE.
Implementability in a world inhabited by selfish homines oeconomicii is then not only necessary
but also sufficient for psychological robustness. For instance, d’Aspremont and Gerard-Varet
(1979) establish the possibility to implement any surplus-maximizing decision rule in BNE,
together with the stronger requirement of ex post budget balance. Theorem 3 then implies that
any such rule can be made psychologically robust if we are allowed to replace ex post budget
balance by budget balance in expectation. Theorem 3 also extends to models that include
interim participation constraints, i.e. minimal values of Eθ−i [vi(q

f
i (θi, θ−i), θi) + tfi (θi, θ−i)] for

different players i and types θi. The reason is that the transfer schemes (tf̄1 , ..., tf̄n) and (tf1 , ..., tfn)
are such that the interim payoffs of all types and all players are the same. For some prominent
applications this means the following:

• Second-price auction: A second-price auction is a special case of the above environment,
where f is such that a private good is assigned to an individual with maximal valuation,
who then has to pay the second highest valuation. As is well known, truth-telling is a
BNE of the corresponding direct mechanism (in fact, even an equilibrium in dominant
strategies), and all types of all individuals are willing to participate. For this setting,
Theorem 3 implies that there exists a modified version of the second-price auction that
shares all these properties and is psychologically robust.

• Partnership dissolution: The problem to dissolve a partnership efficiently, which has been
21Börgers and Norman (2009) investigate a related question, asking under which conditions an otherwise

equivalent but ex post budget balanced SCF exists for a given SCF. In contrast, we are interested in insurance
against other players’ type realizations, not insurance against mechanism deficits.
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studied by Cramton et al. (1987), is also a special case of our setup. In this application,
shares of an object have to be assigned to a number of agents who have private infor-
mation about their valuation of those shares, and who have pre-specified property rights.
Cramton et al. (1987) require that participation constraints are satisfied, or equivalently,
that an agreement is reached with unanimity, and obtain possibility results for an efficient
allocation of shares. Theorem 3 implies that these results can be generalized to a setting
where (anti-)social preferences matter among partners.

• Public goods provision: Various authors have studied the provision of excludable and non-
excludable public goods in the presence of participation constraints (Güth and Hellwig
1986, Hellwig 2003, Norman 2004). Again, Theorem 3 implies that these results generalize
to a setting where individuals are willing to react in a reciprocal way to the other agents’
contributions to a public good.

Whether or not expected (as opposed to ex post) budget balance is a reasonable requirement
will depend on the application. When it comes to public goods provision, insisting on ex post
budget balance is appropriate if there is no external source of funds that may help to cover
the provision costs. By contrast, an auctioneer who runs several independent auctions may be
willing to accept losses on some, provided that overall there a is positive expected surplus. A
focus on expected budget balance can also be justified if the number of individuals is large. With
many individuals, the probability that the mechanism runs a surplus or a deficit larger than ε,
for an arbitrary ε > 0, converges to zero if and only if expected budget balance holds, due to
the law of large numbers.

5.3 A Possibility Result Based on Ex Post Budget Balance

Let us return to an environment where T = T̄ , so that mechanisms can never run a deficit. Full
efficiency of an SCF then requires, in addition to the decision rule being surplus-maximizing,
the transfers to satisfy ex post budget balance:

∑n
i=1 tfi (θ) = 0, for all θ ∈ Θ.

To provide sufficient conditions for psychological robustness under ex post budget balance,
we study the expected externality mechanism of d’Aspremont and Gerard-Varet (1979) or Arrow
(1979), following the exposition in Mas-Colell et al. (1995, chapter 23). The expected externality
mechanism is a direct mechanism Φ = [Θ1, ...,Θn, f ] where the SCF f is constructed as follows.
First, the decision rule (qf

1 , ..., qf
n) is surplus-maximizing, so that for all θ ∈ Θ,

(qf
1 (θ), . . . , qf

n(θ)) ∈ arg max
(q1,...,qn)∈Q

n∑

i=1

vi(qi, θi).

The transfers (tf1 , ..., tfn) are such that

tfi (θi, θ−i) = Eθ−i


∑

j 6=i

vj(q
f
j (θi, θ−i), θj)


 + hi(θ−i), (9)
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where hi(θ−i) is defined as as

hi(θ−i) = −
(

1
n− 1

)∑

j 6=i

Eθ−j


∑

h6=j

vh(qf
h(θj , θ−j), θh)


 . (10)

This social choice function satisfies ex post budget balance. Moreover, it satisfies the incentive
compatibility constraints in (3), implying that truth-telling is a BNE in the corresponding direct
mechanism. In the following we show that it also has the insurance property if n = 2 or if
environment and decision rule jointly satisfy a property that we call symmetry.

Theorem 4. Consider an expected externality mechanism Φ = [Θ1, ...,Θn, f ]. The SCF f has
the insurance property if n = 2 or if symmetry holds, so that for all i and j 6= i, k 6= i,

Eθ−i

[
vj(q

f
j (θi, θ−i), θj)

]
= Eθ−i

[
vk(q

f
k (θi, θ−i), θk)

]
(11)

for all types θi ∈ Θi.

Symmetry requires that all opponents of i obtain an identical expected payoff net of transfers,
no matter which type θi ∈ Θi is realized.22 Symmetry arises naturally if the environment is such
that all players have identical payoff functions, their types are independently and identically
distributed, and the decision rule (qf

1 , ..., qf
n) treats all individuals identically.

The intuition for Theorem 4 is as follows: The expected externality mechanism derives its
name from the fact that each player pays for the expected impact that his strategy choice has
on the other players’ payoffs. If there are just two players, this implies that player 1 is perfectly
insured against the randomness in player 2’s type, or equivalently, against changes of player 2’s
strategy. Under symmetry, the argument generalizes to more than two players: If each player’s
externalities are evenly distributed among all other players, then, once more, the insurance
property is satisfied.23 To illustrate that the insurance property will generally not be satisfied
without symmetry, in section A.9 of the appendix we give a simple three player example of an
efficient but non-symmetric decision rule for which the the expected externality mechanism does
not satisfy the insurance property.

5.4 Extension: Robustness of Screening Mechanisms and Price Systems

As an extension, we use our formalism to assess the psychological robustness of social choice
functions that are of particular interest from the perspective of general equilibrium theory, public
finance and contract theory. In general equilibrium theory and public finance, one typically looks
at social choice functions that admit a decentralization via a (possibly non-linear) price system,
that may be shaped by the government’s tax policy. A prominent topic in contract theory is the
design of optimal screening or incentive schemes.

22In contrast to the insurance property, symmetry does not require the opponents’ payoffs to be independent
of θi, but rather that the opponents’ payoffs are always identical and are thus affected equally by player i’s type.

23For an example with two players, the property that each player’s payoff is independent of the other’s an-
nouncement has also been observed by Mathevet (2010, p. 414). Desiraju and Sappington (2007) show that, in
their model with two agents and privately observed cost parameters, transfers can be structured so as to avoid
ex post inequality and hence render inequality aversion irrelevant, whenever the agents are ex ante identical.
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We consider an environment E as described in Section 3.1, but we now allow for allocations
a = (a1, . . . , an) ∈ A = A1 × . . . × An that specify for each individual i a consumption bundle
ai ∈ Ai, which can be multidimensional. The set of possible types of individual i is given by
Θi = {θ1

i , . . . , θ
mi
i }. Payoff functions are given by πi(ai, θi), so that we remain within a private

values framework but dispense with the assumption of quasi-linearity. A social choice function
f = (af

1 , . . . , af
n) specifies for each individual a bundle af

i (θ) ∈ Ai for each vector of types. We
focus on social choice functions that are simple in the following sense: For each individual i

there exist bundles ā1
i , . . . , ā

mi
i so that

af
i (θk

i , θ−i) = āk
i

for any k = 1, ...,mi, independently of θ−i. The term “simple” is borrowed from Dierker and
Haller (1990). A simple social choice function does not make use of the possibility to make the
outcome of individual i dependent on the types of the other individuals. Rather, the outcome
for i is a function of i’s type only.24

There are many applications where one is interested in simple social choice functions. Ex-
amples include the the study of insurance markets with adverse selection á la Rothschild and
Stiglitz (1976), the study of optimal monopoly regulation in the tradition of Baron and Myerson
(1982), mechanism design approaches to the Mirrlees (1971)-problem of optimal income taxa-
tion, such as Stiglitz (1982), or mechanism design approaches to problems of non-linear pricing
such as Mussa and Rosen (1978).

Simple social choice functions obviously have the insurance property. The property of simplic-
ity is in fact much stronger than the insurance property. Hence a simple SCF is psychologically
robust if and only if it is implementable in BNE. Implementability in BNE in turn holds if and
only if the following incentive compatibility constraints are satisfied: For each individual i and
all k, l ∈ {1, ..., mi},

πi(āk
i , θ

k
i ) ≥ πi(āl

i, θ
k
i ). (12)

The following proposition summarizes these observations.

Proposition 5. A simple SCF is psychologically robust if and only if it satisfies the incentive
compatibility constraints in (12).

A related question is whether outcomes that can be decentralized by means of a price system
are psychologically robust. In many applications one is actually interested in such social choice
functions. This is true for any application of general equilibrium theory. It is also true for any
model of public finance which rests on the assumption that the tax system shapes an individual’s
budget set, and that, given those budget sets, individuals solve consumer choice problems. For

24Simple social choice functions raise two questions. First, there is the question of what the appropriate resource
constraint looks like. Models that work with simple SCFs typically require feasibility in expectation. With many
individuals, this may be justified with an appeal to the law of large numbers. The second question is whether
simple social choice functions are optimal from a normative perspective. Bierbrauer (2011) provides a discussion
of this question in the context of a Mirrleesian model of optimal redistributive income taxation, and provides
conditions which imply an optimality of simple social choice functions.
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instance, this holds for any model of taxation using the framework of Ramsey (1927). It is also
true for the original formulation of the optimal income tax problem by Mirrlees (1971).

We will use an argument by Hammond (1979) to demonstrate the psychological robustness of
all these social choice functions. For simplicity, consider a symmetric version of the environment
above, so that all individuals have the same consumption set Ai = Ā, the same set of possible
types Θi = Θ̄, and the same payoff function πi = π. A simple SCF f then specifies bundles
ā1, . . . , ām ∈ Ā so that

af
i (θk, θ−i) = āk

for all i and k = 1, ...,m. Hammond (1979) shows that such a social choice function satisfies the
incentive compatibility constraints in (12) if and only if it can be decentralized by means of a
(possibly non-linear) budget set, i.e., if and only if there exists some set B ⊆ Ā such that

āk ∈ arg max
b∈B

π(b, θk) (13)

for all k = 1, ..., m. Proposition 5 therefore implies, in particular, that any social choice function
that can be decentralized by some budget set is psychologically robust. For instance, whatever
the inclination of individuals to reward kind and to punish unkind behavior of others, a competi-
tive equilibrium allocation or an allocation that is induced by some tax system is implementable
provided that it is implementable in a model with selfish individuals. Dufwenberg et al. (2011b)
arrive at a similar conclusion of behavioral irrelevance of other-regarding preferences in compet-
itive equilibrium under complete information, for a comprehensive model of social preferences
that may depend both on outcomes and consumption opportunities.

6 Conclusions

This paper went through the workhorse model of mechanism design theory, known as the in-
dependent private values model, under the assumption that individuals have intention-based
social preferences. The analysis had two main parts, which differ with respect to the degree
of psychological sophistication. In the first part, we assumed common knowledge about all the
details of how kindness sensations emerge, so that the designer can exploit this knowledge when
designing an allocation mechanism. This informational requirement is demanding, and it has
to be seen in applied and experimental work to what extent our insights can be used in prac-
tice. In any case, the implications are drastic: The revelation principle fails and the design
of choice sets becomes a non-trivial part of mechanism design. In addition, all outcomes that
are, in a conventional sense, efficient, become implementable, so that several of the classical
impossibility results for which mechanism design theory is famous are turned into possibility
results. Finally, it becomes possible to compare different mechanisms which all achieve the same
economic outcome according to the kindness sensations that they induce. There may even be
a best mechanism for a given economic outcome. The second part of the paper dispensed with
the common knowledge assumption. We asked whether a mechanism designer can still resort to
the mechanisms and outcomes which have attracted the attention of conventional mechanism
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design theory. Put differently, we asked whether these mechanisms are psychologically robust,
in the sense that they yield the desired outcome even though they were derived from a (possibly)
misspecified model of behavior, namely selfish payoff maximization. Our answer to this question
is basically “yes”. We show that conventional mechanisms – such as a second-price auction, an
expected externality mechanism, a screening mechanism, or a price system – need to be adjusted
only slightly, if at all, in order to achieve psychological robustness.

