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Abstract

Does competition among persuaders increase the extent of information revealed? We study ex
ante symmetric information games where a number of senders choose what information to gather
and communicate to a receiver, who takes a non-contractible action that affects the welfare of all
players. We characterize the information revealed in pure-strategy equilibria. We consider three
ways of increasing competition among senders: (i) moving from collusive to non-cooperative play,
(ii) introducing additional senders, and (iii) decreasing the alignment of senders’ preferences.
For each of these notions, we establish that increasing competition cannot decrease the amount
of information revealed, and under a suitable set order increases it.
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1 Introduction

Does competition among persuaders increase the amount of information revealed? A long tradition

in political and legal thought holds that the answer is yes.1 This view has motivated protection of

freedom of speech and freedom of the press,2 media ownership regulation,3 the adversarial judicial

system,4 and many other policies.

Nevertheless, as Sobel (2010) emphasizes, existing models of strategic communication with

multiple senders provide an incomplete account of the link between competition and information.

Most papers focus on possibility results rather than characterizing the full set of equilibria. Existing

results are often sensitive to technical conditions such whether the set of the receiver’s actions is

bounded or unbounded. And, many models have the counter-intuitive feature that the set of

outcomes changes as we move from one sender to two, but there is no benefit from having many

senders rather than only a few.

We introduce a new model that yields a novel set of robust intuitions about the effect of

competition on information. In contrast to most existing literature, we consider a setting where

senders’ information is endogenous and observable. Competition thus operates through incentives to

collect information rather than through incentives to communicate it. Specifically, several senders,

who have no ex ante private information, simultaneously conduct costless experiments about an

unknown state of the world. A third party (Receiver) observes the results of these experiments

and then takes a non-contractible action that affects the welfare of all players. The state space

is arbitrary but finite. Receiver and each of the senders have arbitrary, state-dependent, utility

functions. Throughout the paper we focus on pure-strategy equilibria of the game.5

The information revealed in an equilibrium of this game can be succinctly summarized by the

distribution of Receiver’s posterior beliefs (Blackwell 1953). We refer to such a distribution as

an outcome of the game and order outcomes by informativeness according to the usual Blackwell

criterion.

We begin our analysis by establishing a simple lemma that is the backbone of our main propo-

1Milton (1644/2006); Mill (1859/2006).
2Abrams v. United States, 250 U.S. 616 (1919); Associated Press v. United States, 326 U.S. 1 (1945).
3Federal Communications Commission (2003).
4Sward (1988).
5In Section 5, we briefly discuss the complications that arise with mixed strategies.
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sitions: if the senders other than i together induce some outcome τ ′, sender i can unilaterally

deviate to induce some other outcome τ if and only if τ is more informative than τ ′. The “only

if” part of this lemma is trivial and captures a basic property of information: an individual sender

may unilaterally increase the amount of information revealed, but can never decrease it below the

informational content of the other senders’ signals. The “if” part of the lemma is more substantive,

and depends on the assumption that senders have access to a rich set of possible signals. It implies

that no outcome can be a pure-strategy equilibrium if there exists a more informative outcome pre-

ferred by any sender. This property is the fundamental reason why competition tends to increase

information revelation in our model.

Our main characterization result provides an algorithm for finding the full set of pure-strategy

equilibrium outcomes. We consider each sender i’s value function over Receiver’s beliefs v̂i and its

concave closure Vi (the smallest concave function everywhere above v̂i). Kamenica and Gentzkow

(2011) show that when there is a single sender i = 1, any belief µ that Receiver holds in equilibrium

must satisfy v̂1 (µ) = V1 (µ). We extend this result and establish that, when there are two or more

senders, a distribution of posteriors is an equilibrium outcome if and only if every belief µ in its

support satisfies v̂i(µ) = Vi(µ) for all i. Identifying the set of these “unimprovable” beliefs for a

given sender is typically straightforward. To find the equilibrium outcomes of the game, one then

simply takes the intersection of these sets.

We then turn to the impact of competition on information revelation. We consider three ways

of increasing competition among senders: (i) moving from collusive to non-cooperative play, (ii)

introducing additional senders, and (iii) decreasing the alignment of senders’ preferences. Since

there are typically many equilibrium outcomes, we state these results in terms of set comparisons

based on the strong and the weak set orders introduced by Topkis (1978). We show that, for all

three notions of increasing competition, more competition never makes the set of outcomes less

informative (under either order).

