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Abstract

We analyze a consumption-saving problem in which time-inconsistent preferences generate

demand for commitment, but uncertainty about future consumption needs generates demand for

flexibility. We characterize in a standard contracting framework the circumstances under which

this combination is possible, in the sense that a commitment contract exists that implements

the desired state-contingent consumption plan, thus offering both commitment and flexibility.

The key condition that we identify is a preference reversal condition: high desired consumption

today should be associated with low marginal utility at future dates. We argue that there are

conditions under which this preference reversal condition is naturally satisfied. The key insight

of our paper is that time-inconsistent preferences effectively turn a single-agent contracting

problem into a multi-agent mechanism design problem, because the agent’s different selves have

different preferences but share some information.
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1 Introduction

Preferences with hyperbolic time discounting, introduced by Strotz (1956), are widely used to model

individual behavior in a variety of settings.1 In his original article, Strotz observed that hyperbolic

discounting generates demand for commitment.2 But in addition to commitment, individuals value

the flexibility to respond to economic shocks. For example, an individual is likely to be uncertain

about his future consumption needs. In such cases, an individual will be reluctant to commit to

future consumption levels that are state-independent. In other words, there is a tension between

commitment and flexibility (Amador et al 2006). In this paper, we analyze the extent to which

commitment and flexibility can be successfully combined.

In our setting, an individual would like to commit at date 0 to a consumption plan that may

depend on unverifiable shocks that are realized in the future. To this end, the individual can enter

into a commitment contract with the aim of implementing self 0’s3 desired consumption plan. The

key contracting difficulty is that the shocks are realized only after the contract is signed, and since

they are unverifiable, the contract cannot directly condition the individual’s consumption on their

realization. Rather, a commitment contract must provide the individual both with flexibility to

respond to these shocks, and with incentives to adhere to self 0’s desired consumption plan.

Our results characterize conditions under which the tension between commitment and flexibility

can be at least partially resolved. Our key condition is a preference reversal condition, which loosely

speaking states that desired consumption at date 1 is negatively correlated with marginal utility

(MU) at date 2. When this condition is satisfied, it is possible to design a commitment contract in

which an individual is deterred from overconsumption at date 1 by the prospect that future selves

will engage in more costly forms of overconsumption at subsequent dates.

The key insight of our paper is that time-inconsistent preferences are not only the source of

the individual’s commitment problem, but also allow its possible solution. With time-inconsistent

preferences, the individual’s different selves have different preferences but still share knowledge

of the shock realizations. This opens up the possibility of later selves punishing prior selves for

1See Frederick, Loewenstein and O’Donoghue (2002) for a review of models of time discounting. Applications of
hyperbolic discounting include consumer finance (e.g., Laibson 1996 on savings behavior in general; Laibson, Repetto,
and Tobacman 1998 on retirement planning; DellaVigna and Malmendier 2004 and Shui and Ausubel 2004 on credit
card usage; Skiba and Tobacman 2008 on payday lending; and Jackson 1986 on bankruptcy law), asset pricing (e.g.,
Luttmer and Mariotti 2003), and procrastination (e.g., O’Donoghue and Rabin 1999a, 1999b, 2001).

2See Ariely and Wertenbroch (2002) for direct evidence of demand for commitment.
3We follow the literature and refer to the individual at date t as self t.

1



deviating from self 0’s desired consumption plan, which would be impossible if their preferences

were the same. In essence, time-inconsistent preferences turn a single-agent contracting problem

into a multi-agent mechanism design problem. As is well known from the implementation theory

literature,4 this can dramatically expand the set of outcomes that are attainable in equilibrium.

1.1 Illustrative examples

To illustrate our main results, consider the following examples. In all examples, we consider an

individual with logarithmic utility; three consumption dates; and quasi-hyperbolic time preferences

over these dates, with a hyperbolic discount factor of β = 1
2 and no regular time discounting.

Example 1 : An individual sequentially encounters consumption opportunities. Consumption op-

portunities may be good or bad. If consumption opportunities are good at date t, the individual’s

instantaneous utility from consumption ct at date t is 3
2 log ct, whereas if they are bad, instanta-

neous utility is simply log ct. There are a limited number of good consumption opportunities, so

the conditional probability of finding a good opportunity at date 2 is lowered by finding a good

opportunity at date 1. For simplicity, we focus here on the extreme case in which the individ-

ual encounters a good consumption opportunity at exactly one of dates 1 and 2. The quality of

consumption opportunities is observed by the individual, but is unverifiable.

The individual’s total endowment is 31
2 . So in this example, the individual would like to commit

at date 0 to a consumption path (c1, c2, c3) =
(

3
2 , 1, 1

)

if he finds a good opportunity at date 1, and

to a consumption path (c1, c2, c3) =
(

1, 3
2 , 1
)

otherwise. However, hyperbolic discounting means

that, at date 1, the individual prefers consumption
(

3
2 , 1, 1

)

even if the date 1 opportunity is bad.5

Suppose, however, that the individual arranges his financial affairs so that self 1 picks between

consumption levels 1 and 3
2 ; and that following the higher consumption choice 3

2 , self 2 picks

between (c2, c3) = (1, 1) and
(

3
2 , 1

3

)

, while following the lower consumption choice 1, subsequent

consumption is simply (c2, c3) =
(

3
2 , 1
)

.6

This arrangement allows the individual to commit to self 0’s desired consumption plan, as

4See Maskin and Sjöström (2002), Palfrey (2002), and Serrano (2004) for surveys of implementation theory.
5Formally, log 3

2
+ β 3

2
log 1 + β log 1 > log 1 + β 3

2
log 3

2
+ β log 1.

6There are a variety of ways to implement these consumption paths. For example, at date 0, the individual can
deposit 1 each in one- and three-period savings accounts and 3

2
in a two-period savings account. An amount 1

2
can

be withdrawn early from the date 2 account, without penalty. Furthermore, if this date 1 early withdrawal is made,
at date 2 an additional 1

2
can be withdrawn early from the date 3 account, but this second withdrawal carries a

penalty of 1

6
, so that the date 3 account is reduced by 1

2
+ 1

6
= 2

3
. (The feature that the possibility of the second

early withdrawal is triggered by the first early withdrawal is not essential, and can be dispensed with.)
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follows. Working backwards, we first consider self 2. If self 1 chose high consumption 3
2 because the

date 1 consumption opportunity was good, then the date 2 opportunity is bad, and self 2 chooses

(1, 1). If instead self 1 overconsumed and chose consumption 3
2 when the date 1 opportunity was

bad, then the date 2 opportunity is good, and self 2 chooses
(

3
2 , 1

3

)

, with less total consumption.7

Next consider self 1. If the date 1 opportunity is bad, self 1 understands that if he chooses high

consumption, then self 2 will pick
(

3
2 , 1

3

)

, leaving self 3 with very little consumption. This outcome

is unattractive enough to deter self 1 from choosing high consumption if the date 1 opportunity is

bad.8 If, however, the date 1 opportunity is good, then self 1 can choose high consumption, secure

in the knowledge that self 2 will face a bad opportunity at date 2 and so choose (1, 1).9

Example 2 : An individual may learn at date 1 that he will face an essential expenditure of 1
2 at

date 2 (for example, a major home repair). This expenditure does not contribute towards utility:

formally, date 2 utility is ln
(

c2 −
1
2

)

. The individual’s total endowment is 3. So in this example,

the individual would like to commit at date 0 to a consumption path (1, 1, 1) if the expenditure is

not required; but if the expenditure is required, he would like to preemptively start saving at date

1 to partially fund the date 2 expenditure, and consume
(

5
6 , 4

3 , 5
6

)

. However, and as in Example

1, hyperbolic discounting means that, at date 1, the individual prefers not to save, even though he

knows he faces the expenditure at date 2.10

Suppose, however, that the individual arranges his financial affairs so that self 1 picks between

consumption levels 5
6 and 1; and that following the higher consumption choice 1, self 2 picks between

(c2, c3) = (1, 1) and
(

4
3 , 1

2

)

, while following the lower consumption choice 5
6 , subsequent consumption

is simply (c2, c3) =
(

4
3 , 5

6

)

.11

By a parallel argument to Example 1, this arrangement allows the individual to commit to self

0’s desired consumption plan. If self 1 chooses high consumption 1, then self 2 chooses (1, 1) if

there is no date 2 expenditure, but chooses
(

4
3 , 1

2

)

, with less total consumption, if there is a date

7Formally, 3

2
log 3

2
+ β log 1

3
= β log

“

3
3

23

1

3

”

> log 1 = 3

2
log 1 + β log 1 (date 2 consumption opportunity is good)

and log 1 + β log 1 > log 3

2
+ β log 1

3
= log 3

2
√

3
(date 2 consumption opportunity is bad).

8Formally, log 1 + β 3

2
log 3

2
+ β log 1 > log 3

2
+ β 3

2
log 3

2
+ β log 1

3
since 1 > 3

2
√

3
.

9Formally, 3

2
log 3

2
+ β log 1 + β log 1 > 3

2
log 1 + β log 3

2
+ β log 1.

10Formally, log 1 + β log
`

1 − 1

2

´

+ β log 1 > log 5

6
+ β log

`

4

3
− 1

2

´

+ β log 5

6
since

`

1

2

´ 1

2 > 5

6

5

6
.

11There are a variety of ways to implement these consumption paths. For example, at date 0, the individual can
deposit 5

6
, 7

6
and 1 into one-, two- and three-period savings accounts respectively. An amount 1

6
can be withdrawn

one period early, and without penalty, against either the date 2 account, or the date 3 account, but not both. If the
early withdrawal is made at date 1, a second early withdrawal of 1

3
can be made at date 2, but this carries a penalty

of 1

6
, so that the date 3 account is reduced by 1

3
+ 1

6
= 1

2
.
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2 expenditure.12 Given this, when self 1 foresees the need for the date 2 expenditure, he chooses

low consumption 5
6 , but when he foresees that there is no date 2 expenditure, he chooses high

consumption 1.13

Example 3 : In the two examples above the individual is able to commit to self 0’s desired consump-

tion plan. We now consider an example where this is not the case. We return to the framework

of Example 1, but assume now that if the individual finds a good consumption opportunity at

date 1, the opportunity will also be available at date 2; but if the individual encounters a bad

opportunity at date 1, the opportunity at date 2 is also bad. The individual’s total endowment is

now 4. Consequently, self 0 would like to commit to a consumption path
(

3
2 , 3

2 , 1
)

if he finds the

good opportunity, but to
(

4
3 , 4

3 , 4
3

)

if he finds the bad opportunity. As in the previous examples,

hyperbolic discounting causes self 1 to prefer the high date-1 consumption path
(

3
2 , 3

2 , 1
)

regardless

of the quality of consumption opportunities.14

The key to attaining commitment in the previous examples is that it was possible to offer self

2 an alternative consumption path after self 1 picks high consumption (here, 3
2 ) that self 2 prefers

to
(

3
2 , 1
)

if and only if self 1 overconsumed, and that also hurts self 1. But this is impossible

in this example, as follows. First, the only consumption paths that raise self 2’s utility while

lowering self 1’s utility are those that increase date 2 consumption and reduce date 3 consumption.

But second, if self 2 prefers such a path when the date 2 opportunity is bad—which is when

self 1 has overconsumed—then he also prefers such a path when the date 2 opportunity is good.

Consequently, it is impossible to impose a state-contingent punishment on self 1 for choosing high

consumption. This point is formalized in Lemma 2 below; this simple result is in many ways the

key to our analysis.

1.2 Discussion

The above examples illustrate the importance of a condition we term preference reversal. In

Examples 1 and 2, when the individual desires high consumption at date 1, his subsequent MU at

12Formally, log
`

4

3
− 1

2

´

+ β log 1

2
> log

`

1 − 1

2

´

+ β log 1 since 5

6

`

1

2

´ 1

2 > 1

2
(expenditure of 1

2
at date 2), and

log 1 + β log 1 > log 4

3
+ β log 1

2
since 1 > 4

3

`

1

2

´ 1

2 (no expenditure at date 2).
13Formally, log 5

6
+β log

`

4

3
− 1

2

´

+ β log 5

6
> log 1 + β log

`

4

3
− 1

2

´

+ β log 1

2
since

`

5

6

´ 3

2 >
`

1

2

´ 1

2 (date 2 expenditure

anticipated), and log 1 + β log 1 + β log 1 > log 5

6
+ β log 4

3
+ β log 5

6
since 1 >

`

5

6

´ 3

2

`

4

3

´ 1

2 (no date 2 expenditure
anticipated).

14Formally, log 3

2
+ β log 3

2
+ β log 1 > log 4

3
+ β log 4

3
+ β log 4

3
since

`

3

2

´ 3

2 >
`

4

3

´

2
.
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date 2 is low. In contrast, this is not the case in Example 3; there, high desired consumption at

date 1 is followed by high MU at date 2. This distinction is at the heart of our formal analysis

below, which explores the importance of preference reversal for an individual’s ability to resolve

the tension between commitment and flexibility.

As illustrated by Examples 1 and 2, there are at least two economic forces that lead the pref-

erence reversal condition to be naturally satisfied. The force operating in Example 2 is that if

the individual can forecast that future MU will be low, this leads him to increase consumption in

advance. Hence, ceteris paribus, low MU at date 2 implies high desired consumption at date 1. Of

course, the reverse implication does not hold, and accordingly, there are certainly many environ-

ments where preference reversal is not satisfied. The force operating in Example 1 is that if good

consumption opportunities are limited, encountering a good opportunity at date 1 simultaneously

increases desired consumption at date 1, and reduces the probability of encountering another good

opportunity at date 2.

In the above examples, we focus directly on consumption paths, rather than on the specific

contractual arrangements that implement these consumption paths. However, under many cir-

cumstances the consumption paths we characterize as optimal can be implemented using standard

consumer financial products;15 see, for example, footnotes 6 and 11 above. Qualitatively, the key

feature of contracts that allow self 0 to commit to his preferred consumption path is excess flexi-

bility : in Examples 1 and 2, self 2 is given the flexibility to increase his consumption beyond self

0’s desired consumption, and this flexibility is not used in equilibrium.

In this paper, we focus on one particular form of time-inconsistent preferences, namely the

present-bias generated by hyperbolic discounting. However, our key insight—that time-inconsistent

preferences turn a single-agent contracting problem into a multi-agent mechanism design problem—

is more widely applicable. In particular, consider any source of time-inconsistent preferences that

an individual is self-aware enough to anticipate. For example, an individual may understand today

that, in the future, he will misinterpret the relevance of a small number of data points. Just as in

the current setting, he can potentially commit to a course of action that avoids this bias, while at

the same time maintaining flexibility to respond to shocks.

15Formal results are contained in an earlier version of this paper.
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2 Related literature

Central to our analysis is the idea that the commitment contract sets up a game between selves.

O’Donoghue and Rabin (1999a) demonstrate that this inter-self game has some surprising proper-

ties; for example, “sophistication” may worsen self-control problems relative to “näıveté.”16 This

previous paper focuses on a setting in which an individual must take an action exactly once, and

takes the costs and rewards of this action as exogenously given. The basic commitment problem

confronted by an individual in our paper is covered by their analysis: for instance, in Example 1,

the individual can take an immediate reward of ln 3
2 − ln 1 at date 1, with the cost of this reward

deferred until the future. Our main results explore whether it is possible to design a contract

(which determines costs and rewards) that deters the individual from taking the immediate reward

at date 1. When such a contract exists, it gives the individual the possibility of taking two rewards.

Although such a contract falls outside O’Donoghue and Rabin’s framework, because the number of

actions is not fixed, the basic flavor of our contract is related to their Example 4, in which self 1

is deterred from taking the immediate reward by the knowledge that, if he does so, self 2 will then

also take an early reward.17

Our paper is closely related to Amador et al (2006). Like us, they study a hyperbolic individual

who is hit by unverifiable taste shocks, but consider only a two-period version of the problem. This

restriction immediately rules out the possibility of self 2 imposing a state-contingent punishment

on self 1 for deviating—a key feature of our setting—because with two periods self 1 is effectively

the only strategic agent.18 Consequently, the only way to deter self 1 from deviating is to distort

consumption in at least some states; the authors characterize the least costly way to do so.

Like Amador et al (2006), DellaVigna and Malmendier (2004) restrict attention to two periods,

again ruling out the possibility of self 2 punishing self 1. Moreover, in their setting self 1 faces a

binary choice (e.g., whether or not to go to the gym) and consequently a contract exists under

which self 1 acts exactly as self 0 desires. The authors characterize the contract that maximizes the

16Following the literature, sophistication refers to the case in which self t correctly understands that selves s > t
have present-biased preferences. In contrast, näıveté refers to the case in which self t incorrectly believes that selves
s > t are not present-biased. See subsection 6.2 for a discussion of partial näıveté.

17In addition, O’Donoghue and Rabin observe that present-biased preferences often violate independence of irrel-
evant alternatives (their Proposition 5), a point they refer to as a “smoking gun.” This point—that actions never
taken on the equilibrium path may nonetheless affect equilibrium decisions—is central to the design of contracts in
our paper.

18Amador et al (2003) extend the analysis to three or more periods. They assume that shocks are independent
across dates; see subsection 4.2 below.
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profits of a monopolist counterparty facing a partially näıve agent (subsection 6.2 discusses partial

näıveté). In particular, they characterize the combination of flat upfront fees and per-usage fees in

the profit-maximizing contract.19

O’Donoghue and Rabin (1999b) analyze optimal contracts for procrastinators in a multi-period

environment, where the socially efficient date at which a task should be performed is random. They

explicitly rule out the use of contracts that induce an agent to reveal his type, which are the focus

of our paper. As they observe, this restriction is without loss of generality in the main case they

study, that of agents who are completely näıve about their future preferences. By contrast, we

study sophisticated agents (again, see subsection 6.2 for a discussion of partial näıveté).

While we examine the use of external commitment devices, such as contracts, other research

considers what might be termed internal commitment devices. Bernheim, Ray, and Yeltekin (2013)

and Krusell and Smith (2003) consider deterministic models in which an individual is infinitely

lived, and show that Markov-perfect equilibria exist in which he gains some commitment ability

from the fact that deviations will cause future selves to punish him. Carrillo and Mariotti (2000)

and Benabou and Tirole (e.g., 2002, 2004) consider models in which an individual can commit his

future selves to some action by manipulating their beliefs, respectively, through the extent of his

own information acquisition, through direct distortion of beliefs, or through self-signalling.