There are many interesting and important questions that could be addressed by future re-
search. First, one might want to go beyond the independent private values case, or examine a
framework with complete, but non-verifiable information (Maskin 1999). Second, modelling the
mechanism designer as a player, to whose behavior the agents attribute good or bad intentions,
can be a relevant exercise for applications such as auction design or the design of optimal public
policy. Finally, working out the details of psychologically robust mechanisms for many of the
relevant applications strikes us as important and promising.

In addition, the following issues deserve closer scrutiny. First, with the conventional solution
concept of a Bayes-Nash equilibrium, the focus on normal form mechanisms is typically justified
as follows: Any equilibrium in an extensive form mechanism remains an equilibrium in the
corresponding normal form, so that moving from normal to extensive form mechanisms can only
reduce the set of implementable social choice functions. It is unclear whether this is also true
with intention-based social preferences. A major obstacle to answering this question is the lack
of a general theory of intentions in extensive form games with incomplete information. Second,
there is the question which social choice functions can be implemented as the unique equilibrium
outcome of some mechanism. Again, it is an open question whether the answers which have
been given in the classical approach extend to models with interdependent preferences.

Finally, several of our results lend themselves to experimental testing. First and foremost,
this concerns the role of unused actions as a design instrument. Second, our analysis has explored,
theoretically, the possibility to rank different mechanisms that implement the same material
outcome in the kindness dimension. This raises the question whether differences in kindness
perceptions across outcome-equivalent mechanisms can also be identified empirically.
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A Appendix

A.1 Proof of Proposition 1

We first show that G′
i(m

′
−i) ⊆ Gi(h−i(m′

−i)). Let a ∈ G′
i(m

′
−i). Hence, there exists m′

i so that
g′(m′

i, m
′
−i) = a. By (2), this implies that g(hi(m′

i), h−i(m′
−i)) = a, and hence a ∈ Gi(h−i(m′

−i)).
We now show that Gi(h−i(m′

−i)) ⊆ G′
i(m

′
−i). Let a ∈ Gi(h−i(m′

−i)). Hence, there exists
mi ∈ Mi so that g(mi, h−i(m′

−i)) = a. Since the function h is surjective there exists m′
i with

hi(m′
i) = mi. Then (2) implies that g′(m′

i,m
′
−i) = a. Hence, a ∈ G′

i(m
′
−i).

A.2 Proof of Theorem 1

Idea and structure of proof. We first deal with the case of 2 agents, n = 2. Below, we explain
how to generalize the argument for an arbitrary number of players.
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Fix an efficient SCF f and consider the direct mechanism Φ = [M1,M2, g] for f , that is,
M1 = Θ1, M2 = Θ2 and g = f . We denote by Si the set of player i’s pure strategies, and
by Πi : S1 × S2 → R player i’s ex ante expected material payoff. Let sT = (sT

1 , sT
2 ) be the

truth-telling profile, with its associated kindness values κ21(sT ) and κ12(sT ). As argued in the
body of the text, efficiency of f implies that sT is a BNFE in Φ when κ21(sT ) = 1/y1 and
κ12(sT ) = 1/y2. Now, in general this condition on kindness values will not be satisfied by sT

in the direct mechanism. We will therefore show how to extend Φ to an augmented revelation
mechanism Φ̃, by introducing additional messages for each player j to adjust κji(sT ) to the
desired value 1/yi. Once κji(sT ) = 1/yi holds in Φ̃ for both players, efficiency of f again implies
that sT is a BNFE in Φ̃, and the additional messages will actually remain unused.

We first study the problem of adding messages for player 1 to manipulate

κ12(sT ) = Π2(sT )− πe1
2 (sT ).

This kindness value can either be increased by making the equitable payoff πe1
2 (sT ) smaller, or

be decreased by making πe1
2 (sT ) larger. We will show that, starting from the direct mechanism,

πe1
2 (sT ) can in fact be adjusted to any arbitrary value by an appropriate choice of Φ̃.
In the following we denote by E1(sT

2 ) the set of conditionally efficient strategies of player 1
in the direct mechanism, and by

πe1
2 (sT

2 ) =
1
2

[
min

s1∈E1(sT
2 )

Π2(s1, s
T
2 ) + max

s1∈E1(sT
2 )

Π2(s1, s
T
2 )

]

the equitable payoff in the direct mechanism.

Decreasing πe1
2 (sT

2 ). Let smin
1 ∈ arg mins1∈E1(sT

2 ) Π2(s1, s
T
2 ) be a strategy that minimizes

player 2’s payoff among efficient strategies in the direct mechanism Φ. Then smin
1 (Θ1) ⊆ Θ1 is

the range of smin
1 , and r = |smin

1 (Θ1)| is its cardinality. Let σ : {d1, d2, ..., dr} → smin
1 (Θi) be an

arbitrary bijective function, which assigns to every element of the set {d1, d2, ..., dr} a distinct
type from the range smin

1 (Θi). The inverse of σ is denoted σ−1. We now construct the extended
mechanism Φ̃ = [M̃1, M̃2, g̃] from Φ as follows. Let M̃1 = Θ1 ∪ {d1, d2, ..., dr} and M̃2 = Θ2,
i.e. we add r new messages for player 1 and keep player 2’s message set unchanged. Hence we
have new strategy sets S̃1 ⊃ S1 and S̃2 = S2. We construct g̃ from g by keeping g̃(m) = g(m)
whenever m ∈ Θ1 × Θ2. When m = (dj , θ2) for some j ∈ {1, ..., r} and θ2 ∈ Θ2, we define
g̃(m) = (qg̃

1(m), qg̃
2(m), tg̃1(m), tg̃2(m)) by

qg̃
1(dj , θ2) = qg

1(σ(dj), θ2), qg̃
2(dj , θ2) = qg

2(σ(dj), θ2)

and
tg̃1(dj , θ2) = tg1(σ(dj), θ2) + ε, tg̃2(dj , θ2) = tg2(σ(dj), θ2)− δ

for some pre-specified ε and δ with 0 < ε ≤ δ. Hence announcing dj has the same consequences
as announcing type σ(dj) ∈ smin

1 (Θ1) ⊆ Θ1, except for additional transfers from player 2 to
player 1. With slight abuse of notation, we denote player i’s ex ante expected payoffs in Φ̃ by
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Πi : S̃1× S̃2 → R as well, because payoffs in Φ and Φ̃ coincide on S1×S2, so that we can simply
extend Πi to the new strategy sets. Let Ẽ1(sT

2 ) be the set of efficient strategies for player 1 in
Φ̃, conditional on player 2 still telling the truth.

We first prove that the maximization part in the definition of πe1
2 (sT

2 ) remains unaffected by
the mechanism extension.

Lemma 1. For any arbitrary ε, δ with 0 < ε ≤ δ, it holds that

max
s1∈Ẽ1(sT

2 )
Π2(s1, s

T
2 ) = max

s1∈E1(sT
2 )

Π2(s1, s
T
2 ).

Proof. Step 1. We first claim that, for the maximization in Φ, we can replace E1(sT
2 ) by S1, i.e.,

max
s1∈E1(sT

2 )
Π2(s1, s

T
2 ) = max

s1∈S1

Π2(s1, s
T
2 ).

The inequality maxs1∈E1(sT
2 ) Π2(s1, s

T
2 ) ≤ maxs1∈S1 Π2(s1, s

T
2 ) immediately follows from E1(sT

2 ) ⊆
S1. To obtain a contradiction, assume maxs1∈E1(sT

2 ) Π2(s1, s
T
2 ) < maxs1∈S1 Π2(s1, s

T
2 ), and let

smax
1 ∈ arg maxs1∈S1 Π2(s1, s

T
2 ), which implies smax

1 /∈ E1(sT
2 ). Then there exists, by finiteness of

S1, a strategy s′1 ∈ E1(sT
2 ) that Pareto dominates smax

1 and satisfies Π2(s′1, s
T
2 ) ≥ Π2(smax

1 , sT
2 ) >

maxs1∈E1(sT
2 ) Π2(s1, s

T
2 ), a contradiction.

The same argument holds for the extended mechanism Φ̃, i.e. we can replace Ẽ1(sT
2 ) by S̃1

when maximizing Π2. Thus the lemma follows when we have established

max
s1∈S̃1

Π2(s1, s
T
2 ) = max

s1∈S1

Π2(s1, s
T
2 ).

Step 2. The inequality maxs1∈S̃1
Π2(s1, s

T
2 ) ≥ maxs1∈S1 Π2(s1, s

T
2 ) follows from S1 ⊂ S̃1.

For the other inequality, observe that for every s̃1 ∈ S̃1\S1 we can construct an associated
strategy s1 ∈ S1 by replacing the announcement of any dj ∈ {d1, d2, ..., dr} by σ(dj). Formally,
s1(θ1) = s̃1(θ1) whenever s̃1(θ1) ∈ Θ1, and s1(θ1) = σ(s̃1(θ1)) whenever s̃1(θ1) ∈ {d1, d2, ..., dr}.
It follows that Π2(s̃1, s

T
2 ) < Π2(s1, s

T
2 ), so that maxs1∈S̃1

Π2(s1, s
T
2 ) ≤ maxs1∈S1 Π2(s1, s

T
2 ). ¤

We now examine the minimization part in the definition of πe1
2 (sT

2 ). We show that the
minimum can be decreased to any arbitrary value, by an appropriate choice of δ.

Lemma 2. For any arbitrary ε, δ with 0 < ε ≤ δ, it holds that

min
s1∈Ẽ1(sT

2 )
Π2(s1, s

T
2 ) = min

s1∈E1(sT
2 )

Π2(s1, s
T
2 )− δ.

Proof. Step 1. Consider strategy smin
1 ∈ E1(sT

2 ) ⊆ S1 from above, and construct the associated
strategy s̃1 ∈ S̃1 by replacing every announcement of a type θ̄1 ∈ smin

1 (Θ1) by the associated
new message σ−1(θ̄1). Formally, s̃1(θ1) = σ−1(smin

1 (θ1)) for all θ1 ∈ Θ1. Then it follows that

Π1(s̃1, s
T
2 ) = Π1(smin

1 , sT
2 ) + ε, Π2(s̃1, s

T
2 ) = Π2(smin

1 , sT
2 )− δ. (14)
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Step 2. We claim that s̃1 ∈ Ẽ1(sT
2 ), which then implies

min
s1∈Ẽ1(sT

2 )
Π2(s1, s

T
2 ) ≤ min

s1∈E1(sT
2 )

Π2(s1, s
T
2 )− δ.