Competition does not necessarily make the set of outcomes more informative under the usual

set orders, however, because the set of outcomes with more competition T can be non-comparable

to the set of outcomes with less competition T ′. If we restrict attention to comparable outcomes,

however, we obtain stronger results. Specifically, given any (maximal) set of comparable elements

3



C, we show that T ∩ C is more informative than T ′ ∩ C. This relationship holds in the strong set

order for the comparison of collusive to non-cooperative play, and in the weak set order6 for the

comparisons based on number of senders and preference alignment. We also show that if the game

is zero-sum for any subset of senders, full revelation is the unique equilibrium outcome whenever

the value functions are sufficiently nonlinear.

Finally, we examine the precise sense in which our results on informativeness imply that compe-

tition increases Receiver’s welfare. We discuss an important caveat, namely that when the outcomes

under more and less competition are non-comparable, competition may lead to a form of coordina-

tion failure that makes Receiver strictly worse off.

Throughout the paper, we assume that Receiver observes the realizations of the senders’ signals

directly. This simplifies the exposition, but is not necessary for our results. In Gentzkow and

Kamenica (2012), we show that the equilibrium outcomes of our game are the same as those of an

alternative game where Receiver does not observe the results of senders’ experiments directly, but

senders have the ability to send verifiable messages. Our results are therefore applicable to settings

where senders observe their information privately and have the ability to conceal unfavorable results

ex post.

The next section discusses the relationship between our paper and the existing literature. Sec-

tion 3 develops mathematical preliminaries. Section 4 presents the model. Section 5 develops our

main characterization result. Section 6 presents comparative statics. Section 7 presents applications

to persuasion in courtrooms and product markets. Section 8 concludes.

2 Relationship to existing literature

Our paper extends the analytical methods developed in Kamenica and Gentzkow (2011) to address

a new set of economic questions. The earlier paper establishes conditions under which persuasion

is possible and characterizes optimal signals. This paper’s primary focus is comparative statics –

how changes in competition affect informational outcomes.

Broadly speaking, our work differs from the existing literature on this question in three ways.

6By definition, the empty set is not weakly above or below any other set. Hence, we consider only those comparable
sets C that intersect T and T ′.
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Senders’ information in our model is endogenous whereas many papers on multi-sender commu-

nication treat it as exogenous. We thus capture effects of competition on what senders choose to

learn rather than on what they choose to communicate. Second, we allow arbitrary preferences and

characterize the full set of equilibria whereas most existing papers impose restrictive assumptions on

preferences and focus on identifying conditions under which full revelation is possible. Finally, we

consider a richer set of comparative statics than most existing papers — varying the set of senders

arbitrarily, comparing competition to collusion, and varying the alignment of senders’ preferences.

More specifically, our paper relates to four categories of prior literature. First, our model is

related to the multiple-senders persuasion game analyzed in Milgrom and Roberts (1986). They

identify sufficient conditions on sender preferences under which every equilibrium is fully revealing.

They assume exogenous information and do not consider comparative statics.7

Second, our work connects to the large literature that examines conflict of interest among

senders in cheap talk settings (e.g., Krishna and Morgan 2001; Battaglini 2002). Most papers

in this literature focus on establishing conditions under which a fully revealing equilibrium exists.

Since completely uninformative (babbling) equilibria are also always present, and since it is typically

infeasible to characterize the full equilibrium set, these papers leave open the question of how much

revelation we should expect to see in practice. These papers treat senders’ information as exogenous,

and focus primarily on the comparison of outcomes with one sender to outcomes with two senders.

Third, our work relates to research on advocacy. Dewatripont and Tirole (1999) consider a

principal who employs agents to gather costly information. Effort exerted to gather information

is unobservable and experts’ wages are contingent only on the principal’s decision. The authors

establish that employing two advocates with opposed interests is preferable to employing a single

unbiased agent; it either generates more information or yields less rent to the employee(s). Shin

(1998) develops a related result in a model with exogenous information. In his setting, two advocates

get two independent draws of a signal whereas an investigator gets a single draw. In contrast, in

our model competition does not have a mechanical effect on the total information available.