3 Model

At each of dates t = 1, 2, 3, a single agent consumes ct. At dates 1 and 2 his contemporaneous

utility depends on state variables θ1 ∈ Θ1 and θ2 ∈ Θ2, realized at dates 1 and 2 respectively, and

is given by u1 (c1; θ1) and u2 (c2; θ2). Without loss, we assume Pr (θt) > 0 for all θt ∈ Θt. We

write Θ ≡ Θ1 × Θ2, and assume Θ is compact. At date 3 his contemporaneous utility is u3 (c3).

We note that in a setting with more than 3 dates, u3 (c3) can be interpreted more generally as the

expected future discounted utility of an agent inheriting wealth c3.

The agent discounts the future quasi-hyperbolically: for t = 0, 1, 2, self t’s intertemporal utility

function is U t ≡ ut + β
∑3

s=t+1 us, so that β ∈ (0, 1) is the hyperbolic discount factor. Note that

we normalize the regular, i.e., non-hyperbolic, discount rate to zero; likewise, the risk-free interest

rate is zero. Finally, the agent is self-aware (i.e., sophisticated), in the sense that at each date,

19Similarly, Eliaz and Spiegler (2006) analyze profit maximization by a monopolist who deals with a population of
time-inconsistent individuals who differ in their degree of sophistication (see Section 6.2 below).
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he correctly anticipates his preferences at future dates (see the discussion in subsection 6.2). The

contemporaneous utility functions ut are strictly increasing and strictly concave in ct. Finally, we

write V t =
∑3

s=t us for the agent’s utility under exponential discounting.

We write C (θ1, θ2) = (C1 (θ1) , C2 (θ1, θ2) , C3 (θ1, θ2)) for a contract, consisting of a sequence

of state-contingent consumption levels. Clearly date 1 consumption cannot depend on the date 2

state θ2; in contrast, date 2 and 3 consumption may depend on both the states θ1 and θ2.

The total resources available for the agent to consume across the three dates is W , and is state-

independent.20 This could either represent an initial endowment of the agent, or the present value

of future income. Since our main focus is on the effect of hyperbolic discounting on intertemporal

efficiency, not its effect on insurance across states, we rule out transfers across states, so that the

following resource constraint must hold: for all (θ1, θ2) ∈ Θ,

C1 (θ1) + C2 (θ1, θ2) + C3 (θ1, θ2) ≤ W . (RC)

This assumption also facilitates comparison with the existing literature, which like us focuses on

intertemporal efficiency.21 Moreover, it would be hard—and sometimes impossible—to insure the

agent if self 0 had private information about the relative probability of different states.22 Note that

RC covers even zero-probability state realizations (θ1, θ2), a point we discuss below.

3.1 Incentive constraints

The central friction in our framework is that the states θ1 and θ2 are unverifiable. Unverifiability of

the state induces a potential trade-off between commitment and flexibility for the agent, as discussed

in Amador et al (2006). Unverifiability means that a contract must satisfy the following incentive

compatibility (IC) constraints, which ensure that the agent does not gain by misrepresenting the

20However, the additive shock parameterization of our environment that we introduce below is equivalent to allowing
W to vary in an unverifiable way across states.

21Amador, Werning, and Angeletos (2006) rule out transfers across states. O’Donoghue and Rabin (1999b) and
DellaVigna and Malmendier (2004) study risk-neutral agents, and so insurance across states is not a concern.

22Note that private information about the distribution of θ1 would not affect our analysis, which characterizes
when intertemporal efficiency is possible.
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state. At date 2, the IC constraints are: for all θ1 ∈ Θ1 and θ2, θ̃2 ∈ Θ2,
23

U2 (C (θ1, θ2) ; θ2) ≥ U2
(

C
(

θ1, θ̃2

)

; θ2

)

. (IC2)

At date 1, the IC constraints are: for all θ1, θ̃1 ∈ Θ1,

Eθ2

[

U1 (C (θ1, θ2) ; θ1, θ2) |θ1

]

≥ Eθ2

[

U1
(

C
(

θ̃1, θ2

)

; θ1, θ2

)

|θ1

]

. (IC1)

We say that a contract C is feasible if it satisfies IC1, IC2 and RC.

3.2 Self 0’s problem

Self 0’s problem is to choose a contract C to solve

max
C s.t. RC, IC1, IC2

Eθ1,θ2

[

U0 (C (θ1, θ2) ; θ1, θ2)
]

.

To characterize the agent’s ability to successfully combine commitment with flexibility, our results

compare the solution to this problem to two more relaxed problems, namely:

Problem I, in which neither IC1 nor IC2 is imposed.

Problem II, in which IC1 is not imposed, but IC2 is imposed.

3.3 Preference assumptions and a preliminary result

Before formally stating assumptions on how the state (θ1, θ2) affects preferences, it is useful to give

two leading examples:

Example, multiplicative shocks: ut (ct; θt) = θtu (ct) for t = 1, 2 and θt ∈ Θt, where u has non-

increasing absolute risk aversion (NIARA).24

23In principle, a contract could also condition on self 2’s report of the date 1 state, say θ21, so that the contract
would take the form C (θ1, θ2, θ21). However, given that self 2’s preferences depend only on θ2, and are independent

of state θ1, the only way in which a contract with C (θ1, θ2, θ21) 6= C
“

θ1, θ2, θ̃21

”

could be incentive compatible is if

self 2 is indifferent between C (θ1, θ2, θ21) and C
“

θ1, θ2, θ̃21

”

, and resolves the indifference differently depending on

the true realization of the date 1 state. We assume throughout that self 2 resolves indifference in the same way in
all states, and accordingly, write the contract and ICs as in the main text. Note that this assumption only affects
the analysis of subsection 4.2, which deals with zero correlation between states θ1 and θ2. Moreover, in a discussion
of the same issue, Amador et al (2003) show that indifference is only possible in a finite number of states, so that if
there are a continuum of states, as in Section 4.4, this assumption is without loss.

24Amador et al (2006) focus completely on this case.
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Example, additive shocks: ut (ct; θt) = u (ct + θt) for t = 1, 2 and θt ∈ Θt, where u has NIARA.

This shock specification has a natural interpretation as either essential expenditure shocks (e.g., the

agent must take his child to the doctor), or income shocks (e.g., the individual receives a bonus).

Motivated by these examples, we make Assumptions 1-4:

Assumption 1 For any s, t ∈ {1, 2}, θ ∈ Θt and θ̃ ∈ Θs, sign
(

u′
t (x; θ)− u′

s

(

x; θ̃
))

is indepen-

dent of x.

Assumption 1 simply says that states can be unambiguously ordered in terms of their impact on

MU. Given the assumption, we write u′
t (·; θ) ≥ u′

s

(

·; θ̃
)

for the case in which u′
t (x; θ) ≥ u′

s

(

x; θ̃
)

for all x. Without loss, we assume u′
2

(

·; θ̃2

)

6= u′
2 (·; θ2) whenever θ̃2 6= θ2, and order Θ2 so that

θ̃2 > θ2 if and only if u′
2

(

·; θ̃2

)

> u′
2 (·; θ2). We write θ2 and θ̄2 for the minimal and maximal

elements of Θ2 under this ordering.

Assumption 2 For t = 1, 2 and θt ∈ Θt, there exists ct such that u′
t (ct; θt) → ∞ as ct → ct.

Assumption 2 is simply the standard Inada condition, and ensures solutions are always interior.

The minimum consumption level ct is potentially different from 0, reflecting the example of additive

shocks given above.

Assumption 3 u3 (c3) → −∞ and u′
3 (c3) → ∞ as c3 → 0.

Assumption 3 guarantees that variation in contemporaneous date 3 utility is not overwhelmed

by variation in contemporaneous utility at earlier dates; its main use is in Part (B) of Proposition

1. It is satisfied in both the multiplicative and additive examples above, if, for example, u3 has a

constant coefficient of relative risk aversion of 1 or above.

Assumption 4 If u′
t (ct; θ) ≥ γu′

s

(

cs; θ̃
)

for some s, t ∈ {1, 2}, cs, ct ≥ cs, θ ∈ Θt, θ̃ ∈ Θs and

γ ≤ 1, then u′
t (ct + x; θ) ≥ γu′

s

(

cs + x; θ̃
)

for all x > 0.

Assumption 4 is a relatively mild regularity condition, which is satisfied by both the multiplica-

tive and additive shock examples (see appendix).

In addition to Assumptions 1-4, Part (B) of Proposition 1 and the analysis of economy B in

Proposition 3 also make use of the following pair of relatively mild assumptions, which we state

here for completeness. Both assumptions relate to the size of the shocks θ1 and θ2.

10



Assumption 5 There exists θ1 ∈ Θ1 and θ2 ∈ Θ2 such that u′
2 (·; θ2) ≥ u′

1 (·; θ1).

Assumption 6 If C solves either Problem I or II,

max
θ1,θ̃1∈Θ1

∣

∣

∣
C1 (θ1)− C1

(

θ̃1

)∣

∣

∣
< min

θ1,θ2∈Θ1×Θ2

C3 (θ1, θ2) .

Assumption 5 simply says that MU does not strictly decrease from date 1 to 2. Assumption 6 is

a relatively mild restriction on the strength of shocks relative to consumption-smoothing motives:

ignoring incentive constraints, in self 0’s preferred contract the variation in date 1 consumption is

less than the minimum date 3 consumption.

Finally, we note the following preliminary result: the date 2 incentive constraints immediately

imply that date 2 consumption C2 (θ1, ·) must increase in date 2 MU. This monotonicity result is

standard to mechanism design problems.25

Lemma 1 If θ̃2 > θ2 and C satisfies IC2 then C2

(

θ1, θ̃2

)

≥ C2 (θ1, θ2) for all θ1 ∈ Θ1.

4 Analysis

In subsections 4.1-4.3 we assume that both Θ1 and Θ2 are binary; this assumption is relaxed in

subsection 4.4.

4.1 Perfect correlation

We start by considering the case of perfect correlation, so that the date 2 state θ2 is a deterministic

function of θ1. Proposition 1 below characterizes when there is a feasible contract that solves

Problem I, i.e., when the agent can fully resolve the tension between commitment and flexibility.

The key condition identified by Proposition 1 is a preference reversal condition. Specifically,

when hyperbolic discounting is severe (β low), there is a feasible contract that solves Problem I if

and only if a desire for high date 1 consumption is followed by low date 2 MU, and vice versa.26

25See Lemma 2 of Myerson (1981); or Chapter 2.3 of Bolton and Dewatripont (2005).
26The preference reversal condition may remind readers of Maskin’s (1999) monotonicity condition. However,

while preference reversal may fail in our setting, monotonicity is trivially satisfied as long as some self’s preferences
differ across the two states. In our setting, the social choice rule of interest is F (θ1, θ2) = C (θ1, θ2). This social
choice rule is monotonic if and only if for all (θ1, θ2) and (θ′

1, θ
′
2) 6= (θ1, θ2), U t (C (θ1, θ2) ; θ1, θ2) ≥ U t (x; θ1, θ2) and

U t (C (θ1, θ2) ; θ′
1, θ

′
2) < U t (x; θ′

1, θ
′
2) for some self t ∈ {1, 2, 3} (self 0 is non-strategic) and some x ∈ R

3. As long as
some self’s preferences differ across the two states, this condition is satisfied

11



To state the formal result, let C∗ be a solution of Problem I, and write θ̄1 and θ1 for the

elements of Θ1 such that C∗
1

(

θ̄1

)

≥ C∗
1 (θ1); note that Problem I is independent of β, and that date

1 consumption is the same in any solution. Since Θ2 is binary, Θ2 =
{

θ2, θ̄2

}

.

Proposition 1 If C∗
1

(

θ̄1

)

> C∗
1 (θ1) then:

(A, No Preference Reversal): If Pr
(

θ̄2|θ̄1

)

= Pr (θ2|θ1) = 1, then for all β sufficiently small, no

feasible contract solves Problem I.

(B, Preference reversal): If Pr
(

θ̄2|θ1

)

= Pr
(

θ2|θ̄1

)

= 1, then for all β sufficiently small,27 there

exists a feasible contract that solves Problem I.

In Part (A) of Proposition 1, by IC1 self 1 is dissuaded from claiming high consumption C1

(

θ̄1

)

in the low consumption state θ1 if and only if

u1 (C1 (θ1) ; θ1) + βV 2 (C (θ1, θ2) ; θ2) ≥ u1

(

C1

(

θ̄1

)

; θ1

)

+ βV 2
(

C
(

θ̄1, θ2

)

; θ2

)

.

Consumption C1 (θ1), C1

(

θ̄1

)

and C (θ1, θ2) all lie on the equilibrium path, while consumption

C2

(

θ̄1, θ2

)

and C3

(

θ̄1, θ2

)

lie off the equilibrium path. Consequently, when hyperbolic discounting

is strong (β small), the only way for a solution to Problem I to satisfy the above incentive constraint

is if C2

(

θ̄1, θ2

)

and C3

(

θ̄1, θ2

)

are such that V 2
(

C
(

θ̄1, θ2

)

; θ2

)

is very low. However, this is

impossible. From Lemma 1, IC2 imply that C
(

θ̄1, θ2

)

must deliver less date 2 consumption than

C
(

θ̄1, θ̄2

)

. Because self 2 needs to have the incentive to pick C
(

θ̄1, θ2

)

over C
(

θ̄1, θ̄2

)

, this implies

that V 2
(

C
(

θ̄1, θ2

)

; θ2

)

must be greater than V 2
(

C
(

θ̄1, θ̄2

)

; θ2

)

. Because C
(

θ̄1, θ̄2

)

is on the

equilibrium path, this establishes a lower bound on V 2
(

C
(

θ̄1, θ2

)

; θ2

)

, and establishes Part (A).28

Summarizing, the above argument says that self 2 cannot be induced to impose an effective

punishment on self 1 in state θ2. This is the key observation behind our preference reversal

condition, because when the low date-1 consumption state is followed by low date 2 MU-state θ2,

it is precisely in state θ2 that a punishment is needed. Because of the centrality of this argument

to our analysis, we state the following Lemma for use in subsequent results:

Lemma 2 If C satisfies IC2 then V 2 (C (θ1, θ2) ; θ2) ≥ V 2
(

C
(

θ1, θ̃2

)

; θ2

)

for any θ̃2 ∈ Θ2.

27Under additional preference assumptions, Part (B) can be established for all β. Details are available upon request.
28As an aside, note that the above argument also establishes that Part (A) holds whenever β is low enough that

u1 (C∗
1 (θ

1
) ; θ

1
) + βV 2 (C∗ (θ

1
, θ

2
) ; θ

2
) < u1

`

C∗
1

`

θ̄1

´

; θ
1

´

+ βV 2
`

C∗ `

θ̄1, θ̄2

´

; θ
2

´

.
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Turning to Part (B), by IC1 self 1 is dissuaded from claiming high consumption C1

(

θ̄1

)

in the

low consumption state θ1 if and only if

u1 (C1 (θ1) ; θ1) + βV 2
(

C
(

θ1, θ̄2

)

; θ̄2

)

≥ u1

(

C1

(

θ̄1

)

; θ1

)

+ βV 2
(

C
(

θ̄1, θ̄2

)

; θ̄2

)

.

Now, it is consumption C
(

θ̄1, θ̄2

)

that lies off the equilibrium path.

In this case, it is possible to exploit the agent’s time-inconsistency to punish self 1 for over-

consumption. To do so, one can make C2

(

θ̄1, θ̄2

)

very high relative to C2

(

θ̄1, θ2

)

, while at the

same time making C3

(

θ̄1, θ̄2

)

low relative to C3

(

θ̄1, θ2

)

; note that this is consistent with Lemma

1. Precisely because of hyperbolic discounting, self 2 will choose C
(

θ̄1, θ̄2

)

over C
(

θ1, θ̄2

)

in the

high MU state θ̄2. By making C3

(

θ̄1, θ̄2

)

low, it is possible to make V 2
(

C
(

θ̄1, θ̄2

)

; θ̄2

)

low, and

thus satisfy the date 1 incentive constraint above.

A perhaps surprising aspect of Proposition 1 is that the continuation utility V 2
(

C
(

θ̄1, θ̄2

)

; θ̄2

)

can be made sufficiently low even when hyperbolic discounting is severe (β low), since the more

severe discounting becomes, the greater the punishment that is needed. The reason this is possible

is that there is an offsetting effect: as hyperbolic discounting becomes more severe, self 2 cares less

and less about date 3 consumption, and so the size of punishment that self 2 can be induced to

inflict on self 1 grows.29

The proof of part (B) of Proposition 1 is constructive, and we conclude this subsection with a

brief sketch. Observe first that self 1’s utility U1 from consumption c is related to V 1 by

U1 (c; θ1, θ2) = (1− β)u1 (c; θ1) + βV 1 (c; θ1, θ2) . (1)

Consequently, the gain to self 1 in state
(

θ1, θ̄2

)

of obtaining consumption C∗
(

θ̄1, θ2

)

instead of

C∗
(

θ1, θ̄2

)

is strictly less than

(1− β)
(

u1

(

C∗
1

(

θ̄1

)

; θ1

)

− u1 (C∗
1 (θ1) ; θ1)

)

, (2)

since by definition C∗
(

θ1, θ̄2

)

maximizes V 1
(

·; θ1, θ̄2

)

. Second, observe that C
(

θ̄1, θ̄2

)

defined by

29Part (B) of Proposition 1 makes use of Assumptions 5 and 6. Assumption 5 is used to show that there is enough
variation in contemporaneous utility at date 2; but for some important classes of shocks, notably additive shocks,
it is not needed. (A proof is available from the authors upon request.) Assumption 6 is used to establish that
the punishment C

`

θ̄1, θ̄2

´

satisfies the resource constraint RC. Note that this consumption is chosen only off the
equilibrium path, so if RC is not required off the equilibrium path, it too can be dispensed with.
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C1

(

θ̄1

)

= C∗
1

(

θ̄1

)

and

u2

(

C2

(

θ̄1, θ̄2

)

; θ̄2

)

= u2

(

C∗
2

(

θ̄1, θ2

)

; θ̄2

)

+ u1

(

C∗
1

(

θ̄1

)

; θ1

)

− u1 (C∗
1 (θ1) ; θ1) (3)

u3

(

C3

(

θ̄1, θ̄2

))

= u3

(

C∗
3

(

θ̄1, θ2

))

−
1

β

(

u1

(

C∗
1

(

θ̄1

)

; θ1

)

− u1 (C∗
1 (θ1) ; θ1)

)

(4)

delivers self 1 utility in state
(

θ1, θ̄2

)

that is exactly an amount (2) below U1
(

C∗
(

θ̄1, θ2

)

; θ1, θ̄2

)

.