To obtain a contradiction, suppose s̃1 /∈ Ẽ1(sT
2 ), so that there exists s̃′1 ∈ S̃1 such that

Π1(s̃′1, s
T
2 ) ≥ Π1(s̃1, s

T
2 ), Π2(s̃′1, s

T
2 ) ≥ Π2(s̃1, s

T
2 ), (15)

with at least one of the inequalities being strict. Starting from s̃′1, construct s′1 ∈ S1 by replacing
the announcement of any dj ∈ {d1, d2, ..., dr} by σ(dj). Formally, s′1(θ1) = s̃′1(θ1) whenever
s̃′1(θ1) ∈ Θ1, and s′1(θ1) = σ(s̃′1(θ1)) whenever s̃′1(θ1) ∈ {d1, d2, ..., dr}. We obtain

Π1(s′1, s
T
2 ) = Π1(s̃′1, s

T
2 )− xε, Π2(s′1, s

T
2 ) = Π2(s̃′1, s

T
2 ) + xδ, (16)

where x ∈ [0, 1] is the probability of announcements from {d1, d2, ..., dr} under s̃′1. Conditions
(14), (15) and (16) together imply

Π1(s′1, s
T
2 ) ≥ Π1(smin

1 , sT
2 ) + (1− x)ε, Π2(s′1, s

T
2 ) ≥ Π2(smin

1 , sT
2 )− (1− x)δ, (17)

where at least one inequality is strict. If x = 1, this contradicts smin
1 ∈ E1(sT

2 ). Hence assume
x < 1, so that Π1(s′1, s

T
2 ) > Π1(smin

1 , sT
2 ). From smin

1 ∈ E1(sT
2 ) it then follows that Π2(s′1, s

T
2 ) <

Π2(smin
1 , sT

2 ) must hold. Now, if s′1 ∈ E1(sT
2 ), this contradicts that smin

1 minimizes Π2(s1, s
T
2 )

on E1(sT
2 ). Otherwise, if s′1 /∈ E1(sT

2 ), there exist strategies in S1 that Pareto dominate s′1. Any
such strategy s′′1 ∈ S1 must, however, still satisfy Π2(s′′1, s

T
2 ) < Π2(smin

1 , sT
2 ), since otherwise it

would also Pareto dominate smin
1 . Finiteness of S1 then implies that there exists s′′1 ∈ E1(sT

2 )
with Π2(s′′1, s

T
2 ) < Π2(smin

1 , sT
2 ), which is the final contradiction.

Step 3. The lemma follows when we can also establish the opposite inequality

min
s1∈Ẽ1(sT

2 )
Π2(s1, s

T
2 ) ≥ min

s1∈E1(sT
2 )

Π2(s1, s
T
2 )− δ.

To obtain a contradiction, assume

min
s1∈Ẽ1(sT

2 )
Π2(s1, s

T
2 ) < min

s1∈E1(sT
2 )

Π2(s1, s
T
2 )− δ, (18)

where the right hand side equals Π2(s̃1, s
T
2 ) according to (14). Let s̃min

1 ∈ arg mins1∈Ẽ1(sT
2 ) Π2(s1, s

T
2 ).

Efficiency of s̃min
1 then requires

Π1(s̃min
1 , sT

2 ) > Π1(s̃1, s
T
2 ). (19)

Let smin′
1 ∈ S1 be obtained from s̃min

1 by, again, replacing the announcement of any dj ∈
{d1, d2, ..., dr} by σ(dj). This implies

Π1(smin′
1 , sT

2 ) = Π1(s̃min
1 , sT

2 )− yε, Π2(smin′
1 , sT

2 ) = Π2(s̃min
1 , sT

2 ) + yδ, (20)
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where y ∈ [0, 1] is the probability of announcements from {d1, d2, ..., dr} under s̃min
1 . Conditions

(14), (18), (19) and (20) together then imply

Π1(smin′
1 , sT

2 ) > Π1(smin
1 , sT

2 ), Π2(smin′
1 , sT

2 ) < Π2(smin
1 , sT

2 ).

Now, if smin′
1 ∈ E1(sT

2 ) this contradicts that smin
1 minimizes Π2(s1, s

T
2 ) on E1(sT

2 ). Otherwise,
we obtain a contradiction exactly as in step 2. ¤

Lemmas 1 and 2 together imply that, starting from the direct mechanism, we can decrease
the equitable payoff arbitrarily, with the help of the examined mechanism extension.

Increasing πe1
2 (sT

2 ). The mechanism extension used to increase the equitable payoff works
analogously. Let smax

1 ∈ arg maxs1∈E1(sT
2 ) Π2(s1, s

T
2 ) and let r = |smax

1 (Θ1)| be the cardinality of
the range of smax

1 . Fix any bijection σ : {d1, d2, ..., dr} → smax
1 (Θ1) and extend Φ to Φ̃ by letting

M̃1 = Θ1 ∪{d1, d2, ..., dr} and M̃2 = Θ2. The function g̃ again coincides with g on Θ1×Θ2. For
any m = (dj , θ2), let g̃(m) be given by

qg̃
1(dj , θ2) = qg

1(σ(dj), θ2), qg̃
2(dj , θ2) = qg

2(σ(dj), θ2)

and
tg̃1(dj , θ2) = tg1(σ(dj), θ2)− δ, tg̃2(dj , θ2) = tg2(σ(dj), θ2) + ε

with 0 < ε ≤ δ. Here, using messages from {d1, d2, ..., dr} redistributes from player 1 to player 2.
We have S̃1 ⊃ S1 and S̃2 = S2, we let Πi again denote player i’s ex ante expected payoffs defined
on the extension S̃1 × S̃2, and we write Ẽ1(sT

2 ) for the efficient strategies in Φ̃, conditional on
sT
2 . Observe that, if s1 /∈ E1(sT

2 ) for some s1 ∈ S1, then s1 /∈ Ẽ1(sT
2 ) holds as well, because

enlarging the strategy set cannot make a previously inefficient strategy efficient.
We first prove that the minimization part in the definition of πe1

2 (sT
2 ) remains unaffected by

the mechanism extension.

Lemma 3. For any arbitrary ε, δ with 0 < ε ≤ δ, it holds that

min
s1∈Ẽ1(sT

2 )
Π2(s1, s

T
2 ) = min

s1∈E1(sT
2 )

Π2(s1, s
T
2 ).

Proof. Step 1. Let smin
1 ∈ arg mins1∈E1(sT

2 ) Π2(s1, s
T
2 ). We claim that smin

1 ∈ Ẽ1(sT
2 ), which then

implies
min

s1∈Ẽ1(sT
2 )

Π2(s1, s
T
2 ) ≤ min

s1∈E1(sT
2 )

Π2(s1, s
T
2 ).

To obtain a contradiction, assume smin
1 /∈ Ẽ1(sT

2 ). This implies that there exists s̃1 ∈ S̃1\S1

with

Π1(s̃1, s
T
2 ) ≥ Π1(smin

1 , sT
2 ), Π2(s̃1, s

T
2 ) ≥ Π2(smin

1 , sT
2 ), (21)

with at least one of the inequalities being strict. Let s′1 ∈ S1 be the strategy obtained from s̃1
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by replacing the announcement of any dj ∈ {d1, d2, ..., dr} by σ(dj). It follows that

Π1(s′1, s
T
2 ) > Π1(s̃1, s

T
2 ), Π2(s′1, s

T
2 ) < Π2(s̃1, s

T
2 ). (22)

From (21) and (22), together with smin
1 ∈ E1(sT

2 ), it then follows that

Π1(s′1, s
T
2 ) > Π1(smin

1 , sT
2 ), Π2(s′1, s

T
2 ) < Π2(smin

1 , sT
2 ).

This is a contradiction to smin
1 minimizing Π2(s1, s

T
2 ) on E1(sT

2 ), with the same argument as in
the proof of Lemma 2.

Step 2. To establish the other inequality

min
s1∈Ẽ1(sT

2 )
Π2(s1, s

T
2 ) ≥ min

s1∈E1(sT
2 )

Π2(s1, s
T
2 ),

assume to the contrary that

min
s1∈Ẽ1(sT

2 )
Π2(s1, s

T
2 ) < min

s1∈E1(sT
2 )

Π2(s1, s
T
2 ).

Let s̃min
1 ∈ arg mins1∈Ẽ1(sT

2 ) Π2(s1, s
T
2 ). Since s1 /∈ E1(sT

2 ) implies s1 /∈ Ẽ1(sT
2 ), we must have

s̃min
1 ∈ S̃1\S1. Similarly to above, let s′1 ∈ S1 be the strategy obtained from s̃min

1 by replacing
the announcement of any dj ∈ {d1, d2, ..., dr} by σ(dj). It follows that

Π1(s′1, s
T
2 ) > Π1(s̃min

1 , sT
2 ), Π2(s′1, s

T
2 ) < Π2(s̃min

1 , sT
2 ).

If s′1 ∈ Ẽ1(sT
2 ), we have obtained a contradiction against s̃min

1 ∈ arg mins1∈Ẽ1(sT
2 ) Π2(s1, s

T
2 ).

Otherwise, there exists s′′1 ∈ Ẽ1(sT
2 ) that Pareto dominates s′1 but, due to s̃min

1 ∈ Ẽ1(sT
2 ), still

satisfies Π2(s′′1, s
T
2 ) < Π2(s̃min

1 , sT
2 ), again a contradiction. ¤

We now examine the maximization part in the definition of πe1
2 (sT

2 ). We show that the
maximum can be increased to any arbitrary value, by an appropriate choice of ε.

Lemma 4. For any arbitrary ε, δ with 0 < ε ≤ δ, it holds that

max
s1∈Ẽ1(sT

2 )
Π2(s1, s

T
2 ) = max

s1∈E1(sT
2 )

Π2(s1, s
T
2 ) + ε.

Proof. As shown in the proof of Lemma 1, step 1, the statement follows when we have established

max
s1∈S̃1

Π2(s1, s
T
2 ) = max

s1∈S1

Π2(s1, s
T
2 ) + ε,

where the right hand side equals Π2(smax
1 , sT

2 ) + ε. Starting from smax
1 , construct the associated

strategy s̃1 ∈ S̃1 by replacing every announcement of a type θ̄1 ∈ smax
1 (Θ1) by the associated new

message σ−1(θ̄1). Formally, s̃1(θ1) = σ−1(smax
1 (θ1)) for all θ1 ∈ Θ1. It follows that Π2(s̃1, s

T
2 ) =
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Π2(smax
1 , sT

2 ) + ε, which establishes the first inequality

max
s1∈S̃1

Π2(s1, s
T
2 ) ≥ max

s1∈S1

Π2(s1, s
T
2 ) + ε.

The opposite inequality holds as well, because for any s̃1 ∈ S̃1\S1 we can construct the associated
s1 ∈ S1 by replacing the announcement of any dj ∈ {d1, d2, ..., dr} by σ(dj), to obtain

Π2(s̃1, s
T
2 )−Π2(s1, s

T
2 ) = xε,

where x ∈]0, 1] is the probability of announcements from {d1, d2, ..., dr} under s̃1. ¤

Lemmas 3 and 4 together imply that, starting from the direct mechanism, we can increase
the equitable payoff arbitrarily, with the help of the examined mechanism extension.

Synthesis and generalization to an arbitrary number of players. The above construction can
be done equivalently for player 2. For profiles m where both players use an additional message
from the extended mechanism, the outcome g̃(m) can be specified arbitrarily, because we only
need to address unilateral deviations from sT . Hence we can achieve κji(sT ) = 1/yi for both
players in Φ̃, which implies that sT is a BNFE in Φ̃, which in turn implements the SCF f .

If the number of players exceeds 2, the construction above can be done for each pair of
players separately. The actions {dij

1 , . . . , dij
rij} of player i that are added to manipulate πei

j (sT
−i)

simply have to be chosen such that they do not affect the outcomes for all other players. Hence,
for every pair i and j we can make sure that κji(sT ) = 1/yij , so that all players become welfare
maximizers and our arguments about truth-telling apply unaltered.

A.3 A Social Choice Function Which Cannot Be Implemented in BNFE

Let I = {1, 2} and Θi = {1, 2, 3} for both i = 1, 2, where all types are equally likely. We consider
a social choice function which only specifies transfers. The consumption levels qi are set equal
to zero to all players and all types. Specifically, consider the SCF f in the following table, which
gives the transfers (tf1 , tf2) for every realization of types. This SCF is not materially efficient,
because it does not satisfy budget balance. It generates a strictly positive surplus whenever the
players’ types coincide.