7In concurrent work, Bhattacharya and Mukherjee (2011) analyze multiple-sender persuasion games when there is
uncertainty about whether each sender is informed. Under the assumption that senders’ preferences are single-peaked
and symmetric, they geometrically characterize the equilibrium strategies. They establish that Receiver’s payoff may
be maximized when senders have identical, extreme preferences rather than opposed ones. Chen and Olszewski
(2011) analyze a model of debate in which two senders with opposed preferences try to convince a receiver. They take
senders’ information as exogenous and do not consider comparative statics with respect to the extent of competition.
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Finally, our analysis is related to a small literature that examines situations with ex ante sym-

metric information with multiple senders. Brocas et al. (forthcoming) and Gul and Pesendorfer

(forthcoming) examine settings where two senders with exactly opposed interests provide costly

signals about a binary state of the world. We assume signals are costless, but consider a more

general setting with an arbitrary state space, arbitrary preferences, and arbitrary signals. Neither

Brocas et al. nor Gul and Pesendorfer examine comparative statics with respect to the extent of

competition.8

3 Mathematical preliminaries

3.1 State space and signals

Let Ω be a finite state space. A state of the world is denoted by ω ∈ Ω. A belief is denoted by µ.

The prior distribution on Ω is denoted by µ0. Let X be a random variable that is independent of

ω and uniformly distributed on [0, 1] with typical realization x. We model signals as deterministic

functions of ω and x. Formally, a signal π is a finite partition of Ω × [0, 1] s.t. π ⊂ S, where S is

the set of non-empty Lebesgue measurable subsets of Ω× [0, 1]. We refer to any element s ∈ S as

a signal realization.

With each signal π we associate an S-valued random variable that takes value s ∈ π when

(ω, x) ∈ s. Let p(s|ω) = λ ({x| (ω, x) ∈ s}) and p (s) =
∑

ω∈Ω p (s|ω)µ0 (ω) where λ (·) denotes the

Lebesgue measure. For any s ∈ π, p (s|ω) is the conditional probability of s given ω and p (s) is

the unconditional probability of s.

Our definition of a signal is somewhat non-standard because we model the source of noise in

signal realizations (the random variable X) explicitly. This is valuable for studying multiple senders

because for any two signals π1 and π2, our definition pins down not only their marginal distributions

on S but also their joint distribution on S × S. The joint distribution is important as it captures

the extent to which observing both π1 and π2 reveals more information than observing only π1

8Ostrovsky and Schwarz (2010) examine a model where schools choose how much information to provide about
their students’ abilities so as to maximize the students’ job placement. In their setting, each school can only generate
information about the quality of its own students, while we assume all senders can generate information about any
dimension of the state space. Moreover, Ostrovsky and Schwarz (2010) focus on a different question than we do –
they examine whether the amount of information revealed depends on how students’ abilities are distributed across
schools.
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Figure 1: A signal

ω = L ω = R

X
0 1 0 1

π l r l r

or π2 alone. The more common definition of a signal, which takes the marginal distribution on

S conditional on ω as the primitive, leaves the joint informational content of two or more signals

unspecified.

Our definition of a signal is illustrated in Figure 1. In this example, Ω = {L,R} and π = {l, r}

where l = (L, [0, 0.7]) ∪ (R, [0, 0.3]) and r = (L, [0.7, 1]) ∪ (R, [0.3, 1]). The signal is a partition of

Ω× [0, 1] with marginal distribution Pr (l|L) = Pr (r|R) = 0.7.

3.2 Lattice structure

The formulation of a signal as a partition has the additional benefit of inducing an algebraic

structure on the set of signals. This structure allows us to “add” signals together and thus easily

examine their joint information content. Let Π be the set of all signals. Let D denote the refinement

order on Π, that is, π1 D π2 if every element of π1 is a subset of an element of π2. The pair (Π,D)

is a lattice. The join π1 ∨ π2 of two elements of Π is defined as the supremum of {π1, π2}. For any

finite set (or vector)9 P we denote the join of all its elements by ∨P . We write π ∨P for π ∨ (∨P ).