Consequently, C
(

θ̄1, θ̄2

)

delivers enough punishment to induce self 1 to pick low consumption in

state θ1, i.e., IC1

(

θ1, θ̄1

)

is satisfied. Observe that C
(

θ̄1, θ̄2

)

increases date 2 consumption relative

to C∗
(

θ̄1, θ2

)

, while simultaneously decreasing date 3 consumption; and it does so in such a way

that self 2 actually chooses C
(

θ̄1, θ̄2

)

in state θ̄2, since IC2

(

θ̄1, θ̄2, θ2

)

holds at equality.30

4.2 Zero correlation

Next, consider the case of zero correlation, in which the conditional probability Pr (θ2|θ1) of the

date 2 state θ2 is independent of the date 1 state θ1. For example, this is the case if date 2 utility

u2 is independent of the state of the world, as in Amador et al (2006). This is also the case if

θ1 and θ2 are distributed identically and independently, as in Amador et al (2003). Given zero

correlation, IC1 simplifies to

u1 (C1 (θ1) ; θ1) + βEθ2

[

V 2 (C (θ1, θ2) ; θ2)
]

≥ u1

(

C1

(

θ̃1

)

; θ1

)

+ βEθ2

[

V 2
(

C
(

θ̃1, θ2

)

; θ2

)]

.

(IC1)

Because of zero correlation, there is a strictly positive probability of all state-combinations (θ1, θ2),

and hence C (θ1, θ2) is fully determined by the solution to Problem I. Consequently, if the solution

to Problem I entails date 1 consumption that differs across states, then for β sufficiently low no

solution to Problem I is feasible.31 In this case, consumption must be distorted relative to what

self 0 would desire, as analyzed by Amador et al (2006).

4.3 Imperfect correlation

Under perfect correlation, θ2 is perfectly forecastable at date 1, and so the only reason to give self 2

a consumption choice is so he can punish self 1 for overconsumption. In contrast, under imperfect

30The remaining details of the construction are handled in the Appendix. The main remaining steps are to show
that the definition (3), (4) is actually feasible, and to show that RC is satisfied.

31By exactly the same argument, no solution to Problem II is feasible either.
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correlation, state θ2 is unknown at date 1. In this case, self 2 is required to play two roles. First,

he must punish self 1 for overconsumption, as before. Second, he must himself choose appropriate

consumption at date 2. Because self 3 simply consumes whatever is left, it is impossible to punish

self 2 for overconsumption at date 2 (the subproblem starting at date 2 is covered by Amador et al

2006). Consequently, when hyperbolic discounting is severe enough self 2 cannot be deterred from

deviating from the solution to Problem I.

Since no solution to Problem I is feasible for β small, we instead consider Problem II, in which

IC2 but not IC1 is imposed. In words, we ask whether unverifiability of state θ1 imposes a cost

over and above unverifiability of state θ2.

A useful preliminary result, which helps in the statement of results below, is:32

Lemma 3 The solution to Problem II is independent of β for all β sufficiently small.

Given Lemma 3, let C∗∗ be a solution to Problem II for small β, and let ¯̄θ1 and θ1 denote the

elements of Θ1 such that C∗∗
1

(

¯̄θ1

)

≥ C∗∗
1

(

θ1

)

.

Parallel to the perfect correlation case, self 1 is dissuaded from claiming high consumption in

the low consumption state θ1 if and only if

u1

(

C1

(

θ1

)

; θ1

)

+ β Pr
(

θ̄2|θ1

)

V 2
(

C
(

θ1, θ̄2

)

; θ̄2

)

+ β Pr
(

θ2|θ1

)

V 2
(

C
(

θ1, θ2

)

; θ2

)

≥ u1

(

C1

(

¯̄θ1

)

; θ1

)

+ β Pr
(

θ̄2|θ1

)

V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

+ β Pr
(

θ2|θ1

)

V 2
(

C
(

¯̄θ1, θ2

)

; θ2

)

.

As before, this constraint is violated for severe hyperbolic discounting (β small) unless the expected

continuation utility when self 1 claims ¯̄θ1 when the actual state is θ1 is very low, i.e., the following

quantity is very low:

Pr
(

θ̄2|θ1

)

V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

+ Pr
(

θ2|θ1

)

V 2
(

C
(

¯̄θ1, θ2

)

; θ2

)

.

To delineate the consequences of imperfect correlation, we examine two distinct cases. First,

we consider the case in which the date 2 state following the high-consumption date 1 state ¯̄θ1 is

deterministic. In this case, one of C
(

¯̄θ1, θ̄2

)

and C
(

¯̄θ1, θ2

)

lies off the equilibrium path. Conse-

quently, there is some hope of being able to punish self 1 for overconsumption without distorting

32The key argument in Lemma 3 is that, for β small, any solution to Problem II makes consumption at dates 2 and
3 independent of state θ2. This result is formally stated in Lemma A-3 in the Appendix, and generalizes Proposition
1 of Amador et al (2006) beyond the case of multiplicative shocks.
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consumption along the equilibrium path. Our result for this case is:

Proposition 2 If Pr
(

θ̄2|
¯̄θ1

)

∈ {0, 1} and C∗∗
1

(

¯̄θ1

)

> C∗∗
1

(

θ1

)

then:

(A, No Preference Reversal) If Pr
(

θ̄2|
¯̄θ1

)

= 1, then for all β sufficiently small, no feasible contract

solves Problem II.

(B, Preference Reversal) If Pr
(

θ2|
¯̄θ1

)

= 1 and

u2

(

C∗∗
2

(

¯̄θ1, θ2

)

+ C∗∗
3

(

¯̄θ1, θ2

)

; θ̄2

)

> u2

(

C∗∗
2

(

¯̄θ1, θ2

)

; θ̄2

)

+
u1

(

C∗∗
1

(

¯̄θ1

)

; θ1

)

− u1

(

C∗∗
1

(

θ1

)

; θ1

)

Pr
(

θ̄2|θ1

)

(5)

then for all β sufficiently small, there exists a feasible contract that solves Problem II.

Proposition 2 extends Proposition 1 beyond perfect correlation. Again, if high date 1 consump-

tion is followed by high date 2 MU (no preference reversal), there is no feasible solution to Problem

II for strong hyperbolic discounting. In contrast, if high date 1 consumption is followed by low

date 2 MU (preference reversal), then under many cases there is a feasible solution to Problem II.

In this case, hyperbolic discounting has no effect on outcomes beyond the fact that self 2 cannot

be prevented from overconsuming.

The economics behind Proposition 2 is the same as behind Proposition 1. If the high consump-

tion date 1 state ¯̄θ1 is followed by the high MU date 2 state θ̄2, then consumption C
(

¯̄θ1, θ2

)

lies

off the equilibrium path, and one would like to punish self 1 for overconsumption in θ1 by making

the continuation utility V 2
(

C
(

¯̄θ1, θ2

)

; θ2

)

low. But by Lemma 2, this is impossible, leading to

the conclusion of Part (A). If instead the high consumption date 1 state ¯̄θ1 is followed by the low

MU date 2 state θ2, then consumption C
(

¯̄θ1, θ̄2

)

lies off the equilibrium path, and one would like

to punish self 1 for overconsumption in θ1 by making the continuation utility V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

low. This is potentially achievable, exactly as in the case of perfect correlation. Condition (5) is

needed because Pr
(

θ̄2|θ1

)

< 1, so that self 1 has some chance of being able to falsely report ¯̄θ1 in

state θ1 and then escape the punishment that occurs when the date 2 state is θ̄2. Consequently,

because the punishment is not always imposed, it needs to be larger than in the case of perfect

correlation. Condition (5) is enough to guarantee that this larger punishment is feasible; note that

it is in the same spirit as Assumption 6, which says that cross-state variation in date 1 consumption

is smaller than the minimum level of date 3 consumption.

Second, we consider the case in which both date 2 states are possible after ¯̄θ1, while the date 2
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state following the low-consumption date 1 state θ1 is deterministic. In this case, it is impossible to

punish self 1 without distorting consumption along the equilibrium path.33 Consequently, there is

no feasible solution to Problem II when hyperbolic discounting is severe. Accordingly, we instead

characterize the minimum utility cost of making date 1 consumption C∗∗
1 (·) feasible. Formally,

this cost is

κ ≡ Eθ1,θ2

[

U0 (C∗∗ (θ1, θ2) ; θ1, θ2)
]

− max
C s.t. RC, IC1, IC2, C1(·,·)≡C∗∗

1
(·,·)

Eθ1,θ2

[

U0 (C (θ1, θ2) ; θ1, θ2)
]

. (6)

Proposition 3 Let A and B be two different economies such that Pr
(

θ2|θ1

)

= 1 in economy

A but Pr
(

θ̄2|θ1

)

= 1 in economy B. Both the date 1 probabilities Pr (θ1) and utility differ-

ence u1

(

C∗∗
(

¯̄θ1

)

; θ1

)

− u1

(

C∗∗
(

θ1

)

; θ1

)

are constant across the two economies. Moreover,

Pr
(

θ̄2|
¯̄θ1

)

/∈ {0, 1} in both economies. Then for all β sufficiently small, the cost of making C∗∗
1 (·)

feasible is greater in economy A than economy B, i.e., κA > κB.

Proposition 3 is in keeping with the conclusions of Propositions 1 and 2: ceteris paribus, the

impact of hyperbolic discounting is smaller when low date 1 consumption is followed by high date

2 MU, i.e., when there is preference reversal. The conditions in Proposition 3 formalize the

ceteris paribus condition: the two economies being compared have the same difference in date 1

contemporaneous utility.

Although the proof of Proposition 3 is quite long, the basic economics is the same as for

previous results. The state in which self 1 potentially overconsumes is θ1. In Economy A, this

state is followed by the low MU state θ2, and so we need self 2 to impose a punishment in this

state. But Lemma 2 bounds the size of the punishment that is possible when date 2 MU is low:

specifically, V 2
(

C
(

¯̄θ1, θ2

)

; θ2

)

cannot fall below V 2
(

C
(

¯̄θ1, θ̄2

)

; θ2

)

. Consequently, the only

way to effectively punish self 1 is to distort C
(

¯̄θ1, θ̄2

)

, which is costly in utility terms.

In contrast, in Economy B, we need self 2 to impose a punishment in the high MU state θ̄2.

The proof of Proposition 3 bounds the utility cost of this punishment by constructing a specific

contract. In particular, the construction of the punishment
(

C2

(

¯̄θ1, θ̄2

)

, C3

(

¯̄θ1, θ̄2

))

is based on

the same punishment as used in Proposition 1 above (see (3) and (4)), which we know provides

33On the other hand, there is no longer a problem of failing to punish self 1 when he overconsumes: in this case, if
self 1 overconsumes in state θ1, there is no uncertainty about his continuation utility.
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more than enough punishment.

4.4 Continuum of states

We next extend our analysis, and assume that both θ1 and θ2 may take a continuum of different

realizations. We focus on the case of perfect correlation. To avoid economically uninteresting

mathematical complications, we assume that C∗
1 (θ1) 6= C∗

1

(

θ̃1

)

whenever θ1 6= θ̃1, and accordingly

order Θ1 so that C∗
1 (θ1) is strictly increasing in θ1.

Our main result is the following generalization of Proposition 1. To state the result, let φ (θ1)

be the date 2 state that deterministically follows the date 1 state θ1:

Proposition 4 (A, No Preference Reversal) If φ is strictly increasing, there is no feasible solution

to Problem I for β small.

(B, Preference Reversal) If φ is strictly decreasing and differentiable, then for any β, there ex-

ists a feasible solution to Problem I provided that maxθ1,θ̃1∈Θ1

∣

∣

∣C∗ (θ1, φ (θ1)) − C∗
(

θ̃1, φ
(

θ̃1

))∣

∣

∣ is

sufficiently small.

Proposition 4 extends the conclusion of prior results to the case of a continuous state space.

Again, hyperbolic discounting affects outcomes if low date 1 consumption is associated with low

date 2 MU (Part (A), no preference reversal), but not if it is associated with high date 2 MU (Part

(B), preference reversal). The economic forces are the same as previously identified. In Part (A),

it is impossible to punish self 1 for overconsuming, because the punishment needs to be inflicted in

a date 2 state with low MU, which by Lemma 2 is impossible.

In contrast, in Part (B), such punishment is possible. The new complication relative to previous

results is that now self 1 can overconsume to various degrees. In general, greater overconsumption

necessitates a more severe punishment. In particular, a greater punishment is typically needed if

self 1 lies and reports θ̃1 when the true state is θ1 rather than the true state being θ′1 > θ1. The

challenge is to design the contract C so self 2 picks the punishment appropriate to the degree of

overconsumption, i.e., picks different punishments in states θ′1 and θ1.

The proof of Part (A) is immediate from the analysis of the binary case. If φ (θ1) is increasing,

then in particular there exist θ1 and θ̃1 > θ1 such that φ
(

θ̃1

)

> φ (θ1). Then from Proposition

1, there is no feasible solution to Problem I when Θ1 =
{

θ1, θ̃1

}

and Θ2 =
{

φ (θ1) , φ
(

θ̃1

)}

. A

fortiori, there is no feasible solution to Problem I in the continuum state case under consideration.
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The proof of Part (B) is constructive, and we sketch some of the elements of the construction

here. A useful starting point is the following observation, which gives a sufficient condition for

IC2:

Lemma 4 IC2(θ1, ·, ·) is satisfied if34 C2 (θ1, ·) is increasing in θ2 and for all θ2 ∈ Θ2,

u′
2 (C2 (θ1, θ2) ; θ2)

∂C2 (θ1, θ2)

∂θ2
= −βu′

3 (C3 (θ1, θ2))
∂C3 (θ1, θ2)

∂θ2
. (7)

Next, consider any self 1 report θ̃1. Provided IC2 is satisfied, then self 2 reports truthfully.

Consequently, if self 2 reports θ̃2 = φ
(

θ̃1

)

, he is confirming that self 1 reported truthfully. Ac-

cordingly, we set C
(

θ̃1, φ
(

θ̃1

))

= C∗
(

θ̃1, φ
(

θ̃1

))

. In contrast, if self 2 reports θ̃2 > φ
(

θ̃1

)

, then

since φ is decreasing he is reporting that self 1 reported too high a state, i.e., θ̃1 > φ−1
(

θ̃2

)

, mean-

ing that self 1 overconsumed. To deter such overconsumption, we essentially35 define C
(

θ̃1, θ2

)

for θ2 ≥ φ
(

θ̃1

)

to satisfy the pair of differential equations differential equations (7)—so that, by

Lemma 4, IC2 is satisfied—and

dU1
(

C
(

θ̃1, θ2

)

; φ−1 (θ2) , θ2

)

dθ2
=

dU1
(

C∗
(

φ−1 (θ2) , θ2

)

; φ−1 (θ2) , θ2

)

dθ2
,

subject to the boundary condition C
(

θ̃1, φ
(

θ̃1

))

= C∗
(

θ̃1, φ
(

θ̃1

))

.36 This definition implies

U1
(

C
(

θ̃1, θ2

)

; φ−1 (θ2) , θ2

)

= U1
(

C∗
(

φ−1 (θ2) , θ2

)

; φ−1 (θ2) , θ2

)

,

so that self 1 is indifferent between reporting θ̃1 and the true realization of θ1, namely φ−1 (θ2).

Hence IC1 is satisfied.

Finally, for part (B), the condition that maxθ1,θ̃1∈Θ1

∣

∣

∣C∗ (θ1, φ (θ1)) − C∗
(

θ̃1, φ
(

θ̃1

))∣

∣

∣ is not

too large ensures that RC can be satisfied. In common with the role of Assumptions 5 and 6 in

Proposition 1, this condition is not needed if RC is allowed to be violated off the equilibrium path.

34As an aside, it is worth noting that condition (7) is a necessary as well as a sufficient condition for IC2 at any
point at which C (θ1, θ2) is differentiable with respect to θ2; a proof is available upon request.

35Full details are in the proof of Lemma 4. The complication relative to the main text is that, by Lemma 1,

C2

“

θ̃1, θ2

”

must be weakly increasing in θ2.

36Note that the boundary condition also implies C1

“

θ̃1

”

= C∗
1

“

θ̃1

”

.
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5 Private savings

So far, we have assumed that the agent has no ability to save outside the contract. This assumption

fits some applications well; for example, if consumption is leisure, this is indeed the case. This

assumption also approximates the case in which private saving is possible, but only at a very

disadvantageous interest rate. Nonetheless, in other cases this assumption is unrealistically strong.

In this section we relax this assumption, and instead allow the agent to privately save at the

economy’s risk-free interest rate, which recall we assume to be zero.37

Given the possibility of private savings, a contract is now specified by X (θ1, θ2, s1); here, θ1 is

the report of self 1, while self 2 reports θ2 and also the level of savings s1 he has inherited from

self 1. We use the notation X rather than C because, off the equilibrium path, consumption is

impacted by hidden savings. In particular, if self 1 saves s1 and self 2 saves s2, then consumption

is

(c1, c2, c3) = (−s1 + X1 (θ1, θ2, s1) , s1 + X2 (θ1, θ2, s1) − s2, s2 + X3 (θ1, θ2, s1)) .

We denote this vector by s1 + X (θ1, θ2, s1) − s2; note that s1 and s2 here enter with the signs

relevant for self 2.