θ2

θ1
1 2 3

1 (−3,−3) (0, 0) (0, 0)
2 (0, 0) (−2,−2) (0, 0)
3 (0, 0) (0, 0) (−1, 0)

According to the augmented revelation principle, if f is implementable in BNFE, then also in
an augmented revelation mechanism with truth-telling being a BNFE. In any such mechanism,
feasible strategies for player 1 include the strategy of always announcing type 2, denoted sM

1 ,
and the strategy of always announcing type 3, denoted sH

1 . Observe that a deviation from sT
1

to sH
1 makes both players better off, given sT

2 , and thus requires strict unkindness for not being
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used. Strategy sM
1 , by contrast, leaves the deviator unaffected but makes the opponent worse

off, and will thus be preferred to sT
1 by player 1 whenever there is strict unkindness. Formally,

for truth-telling sT
1 being weakly preferred to sH

1 we would need κ21(sT ) < 0 in the hypothetical
equilibrium sT , while for sT

1 being weakly preferred to sM
1 we must have κ21(sT ) ≥ 0. Hence

no matter how unused actions are introduced to manipulate κ21(sT ), these deviations cannot
simultaneously be made unattractive and the SCF cannot be implemented in BNFE.

A.4 Proof of Theorem 2

We first prove the “if” part: a utility-efficient mechanism exists when f exhibits bilateral exter-
nalities. To do so, we first establish that kindness values must be bounded in that case. We then
show how these bounds can be reached. In the second step, we prove the “only if” part: without
bilateral externalities, kindness terms can be increased arbitrarily in equilibrium. Throughout,
we use notation from the proof of Theorem 1.

Step 1. Suppose f is materially efficient and exhibits bilateral externalities, and consider the
direct mechanism Φ for f , with strategy sets Si, for i = 1, 2. We partition Si into three subsets
Si, Ŝi and Si as follows. Let Si be the set of strategies si that satisfy Πj(si, s

T
j ) > Πj(sT

i , sT
j ).

Bilateral externalities imply that Si is nonempty. It contains, for instance, the strategy of
always announcing the type θi that maximizes Eθj [vj(q

f
j (θj , θi), θj) + tfj (θj , θi)]. Let Si be the

set of strategies si that satisfy Πj(si, s
T
j ) < Πj(sT

i , sT
j ). Again, Si is nonempty due to bilateral

externalities. Finally, Ŝi is the set of strategies for which Πj(si, s
T
j ) = Πj(sT

i , sT
j ), so that sT

i ∈ Ŝi

and Ŝi is also nonempty.
As argued in the proof of Theorem 1, sT

i maximizes Πi(si, s
T
j )+Πj(si, s

T
j ) among all si ∈ Si,

by material efficiency of f . Hence we have Πi(si, s
T
j ) < Πi(sT

i , sT
j ) for all si ∈ Si and Πi(si, s

T
j ) ≤

Πi(sT
i , sT

j ) for all si ∈ Ŝi. Furthermore, denoting by κji(sT ) the kindness terms associated to the
truth-telling profile sT in Φ, sT

i is in fact a best response to sT
j for player i when κji(sT ) = 1/yi.

Consider any si ∈ Si. Condition Πi(sT
i , sT

j ) + yiκjiΠj(sT
i , sT

j ) ≥ Πi(si, s
T
j ) + yiκjiΠj(si, s

T
j ),

i.e., that a deviation from truth-telling to si is not attractive, can be rearranged to

κji ≤ 1
yi

Πi(sT
i , sT

j )−Πi(si, s
T
j )

Πj(si, sT
j )−Πj(sT

i , sT
j )

,

where the right hand side of the inequality is strictly positive by definition of Si. This defines
an upper bound

κmax
ji = min

si∈Si

(
1
yi

Πi(sT
i , sT

j )−Πi(si, s
T
j )

Πj(si, sT
j )−Πj(sT

i , sT
j )

)
,

so that, in the direct mechanism, all deviations from truth-telling to strategies in Si are unattrac-
tive if and only if κji(sT ) ≤ κmax

ji . From the previous arguments we must have 1/yi ≤ κmax
ji .

The analogous argument for Si yields the lower bound

κmin
ji = max

si∈Si

(
1
yi

Πi(si, s
T
j )−Πi(sT

i , sT
j )

Πj(sT
i , sT

j )−Πj(si, sT
j )

)
,

so that all deviations from truth-telling to strategies in Si are unattractive if and only if κji(sT ) ≥
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κmin
ji . We must have κmin

ji ≤ 1/yi, but κmin
ji can be positive or negative. Deviations from truth-

telling to strategies in Ŝi can never be attractive. Altogether, truth-telling sT is a BNFE in the
direct mechanism if and only if κmin

ji ≤ κji(sT ) ≤ κmax
ji for i = 1, 2 and j 6= i.

Since any augmented revelation mechanism Φ̃ with strategy sets S̃i, for i = 1, 2, satisfies
Si ⊆ S̃i, the bounds κmin

ji and κmax
ji are also bounds on the kindness values of any truth-telling

BNFE in any augmented revelation mechanism, because deviations to Si or Si are available in
Φ̃ as well. By the augmented revelation principle, this implies that κmin

ji and κmax
ji are bounds

for every mechanism-equilibrium pair that implements f . Thus max{κmin
21 · κmin

12 , κmax
21 · κmax

12 }
is an upper bound on the product of kindness terms for every mechanism-equilibrium pair that
implements f .

Case 1a. Suppose κmax
21 · κmax

12 ≥ κmin
21 · κmin

12 . We will construct an augmented revelation
mechanism which truthfully implements f and in which the bounds κmax

ji and κmax
ij are reached

for both players, so that the mechanism implements f utility-efficiently.
Using the construction given in the proof of Theorem 1, we can add messages to the direct

mechanism Φ for each player i to adjust κij(sT ) to the desired level κmax
ij . It remains to be shown

that sT is a BNFE in the resulting augmented revelation mechanism Φ̃. It follows from the above
derivation of the kindness bounds that deviations from truth-telling to strategies si ∈ Si ⊆ S̃i

are not attractive. Hence we only need to show that no player i wants to deviate to a strategy
from S̃i\Si.

If no messages have been added for player i in the construction of Φ̃, that is, if κij(sT ) = κmax
ij

already in the direct mechanism, this holds trivially because S̃i\Si is empty.
If messages have been added for player i to decrease πei

j (sT ), that is, if κij(sT ) < κmax
ij in the

direct mechanism, then for any strategy s̃i ∈ S̃i\Si there exists an associated strategy s′i ∈ Si

such that
Πi(s̃i, s

T
j ) = Πi(s′i, s

T
j ) + xε and Πj(s̃i, s

T
j ) = Πj(s′i, s

T
j )− xδ,

where x ∈]0, 1] is the probability of messages from {d1, d2, ..., dr} under s̃i, δ > 0 is determined
by the requirement to achieve κmax

ij , and ε is arbitrary with 0 < ε ≤ δ. Hence we have

Πi(s̃i, s
T
j ) + yiκ

max
ji Πj(s̃i, s

T
j ) = Πi(s′i, s

T
j ) + yiκ

max
ji Πj(s′i, s

T
j )− x

[
yiκ

max
ji δ − ε

]
.

The last term in squared brackets is weakly positive since yiκ
max
ji ≥ 1 and δ ≥ ε, so that all

strategies from S̃i\Si are weakly less attractive than the associated strategies from Si. Deviations
from truth-telling to S̃i\Si are therefore also not attractive.

If messages have been added for player i to increase πei
j (sT ), that is, if κij(sT ) > κmax

ij in
the direct mechanism, then for any s̃i ∈ S̃i\Si there exists an associated s′i ∈ Si such that

Πi(s̃i, s
T
j ) + yiκ

max
ji Πj(s̃i, s

T
j ) = Πi(s′i, s

T
j ) + yiκ

max
ji Πj(s′i, s

T
j )− x

[
δ − yiκ

max
ji ε

]
,

where x ∈]0, 1], ε > 0 is determined by the requirement to achieve κmax
ij , and δ is arbitrary as

long as δ ≥ ε. Hence for any s̃i ∈ S̃i\Si we can choose δ large enough to make s̃i less attractive
than the associated s′i, so that, by finiteness of S̃i, for large enough values of δ no deviation from
truth-telling to S̃i\Si is attractive.

Therefore, sT is a BNFE in the augmented revelation mechanism Φ̃, which reaches the upper
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bound κmax
21 · κmax

12 for psychological payoffs and thus implements f utility-efficiently.
Case 1b. Suppose κmax

21 ·κmax
12 < κmin

21 ·κmin
12 , which requires κmin

21 < 0 and κmin
12 < 0. Suppose

further that, in the direct mechanism, κji(sT ) ≥ κmin
ji holds for both players. Then we can use

the standard construction of Φ̃ to increase πei
j (sT ) for both players and achieve the (negative)

lower bounds on kindness. Deviations to strategies si ∈ Si ⊆ S̃i are again not attractive for any
i = 1, 2, by definition of κmin

ji . For any s̃i ∈ S̃i\Si, there exists an associated strategy s′i ∈ Si

such that

Πi(s̃i, s
T
j ) + yiκ

min
ji Πj(s̃i, s

T
j ) = Πi(s′i, s

T
j ) + yiκ

min
ji Πj(s′i, s

T
j )− x

[
δ − yiκ

min
ji ε

]
,

where x ∈]0, 1] and 0 < ε ≤ δ. The last term in squared brackets is positive, because κmin
ji < 0,

so that strategies from S̃i\Si are less attractive than those from Si, which implies that sT is a
BNFE which reaches the upper bound κmin

21 ·κmin
12 for psychological payoffs and thus implements

f utility-efficiently.
Case 1c. The remaining case is characterized by κmax

21 ·κmax
12 < κmin

21 ·κmin
12 and, for at least one

player i, κij(sT ) < κmin
ij holds in the direct mechanism. We claim that, in this case, whenever

sT is a BNFE in any augmented revelation mechanism for f , we must have κji(sT ) > 0 in this
equilibrium. The claim implies that κmax

21 · κmax
12 , and not κmin

21 · κmin
12 , is in fact an upper bound

on psychological payoffs in this case, which can then be reached as shown for case 1a above.
To establish the claim, observe again that κmax

21 · κmax
12 < κmin

21 · κmin
12 requires κmin

21 < 0 and
κmin

12 < 0. If κmin
ji < 0, then we must have Πi(si, s

T
j ) < Πi(sT

i , sT
j ) for all si ∈ Si, so that all

strategies from Si yield Pareto inefficient outcomes conditional on sT
j . This implies that, in the

direct mechanism Φ,
Πj(sT

i , sT
j ) = min

si∈Ei(sT
j )

Πj(si, s
T
j ),

because sT
i ∈ Ei(sT

j ) clearly holds due to material efficiency of f . For sT to be a BNFE in an
augmented revelation mechanism Φ̃, we must achieve a kindness level of at least κmin

ij , which
requires the equitable payoff πei

j (sT ) to be strictly smaller in Φ̃ than in the direct mechanism
Φ. We cannot have maxsi∈Ẽi(sT

j ) Πj(si, s
T
j ) < maxsi∈Ei(sT

j ) Πj(si, s
T
j ), because adding messages

cannot decrease the maximal payoff for player j (see the proof of Lemma 1). Hence we must
have

min
si∈Ẽi(sT

j )
Πj(si, s

T
j ) < min

si∈Ei(sT
j )

Πj(si, s
T
j ) = Πj(sT

i , sT
j ),

i.e., there must exist a strategy s̃i ∈ Ẽi(sT
j ) such that Πj(s̃i, s

T
j ) < Πj(sT

i , sT
j ), and, by bilateral

Pareto efficiency, Πi(s̃i, s
T
j ) > Πi(sT

i , sT
j ). But a deviation from sT

i to this strategy s̃i is clearly
profitable whenever κji(sT ) ≤ 0, which establishes the claim and completes the proof of the “if”
statement.