Note that π1 ∨ π2 is a signal that consists of signal realizations s such that s = s1 ∩ s2 for some

s1 ∈ π1 and s2 ∈ π2. Hence, π1 ∨ π2 is the signal that yields the same information as observing

both signal π1 and signal π2. In this sense, the binary operation ∨ “adds” signals together. The

join of two signals is illustrated in Figure 2.

9In the model we introduce below, a strategy profile will be a vector of signals π = (π1, ..., πn) and we will write
∨π for ∨{πi}ni=1.
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Figure 2: The join of two signals

ω = L ω = R

X
0 1 0 1

π1
l r l r

π2
r' l' r' l'

π1∨π2
lr' ll' rl' lr' rr' rl'

3.3 Distributions of posteriors

A distribution of posteriors, denoted by τ , is an element of ∆ (∆ (Ω)) that has finite support.10 A

distribution of posteriors τ is Bayes-plausible if Eτ [µ] = µ0.

Observing a signal realization s s.t. p (s) > 0 generates a unique posterior belief11

µs (ω) =
p (s|ω)µ0 (ω)

p (s)
for all ω.

Note that the expression above does not depend on the signal; observing s from any signal π leads

to the same posterior µs.

Each signal π induces a Bayes-plausible distribution of posteriors. We write 〈π〉 for the dis-

tribution of posteriors induced by π. It is easy to see that τ = 〈π〉 assigns probability τ (µ) =∑
{s∈π:µs=µ} p (s) to each µ. Kamenica and Gentzkow (2011) establish that the image of the map-

ping 〈·〉 is the set of all Bayes-plausible τ ’s:

Lemma 1. (Kamenica and Gentzkow 2011) For any Bayes-plausible distribution of posteriors τ ,

there exists a π ∈ Π such that 〈π〉 = τ .

We define a conditional distribution of posteriors 〈π|s〉 to be the distribution of posteriors

induced by observing signal π after having previously observed some signal realization s with

p (s) > 0. This distribution assigns probability
∑
{s′∈π:µs∩s′=µ}

p(s∩s′)
p(s) to each belief µ. For any

10The fact that distributions of posteriors have finite support follows from the assumption that each signal has
finitely many realizations. The focus on such signals is without loss of generality under the maintained assumption
that Ω is finite.

11For those s with p (s) = 0, set µs to be an arbitrary belief.
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π and s with p (s) > 0, we have E〈π|s〉 [µ] = µs. Lemma 1 can easily be extended to conditional

distributions of posteriors:

Lemma 2. For any s s.t. p (s) > 0 and any distribution of posteriors τ s.t. Eτ [µ] = µs, there

exists a π ∈ Π such that τ = 〈π|s〉.

Proof. Given any s s.t. p (s) > 0 and any distribution of posteriors τ s.t. Eτ [µ] = µs, let S′ be

a partition of s constructed as follows. For each ω, let sω = {x| (ω, x) ∈ s}. Now, partition each

sω into {sµω}µ∈Supp(τs)
with λ (sµω) = µ(ω)τ(µ)

µs(ω) λ (sω). This is possible because Eτ [µ] = µs implies∑
µ∈Supp(τ) µ (ω) τ (µ) = µs (ω); hence,

∑
µ∈Supp(τ) λ (sµω) = λ (sω). For each µ ∈ Supp (τ), let

sµ = ∪ωsµω. Note that S′ = {sµ|µ ∈ Supp (τ)} is a partition of s. Let π = S′ ∪ {{Ω× [0, 1] \ {s}}}.

It is easy to check that τ = 〈π|s〉.

Note that Lemma 1 is a Corollary of Lemma 2 as we can set s in the statement of Lemma 2 to

Ω× [0, 1] so that µs = µ0.