By standard arguments (see, e.g., Cole and Kocherlakota 2001), without loss we restrict atten-

tion to contracts that induce self 1 to choose zero private savings, and self 2 to likewise choose zero

private savings after every self 1 report θ1 and savings decision s1. The IC constraints are hence as

follows.38 At date 2, for all θ1 ∈ Θ1 and θ2, θ̃2 ∈ Θ2, and all s1, s̃1, s2 ≥ 0,

U2 (s1 + X (θ1, θ2, s1) ; θ2) ≥ U2
(

s1 + X
(

θ1, θ̃2, s̃1

)

− s2; θ2

)

, (IC2)

and at date 1, for all θ1, θ̃1 ∈ Θ1 and s1 ≥ 0,

Eθ2

[

U1 (X (θ1, θ2, 0) ; θ1, θ2) |θ1

]

≥ Eθ2

[

U1
(

s1 + X
(

θ̃1, θ2, s1

)

; θ1, θ2

)

|θ1

]

. (IC1)

We consider only the most basic version of our economy in which Θ1 and Θ2 are both binary,

37Recent papers in the growing literature on contracting with hidden savings include Kocherlakota (2004), Doepke
and Townsend (2006), and He (2009).

38We also impose the mild regularity condition that, for all (θ1, θ2) ∈ Θ, X(θ1, θ2, s1) is a finite function of s1, in
the sense of having at most finitely many points of discontinuity. This regularity condition is used only in proving the
necessity half of Proposition 6. It can be relaxed, though only at the cost of introducing economically uninteresting
mathematical complexity.
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and there is perfect correlation across the two dates. Moreover, we assume preferences satisfy the

following additional assumption:

Assumption 7 For any s1, sign
(

u′
2 (s1 + x; θ2) − u′

2

(

x; θ̃2

))

is independent of x.

Assumption 7 guarantees that self 2’s indifference curves in states θ2 and θ̃2 cross only once,

even when he inherits a different level of savings in the two states. It is straightforward to see

that the assumption is satisfied in the case of additive date 2 shocks. Moreover, our results can be

generalized to dispense with this assumption; an earlier version of the paper contains full details.

As before, let θ̄1 and θ1 be such that C∗
1

(

θ̄1

)

≥ C∗
1 (θ1). Given perfect correlation, for concise-

ness we write u2, U2 and V 2 directly in terms of θ1, rather than in terms of the date 2 state that

deterministically follows θ1. Likewise, we write C∗ and U1 as functions of θ1 only.

As before, hyperbolic discounting makes it tempting for self 1 to falsely claim that he is in

the high consumption state θ̄1. The new complication is that he may also privately save s1 > 0.

However, it is clearly not tempting for self 1 to both falsely claim high consumption and privately

save a very large amount. Consequently, there is an upper bound on the level of private saving

that is relevant. This upper bound is an important object in our analysis, and we denote it by s∗1.

It is formally defined as follows. First, define ŝ2 (s1) = arg maxs2≥0 U2
(

s1 + C∗
(

θ̄1

)

− s2; θ1

)

, i.e.,

self 2’s private savings decision in state θ1 given baseline consumption s1 + C∗
(

θ̄1

)

. Then s∗1 itself

is given by

s∗1 = sup
{

s1 ≥ 0 : U1 (C∗ (θ1) ; θ1) < U1
(

s1 + C∗
(

θ̄1

)

− ŝ2 (s1) ; θ1

)}

,

where s∗1 = 0 if the above set is empty. Note that s∗1 > 0 whenever hyperbolic discounting is

sufficiently severe, i.e., β low enough.

Proposition 5 For any β low enough such that s∗1 > 0, there exists a feasible solution to Problem

I only if

u′
2

(

x; θ̄1

)

≤ u′
2 (s∗1 + x; θ1) . (SPR)

Proposition 5 extends Part (A) of Proposition 1 to the case of private savings. This previous

result stated that for β sufficiently small, preference reversal is a necessary condition for there to

exist a feasible solution to Problem I: high date 1 consumption C∗ must be followed by low date
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2 MU, i.e., if u′
2

(

·; θ̄1

)

< u′
2 (·; θ1). With private savings, this condition is replaced with a strictly

stronger condition, which we label strong preference reversal (SPR).

The economics of this result is exactly as earlier. When u′
2 (s∗1 + x; θ1) < u′

2

(

x; θ̄1

)

, the

combination of inherited savings s∗1 and state θ1 gives lower MU at date 2 than the combination of

no inherited savings and state θ̄1. By Lemma 2,39 this makes it impossible to lower the continuation

utility V 2
(

s∗1 + X
(

θ̄1, θ1, s
∗
1

)

; θ1

)

below V 2
(

s∗1 + X
(

θ̄1, θ̄1, 0
)

; θ1

)

. Because X
(

θ̄1, θ̄1, 0
)

lies on

the equilibrium path, and in particular equals C∗
(

θ̄1

)

in any solution to Problem I, this bounds

the punishment that can be imposed on self 1 for claiming θ̄1 when the true state is θ1 and self 1

has passed savings s∗1 onto self 2.

Proposition 5 leaves open the issue of whether there is a feasible solution to Problem I when

SPR is satisfied. We address this next. The main issue relative to previous results is that the

possibility of private saving by self 2 places a limit on how much date 2 consumption can be raised

at the expense of date 3 consumption. This is turn limits the extent to which self 2 is able to

punish self 1 for overconsumption. We next derive a condition that, combined with SPR, is both

necessary and sufficient for there to exist a feasible solution to Problem I.

In our analysis of the continuous state space case, we saw that different punishments are po-

tentially required if self 1 falsely reports θ̃1 depending on whether the true state is θ1 or θ′1 6= θ1.

Likewise, when the state space is binary but private saving is possible, different punishments are

required if self 1 falsely reports θ̄1 depending on whether self 1 saves s1 or s′1 6= s1. Moreover, and

again as in the continuous state space case, self 2 must be induced to choose the appropriate pun-

ishment. Just as Lemma 4 provided the key tool for ensuring IC2 was satisfied in the continuous

state space case, the following analogous result serves the same role here:

Lemma 5 The subset of IC2,

U2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

≥ U2
(

s1 + X
(

θ̄1, θ1, s̃1

)

− s2; θ1

)

for all s1, s̃1, s2 ≥ 0 (8)

is satisfied if X2

(

θ̄1, θ1, s1

)

is weakly decreasing in s1, and satisfies u′
2

(

s1 + X2

(

θ̄1, θ1, s1

)

; θ1

)

≥

βu′
3

(

X3

(

θ̄1, θ1, s1

))

and

u′
2

(

s1 + X2

(

θ̄1, θ1, s1

)

; θ1

) ∂X2

(

θ̄1, θ1, s1

)

∂s1
= −βu′

3

(

X3

(

θ̄1, θ1, s1

)) ∂X3

(

θ̄1, θ1, s1

)

∂s1
. (9)

39The proof of Proposition 5 establishes an analogue of Lemma 2 for private savings.
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Conversely, if X satisfies (8) then U2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

is continuous in s1; and at any point

at which X
(

θ̄1, θ1, s1

)

is continuous in s1, (9) holds.

To give a sufficient condition for a feasible solution to Problem I to exist, we use the differential

equation (9) to construct a specific contract, X∗. The construction begins at the private savings

level s∗1. By definition, if self 1 falsely claims the high consumption state θ̄1 and then saves s∗1,

no punishment is needed: in state θ1 he is indifferent between C∗
(

θ̄1

)

and saving s∗1, and C∗ (θ1).

Accordingly, we define X∗
(

θ̄1, θ1, s
∗
1

)

= C∗
(

θ̄1

)

, which also implies X∗
1

(

θ̄1, ·, ·
)

= C∗
1

(

θ̄1

)

. For

lower levels of private savings, we aim to provide the minimum punishment that still deters self 1

from claiming too much consumption. The basic idea is to define X∗
2

(

θ̄1, θ1, ·
)

and X∗
3

(

θ̄1, θ1, ·
)

to satisfy the differential equations (9) and d
ds1

U1
(

s1 + X∗
1

(

θ̄1, θ1, s1

)

; θ1

)

= 0. However, we also

need to ensure that X∗
2

(

θ̄1, θ1, ·
)

is decreasing in savings s1 (this is analogous to the issue noted in

footnote 35). This is essentially an implication of Lemma 1: date 2 consumption must increase in

date 2 MU, and hence decrease in inherited savings. Accordingly, X∗
2

(

θ̄1, θ1, ·
)

and X∗
3

(

θ̄1, θ1, ·
)

are defined as the solutions to the pair of differential equations (9) and

∂X∗
2

(

θ̄1, θ1, s1

)

∂s1
= min

{

0,
−u′

1

(

−s1 + X∗
1

(

θ̄1, θ1, s1

)

; θ1

)

+ βu′
2

(

s1 + X∗
2

(

θ̄1, θ1, s1

)

; θ1

)

(1− β)u′
2

(

s1 + X2

(

θ̄1, θ1, s1

)

; θ1

)

}

,

(10)

subject to the boundary condition X∗
(

θ̄1, θ1, s
∗
1

)

= C∗
(

θ̄1

)

. The idea behind (10) is that—as is

readily verified—it ensures that d
ds1

U1
(

s1 + X∗
1

(

θ̄1, θ1, s1

)

; θ1

)

= 0 whenever
∂X∗

2(θ̄1,θ
1
,s1)

∂s1
< 0.

Given the definition of X∗
(

θ̄1, θ1, ·
)

over [0, s∗1], we can state:

Proposition 6 There exists a feasible solution to Problem I if and only if both SPR and the

following condition hold:

u′
2

(

s1 + X∗
2

(

θ̄1, θ1, s1

)

; θ1

)

≥ βu′
3

(

X∗
3

(

θ̄1, θ1, s1

))

for all s1 ∈ [0, s∗1] (NS)

Proposition 6 is the analogue of Part (B) of previous results. If there is preference reversal—

i.e., high date 1 consumption is associated with low date 2 MU—then hyperbolic discounting may

have little or no effect on equilibrium consumption. Condition NS is a no savings conditions,

and simply says that self 2 has no incentive to privately save in state θ1, given X∗
(

θ̄1, θ1, s1

)

.

Numerical simulations, available upon request, suggest that condition NS is satisfied for a large

fraction of the cases in which SPR holds.
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Finally, it can be shown that condition SPR is equivalent to the following simple condition on

consumption profiles,

C∗
1

(

θ̄1

)

+ C∗
2

(

θ̄1

)

≤ C∗
1 (θ1) + C∗

2 (θ1) . (11)

(A proof of this equivalence is contained in an earlier version of this paper.) In words, SPR is

equivalent to the condition that the state θ̄1 that has higher desired consumption at date 1 also

has weakly lower desired consumption across dates 1 and 2 together.

6 Discussion

Our analysis characterizes circumstances under which an agent with hyperbolic discounting is able

to resolve the tension between commitment and flexibility. The key condition we identify is

preference reversal: high desired consumption at date 1 is associated with low MU at date 2.

As illustrated by Examples 1 and 2 in the introduction, there are at least two economic forces

that lead the preference reversal condition to be naturally satisfied. The force operating in Example

2 is that if the individual can forecast that future MU will be low, this leads him to increase

consumption in advance. Hence, ceteris paribus, low MU at date 2 implies high desired consumption

at date 1. Of course, the reverse implication does not hold, and accordingly, there are certainly

many environments where preference reversal is not satisfied. The force operating in Example 1

is that if good consumption opportunities are limited, encountering a good opportunity at date 1

simultaneously increases desired consumption at date 1, and reduces the probability of encountering

another good opportunity at date 2.

We have focused throughout on how unverifiability affects the individual’s ability to combine

commitment with flexibility. In doing so, we have abstracted from other possible impediments,

such as a lack of exclusivity in contracting, a lack of commitment by contract counterparties, or

other frictions in the contracting process. In this sense, our analysis provides an upper bound on

an individual’s ability to combine commitment with flexibility.40

We conclude with a discussion of two remaining points: other interpretations of our model, and

the effect of partial näıveté.

40An earlier version of this paper contains a more detailed discussion of some of these issues. One point worth
noting here is that the analysis of private savings already deals with one particular way in which exclusivity may be
violated. The earlier version also contains results on how the contracts we characterize can be constructed using
simple financial instruments, at least in the case of a binary state space with perfect correlation (subsection 4.1).
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6.1 Applications

We have described the agent’s problem in terms of deciding what fraction of a fixed endowment W

to consume at each date. However, there are at least two other interpretations of our environment

that are worth discussing.

First, one can interpret our environment in terms of when an agent chooses to work on a task.

Consequently, our model can be used to analyze the provision of incentives to procrastinators,

which has been a leading application of hyperbolic discounting. In this interpretation, the agent

must complete a task, which will take h hours in total.41 His total time endowment across the

three dates is W + h. The agent must decide how much leisure ct to enjoy at each of dates 1,2,3,

subject to the constraint that he completes the task,
∑3

t=1 ct = W . When a feasible contract exists

that solves Problem I or II, it has the qualitative feature that self 2 can choose to miss a deadline,

but that doing so increases the work required of him in the future.42

Second, Amador et al (2006) discuss an interpretation in which society wishes to constrain

government spending, while recognizing that in some circumstances higher government spending is

socially desirable. Our analysis permits an extension of this interpretation to the case of federal and

local government. In this interpretation, the federal government chooses spending c1; taking federal

spending as given, the local government chooses spending c2; and the private sector consumes c3.

Both federal and local governments want to spend more than is socially optimal, corresponding to

hyperbolic discounting. Our analysis suggests that under some circumstances, a constitution can

be designed that controls government spending. In particular, this is possible if date 0 uncertainty

centers on whether the efficient provision of government services is at the federal or local level,

since in this case the preference reversal assumption is naturally satisfied.43

6.2 Näıveté

Thus far, we have assumed that the agent is fully self-aware (sophisticated), in the sense that

at any date, he correctly anticipates his future selves’ preferences. In this section we show that

41In the additive shock parameterization, different states can interpreted as changes in the amount of time required
to complete the task.

42It is also worth noting that if work is publicly observable, this is a case in which the issue of private savings is
not a concern.

43This case in analogous to Example 1 in the introduction. In general, note that the government spending
intepretation of the model is one in which the restriction against cross-state insurance is natural, as noted by Amador
et al.
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commitment contracts of the kind we analyze above often enable an agent who is partially (but

not completely) näıve about his future selves’ preferences to commit. We follow the literature and

use the specification introduced by O’Donoghue and Rabin (2001): at each date, the agent’s true

hyperbolic discount rate is β, but he incorrectly believes that his future selves’ rate is β̃ > β. We

continue to write U t for self t’s true preferences, and use Ũ t to denote the preferences incorrectly

attributed to self t by prior selves. We focus on the simplest version of our environment, in which

the state space is binary, θ1 and θ2 are perfectly correlated, and private saving is impossible. We

also assume that the preference reversal condition identified in Proposition 1 is satisfied, i.e., θ̄1 is

deterministically followed by θ2 and θ1 is deterministically followed by θ̄2.
44

Partial näıveté changes the conditions under which a feasible solution to Problem I exists.

Recall from the discussion following Proposition 1 that the contract component C
(

θ̄1, θ̄2

)

acts as

a punishment that is inflicted on self 1 if he claims the high consumption state θ̄1 when the true

state is θ1 (and hence the true date 2 state is θ̄2). Under partial näıveté, a contract C must satisfy

the modified date 2 IC

Ũ2
(

C
(

θ̄1, θ̄2

)

; θ̄2

)

≥ Ũ2
(

C
(

θ̄1, θ2

)

; θ̄2

)

, (12)

which says that self 1 believes that self 2 will impose this punishment.

Whenever hyperbolic discounting is sufficiently severe that self 1 is tempted to claim high con-

sumption at date 1, i.e., U1
(

C∗
(

θ̄1, θ2

)

; θ1, θ̄2

)

> Ũ1
(

C∗
(

θ1, θ̄2

)

; θ1, θ̄2

)

, then prior arguments

imply that a contract C is a feasible solution to Problem I only if C
(

θ̄1, θ̄2

)

raises date 2 consump-

tion relative to C
(

θ̄1, θ2

)

, exactly as in the case of full sophistication. The key impact of partial

näıveté is that condition (12) is now more demanding: self 1 underestimates the present-bias of self

2, and hence underestimates self 2’s willingness to increase date 2 consumption at the expense of

date 3 consumption.

Given these observations, it is straightforward to show that if a feasible solution to Problem

I exists for a partially näıve agent, then a feasible solution also exists for a sophisticated agent,

while the reverse implication does not hold. In this sense, the combination of flexibility with

commitment becomes harder as the agent’s näıveté increases. We stress, however, that by continuity

slight näıveté has only a small impact on the range of circumstances under which commitment and

flexibility can be combined, i.e., there is a feasible solution to Problem I.45

44Here, θ
1
, θ̄1 and C∗ are all defined as in Section 4.

45At the extreme of complete näıveté (i.e., β̃ = 1), no feasible contract solves Problem I.
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While the combination of commitment and flexibility is often possible when the agent is par-

tially näıve, näıveté does have a significant impact an agent’s incentive to choose an appropriate

contract. Under full sophistication, self 0 has every incentive to sign up to a contract that rec-

onciles commitment and flexibility. In contrast, this is not the case when the agent is partially

näıve.

There are two related issues here. First, as in Heidhues and Kőszegi (2010), an agent’s näıveté

means that self 0 may agree to a contract that increases date 1 consumption relative to the solution

to Problem I, but that distorts consumption at dates 2 and 3. In brief, self 0 finds the contract

attractive because he incorrectly believes that he can increase both date 1 and total consumption

by borrowing at a below-market rate; while the counterparty is happy to agree to the contract

because he correctly understands that self 2 will choose repayment terms that correspond to the

market rate.

Second, under partial näıveté self 0 may incorrectly believe that he does not have a commitment

problem. In these circumstances, there is scope for a benevolent government to improve welfare

(at least for self 0) by imposing a commitment contract.

However, it also important to note that while a government-mandated commitment contract

can improve the welfare of a partially näıve agent, it can actually hurt a very näıve agent, relative

to the alternative of simply allowing self 1 to choose freely between self 0’s desired consumption

paths C∗
(

θ̄1, θ2

)

and C∗
(

θ1, θ̄2

)

. First, note that the punishment component of the contract must

satisfy

u2

(

C2

(

θ̄1, θ̄2

)

; θ̄2

)

+ u3

(

C3

(

θ̄1, θ̄2

))

< u2(C
∗
2

(

θ̄1, θ2

)

; θ̄2) + u3(C
∗
3

(

θ̄1, θ2

)

), (13)

since otherwise the punishment would not deter self 1 from overconsuming in state θ.46 Conse-

quently, at date 1 a completely näıve agent (i.e., β̃ = 1) will claim the high consumption state θ̄1

when the true state is θ1, believing that self 2 will then report θ2, delivering consumption C∗
(

θ̄1, θ2

)

.