Step 2. Suppose f is materially efficient and does not exhibit bilateral externalities, so
there exists at least one player, say player 1, such that Eθ1 [v1(q

f
1 (θ1, θ2), θ1) + tf1(θ1, θ2)] is

independent of θ2. It follows that Π1(sT
1 , s2) is independent of s2 ∈ S2 in the direct mechanism

Φ (see Proposition 3 for a more general statement of this fact). Material efficiency of f then
implies that Π2(sT

1 , s2) ≤ Π2(sT
1 , sT

2 ) for all s2 ∈ S2.
We now construct an augmented revelation mechanism Φ̃, again as described in the proof
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of Theorem 1, in which κ21(sT ) = 1/y1 is achieved, by adding messages for player 2. Efficiency
of f then implies that sT

1 is a best response to sT
2 , irrespective of how unused messages are

designed for player 1. Specifically, we can now add unused messages to decrease πe1
2 (sT ) and

hence increase κ12(sT ) arbitrarily, letting κ21(sT )·κ12(sT ) = 1/y1 ·κ12(sT ) grow without bounds.
We only need to show that this is possible in a way such that sT

2 remains a best response for
player 2.

Since any s2 ∈ S2 satisfies Π1(sT
1 , s2) = Π1(sT

1 , sT
2 ) and Π2(sT

1 , s2) ≤ Π2(sT
1 , sT

2 ), deviations
from sT

2 to any s2 ∈ S2 are never profitable for player 2, irrespective of the size of κ12(sT ) > 0.
Now consider strategies s̃2 ∈ S̃2\S2, i.e., strategies that use messages which have been introduced
to achieve κ21(sT ) = 1/y1. The case where S̃2\S2 = ∅ is trivial. If the equitable payoff πe2

1 (sT
1 )

has been decreased, strategies s̃2 ∈ S̃2\S2 are unprofitable whenever κ12(sT ) ≥ 1/y2, with the
same argument as for case 1a above. When the equitable payoff πe2

1 (sT
1 ) has been increased, for

every value of κ12(sT ) we can choose δ for player 2 large enough to again make all deviations to
s̃2 ∈ S̃2\S2 unprofitable, as shown for case 1a above. Hence, letting δ grow to infinity together
with κ12(sT ), we can ensure that sT remains a BNFE.

A.5 Proof of Proposition 3

Step 1. We first show that (6) implies (5). If (6) holds then it must be true that

Πi(s
θ′j
j , sT

−j) = Πi(s
θ′′j
j , sT

−j) ,

where θ′j and θ′′j are arbitrary types from Θj , s
θ′j
j is the strategy where player j always announces

θ′j , whatever his true type, and s
θ′′j
j is the strategy where j always announces θ′′j . This condition

is equivalent to

∑

θ−j∈Θ−j

p(θ−j)
[
vi(q

f
i (θ′j , θ−j), θi) + tfi (θ′j , θ−j)

]
=

∑

θ−j∈Θ−j

p(θ−j)
[
vi(q

f
i (θ′′j , θ−j), θi) + tfi (θ′′j , θ−j)

]
,

so that condition (5) holds.
Step 2. We now show that (5) implies (6). For an arbitrary strategy sj and an arbitrary

type θj ∈ Θj , define
Λ(θj |sj) = {θ′j ∈ Θj | sj(θ′j) = θj} ,

and observe that

Πi(sj , s
T
−j) =

∑
θj∈Θj

[(∑
θ′j∈Λ(θj |sj)

p(θ′j)
)∑

θ−j∈Θ−j
p(θ−j)[vi(q

f
i (θj , θ−j), θi) + tfi (θj , θ−j)]

]

=
∑

θj∈Θj

[(∑
θ′j∈Λ(θj |sj)

p(θ′j)
)
Eθ−j [vi(q

f
i (θj , θ−j), θi) + tfi (θj , θ−j)]

]
.

Now, if (5) holds then there is a number ρ so that

Eθ−j [vi(q
f
i (θj , θ−j), θi) + tfi (θj , θ−j)] = ρ

47



for all θj ∈ Θj . Hence

Πi(sj , s
T
−j) = ρ

∑

θj∈Θj


 ∑

θ′j∈Λ(θj |sj)

p(θ′j)


 = ρ .

Since our choice of sj was arbitrary, this shows that, for all s′j and s′′j ,

Πi(s′j , s
T
−j) = Πi(s′′j , s

T
−j) = ρ

and hence (6) holds.

A.6 Proof of Proposition 4

Let f be a social choice function that is implementable in BNE and that has the insurance
property. We show that the direct mechanism truthfully implements f in PRE. Given the direct
mechanism and given that f has the insurance property, Proposition 3 implies that for all i and
j 6= i, there exists a number ρi(sT

−j) so that

Πi(sj , s
T
−j) = ρi(sT

−j)

for any strategy sj ∈ Sj . Now consider the truth-telling BNE sT and suppose all first- and
second-order beliefs to be correct. Then, trivially, π

ej

i (sT
−j) = ρi(sT

−j) and κji(sj , s
T
−j) = 0 for

all sj , and thus κji(sT ) = 0. Consequently, truth-telling is a best response of player i, for all
parameter values (yij)j 6=i, if sT

i is a maximizer of Πi(si, s
T
−i). This holds because sT is a BNE,

so that sT is also a PRE.

A.7 Proof of Theorem 3

Step 1. For any arbitrary SCF f = (qf
1 , . . . , qf

n, tf1 , . . . , tfn), we define the following expressions:

T f
i (θi) = Eθ−i [t

f
i (θi, θ−i)]

are the expected transfers to i conditional on type θi, and

V f
i (θi) = Eθ−i [vi(q

f
i (θi, θ−i), θi)]

are, analogously, i’s conditional expected payoffs net of transfers.
Step 2. Now, starting from f = (qf

1 , . . . , qf
n, tf1 , . . . , tfn) as given in the theorem, we construct

a payment scheme (tf̄1 , . . . , tf̄n) as follows. For every i ∈ I, θi ∈ Θi, and θ−i ∈ Θ−i, we let

tf̄i (θi, θ−i) = V f
i (θi) + T f

i (θi)− vi(q
f
i (θi, θ−i), θi).

Now consider f̄ = (qf
1 , . . . , qf

n, tf̄1 , . . . , tf̄n), which has the same decision rule as f but the new
payment rule. We claim that f̄ satisfies, for all i ∈ I and θi ∈ Θi,

T f̄
i (θi) = T f

i (θi), (23)
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that is, the expected payment to every type of every individual is the same under f and f̄ . In
fact, it holds that

T f̄
i (θi) = Eθ−i

[tf̄i (θi, θ−i)]
= Eθ−i [V

f
i (θi) + T f

i (θi)− vi(q
f
i (θi, θ−i), θi)]

= V f
i (θi) + T f

i (θi)− Eθ−i [vi(q
f
i (θi, θ−i), θi)]

= T f
i (θi).

Step 3. We now verify that f̄ = (qf
1 , . . . , qf

n, tf̄1 , . . . , tf̄n) satisfies properties (a) - (e). Property
(a) is satisfied by construction. Property (b) follows from (23) above, after an application of the
law of iterated expectations:

Eθ

[∑n
i=1 tf̄i (θ)

]
=

∑n
i=1

∑
θi∈Θi

p(θi)T
f̄
i (θi)

=
∑n

i=1

∑
θi∈Θi

p(θi)T
f
i (θi)

= Eθ

[∑n
i=1 tfi (θ)

]
.

Properties (a) and (23) together also immediately imply property (c). We next turn to property
(d). The revelation principle for BNE implies that f̄ is implementable in BNE if and only if the
following incentive compatibility constraints are satisfied:

Eθ−i [vi(q
f̄
i (θi, θ−i), θi)] + T f̄

i (θi) ≥ Eθ−i [vi(q
f̄
i (θ′i, θ−i), θi)] + T f̄

i (θ′i)

for all i ∈ I and θi, θ
′
i ∈ Θi. Because of property (a) and (23), this can also be written as

Eθ−i [vi(q
f
i (θi, θ−i), θi)] + T f

i (θi) ≥ Eθ−i [vi(q
f
i (θ′i, θ−i), θi)] + T f

i (θ′i),

which is satisfied because f is implementable in BNE. We complete the proof by establishing
the insurance property (e). From the definition of tf̄i (θi, θ−i) and property (a) it follows that

vi(q
f̄
i (θi, θ−i), θi) + tf̄i (θi, θ−i) = V f

i (θi) + T f
i (θi)

for all θi and θ−i. Hence, for any j 6= i,

Eθ−j [vi(q
f̄
i (θj , θ−j), θi) + tf̄i (θj , θ−j)] = Eθ−j [V

f
i (θi) + T f

i (θi)] = Eθi [V
f
i (θi) + T f

i (θi)]

is independent of θj , which is the insurance property.

A.8 Proof of Theorem 4

Step 1. We first show that for all players i, j ∈ I, j 6= i,

Πj(si, s
T
−i) = Eθ


vj(q

f
j (si(θi), θ−i), θj)− 1

n− 1

∑

h6=i

vh(qf
h(si(θi), θ−i), θh)


 + ξji, (24)
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where ξji is independent of si. To see that this is true, note that, given the definition of (tf1 , ..., tfn)
in the expected externality mechanism, we have

Πj(si, s
T
−i) = Eθ

[
vj(q

f
j (si(θi), θ−i), θj)

]
+ Eθ

[
tfj (si(θi), θ−i)

]

= Eθ

[
vj(q

f
j (si(θi), θ−i), θj)

]

+Eθ


Eθ−j


∑

h6=j

vh(qf
h(θj , θ−j), θh)





 + Eθ [hj(si(θi), θ−ij)] ,

where θ−ij denotes the type profile of all players except i and j. The first term in this expression
corresponds to the first term in (24). The second term is independent of si and can thus be
subsumed into ξji. Now consider the third term. Again using the definition of the expected
externality mechanism we obtain

hj(si(θi), θ−ij) =

− 1
n− 1



Eθ−i


∑

h6=i

vh(qf
h(si(θi), θ−i), θh)


 +

∑

l 6=j,i

Eθ−l


∑

h6=l

vh(qf
h(θl, θ−l), θh)






 .

The second term is again independent of si and can be subsumed into ξji. The first term, in
turn, becomes the second term in (24) after taking the expectation with respect to θ.

Step 2. First, assume that there are only two players (n = 2). The term in squared brackets
in (24) then cancels out, which implies that

Πj(s′i, s
T
−i) = Πj(s′′i , s

T
−i)

for any pair of strategies s′i and s′′i of player i. Proposition 3 then implies that the insurance
property is satisfied. Now, suppose that symmetry holds. Under this assumption it is also
true that the term in squared brackets in (24) vanishes. Again, this implies that the insurance
property holds.

A.9 An Asymmetric Expected Externality Mechanism

The following example illustrates how lack of symmetry leads to a violation of the insurance
property and to non-robustness of the expected externality mechanism.

Example 3. Consider the problem of sharing one unit of a private good among three players
I = {1, 2, 3}. Each player’s type is from the set Θi = {0, 1}. Both types are equally likely. Let
Q = {(q1, q2, q3) ∈ [0, 1]3|q1 + q2 + q3 = 1}, so that qi denotes the share of the private good
that is allocated to player i. Preferences are given by vi(qi, θi) = θiqi. We consider the expected
externality mechanism for the efficient decision rule (qf

1 , qf
2 , qf

3 ) detailed in Table 2, where each
row specifies the outcome for one possible type profile θ = (θ1, θ2, θ3). The transfers (tf1 , tf2 , tf3)
in Table 2 are those of the expected externality mechanism.

The environment of Example 2 is symmetric, but the decision rule is not: it allocates the
good entirely to player 1 whenever θ1 = 1, or when θi = 0 for all i ∈ I. Otherwise, the good is
symmetrically allocated between players 2 and 3. While not being symmetric, it is still efficient,
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θ1 θ2 θ3 qf
1 qf

2 qf
3 tf1 tf2 tf3

0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 1/16 1/16 -1/8
0 1 0 0 1 0 1/16 -1/8 1/16
0 1 1 0 1/2 1/2 1/8 -1/16 -1/16
1 0 0 1 0 0 -3/4 3/8 3/8
1 0 1 1 0 0 -11/16 7/16 1/4
1 1 0 1 0 0 -11/16 1/4 7/16
1 1 1 1 0 0 -5/8 5/16 5/16

Table 2: An asymmetric expected externality mechanism

because it allocates a positive share of the private good only to those players with a maximal
valuation.

Observation 7. The SCF f in Table 2 violates the insurance property.