3.4 Informativeness

We order distributions of posteriors by informativeness in the sense of Blackwell (1953). We say

that τ is more informative than τ ′, denoted τ % τ ′, if for some π and π′ s.t. τ = 〈π〉 and

τ ′ = 〈π′〉, there exists a garbling g : S × S → [0, 1] such that
∑

s′∈π′ g (s′, s) = 1 for all s ∈ π, and

p (s′|ω) =
∑

s∈π g (s′, s) p (s|ω) for all ω and all s′ ∈ π′. The relation % is a partial order. The pair

(∆ (∆ (Ω)) ,%) is a bounded lattice. We refer to the minimum element as no revelation, denoted

τ . Distribution τ places probability one on the prior. We refer to the maximum element as full

revelation, denoted τ . Distribution τ has only degenerate beliefs in its support.12

The refinement order on the space of signals implies the informativeness order on the space of

distributions of posteriors:

Lemma 3. π D π′ ⇒ 〈π〉 % 〈π′〉.

Proof. Define g (s′, s) equal to 1 if s ⊂ s′, and equal to 0 otherwise. Given any π and π′ s.t.

π D π′, we know that for each s ∈ π, there is exactly one s′ ∈ π′ s.t. s ⊂ s′. Hence, for

12A belief is degenerate if it places positive probability only on a single state.
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all s,
∑

s′∈π′ g (s′, s) = 1. Moreover, π D π′ implies that ∪{s ∈ π : s ⊂ s′} = s′. Hence, for

any ω and any s′ ∈ π′, {x| (ω, x) ∈ ∪{s ∈ π : s ⊂ s′}} = {x| (ω, x) ∈ s′}. This in turn implies

p (s′|ω) =
∑

s∈π g (s′, s) p (s|ω).

Note that it is not true that 〈π〉 % 〈π′〉 ⇒ π D π′.13 Note also that Lemma 3 implies 〈π1 ∨ π2〉 %

〈π1〉 , 〈π2〉.

We establish one more relationship between D and %.

Lemma 4. For any τ, τ ′, and π s.t. τ ′ % τ and 〈π〉 = τ , ∃π′ s.t. π′ D π and 〈π′〉 = τ ′.

Proof. Consider any τ, τ ′, and π s.t. τ ′ % τ and 〈π〉 = τ . By Lemma 1, there is a π̂ such that

〈π̂〉 = τ ′. Hence, by definition of %, there is a garbling g such that p (s|ω) =
∑

ŝ∈π̂ g (s, ŝ) p (ŝ|ω)

for all s ∈ π and ω. Define a new signal π′ D π as follows. For each s ∈ π, for each ω ∈ Ω, let

sω = {x| (ω, x) ∈ s}. Now, define a partition of each sω such that each element of the partition,

say s′ (s, ŝ, ω), is associated with a distinct ŝ ∈ π̂ and has Lebesgue measure g (s, ŝ) p (ŝ|ω). This

is possible since the sum of these measures is p (s|ω) = λ (sω). Let s′ (s, ŝ) = ∪ωs′ (s, ŝ, ω). Let

π′ = {s′ (s, ŝ) |ŝ ∈ π̂, s ∈ π}. For any s, ŝ, ω1, ω2, we have

p (s′ (s, ŝ) |ω1)

p (s′ (s, ŝ) |ω2)
=
g (s, ŝ) p (ŝ|ω1)

g (s, ŝ) p (ŝ|ω2)
=
p (ŝ|ω1)

p (ŝ|ω2)
,

which implies 〈π′〉 = 〈π̂〉 = τ ′.

Note that it is not true that for any τ ′ % τ and 〈π′〉 = τ ′, ∃π s.t. π′ D π and 〈π〉 = τ .

3.5 Orders on sets

We will frequently need to compare the informativeness of sets of outcomes. Topkis (1978, 1998)

defines two orders on subsets of a lattice. Given two subsets Y and Y ′ of a lattice (Y,≥), consider

two properties of a pair y, y′ ∈ Y:

(S) y ∨ y′ ∈ Y and y ∧ y′ ∈ Y ′

(W ) ∃ŷ ∈ Y : ŷ ≥ y′ and ∃ŷ′ ∈ Y ′ : y ≥ ŷ′

13For example, suppose that there are two states L and R. π is a perfectly informative signal with two realizations.
π′ is an uninformative signal with ten realizations, each of which is equally likely in state L and state R. Then
〈π〉 % 〈π′〉, but π cannot be finer than π′ because π′ has more elements.
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Topkis defines Y to be strongly above Y ′ (Y ≥s Y ′) if property S holds for any y ∈ Y and y′ ∈ Y ′,

and to be weakly above Y ′ (Y ≥w Y ′) if property W holds for any y ∈ Y and y′ ∈ Y ′.