However, after self 1 claims the high consumption state θ̄1, self 2 in fact reports θ̄2, delivering con-

sumption C
(

θ̄1, θ̄2

)

, so that self 0’s equilibrium utility in
(

θ1, θ̄2

)

is U0
(

C
(

θ̄1, θ̄2

)

; θ1, θ̄2

)

. But

by (13), this is strictly less than the utility self 0 would get from a contract allowing self 1 to

choose freely between C∗
(

θ̄1, θ2

)

and C∗
(

θ1, θ̄2

)

, namely U0
(

C∗
(

θ̄1, θ2

)

; θ1, θ̄2

)

.47 Consequently,

46Formally, if u2

`

C2

`

θ̄1, θ̄2

´

; θ̄2

´

+ u3

`

C3

`

θ̄1, θ̄2

´´

≥ u2(C
∗
2

`

θ̄1, θ2

´

; θ̄2) + u3(C
∗
3

`

θ̄1, θ2

´

) then
U1

`

C
`

θ̄1, θ̄2

´

; θ
1
, θ̄2

´

> U1
`

C∗ `

θ̄1, θ2

´

; θ
1
, θ̄2

´

.
47The argument here is closely related to Heidhues and Kőszegi (2010). Self 2 effectively borrows on expensive

terms that self 1 näıvely believed he would not agree to.
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although there is scope for government paternalism to improve welfare if the government has a

reasonably precise estimate of the degree of näıveté, such paternalism is dangerous if agents are

instead much more näıve than the government believes.48
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Results omitted from main text

Lemma A-1 If c̃2 ≥ c2 and V 2 (c̃; θ2) ≥ V 2 (c; θ2), then U2 (c̃; θ2) ≥ U2 (c; θ2). The inequality is

strict if either c̃2 > c2 or V (c̃; θ2) > V (c; θ2).

Proof of Lemma A-1: Rewriting V 2 (c̃; θ2) ≥ V 2 (c; θ2) and U2 (c̃; θ2) ≥ U2 (c; θ2) gives, respec-

tively, u2 (c̃2; θ2)−u2 (c2; θ2) ≥ u3 (c3; θ2)−u3 (c̃3; θ2) and u2 (c̃2; θ2)−u2 (c2; θ2) ≥ β (u3 (c3; θ2) − u3 (c̃3; θ2)).

The result is then immediate. QED

30



Lemma A-2 If C satisfies IC2

(

θ1, θ2, θ̃2

)

with equality and sign
(

C2 (θ1, θ2) − C2

(

θ1, θ̃2

))

=

sign
(

θ2 − θ̃2

)

then C satisfies IC2

(

θ1, θ̃2, θ2

)

.

Proof: Since IC2

(

θ1, θ2, θ̃2

)

holds with equality, u2 (C2 (θ1, θ2) ; θ2)−u2

(

C2

(

θ1, θ̃2

)

; θ2

)

= β
(

u3

(

C3

(

θ1, θ̃2

))

−

If either C2 (θ1, θ2) ≥ C2

(

θ1, θ̃2

)

and θ2 > θ̃2, or C2 (θ1, θ2) ≤ C2

(

θ1, θ̃2

)

and θ2 < θ̃2, then

u2

(

C2 (θ1, θ2) ; θ̃2

)

−u2

(

C2

(

θ1, θ̃2

)

; θ̃2

)

≤ β
(

u3

(

C3

(

θ1, θ̃2

))

− u3 (C3 (θ1, θ2))
)

, which is equiv-

alent to IC2

(

θ1, θ̃2, θ2

)

. QED

Lemma A-3 Fix C1 (θ1), and define (č2, č3) = argmax(c̃2,c̃3) st c̃2+c̃3≤W−C1(θ1) V 2 (c̃2, c̃3; θ2) . If

β <
u′
2
(č2;θ

2
)

u′
2(č2;θ̄2)

, then for any p ∈ (0, 1) the solution to

max
C(θ1,·) s.t.IC2(θ1,θ

2
,θ̄2), IC2(θ1,θ̄2,θ

2), RC

pV 2 (C (θ1, θ2) ; θ2) + (1 − p) V 2
(

C
(

θ1, θ̄2

)

; θ̄2

)

has C (θ1, θ2) = C
(

θ1, θ̄2

)

.

Proof of Lemma A-3: The proof is by contradiction. Suppose to the contrary that there is a

solution with C2

(

θ1, θ̄2

)

6= C2 (θ1, θ2). By Lemma 1, C2

(

θ1, θ̄2

)

> C2 (θ1, θ2). There are three

cases.

Case, C2 (θ1, θ2) ≥ č2: By Assumption 4, β <
u′
2
(x;θ

2
)

u′
2(x;θ̄2)

for all x ≥ č2. So

β
(

u2

(

C2

(

θ1, θ̄2

)

; θ̄2

)

− u2

(

C2 (θ1, θ2) ; θ̄2

))

< u2

(

C2

(

θ1, θ̄2

)

; θ2

)

− u2 (C2 (θ1, θ2) ; θ2) .

By IC2

(

θ1, θ2, θ̄2

)

, the RHS is bounded above by β
(

u3 (C3 (θ1, θ2)) − u3

(

C3

(

θ1, θ̄2

)))

. Hence

u2

(

C2

(

θ1, θ̄2

)

; θ̄2

)

+ u3

(

C3

(

θ1, θ̄2

))

< u2

(

C2 (θ1, θ2) ; θ̄2

)

+ u3 (C3 (θ1, θ2)) ,

so that C is strictly dominated by the alternative contract in which C
(

θ1, θ̄2

)

is set to C (θ1, θ2),

contradicting the hypothesis.

Case, C2 (θ1, θ2) < č2 ≤ C2

(

θ1, θ̄2

)

: Consider the perturbation C̃ of C in which C̃ (θ1, θ2) =

(c1 (θ1) , č2, č3) and C̃
(

θ1, θ̄2

)

is set to whichever of C
(

θ1, θ̄2

)

and C̃ (θ1, θ2) maximizes U2
(

·; θ̄2

)

.

By definition, V 2
(

C̃ (θ1, θ2) ; θ2

)

> V 2 (C (θ1, θ2) ; θ2), and so by Lemma A-1, U2
(

C̃ (θ1, θ2) ; θ2

)

>

U2 (C (θ1, θ2) ; θ2).

In the subcase in which C̃
(

θ1, θ̄2

)

= C
(

θ1, θ̄2

)

, it is immediate that C̃ strictly dominates

C, giving a contradiction if C̃ satisfies IC2

(

θ1, θ2, θ̄2

)

and IC2

(

θ1, θ̄2, θ2

)

. IC2

(

θ1, θ2, θ̄2

)

is sat-
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isfied because, since the original contract C is feasible, U2 (C (θ1, θ2) ; θ2) ≥ U2
(

C
(

θ1, θ̄2

)

; θ2

)

.

IC2

(

θ1, θ̄2, θ2

)

holds because in this subcase U2
(

C
(

θ1, θ̄2

)

; θ̄2

)

≥ U2
(

C̃ (θ1, θ2) ; θ̄2

)

.

In the subcase in which C̃
(

θ1, θ̄2

)

= C̃ (θ1, θ2), it is immediate that IC2

(

θ1, θ2, θ̄2

)

and IC2

(

θ1, θ̄2, θ2

)

hold. In this subcase, U2
(

C̃ (θ1, θ2) ; θ̄2

)

≥ U2
(

C
(

θ1, θ̄2

)

; θ̄2

)

and since C̃2 (θ1, θ2) = č2 ≤

C2

(

θ1, θ̄2

)

, Lemma A-1 implies V 2
(

C̃ (θ1, θ2) ; θ̄2

)

≥ V 2
(

C
(

θ1, θ̄2

)

; θ̄2

)

, so that the perturbation

C̃ strictly dominates C, a contradiction.

Case, C2

(

θ1, θ̄2

)

< č2: Since date 2 MU is higher in θ̄2 than θ2, the perturbation C̃ of C in which

C̃ (θ1, θ2) = C̃
(

θ1, θ̄2

)

= (c1 (θ1) , č2, č3) strictly dominates C, giving an immediate contradiction.

QED

Lemma A-4 If SPR holds then u′
2

(

s∗1 + C∗
2

(

θ̄1

)

; θ1

)

> βu′
3

(

C∗
3

(

θ̄1

))

and U1 (C∗ (θ1) ; θ1) =

U1
(

s∗1 + C∗
(

θ̄1

)

; θ1

)

.

Proof of Lemma A-4: By definition, u′
2

(

C∗
2

(

θ̄1

)

; θ̄1

)

= u′
3

(

C∗
3

(

θ̄1

))

, and SPR then implies

u′
2

(

s∗1 + C∗
2

(

θ̄1

)

; θ1

)

> βu′
3

(

C∗
3

(

θ̄1

))

. The definition of s∗1 then implies U1 (C∗ (θ1) ; θ1) = U1
(

s∗1 + C∗
(

θ̄1

)

; θ1

)

.

QED

A Proofs of results stated in main text (excluding Section 5)

Proof of Lemma 1: From IC2, U2
(

C
(

θ1, θ̃2

)

; θ̃2

)

≥ U2
(

C (θ1, θ2) ; θ̃2

)

and U2 (C (θ1, θ2) ; θ2) ≥

U2
(

C
(

θ1, θ̃2

)

; θ2

)

. Expanding, this implies u2

(

C2

(

θ1, θ̃2

)

; θ̃2

)

−u2

(

C2 (θ1, θ2) ; θ̃2

)

≥ u2

(

C2

(

θ1, θ̃2

)

; θ2

)

−

u2 (C2 (θ1, θ2) ; θ2) which by u′
2

(

·; θ̃2

)

> u′
2 (·; θ2) implies C2

(

θ1, θ̃2

)

≥ C2 (θ1, θ2). QED

Proof that Assumption 4 is satisfied by multiplicative and additive shocks:

Case, multiplicative shocks: By supposition, θu′ (ct) ≥ γθ̃u′ (cs). Hence it suffices to show that

u′ (ct + x) /u′ (cs + x) is increasing in x, or equivalently, −u′′(cs+x)
u′(cs+x) ≥ −u′′(ct+x)

u′(ct+x) . This is indeed the

case since ct ≥ cs and u has NIARA.

Case, additive shocks: If ct − θ < cs − θ̃ then u′ (ct + x − θ) > u′
(

cs + x − θ̃
)

≥ γu′
(

cs + x − θ̃
)

for all x. If instead ct − θ ≥ cs − θ̃ then the proof follows exactly as in the multiplicative case.

QED

Proof of Proposition 1, Part (B): The proof is constructive. Define a contract C by C
(

θ̄1, θ2

)

=

C∗
(

θ̄1, θ2

)

and C
(

θ1, θ̄2

)

= C∗
(

θ1, θ̄2

)

, since these quantities are uniquely determined in any

solution to Problem I. Moreover, define C (θ1, θ2) = C∗
(

θ1, θ̄2

)

. Finally, define C
(

θ̄1, θ̄2

)

as in

the main text, i.e., by (3), (4).
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So-defined, C satisfies IC1 and IC2, as follows. The main text establishes that IC1

(

θ1, θ̄1

)

holds. IC1

(

θ̄1, θ1

)

holds because C solves Problem I, and so

u1

(

C1

(

θ̄1

)

; θ̄1

)

+ V 2
(

C
(

θ̄1, θ2

)

; θ2

)

≥ u1

(

C1 (θ1) ; θ̄1

)

+ V 2 (C (θ1, θ2) ; θ2) ,

which since C1

(

θ̄1

)

≥ C1 (θ1) implies

u1

(

C1

(

θ̄1

)

; θ̄1

)

+ βV 2
(

C
(

θ̄1, θ2

)

; θ2

)

≥ u1

(

C1 (θ1) ; θ̄1

)

+ βV 2 (C (θ1, θ2) ; θ2) .

As noted in the main text, IC2

(

θ̄1, θ̄2, θ2

)

holds at equality; Lemma A-2 and C2

(

θ̄1, θ̄2

)

> C2

(

θ̄1, θ2

)

then imply that IC2

(

θ̄1, θ2, θ̄2

)

is satisfied. Finally, IC2(θ1, ·, ·) hold trivially, since C (θ1, ·) is

constant.

The remainder of the proof establishes that the pair of equations (3) and (4) have a solution,

and that RC is satisfied for β small enough.

Solution to (3) and (4): Assumption 3 ensures that C3

(

θ̄1, θ̄2

)

can be chosen to satisfy (4). To

show that C2

(

θ̄1, θ̄2

)

can be chosen to satisfy (3), by the mean value theorem it is sufficient to

prove that

u1 (C1 (θ1) ; θ1) + u2

(

max
{

C2

(

θ1, θ̄2

)

, C1

(

θ̄1

)

+ C2

(

θ̄1, θ2

)

− C1 (θ1)
}

; θ̄2

)

≥ u1

(

C1

(

θ̄1

)

; θ1

)

+ u2

(

C2

(

θ̄1, θ2

)

; θ̄2

)

. (A-1)

If C2

(

θ1, θ̄2

)

≥ C1

(

θ̄1

)

+C2

(

θ̄1, θ2

)

−C1 (θ1) then it is immediate that (A-1) holds, since C
(

θ1, θ̄2

)

is part of a solution to Problem I and so, in particular, C1 (θ1) and C2

(

θ1, θ̄2

)

solve

max
c1,c2 s.t. c1+c2≤C1(θ

1
)+C2(θ

1
,θ̄2)

u1 (c1; θ1) + u2

(

c2; θ̄2

)

.

Next, consider the opposite case, which is equivalent to C3

(

θ1, θ̄2

)

> C3

(

θ̄1, θ2

)

. Since C∗ solves

Problem I,49

u′
1 (C1 (θ1) ; θ1) = u′

2

(

C2

(

θ1, θ̄2

)

; θ̄2

)

= u′
3

(

C3

(

θ1, θ̄2

))

< u′
3

(

C3

(

θ̄1, θ2

))

= u′
2

(

C2

(

θ̄1, θ2

)

; θ2

)

≤ u′
1

(

C1

(

θ̄1

)

; θ̄1

)

. (A-2)

49Note that the final inequality in (A-2) holds with equality; however, the proof of Proposition 3 also uses (A-2).
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Since C1

(

θ̄1

)

≥ C1 (θ1), it then follows that u′
1

(

·; θ̄1

)

> u′
1 (·; θ1). Inequality (A-1) simplifies to

u2

(

C1

(

θ̄1

)

+ C2

(

θ̄1, θ2

)

− C1 (θ1) ; θ̄2

)

− u2

(

C2

(

θ̄1, θ2

)

; θ̄2

)

≥ u1

(

C1

(

θ̄1

)

; θ1

)

− u1 (C1 (θ1) ; θ1) .

If C2

(

θ̄1, θ2

)

≥ C1 (θ1), this follows from u′
2

(

C2

(

θ̄1, θ2

)

; θ2

)

> u′
1 (C1 (θ1) ; θ1) (see (A-2) above),

which by Assumption 4 implies u′
2

(

C2

(

θ̄1, θ2

)

+ x; θ2

)

> u′
1 (C1 (θ1) + x; θ1) for x ≥ 0, and hence

u2

(

C1

(

θ̄1

)

+ C2

(

θ̄1, θ2

)

− C1 (θ1) ; θ2

)

− u2

(

C2

(

θ̄1, θ2

)

; θ2

)

≥ u1

(

C1

(

θ̄1

)

; θ1

)

− u1 (C1 (θ1) ; θ1) ,

which since u′
2

(

·; θ̄2

)

≥ u′
2 (·; θ2) implies the result. If instead C2

(

θ̄1, θ2

)

< C1 (θ1), the result fol-

lows from the fact that u′
2

(

·; θ̄2

)

≥ u′
1 (·; θ1) (since given u′

1

(

·; θ̄1

)

> u′
1 (·; θ1), u′

1 (·; θ1) > u′
2

(

·; θ̄2

)

would violate Assumption 5).

RC satisfied for β sufficiently small: By construction, C (θ1, θ2) satisfies RC for (θ1, θ2) 6=
(

θ̄1, θ̄2

)

.

To show that C
(

θ̄1, θ̄2

)

satisfies RC, note that (A-1) above implies

C2

(

θ̄1, θ̄2

)

≤ max
{

C2

(

θ1, θ̄2

)

, C1

(

θ̄1

)

+ C2

(

θ̄1, θ2

)

− C1 (θ1)
}

.

Observe that C2

(

θ1, θ̄2

)

< C2

(

θ̄1, θ2

)

+ C3

(

θ̄1, θ2

)

, since this inequality is equivalent to C1 (θ1) +

C3

(

θ1, θ̄2

)

> C1

(

θ̄1

)

, which is true by Assumption 6. Likewise, Assumption 6 implies C1

(

θ̄1

)

+

C2

(

θ̄1, θ2

)

− C1 (θ1) < C2

(

θ̄1, θ2

)

+ C3

(

θ̄1, θ2

)

. Hence

C1

(

θ̄1

)

+ C2

(

θ̄1, θ̄2

)

< C1

(

θ̄1

)

+ C2

(

θ̄1, θ2

)

+ C3

(

θ̄1, θ2

)

= W. (A-3)

Since C3

(

θ̄1, θ̄2

)

→ 0 as β → 0, it follows that RC satisfied for β sufficiently small. QED

Proof of Lemma 2: Suppose to the contrary that V 2
(

C
(

θ1, θ̃2

)

; θ2

)

> V 2 (C (θ1, θ2) ; θ2).

By Lemma 1, C2

(

θ1, θ̃2

)

≥ C2 (θ1, θ2). But then Lemma A-1 implies U2
(

C
(

θ1, θ̃2

)

; θ2

)

>

U2 (C (θ1, θ2) ; θ2), contradicting IC2. QED

Proof of Lemma 3: Given Assumption 3, it is straightforward to show that there exists c̄1 such

that, for any β ∈ [0, 1] and any solution to Problem II, C1 (θ1) ≤ c̄1 for θ1 = θ1, θ̄1. Consequently,

the solution to Problem II coincides with the solution to a more constrained problem—Problem

II+, say—in which the constraint C1 (θ1) ≤ c̄1 is added to the existing constraints in Problem II.