Proof. We can derive the players’ payoffs in the direct mechanism for f , both for the truth-
telling profile sT and for the unilateral deviations sH

i , sL
i and s−T

i . The derivations are tedious
but straightforward, and the results are given in Table 3. Proposition 3 now implies that f

violates the insurance property, because player 2, for instance, can affect his opponents’ payoffs
by unilateral deviations.

s1 s2 s3 Π1 Π2 Π3

sT
1 sT

2 sT
3 3/16 11/32 11/32

sL
1 sT

2 sT
3 3/16 11/32 11/32

sH
1 sT

2 sT
3 -3/16 11/32 11/32

s−T
1 sT

2 sT
3 -3/16 11/32 11/32

sT
1 sL

2 sT
3 5/32 7/32 3/8

sT
1 sH

2 sT
3 7/32 9/32 5/16

sT
1 s−T

2 sT
3 3/16 5/32 11/32

sT
1 sT

2 sL
3 5/32 3/8 7/32

sT
1 sT

2 sH
3 7/32 5/16 9/32

sT
1 sT

2 s−T
3 3/16 11/32 5/32

Table 3: Expected payoffs

Consider a possible behavioral implication of Observation 7. Based on the payoffs in Table
3, we obtain the efficiency sets

E12(sT
2 , sT

3 ) = {sT
1 , sL

1 }, E13(sT
2 , sT

3 ) = {sT
1 , sL

1 }, E21(sT
1 , sT

3 ) = {sT
2 , sH

2 },
E23(sT

1 , sT
3 ) = {sT

2 , sL
2 }, E31(sT

1 , sT
2 ) = {sT

3 , sH
3 }, E32(sT

1 , sT
2 ) = {sT

3 , sL
3 } ,
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and the equitable payoffs

πe1
2 (sT

2 , sT
3 ) = 11/32, πe1

3 (sT
2 , sT

3 ) = 11/32, πe2
1 (sT

1 , sT
3 ) = 13/64,

πe2
3 (sT

1 , sT
3 ) = 23/64, πe3

1 (sT
1 , sT

2 ) = 13/64, πe3
2 (sT

1 , sT
2 ) = 23/64.

Based on these results, we obtain the kindness values

κ12(sT ) = κ13(sT ) = 0, κ21(sT ) = κ23(sT ) = κ31(sT ) = κ32(sT ) = −1/64.

Player 2, for instance, feels treated neutrally by player 1 but unkindly by player 3. A unilateral
deviation from sT

2 to sH
2 would reduce player 3’s payoff. Hence player 2 prefers to deviate to sH

2

whenever the reciprocity weight y23 is sufficiently large.

B Appendix

B.1 Interim Fairness Equilibrium

In this appendix, we adopt an interim perspective on fairness equilibria in games of incomplete
information. Given some mechanism Φ, we assume that type θi of player i chooses an action
mi after having observed the own type, while still perceiving the other individuals’ types as
random quantities. We define an ex interim fairness equilibrium (IFE) and provide a condition
on ex ante and ex interim fairness norms – formalized via ex ante and ex interim notions of
equitable payoffs – so that, for our independent private values model, the sets of IFE and of
BNFE coincide.

As a first step we develop an ex interim notion of kindness. In particular, consider the
expected material payoff of player j from the perspective of type θi of player i. If this type of
player i has beliefs sb

i and chooses action mi, this yields an expected payoff for player j which
we denote with some abuse of notation by Πj(mi, s

b
i). The assumption of independent private

values implies that the type θi itself is irrelevant for this expression. We now define i’s kindness
towards j from an ex interim perspective as

κint
ij (mi, s

b
i |θi) = Πj(mi, s

b
i)− πinti

j (sb
i |θi),

where πinti
j (·|θi) is the equitable payoff of player j from the perspective of type θi of player i.

Analogously player i has beliefs about how kind type θj of player j wants to be to himself,
κint

ji (sb
ij(θj), sbb

ij |θj). Due to the independent values assumption, these beliefs are the same for ev-
ery type of player i. The expected value of these terms, from player i’s perspective, is henceforth
denoted by

κ̄ji(sb
ij , s

bb
ij ) =

∑

θj∈Θj

p(θj)κint
ji (sb

ij(θj), sbb
ij |θj) .

If type θi of player i chooses action mi, his ex interim expected utility equals

U int
i (mi, s

b
i , s

bb
i |θi) = Πi(mi, s

b
i |θi) +

∑

j 6=i

yij κint
ij (mi, s

b
i |θi) κ̄ji(sb

ij , s
bb
ij ) ,
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where
Πi(mi, s

b
i |θi) =

∑

θ−i∈Θ−i

p(θ−i) πi(g(mi, s
b
i(θ−i)), θi) .

Definition 8. An IFE is a strategy profile s∗ such that, for all players i ∈ I,
(1) s∗i (θi) ∈ arg maxmi∈Mi U int

i (mi, s
b
i , s

bb
i |θi) for all θi ∈ Θi,

(2) sb
i = s∗−i, and

(3) sbb
i = (s∗−j)j 6=i.

We now introduce an assumption which will imply that BNFE and IFE are identical.

Assumption 1. Suppose that, for all i, j ∈ I, j 6= i, and all sb
i ∈ S−i,

∑

θi∈Θi

p(θi) πinti
j (sb

i |θi) = πei
j (sb

i) ,

where πei
j (sb

i) is the equitable payoff defined formally in (1).

The assumption requires that the expected value of i’s interim views on what j deserves is
equal to player i’s ex ante view on what j deserves. This holds, in particular, if there is no
updating of equitable payoffs, so that j’s equitable payoff does not depend on player i’s type.

Proposition 6. Suppose Assumption 1 holds. Then, s∗ is an IFE if and only if it is a BNFE.

Proof. We show that, for any i ∈ I, si = s∗i is a maximizer of

Ui(si, s
b
i , s

bb
i ) = Πi(si, s

b
i) +

∑

j 6=i

yij κij(si, s
b
i) κji(sb

ij , s
bb
ij )

if and only if, for every θi ∈ Θi, mi = s∗i (θi) maximizes

U int
i (mi, s

b
i , s

bb
i |θi) = Πi(mi, s

b
i |θi) +

∑

j 6=i

yij κint
ij (mi, s

b
i |θi) κ̄ji(sb

ij , s
bb
ij ) .

First, one can verify that, under Assumption 1, for every i and j,

κij(si, s
b
i) =

∑

θi∈Θi

p(θi) κint
ij (si(θi), sb

i |θi) .

Next, one can verify that

κji(sb
ij , s

bb
ij ) = κ̄ji(sb

ij , s
bb
ij )

for every i and j. Finally, one can verify that, for any strategy si ∈ Si, we have that

Ui(si, s
b
i , s

bb
i ) =

∑

θi∈Θi

p(θi) U int
i (si(θi), sb

i , s
bb
i |θi) .

By standard arguments, since all types of player i occur with positive probability, a strategy si

maximizes Ui(si, s
b
i , s

bb
i ) if and only if si(θi) maximizes U int

i (si(θi), sb
i , s

bb
i |θi), for all θi.

53



B.2 Psychologically Robust Equilibrium

The solution concept of PRE is interesting for several reasons. First, implementability of an SCF
in PRE makes it possible for the mechanism designer to remain ignorant about the intensity
of kindness sensations. Furthermore, PRE is a refinement of BNE, since we require s∗ to be
a BNFE even when yij = 0 for all i, j ∈ I, in which case BNFE coincides with BNE. Hence
we can start from established results on Bayesian incentive compatibility and investigate their
robustness in a standard refinement sense. Finally, we will see that the revelation principle
comes back for implementation in PRE.

We first present a characterization of PRE that generalizes an earlier result from Rabin
(1993). As a preliminary step, the following lemma states that kindness between any two players
cannot be positive in a conventional BNE.25

Lemma 5. Let s∗ be a BNE. Then it holds that κij(s∗) ≤ 0 for all i, j ∈ I, j 6= i.

Proof. Consider any i ∈ I and j 6= i. We claim that

Πj(s∗) ≤ min
si∈Eij(s∗−i)

Πj(si, s
∗
−i),

which implies Πj(s∗) ≤ πei
j (s∗−i) and thus κij(s∗) ≤ 0. By definition of BNE, s∗i maximizes

Πi(si, s
∗
−i). Specifically, Πi(s̃i, s

∗
−i) ≤ Πi(s∗i , s

∗
−i) for all s̃i ∈ Eij(s∗−i). Bilateral efficiency then

implies Πj(s∗i , s
∗
−i) ≤ Πj(s̃i, s

∗
−i) for all s̃i ∈ Eij(s∗−i), which proves the claim.

In any BNE and hence in any PRE, every player is maximizing the own material payoff.
This behavior will not be considered strictly kind by any opponent, as, with a conditional and
bilateral concept of efficiency, positive kindness requires giving up payoffs for someone else’s
benefit. This observation provides the basis for the following characterization.

Proposition 7. A BNE s∗ is a PRE if and only if, for all i, j ∈ I, j 6= i,

s∗i ∈ arg max
si∈Si

κji(s∗)Πj(si, s
∗
−i). (25)

Proof. Step 1. Suppose that s∗ is a BNE and suppose that condition (25) holds. We seek to
show that this implies that s∗ is a PRE, i.e. that for every player i, the strategy s∗i is maximizing

Πi(si, s
∗
−i) +

∑

j 6=i

yijκji(s∗)Πj(si, s
∗
−i), (26)

independently of the size of the parameters (yij)j 6=i. Since s∗ is a BNE, s∗i is a maximizer of
Πi(si, s

∗
−i). Condition (25) implies that s∗i is also a maximizer of every summand in the second

term of (26). Hence s∗ is a PRE.
Step 2. We now show that if s∗ is a PRE (and hence a BNE), then condition (25) holds.

Suppose that s∗ is a PRE. Lemma 5 then implies that κji(s∗) ≤ 0 holds, for all i, j ∈ I, i 6= j.
Condition (25) trivially holds for any pair i, j such that κji(s∗) = 0. Hence assume κji(s∗) < 0

25See Netzer and Schmutzler (2010) for a similar result, in the context of dynamic games between one materi-
alistic and one reciprocal player.
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but s∗i /∈ arg minsi∈Si Πj(si, s
∗
−i). Then, there exists s̃i so that Πi(s̃i, s

∗
−i) ≤ Πi(s∗i , s

∗
−i) and

κij(s̃i, s
∗
−i) < κij(s∗i , s

∗
−i). Consider a profile y where yij > 0 and yik = 0 for all k 6= i, j. Player

i has an incentive to deviate from s∗i to s̃i when

yij >
Πi(s∗i , s

∗
−i)−Πi(s̃i, s

∗
−i)

κji(s∗)
[
κij(s̃i, s∗−i)− κij(s∗i , s

∗
−i)

] ,

which contradicts the assumption that s∗ is a PRE.

Proposition 7 says that a BNE s∗ is a PRE if and only if every player i’s strategy s∗i maximizes
the expression κji(s∗)Πj(si, s

∗
−i) for any opponent j. Observe that the coefficient κji(s∗) is a

constant which does not depend on i’s choice. By Lemma 5, it can either take a value of
zero or a negative one. In the former case, trivially, any strategy si ∈ Si is a maximizer of
κji(s∗)Πj(si, s

∗
−i). In the latter case, s∗i is a maximizer if and only it is a minimizer of Πj(si, s

∗
−i).

Hence if, in any bilateral relation, a player experiences strictly negative kindness in a BNE s∗,
then robustness requires that he minimizes the other’s payoff. In the context of two player
normal form games, Rabin (1993) calls a strategy profile “mutual-min” (p. 1290) when this is
satisfied for both players. He proves that a mutual-min Nash equilibrium is always a fairness
equilibrium, and hence robust in our sense. Proposition 7 implies that the analogous result
is true in our Bayesian setting. Furthermore, Proposition 7 applies to an arbitrary number of
players, and it provides a condition that is necessary and sufficient for robustness.26

Armed with Lemma 5 and Proposition 7, we can now prove the revelation principle for PRE.