Given two sets of outcomes T and T ′, we thus say T is strongly more informative than T ′ if

T %s T
′, and T is weakly more informative than T ′ if T %w T

′. Some of our results will establish

that a particular set cannot be strictly less informative than another set. To simplify the statement

of those propositions, we say that T is no less informative than T ′ if T is not strictly less informative

than T ′ in the weak order. As long as T and T ′ are not empty, as will be the case in our application,

this implies that T is not strictly less informative than T ′ in the strong order, and it implies that

if T and T ′ are strongly (weakly) comparable, then T is strongly (weakly) more informative.

Both the strong and the weak order are partial. Broadly speaking, there are two ways that sets

Y and Y ′ can fail to be ordered. The first arises when one set has elements that are ordered both

above and below the elements of the other set. For example, suppose that max (Y ) > max (Y ′) but

min (Y ) < min (Y ′). Then, sets Y and Y ′ are not comparable in either the strong or the weak order,

as seems intuitive. The second way that two sets can fail to be comparable arises when individual

elements of the two sets are themselves not comparable. For example, suppose that Y ≥s Y ′ and

ỹ ∈ Y is not comparable to any element of Y ∪Y ′. Then Y ∪ ỹ is not comparable to Y ′ in either the

strong or the weak order. The intuitive basis for calling Y ∪ ỹ and Y ′ unordered may seem weaker

than in the first case, and in some contexts we might be willing to say that Y ∪ ỹ is above Y ′.

In the analysis below, we will frequently encounter sets that fail to be ordered only in the latter

sense. It will therefore be useful to distinguish these cases from those where sets are unordered

even when we restrict attention to their comparable elements. A chain is a set in which any two

elements are comparable, and a chain is maximal if it is not a strict subset of any other chain.

We say that Y is strongly (weakly) above Y ′ along chains if for any maximal chain C ⊂ Y that

intersects both Y and Y ′, Y ∩ C ≥s Y ′ ∩ C (Y ∩ C ≥w Y ′ ∩ C).14

To gain more intuition about orders along chains, consider again properties S and W . When

Y is strongly (weakly) above Y ′, property S (W ) holds for any y ∈ Y and y′ ∈ Y ′. When Y is

strongly (weakly) above Y ′ along chains, property S (W ) holds for any comparable y and y′.

Orders along chains also arise naturally in decision theory. The standard result on monotone

14Given any two sets Y and Y ′, the following three statements are equivalent: (i) for any maximal chain C,
Y ∩ C ≥s Y ′ ∩ C, (ii) for any chain C, Y ∩ C ≥s Y ′ ∩ C, and (iii) for any chain C s.t. |C| = 2, Y ∩ C ≥s Y ′ ∩ C.
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comparative statics (Milgrom and Shannon 1994) states that, given a lattice (Y,≥) and a poset

Z, arg maxy∈Y f (y, z) is monotone nondecreasing in z in the strong set order if and only if f (·, ·)

satisfies the single-crossing property15 and f (·, z) is quasisupermodular16 for any z. It turns out

that if we drop the requirement of quasisupermodularity, we obtain monotone comparative statics

in the strong order along chains:17

Remark 1. Given a lattice (Y,≥) and a poset Z, arg maxy∈Y f (y, z) is monotone nondecreasing in

z in the strong set order along chains if and only if f (·, ·) satisfies the single-crossing property.

4 Bayesian persuasion with multiple senders

4.1 The model

Receiver has a continuous utility function u (a, ω) that depends on her action a ∈ A and the state

of the world ω ∈ Ω. There are n ≥ 1 senders indexed by i. Each sender i has a continuous utility

function vi (a, ω) that depends on Receiver’s action and the state of the world. All senders and

Receiver share the prior µ0. The action space A is compact.

The game has three stages: Each sender i simultaneously chooses a signal πi from Π. Next,

Receiver observes the signal realizations {si}ni=1. Finally, Receiver chooses an action.