Let č2 be as defined in Lemma A-3. Define β̄ =
u′
2
(č2;θ

2
)

u′
2(č2;θ̄2)

where č2 is the value associated with
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C1 (θ1) = c̄1. Given that č2 is decreasing in C1 (θ1), Assumption 4 implies that β̄ ≤
u′
2
(č2;θ2

)

u′
2(č2;θ̄2)

for č2

associated with C1 (θ1) < c̄1.

Given Lemma A-3, it then follows that for β < β̄, any solution to Problem II+ features

C (θ1, θ2) = C
(

θ1, θ̄2

)

. Consequently, the solution to Problem II+ is independent of β when

β < β̄. Hence the solution to Problem II is also independent of β for β < β̄. QED

Proof of Proposition 2, Part (B): The proof is parallel to Proposition 1. Define C = C∗∗

everywhere except C2

(

¯̄θ1, θ̄2

)

and C3

(

¯̄θ1, θ̄2

)

, which are defined by

u2

(

C2

(

¯̄θ1, θ̄2

)

; θ̄2

)

= u2

(

C2

(

¯̄θ1, θ2

)

; θ̄2

)

+
u1

(

C1

(

¯̄θ1

)

; θ1

)

− u1

(

C1

(

θ1

)

; θ1

)

Pr
(

θ̄2|θ1

)

u3

(

C3

(

¯̄θ1, θ̄2

))

= u3

(

C3

(

¯̄θ1, θ2

))

−
u1

(

C1

(

¯̄θ1

)

; θ1

)

− u1

(

C1

(

θ1

)

; θ1

)

β Pr
(

θ̄2|θ1

) .

The contract C satisfies IC1 and IC2 as follows. IC1

(

¯̄θ1, θ1

)

holds as in the proof of Proposition 1

because, given Pr
(

θ2|
¯̄θ1

)

= 1, C∗∗
(

¯̄θ1, θ2

)

= C∗
(

¯̄θ1, θ2

)

. By construction, IC2

(

¯̄θ1, θ̄2, θ2

)

holds

at equality, and Lemma A-2 then implies IC2

(

¯̄θ1, θ2, θ̄2

)

holds also. IC2

(

θ1, ·, ·
)

hold because

C
(

θ1, ·
)

≡ C∗∗
(

θ1, ·
)

. Finally, IC1

(

θ1,
¯̄θ1

)

holds by a generalization of the proof for Proposition

1. First, using the utility decomposition (1), along with the fact that C
(

θ1, ·
)

= C∗∗
(

θ1, ·
)

, the

expected gain to self 1 in state θ1 of getting consumption C
(

¯̄θ1, θ2

)

for sure instead of the intended

consumption is

Pr
(

θ2|θ1

)

U1
(

C
(

¯̄θ1, θ2

)

; θ1, θ2

)

+ Pr
(

θ̄2|θ1

)

U1
(

C
(

¯̄θ1, θ2

)

; θ1, θ̄2

)

−
(

Pr
(

θ2|θ1

)

U1
(

C
(

θ1, θ2

)

; θ1, θ2

)

+ Pr
(

θ̄2|θ1

)

U1
(

C
(

θ1, θ̄2

)

; θ1, θ̄2

))

≤ (1 − β)
(

u1

(

C1

(

¯̄θ1

)

; θ1

)

− u1

(

C1

(

θ1

)

; θ1

)

)

.

Second, by the construction of C
(

¯̄θ1, θ̄2

)

, if self 1 reports ¯̄θ1 in state θ1 his expected utility is

Pr
(

θ2|θ1

)

U1
(

C
(

¯̄θ1, θ2

)

; θ1, θ2

)

+ Pr
(

θ̄2|θ1

)

U1
(

C
(

¯̄θ1, θ̄2

)

; θ1, θ̄2

)

= Pr
(

θ2|θ1

)

U1
(

C
(

¯̄θ1, θ2

)

; θ1, θ2

)

+ Pr
(

θ̄2|θ1

)

U1
(

C
(

¯̄θ1, θ2

)

; θ1, θ̄2

)

− (1 − β)
(

u1

(

C1

(

¯̄θ1

)

; θ1

)

− u1

(

C1

(

θ1

)

; θ1

)

)

.

Combining these two observations delivers exactly IC1

(

θ1,
¯̄θ1

)

.
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As in the proof of Proposition 1, it remains to establish that C can be defined in this way,

and that RC holds. The fact that C can be defined in this way is immediate from (5). RC

holds by the same argument as in the proof of Proposition 1, given that (5) implies C2

(

¯̄θ1, θ̄2

)

≤

C∗∗
2

(

¯̄θ1, θ2

)

+ C∗∗
3

(

¯̄θ1, θ2

)

. QED

Proof of Proposition 3: For use throughout, note that since the date 2 state following θ1 is

deterministic, C∗∗
(

θ1, θ2

)

= C∗
(

θ1, θ2

)

in economy A, and C∗∗
(

θ1, θ̄2

)

= C∗
(

θ1, θ̄2

)

in economy

B.

Economy A: Let C be a solution to the problem defined by (6). Simplifying,

κA = Pr
(

θ1, θ2

) (

V 2
(

C∗∗
(

θ1, θ2

)

; θ2

)

− V 2
(

C
(

θ1, θ2

)

; θ2

))

+ Pr
(

¯̄θ1, θ2

)(

V 2
(

C∗∗
(

¯̄θ1, θ2

)

; θ2

)

− V 2
(

C
(

¯̄θ1, θ2

)

; θ2

))

+ Pr
(

¯̄θ1, θ̄2

)(

V 2
(

C∗∗
(

¯̄θ1, θ̄2

)

; θ̄2

)

− V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

))

.

Since C∗∗
(

θ1, θ2

)

= C∗
(

θ1, θ2

)

, V 2
(

C
(

θ1, θ2

)

; θ2

)

≤ V 2
(

C∗∗
(

θ1, θ2

)

; θ2

)

. By Lemma 2,

−V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

≥ V 2
(

C
(

¯̄θ1, θ̄2

)

; θ2

)

− V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

− V 2
(

C
(

¯̄θ1, θ2

)

; θ2

)

.

Moreover,

V 2
(

C
(

¯̄θ1, θ̄2

)

; θ2

)

− V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

= V 2
(

C∗∗
(

¯̄θ1, θ̄2

)

; θ2

)

− V 2
(

C∗∗
(

¯̄θ1, θ̄2

)

; θ̄2

)

+

∫ C2(¯̄θ1,θ̄2)

C∗∗
2 (¯̄θ1,θ̄2)

(

u′
2 (c2; θ2) − u′

2

(

c2; θ̄2

))

dc2,

which, since u′
2 (c2; θ2) − u′

2

(

c2; θ̄2

)

≤ 0, implies that

V 2
(

C
(

¯̄θ1, θ̄2

)

; θ2

)

− V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

≥ V 2
(

C∗∗
(

¯̄θ1, θ̄2

)

; θ2

)

− V 2
(

C∗∗
(

¯̄θ1, θ̄2

)

; θ̄2

)

+

∫ W−C∗∗
1 (¯̄θ1)

C∗∗
2 (¯̄θ1,θ̄2)

(

u′
2 (c2; θ2) − u′

2

(

c2; θ̄2

))

dc2.
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Substituting in these inequalities yields

κA ≥ Pr
(

¯̄θ1, θ2

)

V 2
(

C∗∗
(

¯̄θ1, θ2

)

; θ2

)

+ Pr
(

¯̄θ1, θ̄2

)

V 2
(

C∗∗
(

¯̄θ1, θ̄2

)

; θ2

)

−Pr
(

¯̄θ1

)

V 2
(

C
(

¯̄θ1, θ2

)

; θ2

)

+ Pr
(

¯̄θ1, θ̄2

)

∫ W−C∗∗
1 (¯̄θ1)

C∗∗
2 (¯̄θ1,θ̄2)

(

u′
2 (c2; θ2) − u′

2

(

c2; θ̄2

))

dc2.

Finally, substituting in IC1

(

θ1,
¯̄θ1

)

, i.e.,

V 2
(

C
(

¯̄θ1, θ2

)

; θ2

)

≤ V 2
(

C
(

θ1, θ2

)

; θ2

)

−
1

β

(

u1

(

C1

(

¯̄θ1

)

; θ1

)

− u1

(

C1

(

θ1

)

; θ1

)

)

,

delivers the following lower bound, entirely in terms of C∗∗:

κA ≥ Pr
(

¯̄θ1, θ2

)

V 2
(

C∗∗
(

¯̄θ1, θ2

)

; θ2

)

+ Pr
(

¯̄θ1, θ̄2

)

V 2
(

C∗∗
(

¯̄θ1, θ̄2

)

; θ2

)

+ Pr
(

¯̄θ1, θ̄2

)

∫ W−C∗∗
1 (¯̄θ1)

C∗∗
2 (¯̄θ1,θ̄2)

(

u′
2 (c2; θ2) − u′

2

(

c2; θ̄2

))

dc2

−Pr
(

¯̄θ1

)

(

V 2
(

C∗∗
(

θ1, θ2

)

; θ2

)

−
1

β

(

u1

(

C1

(

¯̄θ1

)

; θ1

)

− u1

(

C1

(

θ1

)

; θ1

)

)

)

.

Economy B: For all β sufficiently small we construct a feasible contract C such that C
(

θ1, ·
)

≡

C∗
1

(

θ1, ·
)

, C1

(

¯̄θ1

)

≡ C∗∗
1

(

¯̄θ1

)

, V 2
(

C
(

¯̄θ1, θ2

)

; θ2

)

≥ V 2
(

C∗∗
(

¯̄θ1, θ2

)

; θ2

)

and the incentive

constraint IC1

(

θ1,
¯̄θ1

)

holds with equality. The existence of such a contract implies the following

upper bound on the cost κB:

κB ≤ Pr
(

¯̄θ1, θ̄2

)(

V 2
(

C∗∗
(

¯̄θ1, θ̄2

)

; θ̄2

)

− V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

))

.

IC1

(

θ1,
¯̄θ1

)

at equality and C
(

θ1, ·
)

≡ C∗
1

(

θ1, ·
)

imply (using Pr
(

θ̄2|θ1

)

= 1) that

V 2
(

C∗
(

θ1, θ̄2

)

; θ̄2

)

− V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

=
1

β

(

u1

(

C∗∗
1

(

¯̄θ1

)

; θ1

)

− u1

(

C∗
1

(

θ1

)

; θ1

)

)

.

Consequently,

κB ≤ Pr
(

¯̄θ1, θ̄2

)(

V 2
(

C∗∗
(

¯̄θ1, θ̄2

)

; θ̄2

)

− V 2
(

C∗
(

θ1, θ̄2

)

; θ̄2

)

)

+ Pr
(

¯̄θ1, θ̄2

) 1

β

(

u1

(

C∗∗
1

(

¯̄θ1

)

; θ1

)

− u1

(

C∗
1

(

θ1

)

; θ1

)

)

.

37



Since Pr
(

¯̄θ1, θ̄2

)

< Pr
(

¯̄θ1

)

, the result that κB < κA when β is sufficiently small follows.

The remainder of the proof details the construction of the contract C.

Step 1: We first define a preliminary contract C− by C−
(

θ1, θ̄2

)

= C−
(

θ1, θ2

)

= C∗
(

θ1, θ̄2

)

;

C−
1

(

¯̄θ1, ·
)

≡ C∗∗
1

(

¯̄θ1, ·
)

; C−
(

¯̄θ1, θ2

)

maximizes V 2 (c; θ2) given C−
1

(

¯̄θ1, θ2

)

, and subject to RC;

and given C−
(

¯̄θ1, θ2

)

, C−
(

¯̄θ1, θ̄2

)

is determined by the analogues of (3) and (4), with C−
t

(

¯̄θ1, θ2

)

replacing C∗
t

(

θ̄1, θ2

)

for t = 2, 3, and C∗∗
1 replacing C∗

1 .

IC1

(

θ1,
¯̄θ1

)

holds exactly as in Step 1 of the proof of Proposition 1.

The definition of C−
(

¯̄θ1, θ̄2

)

is possible by the same proof as in Step 2 of the proof of Proposition

1. The one condition we have to check is that the analogue of condition (A-2) holds. This is the

case, as follows. By Lemma A-3, for β low, C∗∗
(

¯̄θ1, θ2

)

= C∗∗
(

¯̄θ1, θ̄2

)

, so u′
3

(

C∗∗
3

(

¯̄θ1, θ2

))

=

u′
1

(

C∗∗
1

(

¯̄θ1

)

; ¯̄θ1

)

. Moreover, the definition of C−
(

¯̄θ1, θ2

)

and θ2 < θ̄2 imply C−
2

(

¯̄θ1, θ2

)

≤

C∗∗
2

(

¯̄θ1, θ2

)

, or equivalently, C−
3

(

¯̄θ1, θ2

)

≥ C∗∗
3

(

¯̄θ1, θ2

)

. Hence

u′
2

(

C−
2

(

¯̄θ1, θ2

)

; θ2

)

= u′
3

(

C−
3

(

¯̄θ1, θ2

))

≤ u′
1

(

C∗∗
1

(

¯̄θ1

)

; ¯̄θ1

)

= u′
1

(

C−
1

(

¯̄θ1

)

; ¯̄θ1

)

,

so the analogue of condition (A-2) holds.

Finally, for β small enough, C− satisfies RC by the same proof as in Step 3 of the proof of

Proposition 1; the only slight complication is to note that, as observed above, C∗∗
3

(

¯̄θ1, θ2

)

≤

C−
3

(

¯̄θ1, θ2

)

, which ensures that the analogue of (A-3) holds.

Step 2: We next construct the actual contract C by perturbing the elements C−
2

(

¯̄θ1, θ̄2

)

and

C−
3

(

¯̄θ1, θ̄2

)

of C−; everywhere else, C equals C−. To construct this perturbation, we make use

of the following definitions. Let Č
(

¯̄θ1, θ̄2

)

be the perturbation that maximizes date 2 consump-

tion subject to satisfying RC and IC2

(

¯̄θ1, θ̄2, θ2

)

; observe that this perturbation Č
(

¯̄θ1, θ̄2

)

sat-

isfies both RC and IC2

(

¯̄θ1, θ̄2, θ2

)

with equality. Let Ĉ
(

¯̄θ1, θ̄2

)

be the perturbation that maxi-

mizes V 2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

subject to RC and IC2

(

¯̄θ1, θ2, θ̄2

)

. Finally, for any x, let Cx
(

¯̄θ1, θ̄2

)

be the perturbation that maximizes date 3 consumption subject to Cx
2

(

¯̄θ1, θ̄2

)

= x, RC and

IC2

(

¯̄θ1, θ2, θ̄2

)

. Because RC and IC2

(

¯̄θ1, θ2, θ̄2

)

both give upper bounds for Cx
3

(

¯̄θ1, θ̄2

)

, it follows

from Assumption 3 that Cx exists, and is continuous in x.

Observe that θ̄2 > θ2 implies C−
2

(

¯̄θ1, θ2

)

≤ Ĉ2

(

¯̄θ1, θ̄2

)

, while trivially, C−
2

(

¯̄θ1, θ2

)

≤ C−
2

(

¯̄θ1, θ̄2

)

≤

Č2

(

¯̄θ1, θ̄2

)

. By Lemma A-2, Č2

(

¯̄θ1, θ̄2

)

satisfies IC2

(

¯̄θ1, θ2, θ̄2

)

. Hence Cx
(

¯̄θ1, θ̄2

)

= Č
(

¯̄θ1, θ̄2

)

at x = Č2

(

¯̄θ1, θ̄2

)

, while trivially Cx
(

¯̄θ1, θ̄2

)

= Ĉ
(

¯̄θ1, θ̄2

)

at x = Ĉ2

(

¯̄θ1, θ̄2

)

. By the defini-
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tion of Č
(

¯̄θ1, θ̄2

)

and Lemma A-1, if c2 ≥ Č2

(

¯̄θ1, θ̄2

)

and c2 + c3 ≤ Č2

(

¯̄θ1, θ̄2

)

+ Č3

(

¯̄θ1, θ̄2

)

then V 2
(

c; θ̄2

)

≤ V 2
(

Č2

(

¯̄θ1, θ̄2

)

; θ̄2

)

. Since Č2

(

¯̄θ1, θ̄2

)

satisfies IC2

(

¯̄θ1, θ2, θ̄2

)

, it follows that

Ĉ2

(

¯̄θ1, θ̄2

)

≤ Č2

(

¯̄θ1, θ̄2

)

.

Recall that C− satisfies IC1

(

θ1,
¯̄θ1

)

, which is equivalent to V 2
(

C−
(

¯̄θ1, θ̄2

)

; θ̄2

)

being below

V 2
(

C∗
(

θ1, θ̄2

)

; θ̄2

)

−
1

β

(

u1

(

C∗∗
1

(

¯̄θ1

)

; θ1

)

− u1

(

C∗
1

(

θ1

)

; θ1

)

)

. (A-4)

By the definitions of Č
(

¯̄θ1, θ̄2

)

and C−
(

¯̄θ1, θ̄2

)

, U2
(

Č
(

¯̄θ1, θ̄2

)

; θ̄2

)

= U2
(

C−
(

¯̄θ1, θ2

)

; θ̄2

)

=

U2
(

C−
(

¯̄θ1, θ̄2

)

; θ̄2

)

. By Lemma A-1, V 2
(

Č
(

¯̄θ1, θ̄2

)

; θ̄2

)

≤ V 2
(

C−
(

¯̄θ1, θ̄2

)

; θ̄2

)

. Hence

V 2
(

Č
(

¯̄θ1, θ̄2

)

; θ̄2

)

is below expression (A-4).

Consumption C−
(

¯̄θ1, θ2

)

is independent of β, and hence for all β sufficiently small, V 2
(

C−
(

¯̄θ1, θ2

)

; θ̄2

)

exceeds expression (A-4). Trivially (since C− satisfies RC) V 2
(

C−
(

¯̄θ1, θ2

)

; θ̄2

)

≤ V 2
(

Ĉ
(

¯̄θ1, θ̄2

)

; θ̄2

)

.