Proposition 8. Suppose a mechanism Φ implements the social choice function f in PRE. Then
f is truthfully implementable in PRE in the corresponding direct mechanism.

Proof. Step 1. First, we state the augmented revelation principle for PRE. Consider a mechanism
Φ = (M1, ..., Mn, g) with a PRE s∗ that implements a social choice function f . From Proposition
2 it follows that there exists a strategically equivalent augmented revelation mechanism Φ′ =
(M ′

1, ..., M
′
n, g′) that truthfully implements f in PRE, i.e. in which sT is a PRE. Moreover, we

can write M ′
i = Θi ∪Mi− where Mi− = Mi\s∗i (Θi) are the unused actions from Φ. The strategy

sets in Φ′ are denoted S′i. Lemma 5 implies that κ′ij(s
T ) ≤ 0 holds in the PRE sT of Φ′, for all

i, j ∈ I, i 6= j.
Step 2. The proof is completed if Mi− = ∅ for all i ∈ I, so that Φ′ is a direct mechanism.

Hence assume Mi− 6= ∅ for some i, and let m′
i ∈ Mi− ⊂ M ′

i . Construct Φ′′ = (M ′′
1 , ...,M ′′

n , g′′)
from Φ′ by letting M ′′

i = M ′
i\{m′

i} and keeping M ′′
j = M ′

j for all j 6= i. Let g′′ be the restriction
of g′ to M ′′

1 × ...×M ′′
n . The strategy sets in Φ′′ are S′′i ⊂ S′i and S′′j = S′j for all j 6= i. We have

only removed an unused action of player i, so sT is still a BNE of Φ′′. Lemma 5 thus implies that
κ′′ij(s

T ) ≤ 0 still holds for all j 6= i. The kindness of all other players is completely unaffected
by the removal.

Step 3. To prove that sT is still a PRE of Φ′′, we need to show that condition (25) is still
satisfied. For player i this is immediate, since sT

i ∈ S′′i ⊂ S′i and κ′′ji(s
T ) = κ′ji(s

T ) holds for all

26Rabin (1993) also proves a robustness result for two player “mutual-max” Nash equilibria, where, phrased in
terms of our notation, s∗i ∈ arg maxsi∈Si Πj(si, s

∗
−i) for both players. This result also follows from our proposition,

because the mutual-max property implies that κji(s
∗
j , s∗−j) = 0 holds for both players.

55



opponents j 6= i, i.e. the removal has left condition (25) unaffected. Then consider any player
j 6= i, for whom S′′j = S′j . The only way in which (25) could be violated in Φ′′, while not being
violated in Φ′, is that κ′ij(s

T ) = 0 held in Φ′ but κ′′ij(s
T ) < 0 holds in Φ′′. We will show that

this is impossible. From the proof of Lemma 5 we know that Πj(sT ) ≤ minsi∈E′ij(s
T
−i)

Πj(si, s
T
−i),

where E′
ij(s

T
−i) are the bilaterally efficient strategies in Φ′, due to sT being a BNE in Φ′. Thus

κ′ij(s
T ) = 0 requires

min
si∈E′ij(s

T
−i)

Πj(si, s
T
−i) = Πj(sT ) = max

si∈E′ij(s
T
−i)

Πj(si, s
T
−i).

But the same two equalities must then hold in Φ′′, implying κ′′ij(s
T ) = 0 as well. For the

maximization, we can always replace E′
ij(s

T
−i) by S′i and E′′

ij(s
T
−i) by S′′i , without changing the

result. Thus since sT
i maximizes Πj(si, s

T
−i) on S′i, and sT

i ∈ S′′i ⊂ S′i, we have established the
second equality for Φ′′. The first equality for Φ′′ then follows again from the proof of Lemma 5,
together with the fact that sT is a BNE in Φ′′. Hence sT still satisfies condition (25) in Φ′′, and
thus is a PRE.

Step 4. Iterating steps 2 and 3, we can remove all unused actions until arriving at a direct
mechanism in which sT is a PRE.

The logic of the argument is as follows. As we have shown above, in any PRE s∗ the strategy
s∗i essentially minimizes j’s expected payoff, for every pair of players i and j. The revelation
principle then follows from the fact that an action remains unused only if it is not needed to
minimize the other players’ payoffs, so that a removal of unused actions does not alter the
equilibrium structure.

C Appendix

This appendix contains the proofs for Observations 1, 2, 3, 4, 5 and 6.

C.1 Proof of Observation 1

In the direct mechanism, the set of pure strategies for i ∈ {b, s} is Si = {sT
i , sH

i , sL
i , s−T

i },
where sT

i denotes truth-telling, sH
i prescribes to announce the high type θ̄i whatever the true

type, sL
i requires to always announce a low type, and s−T

i is a strategy which requires to lie
always, i.e., s−T

i (θi) = θ̄i and s−T
i (θ̄i) = θi. We seek to show that (sT

b , sT
s ) is not a BNFE. We

proceed by contradiction. Hence fix some y ∈ [0,∞[2 and suppose that (sT
b , sT

s ) is a BNFE. In the
hypothetical equilibrium, beliefs are correct, which implies that sb

b = sbb
sb = sT

s and sb
s = sbb

bs = sT
b .

The buyer’s efficient strategies and the seller’s equitable payoff. Solving for the efficient
strategies of the buyer, given that the seller plays sT

s , requires, in a first step, to look at how the
two players’ payoffs are affected as the buyer varies his strategy. Straightforward computations
yield

Πb(sT
b , sT

s ) = 1
8(θb − θs) + 1

8(θ̄b − θs) + 1
8(θ̄b − θ̄s),

Πs(sT
b , sT

s ) = 1
8(θb − θs) + 1

8(θ̄b − θs) + 1
8(θ̄b − θ̄s),
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Πb(sL
b , sT

s ) = 1
4(θ̄b − θs),

Πs(sL
b , sT

s ) = 1
4(θb − θs),

Πb(sH
b , sT

s ) = 1
4(θb − θs) + 1

4(θb − θ̄s),
Πs(sH

b , sT
s ) = 1

4(θ̄b − θs) + 1
4(θ̄b − θ̄s),

Πb(s−T
b , sT

s ) = 1
8(θb − θs) + 1

8(θ̄b − θs) + 1
8(θ̄b − θ̄s)− 1

4(θ̄b − θb),
Πs(s−T

b , sT
s ) = 1

8(θb − θs) + 1
8(θ̄b − θs) + 1

8(θ̄b − θ̄s).

Inspection of these expressions reveals that strategy s−T
b is not efficient, because a switch to sT

b

makes the buyer better off and leaves the seller unaffected. All other strategies are efficient since

Πb(sL
b , sT

s ) > Πb(sT
b , sT

s ) > Πb(sH
b , sT

s ),

Πs(sL
b , sT

s ) < Πs(sT
b , sT

s ) < Πs(sH
b , sT

s ).

Now we can easily compute that, from the buyer’s perspective, the seller’s equitable payoff is
his payoff under truth-telling, i.e. πeb

s (sT
s ) = Πs(sT

b , sT
s ).

The seller’s efficient strategies and the buyer’s equitable payoff. Analogously, the seller can
induce the following payoff pairs by varying ss:

Πb(sT
b , sT

s ) = 1
8(θb − θs) + 1

8(θ̄b − θs) + 1
8(θ̄b − θ̄s),

Πs(sT
b , sT

s ) = 1
8(θb − θs) + 1

8(θ̄b − θs) + 1
8(θ̄b − θ̄s),

Πb(sT
b , sL

s ) = 1
4(θb − θs) + 1

4(θ̄b − θs),
Πs(sT

b , sL
s ) = 1

4(θ̄b − θ̄s) + 1
4(θb − θ̄s),

Πb(sT
b , sH

s ) = 1
4(θ̄b − θ̄s),

Πs(sT
b , sH

s ) = 1
4(θ̄b − θs),

Πb(sT
b , s−T

s ) = 1
8(θb − θs) + 1

8(θ̄b − θs) + 1
8(θ̄b − θ̄s),

Πs(sT
b , s−T

s ) = 1
8(θb − θs) + 1

8(θ̄b − θs) + 1
8(θ̄b − θ̄s)− 1

4(θ̄s − θs).

Again, s−T
s is Pareto dominated by sT

s , while all other strategies are efficient due to

Πb(sT
b , sL

s ) > Πb(sT
b , sT

s ) > Πb(sT
b , sH

s ),

Πs(sT
b , sL

s ) < Πs(sT
b , sT

s ) < Πs(sT
b , sH

s ).

The buyers’s equitable payoff is therefore also πes
b (sT

b ) = Πb(sT
b , sT

s ).
Verify that truth-telling is not a BNFE. In the hypothetical BNFE (sT

b , sT
s ) we would have

κbs(sb
sb, s

bb
sb) = 0. This implies that the seller chooses ss ∈ Ss in order to maximize Πs(sT

b , ss).
But sT

s is not a solution to this problem, because sH
s yields a strictly larger expected material

payoff for the seller, as shown above. Hence (sT
b , sT

s ) is not a BNFE.

C.2 Proof of Observation 2

Fix y ∈ ]0,∞[2. We claim that truth-telling is an equilibrium for δb = 4/ys and δs = 4/yb.
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The buyer’s kindness in a hypothetical truth-telling equilibrium. If the seller plays sT
s , then

any strategy sb that announces θ
b
yields the same payoffs as the strategy that announces θb

instead, except for the additional redistribution from the seller to the buyer. Since sb = sL
b

maximized Πb(sb, s
T
s ) and minimized Πs(sb, s

T
s ) in the direct mechanism, strategy sb = s

b
, with

s
b
(θb) = θ

b
for all θb, now maximizes Πb(sb, s

T
s ) and minimizes Πs(sb, s

T
s ) in Φ′, and hence is

efficient. It induces the payoffs

Πb(sb
, sT

s ) = 1
4(θ̄b − θs) + 1

2δb,

Πs(sb
, sT

s ) = 1
4(θb − θs)− 1

2δb.

The efficient strategy which yields the highest payoff for the seller remains strategy sH
b . Using

the expression derived in the proof of Observation 1, we can compute the seller’s equitable payoff

πeb
s (sT

s ) = Πs(sT
b , sT

s )− 1
4
δb.

Consequently, in the hypothetical truth-telling equilibrium we have

κbs(sT
b , sT

s ) = Πs(sT
b , sT

s )− πeb
s (sT

s ) =
1
4
δb =

1
ys

.

The seller’s kindness in hypothetical truth-telling equilibrium. A symmetric argument implies

πes
b (sT

b ) = Πb(sT
b , sT

s )− 1
4
δs

and
κsb(sT

b , sT
s ) =

1
4
δs =

1
yb

in the hypothetical truth-telling equilibrium.
Verify that truth-telling is a BNFE. We need to verify that ss = sT

s is a maximizer of

Πs(sT
b , ss) + ysκbs(sT

b , sT
s )Πb(sT

b , ss) = Πs(sT
b , ss) + Πb(sT

b , ss) ,

and that sb = sT
b is a maximizer of

Πb(sb, s
T
s ) + ybκsb(sT

b , sT
s )Πs(sb, s

T
s ) = Πb(sb, s

T
s ) + Πs(sb, s

T
s ) .

This follows since the social choice function f∗ that is implemented if both players tell the truth
is efficient, i.e. it maximizes the sum of material payoffs for any (θb, θs).