Receiver forms her posterior using Bayes’ rule; hence her belief after observing the signal real-

izations is µs where s = ∩ni=1si. She chooses an action that maximizes Eµs u (a, ω). It is possible for

Receiver to have multiple optimal actions at a given belief, but for ease of exposition we suppose

that Receiver takes a single action a∗ (µ) at each belief µ. In Section 5 we discuss how our results

can be restated to account for the multiplicity of optimal actions.

We denote sender i’s expected utility when Receiver’s belief is µ by v̂i (µ):

v̂i (µ) ≡ Eµ vi (a∗ (µ) , ω) .

Throughout the paper, we focus exclusively on pure-strategy equilibria. We denote a strategy

15Function f :Y ×Z → R satisfies the single-crossing property if y > y′ and z > z′ implies that f (y, z′) ≥ f (y′, z′)⇒
f (y, z) ≥ f (y′, z) and f (y, z′) > f (y′, z′)⇒ f (y, z) > f (y′, z).

16Function f : Y → R is quasisupermodular if f (y) ≥ f (y ∧ y′) ⇒ f (y ∨ y′) ≥ f (y′) and f (y) > f (y ∧ y′) ⇒
f (y ∨ y′) > f (y′).

17We thank John Quah for this observation.
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profile by π = (π1, ..., πn) and let π−i = (π1, ...πi−1, πi+1, ..., πn). A profile π is an equilibrium if

E〈∨π〉 v̂i (µ) ≥ E〈π′i∨π−i〉 v̂i (µ) ∀π′i ∈ Π ∀i.

We refer to Receiver’s equilibrium distribution of posteriors as the outcome of the game.18 We say

a belief µ is induced in an equilibrium if it is in the support of the equilibrium outcome.

4.2 Discussion of the model

Our model makes several strong assumptions.

First, we assume that signals are costless and that each sender can choose any signal whatsoever.

This assumption would be violated if different senders had comparative advantage in accessing

certain kinds of information, if there were some information that senders could not avoid learning,

or if the experimental technology were coarse.

Second, our model implicitly allows each sender to choose a signal whose realizations are arbi-

trarily correlated, conditional on ω, with the signal realizations of the other senders. This would

not be possible if signal realizations were affected by some idiosyncratic noise. One way to motivate

our assumption is to consider a setting in which there is an exogenous set of experiments about

ω and each sender’s strategy is simply a mapping from the outcomes of those experiments to a

message space. In that case, each sender can make his messages correlated with those of other

senders. Another setting in which senders can choose correlated signals is one where they move

sequentially. In that case, each sender can condition his choice of the signal on the realizations of

the previous signals. The sequential move version of the game, however, is more cumbersome to

analyze as the outcomes depend on the order in which senders move.19

Third, it is important that senders do not have any private information at the time they choose

their signal. If they did, their choice of the signal could convey information conditional on the

signal realization, and this would substantially complicate the analysis.

18It is easy to see that Receiver’s distribution of posteriors determines the distribution of Receiver’s actions and
the payoffs of all the players. The fact that each sender’s payoff is entirely determined by the aggregate signal ∨π
provides a link between our model and the literature on aggregate games (Martimort and Stole 2010).

19There is nonetheless a connection between the simultaneous and the sequential move games. If τ is an equilibrium
outcome of the sequential move game for all orders of moves by the senders, then τ obeys the characterization from
Proposition 1.
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Fourth, we assume that Receiver is a classical Bayesian who can costlessly process all information

she receives. The main import of this assumption is that no sender can drown out the information

provided by others, say by sending many useless messages. From Receiver’s point of view, the worst

thing that any sender can do is to provide no information. Hence, unlike in a setting with costly

information processing, our model induces an asymmetry whereby each sender can add to but not

detract from the information provided by others.

The four assumptions above not only make the model more tractable, but are required for

our main results to hold. For example, if senders have access only to a small set of signals, one

can construct examples where the unique collusive outcome is more informative than the unique

equilibrium outcome. We also make several assumptions that are not necessary for the results, but

greatly simplify the exposition.