Hence V 2
(

Ĉ
(

¯̄θ1, θ̄2

)

; θ̄2

)

exceeds expression (A-4) for β sufficiently small.

Define C to be the perturbation Cx such that V 2
(

Cx
(

¯̄θ1, θ̄2

)

; θ̄2

)

equals expression (A-4) and

x ∈
[

Ĉ2

(

¯̄θ1, θ2

)

, Č2

(

¯̄θ1, θ̄2

)]

; existence of such a perturbation follows by continuity when β is

sufficiently small.

Step: The contract C is feasible: By construction, C satisfies RC, IC1

(

θ1,
¯̄θ1

)

with equality,

IC2

(

¯̄θ1, θ2, θ̄2

)

, and IC2

(

θ1, ·, ·
)

. It remains to show it satisfies IC1

(

¯̄θ1, θ1

)

and IC2

(

¯̄θ1, θ̄2, θ2

)

.

IC2

(

¯̄θ1, θ̄2, θ2

)

is satisfied, as follows. Because C = Cx for some x ∈
[

Ĉ2

(

¯̄θ1, θ2

)

, Č2

(

¯̄θ1, θ̄2

)]

,

at least one of RC and IC2

(

¯̄θ1, θ2, θ̄2

)

must hold with equality. If RC holds with equality, then

because C2

(

¯̄θ1, θ̄2

)

lies between C−
2

(

¯̄θ1, θ2

)

and Č2

(

¯̄θ1, θ̄2

)

, and because U2
(

C−
(

¯̄θ1, θ2

)

; θ̄2

)

=

U2
(

Č
(

¯̄θ1, θ̄2

)

; θ̄2

)

, then U2
(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

≥ U2
(

C−
(

¯̄θ1, θ2

)

; θ̄2

)

, so that IC2

(

¯̄θ1, θ̄2, θ2

)

is

satisfied. If instead IC2

(

¯̄θ1, θ2, θ̄2

)

holds with equality, the implication follows from Lemma A-2.

IC1

(

¯̄θ1, θ1

)

is satisfied, as follows. Expanding, the constraint is

u1

(

C1

(

¯̄θ1

)

; ¯̄θ1

)

+ β Pr
(

θ̄2|
¯̄θ1

)

V2

(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

+ β Pr
(

θ2|
¯̄θ1

)

V2

(

C
(

¯̄θ1, θ2

)

; θ2

)

≥ u1

(

C1

(

θ1

)

; ¯̄θ1

)

+ β Pr
(

θ̄2|
¯̄θ1

)

V2

(

C
(

θ1, θ̄2

)

; θ̄2

)

+ β Pr
(

θ2|
¯̄θ1

)

V2

(

C
(

θ1, θ2

)

; θ2

)

.

Substituting in, and in particular using the fact that V2

(

C
(

¯̄θ1, θ̄2

)

; θ̄2

)

is equal to (A-4), the
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constraint is equivalent to

u1

(

C∗∗
1

(

¯̄θ1

)

; ¯̄θ1

)

− Pr
(

θ̄2|
¯̄θ1

)(

u1

(

C∗∗
1

(

¯̄θ1

)

; θ1

)

− u1

(

C∗
1

(

θ1

)

; θ1

)

)

+ β Pr
(

θ2|
¯̄θ1

)

V2

(

C
(

¯̄θ1, θ2

)

; θ2

)

≥ u1

(

C∗
1

(

θ1

)

; ¯̄θ1

)

+ β Pr
(

θ2|
¯̄θ1

)

V2

(

C∗
(

θ1, θ̄2

)

; θ2

)

.

By Lemma 3, for β small every quantity in this inequality, other than β itself, is independent of β,

and hence IC1

(

¯̄θ1, θ1

)

holds provided

u1

(

C∗∗
1

(

¯̄θ1

)

; ¯̄θ1

)

− u1

(

C∗
1

(

θ1

)

; ¯̄θ1

)

> Pr
(

θ̄2|
¯̄θ1

)(

u1

(

C∗∗
1

(

¯̄θ1

)

; θ1

)

− u1

(

C∗
1

(

θ1

)

; θ1

)

)

.

Consequently, it is sufficient to prove

u′
1

(

C∗∗
1

(

¯̄θ1

)

; ¯̄θ1

)

≥ Pr
(

θ̄2|
¯̄θ1

)

u′
1

(

C∗
1

(

θ1

)

; θ1

)

. (A-5)

By Lemma A-3, C∗∗ is independent of the realization of θ2, and so

u′
1

(

C∗∗
1

(

¯̄θ1

)

; ¯̄θ1

)

= Pr
(

θ̄2|
¯̄θ1

)

u′
2

(

C∗∗
2

(

¯̄θ1, θ̄2

)

; θ̄2

)

+ Pr
(

θ2|
¯̄θ1

)

u′
2

(

C∗∗
2

(

¯̄θ1, θ̄2

)

; θ2

)

= u′
3

(

C∗∗
3

(

¯̄θ1, θ̄2

))

u′
1

(

C∗
1

(

θ1

)

; θ1

)

= u′
2

(

C∗
2

(

θ1, θ̄2

)

; θ̄2

)

= u′
3

(

C∗
3

(

θ1, θ̄2

))

.

Consequently, (A-5) is equivalent to

Pr
(

θ̄2|
¯̄θ1

)

u′
2

(

C∗∗
2

(

¯̄θ1, θ̄2

)

; θ̄2

)

+Pr
(

θ2|
¯̄θ1

)

u′
2

(

C∗∗
2

(

¯̄θ1, θ̄2

)

; θ2

)

≥ Pr
(

θ̄2|
¯̄θ1

)

u′
2

(

C∗
2

(

θ1, θ̄2

)

; θ̄2

)

.

To complete the proof of the step, we show that C∗∗
2

(

¯̄θ1, θ̄2

)

≤ C∗
2

(

θ1, θ̄2

)

. Suppose to the con-

trary that C∗∗
2

(

¯̄θ1, θ̄2

)

> C∗
2

(

θ1, θ̄2

)

. Combined with θ̄2 > θ2, this implies u′
3

(

C∗∗
3

(

¯̄θ1, θ̄2

))

<

u′
3

(

C∗
3

(

θ1, θ̄2

))

, or equivalently C∗∗
3

(

¯̄θ1, θ̄2

)

> C∗
3

(

θ1, θ̄2

)

, which combined with C∗∗
1

(

¯̄θ1

)

>

C∗
1

(

θ1

)

implies C∗∗
2

(

¯̄θ1, θ̄2

)

< C∗
2

(

θ1, θ̄2

)

, a contradiction. QED

Proof of Lemma 4: Differentiating,

dU2
(

C
(

θ1, θ̃2

)

; θ2

)

dθ̃2

= u′
2

(

C2

(

θ1, θ̃2

)

; θ2

) ∂C2

(

θ1, θ̃2

)

∂θ̃2

+ βu′
3

(

C3

(

θ1, θ̃2

)) ∂C3

(

θ1, θ̃2

)

∂θ̃2

.
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Substituting in (7),

dU2
(

C
(

θ1, θ̃2

)

; θ2

)

dθ̃2

=
(

u′
2

(

C2

(

θ1, θ̃2

)

; θ2

)

− u′
2

(

C2

(

θ1, θ̃2

)

; θ̃2

)) ∂C2

(

θ1, θ̃2

)

∂θ̃2

.

Since C2

(

θ1, θ̃2

)

is increasing in θ̃2, sign

(

dU2(C(θ1,θ̃2);θ2)
dθ̃2

)

= −sign
(

θ̃2 − θ2

)

, implying the re-

sult. QED

Proof of Proposition 4: As noted in the main text, Part (A) is immediate from prior results.

The proof of Part (B) is constructive. For any θ1 ∈ Θ1, define the contract C by C (θ1, θ2) =

C∗ (θ1, φ (θ1)) if φ−1 (θ2) > θ1; while for φ−1 (θ2) ≤ θ1, or equivalently θ2 ≥ φ (θ1), define C by

C1 (θ1) = C∗
1 (θ1) and the pair of differential equations (7) and

(1 − β)u′
2 (C2 (θ1, θ2) ; θ2)

∂C2 (θ1, θ2)

∂θ2
= max

{

0,
∂

∂θ2
u1

(

C1 (θ1) ; φ−1 (θ2)
)

+
∂

∂θ2
u2 (C2 (θ1, θ2) ; θ2)

−
d

dθ2
U1
(

C∗
(

φ−1 (θ2) , θ2

)

; φ−1 (θ2) , θ2

)

}

, (A-6)

subject to the boundary condition that C (θ1, θ2) = C∗ (θ1, φ (θ1)) at θ2 = φ (θ1).

The differential equations (7) and (A-6) imply that, for any θ̃1 and θ2 ≥ φ
(

θ̃1

)

,

d

dθ2
U1
(

C
(

θ̃1, θ2

)

; φ−1 (θ2) , θ2

)

≤
d

dθ2
U1
(

C∗
(

φ−1 (θ2) , θ2

)

; φ−1 (θ2) , θ2

)

.

Given the boundary condition, it follows that, for any θ̃1 and θ2 ≥ φ
(

θ̃1

)

,

U1
(

C∗
(

θ̃1, θ2

)

; φ−1 (θ2) , θ2

)

≤ U1
(

C∗
(

φ−1 (θ2) , θ2

)

; φ−1 (θ2) , θ2

)

.

Changing variables θ1 = φ−1 (θ2), for any θ̃1 and θ1 ≤ θ̃1,

U1
(

C∗
(

θ̃1, φ (θ1)
)

; θ1, φ (θ1)
)

≤ U1 (C∗ (θ1, φ (θ1)) ; θ1, φ (θ1)) .

Hence IC1

(

θ1, θ̃1

)

holds for any θ1 and θ̃1 > θ1.

Next, we show that IC1

(

θ1, θ̃1

)

holds for any θ1 and θ̃1 < θ1. In this case, C
(

θ̃1, φ (θ1)
)

=

C∗
(

θ̃1, φ
(

θ̃1

))

since φ−1 (φ (θ1)) > θ̃1, while C (θ1, φ (θ1)) = C∗ (θ1, φ (θ1)). Hence we must

show that U1 (C∗ (θ1, φ (θ1)) ; θ1, φ (θ1)) ≥ U1
(

C∗
(

θ̃1, φ
(

θ̃1

))

; θ1, φ (θ1)
)

. By the ordering of Θ1,
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C∗
1

(

θ̃1

)

≤ C∗
1 (θ1), and by the optimality of C∗, V 1 (C∗ (θ1, φ (θ1)) ; θ1, φ (θ1)) ≥ V 1

(

C∗
(

θ̃1, φ
(

θ̃1

))

; θ1, φ (θ1)
)

.

By the obvious analogue of Lemma A-1 for self 1’s preferences, the result then follows.

Finally, RC is certainly satisfied for φ−1 (θ2) ≥ θ1, or equivalently, θ2 ≤ φ (θ1). For θ2 > φ (θ1),

observe that, by (7),

∂C2 (θ1, θ2)

∂θ2
+

∂C3 (θ1, θ2)

∂θ2
=

(

1 −
1

β

u′
2 (C2 (θ1, θ2) ; θ2)

u′
3 (C3 (θ1, θ2))

)

∂C2 (θ1, θ2)

∂θ2
.

At θ2 = φ (θ1), u′
2 (C2 (θ1, θ2) ; θ2) = u′

3 (C3 (θ1, θ2)) by the definition of C∗, so the term 1 −

1
β

u′
2
(C2(θ1,θ2);θ2)

u′
3
(C3(θ1,θ2)) is strictly negative. The condition stated in Part (B) ensures that this expression

remains negative for all θ2 ∈
(

φ (θ1) , θ̄2

)

. By construction, ∂C2(θ1,θ2)
∂θ2

≥ 0. Hence ∂C2(θ1,θ2)
∂θ2

+

∂C3(θ1,θ2)
∂θ2

≤ 0, which implies RC is satisfied for all θ2 ∈ (φ (θ1) , θ̄2]. QED

B Proofs for Section 5

Proof of Proposition 5: Suppose to the contrary that u′
2

(

x; θ̄1

)

> u′
2 (s∗1 + x; θ1) but there exists

a feasible contract X with X (θ1, θ1, 0) = C∗ (θ1) for θ1 = θ̄1, θ1.

Step 1, V 2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

≥ V 2
(

s1 + X
(

θ̄1, θ̄1, 0
)

; θ1

)

for all s1 sufficiently close to s∗1:

(Note that this is the analogue of Lemma 2.) Among IC2 are the constraints U2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

≥

U2
(

s1 + X
(

θ̄1, θ̄1, 0
)

; θ1

)

and U2
(

X
(

θ̄1, θ̄1, 0
)

; θ̄1

)

≥ U2
(

X
(

θ̄1, θ1, s1

)

; θ̄1

)

. Because of the sup-

position that u′
2

(

x; θ̄1

)

> u′
2 (s1 + x; θ1) for s1 close to s∗1, exactly the same argument as in Lemma

1 implies that X2

(

θ̄1, θ̄1, 0
)

≥ X2

(

θ̄1, θ1, s1

)

. The claimed inequality then follows from Lemma

A-1, X2

(

θ̄1, θ̄1, 0
)

≥ X2

(

θ̄1, θ1, s1

)

and U2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

≥ U2
(

s1 + X
(

θ̄1, θ̄1, 0
)

; θ1

)

.

Step 2, u′
2

(

s∗1 + C∗
2

(

θ̄1

)

; θ1

)

≥ βu′
3

(

C∗
3

(

θ̄1

))

: Suppose to the contrary that u′
2

(

s∗1 + C∗
2

(

θ̄1

)

; θ1

)

<

βu′
3

(

C∗
3

(

θ̄1

))

. Consequently, by the definition of s∗1 there exists s1 < s∗1 and s2 > 0 such that

U1 (C∗ (θ1) ; θ1) < U1
(

s1 + C∗
(

θ̄1

)

− s2; θ1

)

and s2 ∈ argmaxs̃2≥0 U2
(

s1 + C∗
2

(

θ̄1

)

− s2; θ1

)

. Be-

cause X
(

θ̄1, θ̄1, 0
)

= C∗
(

θ̄1

)

, the constraints RC and IC2 imply that the only possible value for

s1 +X
(

θ̄1, θ1, s1

)

is s1 +C∗
(

θ̄1

)

−s2. But then U1 (X (θ1, θ1, 0) ; θ1) < U1
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

,

i.e., IC1 is violated, giving a contradiction.

Step 3, completing the proof: Since s∗1 > 0, the definition of s∗1 and step 2 imply that U1
(

s1 + C∗
(

θ̄1

)

; θ1

)

>

U1 (C∗ (θ1) ; θ1) for all s1 < s∗1 sufficiently close to s∗1, or equivalently, U1
(

s1 + X
(

θ̄1, θ̄1, 0
)

; θ1

)

>

U1 (X (θ1, θ1, 0) ; θ1). Among IC1 is the constraint U1 (X (θ1, θ1, 0) ; θ1) ≥ U1
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

.

Hence U1
(

s1 + X
(

θ̄1, θ̄1, 0
)

; θ1

)

> U1
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

. But this contradicts step 1, com-
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pleting the proof. QED

Proof of Lemma 5:

Step, sufficient conditions for (8): Let X be any contract such that X2

(

θ̄1, θ1, s1

)

is weakly de-

creasing in s1, u′
2

(

s1 + X2

(

θ̄1, θ1, s1

)

; θ1

)

≥ βu′
3

(

X3

(

θ̄1, θ1, s1

))

, and (9) is satisfied. Define

f (s̃1) = maxs2≥0 U2
(

s1 + X
(

θ̄1, θ1, s̃1

)

− s2; θ1

)

. We show that f has a global maximum at

s̃1 = s1. By the envelope theorem,

f ′ (s̃1) = u′
2

(

s1 + X2

(

θ̄1, θ1, s̃1

)

− ŝ2; θ1

) ∂X∗
2

(

θ̄1, θ1, s̃1

)

∂s̃1
+βu′

3

(

X3

(

θ̄1, θ1, s̃1

)

− ŝ2

) ∂X3

(

θ̄1, θ1, s̃1

)

∂s̃1

where ŝ2 = arg maxs2≥0 U2
(

s1 + X2

(

θ̄1, θ1, s̃1

)

− s2; θ1

)

. Substituting in (9), f ′ (s̃1) equals

βu′
3

(

X3

(

θ̄1, θ1, s̃1

)

− ŝ2

)

(

u′
2

(

s1 + X2

(

θ̄1, θ1, s̃1

)

− ŝ2; θ1

)

βu′
3

(

X3

(

θ̄1, θ1, s̃1

)

− ŝ2

) −
u′

2

(

s̃1 + X2

(

θ̄1, θ1, s̃1

)

; θ1

)

βu′
3

(

X3

(

θ̄1, θ1, s̃1

))

)

∂X2

(

θ̄1, θ1, s̃1

)

∂s̃1
.

Since X2

(

θ̄1, θ1, s̃1

)

is weakly decreasing in s̃1, it suffices to show that

u′
2

(

s1 + X2

(

θ̄1, θ1, s̃1

)

− ŝ2; θ1

)

βu′
3

(

X3

(

θ̄1, θ1, s̃1

)

− ŝ2

) ≥ (≤)
u′

2

(

s̃1 + X2

(

θ̄1, θ1, s̃1

)

; θ1

)

βu′
3

(

X3

(

θ̄1, θ1, s̃1

)) if s̃1 > (<) s1.