C.3 Proof of Observation 3

Consider a mechanism where each player has the message set Mi = {ni, di}. The outcome
function g has the following properties. If all agents choose their action ni, or if at least two
agents choose their action di, then the outcome is allocation ā = (qā

1 , . . . , qā
n, tā1, . . . , t

ā
n). This

implies, in particular, that the outcome stipulated by the social choice function is implemented.
If one agent i chooses di and all other agents j 6= i choose nj , then all consumption levels are
still as in ā, qg

k(di, n−i) = qā
k for all k ∈ I, but agent i receives an additional transfer εi > 0,
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so that tgi (di, n−i) = tāi + εi, while every other agent j 6= i has to pay and additional amount
δij > 0, so that tgj (di, n−i) = tāj − δij . We assume that εi ≤

∑
j 6=i δij holds for all i ∈ I, so that

the mechanism is feasible.
Denote by sn

i the strategy where agent i chooses the message ni whatever his type. Likewise,
we denote by sd

i the strategy which stipulates that he always chooses the action di. Consider a
hypothetical BNFE sn = (sn

1 , . . . , sn
n). Given sn

−i, the best that player i can do for any player
j 6= i is to play sn

i , so that j has to pay δij with probability 0. The worst (and also efficient)
strategy for player j is sd

i , where j would have to pay δij with probability 1. Thus, from i’s
perspective the equitable payoff for player j is given by πei

j (sn
−i) = −δij/2. Player i’s kindness

towards j then equals κij(sn
i , sn

−i) = δij/2 if he chooses sn
i , and κij(sd

i , s
n
−i) = −δij/2 if he chooses

sd
i . We only need to consider the two strategies sn

i and sd
i , because if sn

i is preferred over sd
i then

sn
i is also preferred over any strategy that yields a payoff which is a convex combination of the
payoffs associated with sd

i and sn
i , respectively. By symmetry it then follows immediately that

sn is a BNFE if and only if, for every player i, εi ≤ (
∑

j 6=i yijδijδji)/2. Since y ∈]0,∞[n(n−1), we
can always choose all εi > 0 small enough so that this inequality is satisfied. Moreover, we can
achieve arbitrarily large equilibrium utility levels by choosing δij large enough, for all i and j.

C.4 Proof of Observation 4

We prove the observation in two steps. First, we show that there exist upper bounds on utilities
for any (Φ, s∗) that implements f∗. Second, we show that (Φ′, sT ), with parameters as given in
the observation, reaches these bounds.

Step 1. By Proposition 2, for any mechanism that implements f∗ in BNFE, we can find
an augmented revelation mechanism that truthfully implements f∗ in BNFE with identical
utilities, i.e., an augmented revelation principle applies to utility-efficient implementation of an
SCF. Hence consider w.l.o.g. a pair (Φ, sT ) where Φ is an augmented revelation mechanism for
f∗ and sT is the truthful BNFE. In this BNFE, we have sb

b = sbb
sb = sT

s and sb
s = sbb

bs = sT
b .

Bounds for the seller’s kindness. For player b, sH
b and sL

b are viable strategies in Φ. Using
the payoffs from the proof of Observation 1, the condition for not wanting to deviate to sH

b

(holding fixed sT
s ) can be rearranged to the upper bound on kindness

κsb(sb
bs, s

bb
bs) ≤ κmax

sb =
11
5yb

.

The condition for not wanting to deviate to sL
b yields the lower bound

κsb(sb
bs, s

bb
bs) ≥ κmin

sb =
3

5yb
.

Bounds for the buyer’s kindness. For player s, the condition for not wanting to deviate to
sL
s yields the upper bound

κbs(sb
sb, s

bb
sb) ≤ κmax

bs =
11
5ys

.
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The condition for not wanting to deviate to sH
s yields the lower bound

κbs(sb
sb, s

bb
sb) ≥ κmin

bs =
3

5ys
.

Utility bounds. Given the previous results it follows that Πi(sT ) + yiκ
max
bs κmax

sb is an upper
bound on player i’s utility in any pair (Φ, sT ) that implements f∗.

Step 2. Consider the extended mechanism Φ′. Recall from the proof of Observation 2 that in
the hypothetical BNFE sT we have κsb(sb

bs, s
bb
bs) = δs/4 and κbs(sb

sb, s
bb
sb) = δb/4. Choosing δb and

δs as given in the observation then implies that κsb(sb
bs, s

bb
bs) = κmax

sb and κbs(sb
sb, s

bb
sb) = κmax

bs ,
i.e. the upper bounds are reached. It remains to be shown that sT is a BNFE of Φ′ under these
parameters.

Best responses. If player b chooses sT
b , player s chooses ss in order to maximize

Πs(sT
b , ss) + ysκ

max
bs Πb(sT

b , ss) = Πs(sT
b , ss) + Πb(sT

b , ss) +
6
5
Πb(sT

b , ss).

By construction of κmax
bs , sT

s and sL
s yield the same value of this expression. From the payoffs

derived in the proofs of Observations 1 and 2 it follows that any other strategy ss ∈ S′s \{sT
s , sL

s }
yields a weakly lower value than sT

s for both Πs(sT
b , ss) + Πb(sT

b , ss) and Πb(sT
b , ss). Hence sT

s is
a best response. A symmetric argument implies that sT

b is a best response for the buyer if the
seller plays sT

s .

C.5 Proof of Observation 5

We hypothesize (i) that players 2 and 3 vote sincerely, and (ii) that all players believe all other
players to vote sincerely, and (iii) that all players have correct beliefs about the beliefs of the
other players. We show that this implies that it is a best response for player 1 to also vote
sincerely. A symmetric reasoning applies to the other players.

We leave it to the reader to verify that, given that players 2 and 3 vote sincerely, the expected
material payoff of players 2 and 3 is given by

Π2(s1, (no, yes), (no, yes)) = Π3(s1, (no, yes), (no, yes)) =
1
4
,

for all s1 ∈ {no, yes}2. Since player 1 cannot affect the expected material payoff of the other
players, this trivially implies that the kindness of player 1 towards players 2 and 3 must satisfy
κ12 = κ13 = 0 in the hypothetical equilibrium. By symmetry, this also implies that κ21 = κ31 = 0
in the hypothetical equilibrium. Given that all terms involving kindness sensations are equal
to zero, player 1 chooses s1 in order to maximize Π1(s1, (no, yes), (no, yes)). We leave it to the
reader to verify that s1 = (no, yes) is the unique solution to this problem.

C.6 Proof of Observation 6

We hypothesize (i) that players 2 and 3 vote sincerely, and (ii) that all players believe all other
players to vote sincerely, and (iii) that all players have correct beliefs about the beliefs of the
other players. We show that, under these assumptions, it is a best response for player 1 to vote
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sincerely if and only if
∑

j 6=1 y1j ≥ 16. A symmetric reasoning applies to the other players.
We leave it to the reader to verify that, given that players 2 and 3 vote sincerely, player 1

has two efficient strategies, (no, yes) and (veto, yes). If player 1 chooses (no, yes) the associated
expected material payoffs are

Π1((no, yes), (no, yes), (no, yes)) =
1
4

and
Π2((no, yes), (no, yes), (no, yes)) = Π3((no, yes), (no, yes), (no, yes)) =

1
4
.

If he chooses (veto, yes), the payoffs are

Π1((veto, yes), (no, yes), (no, yes)) =
3
8

and
Π2((veto, yes), (no, yes), (no, yes)) = Π3((veto, yes), (no, yes), (no, yes)) =

1
8
.

Given that players 2 and 3 vote sincerely, their equitable payoffs are therefore πe1
2 = πe1

3 =
(1/4 + 1/8)/2 = 3/16. Consequently, in a hypothetical equilibrium where all players vote
sincerely, the kindness of player 1 towards players 2 and 3 equals κ12 = κ13 = 1/4−3/16 = 1/16.
By symmetry, this also implies that κ21 = κ31 = 1/16 in the hypothetical equilibrium. Given
that player 1 expects the other players to be kind, he will choose from his set of efficient strategies
(as he has no incentive to sacrifice own payoff in order to harm others). Hence he will either
choose s1 = (veto, yes) or s1 = (no, yes), depending on which of the two yields a larger value of

Π1(s1, (no, yes), (no, yes))+
1
16

(y12Π2(s1, (no, yes), (no, yes)) + y13Π3(s1, (no, yes), (no, yes))) .

It is straightforward to verify that the optimal choice is s1 = (no, yes) if and only if y12+y13 ≥ 16.
To complete the proof, observe that, whenever sincere voting is an equilibrium, all players

have strictly positive kindness sensations, since, for all i and j, κij = κji = 1/16. By contrast,
in a sincere voting equilibrium under simple majority voting (recall the proof of Observation 5)
we have κij = κji = 0 for all i and j.

D Appendix

In the body of the text we have defined equitable payoffs in the spirit of Rabin (1993). Dufwen-
berg and Kirchsteiger (2004) have proposed an alternative definition. In this appendix, we show
that Observations 1 to 6 carry through if we work with this alternative definition.

Formally, when defining the Dufwenberg-Kirchsteiger equitable payoff, we replace the set of
conditionally and bilaterally Pareto efficient strategies Eij(sb

i) ⊆ Si by a set of unconditionally
and globally Pareto efficient strategies Ei ⊆ Si, so that

πei
j (sb

i) =
1
2

(
max
si∈Ei

Πj(si, s
b
i) + min

si∈Ei

Πj(si, s
b
i)

)
.
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The set Ei is defined as follows. Strategy si belongs to Ei unless there exists s′i ∈ Si such that
for all j ∈ I,

Πj(s′i, s
b
i) ≥ Πj(si, s

b
i)

for all possible sb
i ∈ S−i, with strict inequality for at least one j and sb

i .
Note that the maximization part in the definition of equitable payoffs does not depend on

whether we use Rabin’s or Dufwenberg-Kirchsteiger’s definition. The maximum of Πj(si, s
b
i) on

both Eij(sb
i) and Ei always coincides with its maximum on the whole strategy set Si.

D.1 Observation 1

One can easily verify that, for both i ∈ {b, s}, the strategy s−T
i does not belong to the set Ei.

For any strategy sj of the opponent j 6= i, strategy s−T
i yields the same payoff as sT

i for player
j. It always yields a weakly lower payoff than sT

i for player i, and a strictly lower payoff if the
other player chooses sT

j , as shown in the proof of Observation 1 in Appendix C.1. We have
also shown in proof of Observation 1 that all other strategies are efficient conditional on the
opponent being truthful. Consequently, Eb = Ebs(sT

s ) and Es = Esb(sT
b ), so that the remaining

analysis is exactly as in the proof of Observation 1 in Appendix C.1.

D.2 Observation 2

As argued in the proof of Observation 2 in Appendix C.2, strategy s
b
uniquely minimizes the

seller’s and maximizes the buyer’s expected material payoff, conditional on the seller playing sT
s .

Hence s
b
∈ Eb. Likewise, ¯̄ss uniquely minimizes the buyer’s and maximizes the seller’s expected

material payoff, conditional on the buyer playing sT
b . Hence ¯̄ss ∈ Es. The remaining analysis is

thus exactly as in the proof of Observation 2 in Appendix C.2.

D.3 Observation 3

The analysis in Appendix C.3 is unaffected by the different efficiency concept.

D.4 Observation 4

Given the argument in Appendix D.2 above, the analysis in Appendix C.4 is unaffected by the
different efficiency concept.

D.5 Observation 5

The analysis in Appendix C.5 is unaffected by the different efficiency concept.

D.6 Observation 6

Given that players 2 and 3 vote sincerely, s1 = (veto, veto) minimizes their payoffs. In fact,
(veto, veto) yields payoffs of zero for all three players. We claim that (veto, veto) ∈ E1. Straight-
forward calculations reveal that, conditional on sincere voting of players 2 and 3, the strategies
(yes, no), (no, veto) and (yes, veto) all yield strictly negative payoffs to player 1 and therefore
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cannot dominate (veto, veto). Conditional on s2 = s3 = (yes, no), however, player 1’s remain-
ing strategies (no, yes), (yes, yes), (no, no), (veto, no) and (veto, yes) all yield strictly negative
payoffs to players 2 and 3, and therefore also do not dominate (veto, veto). It follows that
(veto, veto) ∈ E1. Otherwise arguing as in the proof of Observation 6 in Appendix C, equitable
payoffs become πe1

2 = πe1
3 = 1/8, and the kindness terms in the hypothetical sincere equilibrium

become κ12 = κ13 = 1/4 − 1/8 = 1/8. Symmetry then implies κ21 = κ31 = 1/8 in the equilib-
rium candidate. The rest of the analysis is affected by the different efficiency concept only in
that we obtain the modified condition y12 + y13 ≥ 8 for sincere voting to be a BNFE.
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