Consider first the case s̃1 > s1. If u′
2

(

s̃1 + X2

(

θ̄1, θ1, s̃1

)

; θ1

)

= βu′
3

(

X3

(

θ̄1, θ1, s̃1

))

then the

required inequality holds since u′
2

(

s1 + X2

(

θ̄1, θ1, s̃1

)

− ŝ2; θ1

)

≥ βu′
3

(

X3

(

θ̄1, θ1, s̃1

)

− ŝ2

)

. If in-

stead u′
2

(

s̃1 + X2

(

θ̄1, θ1, s̃1

)

; θ1

)

> βu′
3

(

X3

(

θ̄1, θ1, s̃1

))

then u′
2

(

s1 + X2

(

θ̄1, θ1, s̃1

)

; θ1

)

> βu′
3

(

X3

(

θ̄1, θ1, s̃1

))

,

which implies ŝ2 = 0, and the inequality follows. Second, consider the case s̃1 < s1. If

u′
2

(

s1 + X2

(

θ̄1, θ1, s̃1

)

− ŝ2; θ1

)

= βu′
3

(

X3

(

θ̄1, θ1, s̃1

)

− ŝ2

)

then the required inequality holds since

u′
2

(

s̃1 + X2

(

θ̄1, θ1, s̃1

)

; θ1

)

≥ βu′
3

(

X3

(

θ̄1, θ1, s̃1

))

. If instead u′
2

(

s1 + X2

(

θ̄1, θ1, s̃1

)

− ŝ2; θ1

)

>

βu′
3

(

X3

(

θ̄1, θ1, s̃1

)

− ŝ2

)

then ŝ2 = 0 and the inequality again follows.

Step, necessary conditions for (8): From (8), for any s1 and s̃1,

U2(s̃1 + X
(

θ̄1, θ1, s̃1

)

; θ1) − U2(s1 + X
(

θ̄1, θ1, s̃1

)

; θ1)

≥ U2(s̃1 + X
(

θ̄1, θ1, s̃1

)

; θ1) − U2(s1 + X
(

θ̄1, θ1, s1

)

; θ1)

≥ U2(s̃1 + X
(

θ̄1, θ1, s1

)

; θ1) − U2(s1 + X
(

θ̄1, θ1, s1

)

; θ1). (A-7)

Taking the limit as |s̃1 − s1| → 0 establishes continuity. To establish (9), consider any s̃1 > s1,

and divide inequality (A-7) by s̃1 − s1. If X
(

θ̄1, θ1, s1

)

is continuous at s1, then the upper
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bound and the lower bound both converge to u′
2(s1 + X

(

θ̄1, θ1, s1

)

; θ1) as s̃1 → s1, implying

d
ds1

U2(s1 + X
(

θ̄1, θ1, s1

)

; θ1) = u′
2(s1 + X

(

θ̄1, θ1, s1

)

; θ1), which is equivalent to (9). QED

Proof of Proposition 6 (sufficiency): The main text defines X∗ only at
(

θ̄1, θ1

)

and over the

interval [0, s∗1]. We start by defining X∗ elsewhere. Define X∗ (θ1, θ2, s1) for (θ1, θ2) 6=
(

θ̄1, θ1

)

,

or for (θ1, θ2) =
(

θ̄1, θ1

)

but s1 > s∗1, as the consumption profile resulting from C∗ (θ1) when self 2

freely privately saves, given the state is θ2; formally

X∗ (θ1, θ2, s1) = s1 + C∗ (θ1) − arg max
s2≥0

U2 (s1 + C∗ (θ1) − s2; θ1) .

Step1, RC is satisfied: This is immediate from the construction of X∗ everywhere except for

X∗
(

θ̄1, θ1, s1

)

where s1 ∈ [0, s∗1]. Over this range, it follows because by NS and (9), X∗
2

(

θ̄1, θ1, s1

)

+

X∗
3

(

θ̄1, θ1, s1

)

is increasing in s1 over [0, s∗1]. Hence if s1 ∈ [0, s∗1] then X∗
2

(

θ̄1, θ1, s1

)

+X∗
3

(

θ̄1, θ1, s1

)

≤

X∗
2

(

θ̄1, θ1, s
∗
1

)

+ X∗
3

(

θ̄1, θ1, s
∗
1

)

= C∗
2

(

θ̄1

)

+ C∗
3

(

θ̄1

)

.

Step 2: U2
(

s1 + X∗
(

θ̄1, θ1, s1

)

; θ1

)

≥ U2
(

s1 + X∗
(

θ̄1, θ1, s̃1

)

− s2; θ1

)

: This is an immediate im-

plication of Lemma 5 provided that X∗
(

θ̄1, θ1, s1

)

satisfies (9). By construction (9) holds for

s1 ∈ [0, s∗1]. Moreover, condition (9) holds in the neighborhood to the right of s∗1 because,

by Lemma A-4, here X∗
(

θ̄1, θ1, s1

)

≡ C∗
(

θ̄1

)

. Finally, once s1 > s∗1 is large enough that

X∗
(

θ̄1, θ1, s1

)

6= C∗
(

θ̄1

)

, (9) holds because u′
2

(

s1 + X∗
2

(

θ̄1, θ1, s1

)

; θ1

)

= βu′
3

(

X∗
3

(

θ̄1, θ1, s1

))

and d
ds1

(

X∗
2

(

θ̄1, θ1, s1

)

+ X∗
3

(

θ̄1, θ1, s1

))

= 0.

Step 3: U2
(

s1 + X∗
(

θ̄1, θ1, s1

)

; θ1

)

≥ U2
(

s1 + X∗
(

θ̄1, θ̄1, s̃1

)

− s2; θ1

)

: Because of the definition

of X∗
(

θ̄1, θ̄1, ·
)

, it is sufficient to establish that U2
(

s1 + X∗
(

θ̄1, θ1, s1

)

; θ1

)

≥ U2
(

s1 + X∗
(

θ̄1, θ̄1, 0
)

− s2; θ1

)

.

Because X∗
(

θ̄1, θ̄1, 0
)

= C∗
(

θ̄1

)

= X∗
(

θ̄1, θ1, s
∗
1

)

, this is implied by the prior step.

Step 4: U2
(

s1 + X∗
(

θ̄1, θ̄1, s1

)

; θ̄1

)

≥ U2
(

s1 + X∗
(

θ̄1, θ1, s̃1

)

− s2; θ̄1

)

: Suppose to the contrary

that U2
(

s1 + X∗
(

θ̄1, θ1, s̃1

)

− s2; θ̄1

)

> U2
(

s1 + X∗
(

θ̄1, θ̄1, s1

)

; θ̄1

)

, or equivalently (given the def-

inition of X∗
(

θ̄1, θ̄1, s1

)

), U2
(

s1 + X∗
(

θ̄1, θ1, s̃1

)

− s2; θ̄1

)

> maxs̃2≥0 U2
(

s1 + C∗
(

θ̄1

)

− s̃2; θ̄1

)

.

By step 1, X∗
2

(

θ̄1, θ1, s̃1

)

+X∗
3

(

θ̄1, θ1, s̃1

)

≤ C∗
2

(

θ̄1

)

+C∗
3

(

θ̄1

)

, and so it follows that X∗
2

(

θ̄1, θ1, s̃1

)

−

s2 > C∗
2

(

θ̄1

)

. By step 2, we know U2
(

s∗1 + X∗
(

θ̄1, θ1, s
∗
1

)

; θ1

)

≥ U2
(

s∗1 + X∗
(

θ̄1, θ1, s̃1

)

− s2; θ1

)

.

Since X∗
(

θ̄1, θ1, s
∗
1

)

= C∗
2

(

θ̄1

)

< X∗
2

(

θ̄1, θ1, s̃1

)

− s2, SPR then implies U2
(

X∗
(

θ̄1, θ1, s
∗
1

)

; θ̄1

)

≥

U2
(

X∗
(

θ̄1, θ1, s̃1

)

− s2; θ̄1

)

, which in turn implies U2
(

s1 + C∗
(

θ̄1

)

; θ̄1

)

≥ U2
(

s1 + X∗
(

θ̄1, θ1, s̃1

)

− s2; θ̄1

)

.

This last inequality contradicts the original supposition, completing the proof.

Step 5: IC2 holds: The fact that IC2 holds after self 1 reports θ̄1 follows from steps 2, 3 and 4,
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together with the fact that the definition of X∗ immediately implies U2
(

s1 + X∗
(

θ̄1, θ̄1, s1

)

; θ̄1

)

≥

U2
(

s1 + X∗
(

θ̄1, θ̄1, s̃1

)

− s2; θ̄1

)

. The fact that IC2 holds after self 1 reports θ1 is likewise imme-

diate from the definition of X∗.

Step 6: IC1 holds: The definition of X∗ implies that d
ds1

U1
(

s1 + X∗
(

θ̄1, θ1, s1

)

; θ1

)

≥ 0 over [0, s∗1].

Hence for any s1 ∈ [0, s∗1], Lemma A-4 implies that

U1 (X∗ (θ1, θ1, 0) ; θ1) = U1 (C∗ (θ1) ; θ1) = U1
(

s∗1 + C∗
(

θ̄1

)

; θ1

)

= U1
(

s∗1 + X∗
(

θ̄1, θ1, s
∗
1

)

; θ1

)

≥ U1
(

s1 + X∗
(

θ̄1, θ1, s1

)

; θ1

)

.

It is straightforward to show U1 (X∗ (θ1, θ1, 0) ; θ1) ≥ U1 (s1 + X∗ (θ1, θ1, s1) ; θ1), so that IC1

(

θ1, θ̄1

)

holds. Similarly, its is straightforward to show that U1
(

X∗
(

θ̄1, θ̄1, 0
)

; θ̄1

)

≥ U1
(

s1 + X∗
(

θ1, θ̄1, s1

)

; θ̄1

)

for θ1 = θ̄1, θ1, so that IC1

(

θ̄1, θ1

)

holds. QED

Proof of Proposition 6 (necessity): From Proposition 5, if SPR is violated then there is no

feasible solution to Problem I. Here, we show that if SPR is satisfied but NS fails, again there is

no feasible solution to Problem I. The proof is by contradiction: suppose to the contrary that SPR

holds, NS fails, but there exists a feasible X such that X (θ, θ, 0) = C∗ (θ) for θ = θ̄1, θ1.

Step 1: There exists s+
1 ∈ [0, s∗1] such that u′

2

(

s+
1 + X∗

2

(

θ̄1, θ1, s
+
1

)

; θ1

)

< βu′
3

(

X∗
3

(

θ̄1, θ1, s
+
1

))

and

U1
(

s+
1 + X∗

(

θ̄1, θ1, s
+
1

)

; θ1

)

= U1 (C∗ (θ1) ; θ1).

For any x1 and x2, the expression −u′
1 (−s1 + x1; θ1)+βu′

2 (s1 + x2; θ1) is strictly decreasing in

s1. Hence from the definition of X∗, either, (A),

∂X∗
2

(

θ̄1, θ1, s1

)

∂s1
=

−u′
1

(

−s1 + X∗
1

(

θ̄1, θ1, s1

)

; θ1

)

+ βu′
2

(

s1 + X∗
2

(

θ̄1, θ1, s1

)

; θ1

)

(1 − β)u′
2

(

s1 + X∗
2

(

θ̄1, θ1, s1

)

; θ1

) (A-8)

for all s1 ∈ (0, s∗1), or else (B) there exists some ŝ1 ∈ (0, s∗1) such that (A-8) holds for s1 ∈ (ŝ1, s
∗
1),

and X∗ is constant over [0, ŝ1]. Equality (A-8) is equivalent to d
ds1

U1
(

s1 + X∗
(

θ̄1, θ1, s1

)

; θ1

)

= 0.

Using Lemma A-4,

U1
(

s1 + X∗
(

θ̄1, θ1, s1

)

; θ1

)

= U1
(

s∗1 + X∗
(

θ̄1, θ1, s
∗
1

)

; θ1

)

= U1
(

s∗1 + C∗
(

θ̄1

)

; θ1

)

= U1 (C∗ (θ1) ; θ1)

for all s1 ∈ [0, s∗1] in case (A), or for all s1 ∈ [ŝ1, s
∗
1] in case (B). By the supposition that NS is

violated, it then follows that there exists s+
1 ∈ [0, s∗1] such that both u′

2

(

s+
1 + X∗

2

(

θ̄1, θ1, s
+
1

)

; θ1

)

<

βu′
3

(

X∗
3

(

θ̄1, θ1, s
+
1

))

and U1
(

s+
1 + X∗

(

θ̄1, θ1, s
+
1

)

; θ1

)

= U1 (C∗ (θ1) ; θ1).
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Step 2: U2
(

s+
1 + X

(

θ̄1, θ1, s
+
1

)

; θ1

)

< U2
(

s+
1 + X∗

(

θ̄1, θ1, s
+
1

)

; θ1

)

.

Suppose to the contrary that U2
(

s+
1 + X

(

θ̄1, θ1, s
+
1

)

; θ1

)

≥ U2
(

s+
1 + X∗

(

θ̄1, θ1, s
+
1

)

; θ1

)

. By

the supposition that X is IC, and step 1,

U1
(

s+
1 + X

(

θ̄1, θ1, s
+
1

)

; θ1

)

≤ U1 (X (θ1, θ1, 0) ; θ1) = U1 (C∗ (θ1) ; θ1) = U1
(

s+
1 + X∗

(

θ̄1, θ1, s
+
1

)

; θ1

)

.

Since X1

(

θ̄1, ·, ·
)

= X∗
1

(

θ̄1, ·, ·
)

, V 2
(

s+
1 + X

(

θ̄1, θ1, s
+
1

)

; θ1

)

≤ V 2
(

s+
1 + X∗

(

θ̄1, θ1, s
+
1

)

; θ1

)

. By

Lemma A-1, X2

(

θ̄1, θ1, s
+
1

)

≥ X∗
2

(

θ̄1, θ1, s
+
1

)

, and hence X3

(

θ̄1, θ1, s
+
1

)

≤ X∗
3

(

θ̄1, θ1, s
+
1

)

. But

then u′
2

(

s+
1 + X2

(

θ̄1, θ1, s
+
1

)

; θ1

)

< βu′
3

(

X3

(

θ̄1, θ1, s
+
1

))

, violating IC2.

Completing the proof: Define X̃∗
(

θ̄1, θ1, ·
)

, a perturbation of X∗
(

θ̄1, θ1, ·
)

, as follows. At s∗1, define

X̃∗
(

θ̄1, θ1, s
∗
1

)

so that X̃∗
1

(

θ̄1, θ1, s
∗
1

)

= C∗
1

(

θ̄1

)

and X̃∗
2

(

θ̄1, θ1, s
∗
1

)

< C∗
2

(

θ̄1

)

and U1
(

s∗1 + X̃∗
(

θ̄1, θ1, s
∗
1

)

; θ1

)

=

U1
(

s∗1 + C∗
(

θ̄1

)

; θ1

)

. It follows from Lemma A-1 that U2
(

s∗1 + X̃∗
(

θ̄1, θ1, s
∗
1

)

; θ1

)

< U2
(

s∗1 + C∗
(

θ̄1

)

; θ1

)

.

Given the boundary condition, for all s1 ∈ [0, s∗1) define X̃∗
(

θ̄1, θ1, s1

)

by the pair of differen-

tial equations (9) and d
ds1

U1
(

s1 + X̃∗
(

θ̄1, θ1, s1

)

; θ1

)

= 0; hence X̃∗ is defined analogously to

X∗, but without the imposition that X̃∗
2 be increasing. Hence U1

(

s1 + X̃∗
(

θ̄1, θ1, s1

)

; θ1

)

=

U1
(

s∗1 + C∗
(

θ̄1

)

; θ1

)

= U1 (C∗ (θ1) ; θ1) for all s1 ∈ [0, s∗1], where the second equality follows from

Lemma A-4.

Provided X̃∗
(

θ̄1, θ1, s
∗
1

)

is chosen sufficiently close to X∗
(

θ̄1, θ1, s
∗
1

)

, the inequality U2
(

s+
1 + X

(

θ̄1, θ1, s
+
1

)

; θ1

)

< U2
(

s+
1 + X̃∗

(

θ̄1, θ1, s
+
1

)

; θ1

)

is inherited from step 2. Moreover, by IC2, U2
(

s∗1 + X
(

θ̄1, θ1, s
∗
1

)

; θ1

)

≥

U2
(

s∗1 + X
(

θ̄1, θ̄1, 0
)

; θ1

)

= U2
(

s∗1 + C∗
(

θ̄1

)

; θ1

)

> U2
(

s∗1 + X̃∗
(

θ̄1, θ1, s
∗
1

)

; θ1

)

.

By Lemma 5, U2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

, is continuous. Define

s++
1 = sup

{

s1 ∈
[

s+
1 , s∗1

]

: U2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

< U2
(

s1 + X̃∗
(

θ̄1, θ1, s1

)

; θ1

)}

.

By continuity, s++
1 < s∗1.

We next claim that there exists some s1 ∈
[

s++
1 , s∗1

]

such that X̃∗
2 (s1) > X2 (s1). To prove

this, suppose to the contrary that X2 (s1) ≥ X̃∗
2 (s1) for all s1 ∈

[

s++
1 , s∗1

]

. Because X
(

θ̄1, θ1, s1

)

is

continuous at all but finitely many points, U2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

−U2
(

s1 + X̃∗
(

θ̄1, θ1, s1

)

; θ1

)

is differentiable with respect to s1 at all but finitely many points, with a derivative of (by Lemma

5 and (9))

u′
2

(

s1 + X2

(

θ̄1, θ1, s1

)

; θ1

)

− u′
2

(

s1 + X̃∗
2

(

θ̄1, θ1, s1

)

; θ1

)

≤ 0.
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Because U2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

− U2
(

s1 + X̃∗
(

θ̄1, θ1, s1

)

; θ1

)

is continuous (again by Lemma

5), it follows that U2
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

− U2
(

s1 + X̃∗
(

θ̄1, θ1, s1

)

; θ1

)

≤ 0 for all s1 ∈
[

s++
1 , s∗1

]

. But this contradicts the inequality U2
(

s∗1 + X
(

θ̄1, θ1, s
∗
1

)

; θ1

)

> U2
(

s∗1 + X̃∗
(

θ̄1, θ1, s
∗
1

)

; θ1

)

.

Finally, take s1 ∈
[

s++
1 , s∗1

]

such that X̃∗
2 (s1) > X2 (s1). We know U2

(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

≥

U2
(

s1 + X̃∗
(

θ̄1, θ1, s1

)

; θ1

)

. So by Lemma A-1, U1
(

s1 + X
(

θ̄1, θ1, s1

)

; θ1

)

> U1
(

s1 + X̃∗
(

θ̄1, θ1, s1

)

; θ1

)

=

U1 (C∗ (θ1) ; θ1) = U1 (X (θ1, θ1, 0) ; θ1). But this violates IC1, giving a contradiction and complet-

ing the proof. QED
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