First, we present the model as if there were a single Receiver, but an alternative way to interpret

our setting is to suppose there are several receivers j = 1, ..,m, each with a utility function uj (aj , ω),

with receiver j taking action aj ∈ Aj , and all receivers observing the realizations of all senders’ sig-

nals. Even if each sender’s utility vi (a, ω) depends in an arbitrary way on the full vector of receivers’

actions a = (a1, ..., am), our analysis still applies directly since, from senders’ perspective, the situ-

ation is exactly the same as if there were a single Receiver maximizing u (a, ω) =
∑m

j=1 uj (aj , ω).

Second, it is easy to extend our results to situations where Receiver has private information.

Suppose that, at the outset of the game, Receiver privately observes a realization r from some signal

ξ (·|ω). In that case, Receiver’s action, a∗ (s, r), depends on the realization of her private signal

and is thus stochastic from senders’ perspective. However, given a signal realization s, each sender

simply assigns the probability ξ (r|ω)µs (ω) to the event that Receiver’s signal is r and the state

is ω. Hence, sender i’s expected payoff given s is v̂i (µs) =
∑

ω

∑
r v (a∗ (s, r) , ω) ξ (r|ω)µs (ω). All

the results then apply directly with respect to the re-formulated v̂i’s.

Finally, our model assumes that Receiver directly observes the realizations of senders’ signals.

As noted above, however, the results in Gentzkow and Kamenica (2012) imply that this assumption

is not necessary for our results. Gentzkow and Kamenica (2012) study the relationship between

games where senders must report their information truthfully and disclosure games where they

send verifiable messages. In particular, they consider a disclosure game with the following stages:
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(i) each sender simultaneously chooses a signal πi, the choice of which is not observed by the other

senders; (ii) each sender privately observes the realization si of his own signal; (iii) each sender

simultaneously sends a verifiable message mi ⊂ πi s.t. si ∈ mi; (iv) Receiver observes the signals

chosen by the senders and all of the messages; (v) Receiver chooses an action. Their results imply

that the set of pure strategy equilibria of this disclosure game coincides with the set of pure strategy

equilibria of the game we study in this paper.20 Thus, our results are applicable even in settings

where senders are able to conceal unfavorable information ex post.

5 Characterizing equilibrium outcomes

In this section, we characterize the set of equilibrium outcomes. As a first step, consider the set of

distributions of posteriors that a given sender can induce given the strategies of the other senders.

It is immediate that he can only induce a distribution of posteriors that is more informative than

the one induced by his opponents’ signals alone. The following lemma establishes that he can

induce any such distribution.

Lemma 5. Given a strategy profile π and a distribution of posteriors τ , for any sender i there

exists a π′i ∈ Π such that 〈π′i ∨ π−i〉 = τ if and only if τ % 〈∨π−i〉.

Proof. Suppose τ % 〈∨π−i〉. By Lemma 4, there exists a π′i D ∨π−i s.t. 〈π′i〉 = τ . Since π′i =

π′i ∨ π−i, we know 〈π′i ∨ π−i〉 = 〈π′i〉 = τ . The converse follows from Lemma 3.

Lemma 5 depends on our assumption that each sender can choose a signal whose realizations

are arbitrarily correlated, conditional on ω, with the signal realizations of the other senders. As a

result, when senders play mixed strategies, the analogue of this lemma does not hold – it is possible

to construct an example where senders other than i are playing mixed strategies π̃−i, there is a

distribution of posteriors τ % 〈∨π̃−i〉, and there is no π′i such that 〈π′i ∨ π̃−i〉 = τ .21 Consequently,

the approach we develop below cannot be used to characterize mixed strategy equilibria.

20Gentzkow and Kamenica (2012) focus on cases where Receiver’s optimal action is unique at each µ. When this
assumption is not satisfied, the equivalence of the two games can be guaranteed by introducing a small amount of
private information for Receiver, so that the distribution of Receiver’s optimal actions is single-valued and continuous.

21Here, we extend the notation 〈·〉 to denote the distribution of posteriors induced by a mixed strategy profile.
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We next turn to the question of when a given sender would wish to deviate to some more

informative τ . For each i, let Vi be the concave closure of v̂i:

Vi (µ) ≡ sup {z| (µ, z) ∈ co (v̂i)} ,

where co (v̂i) denotes the convex hull of the graph of v̂i. Note that each Vi is concave by construction.

In fact, it is the smallest concave function that is everywhere weakly greater than v̂i.
22 Kamenica

and Gentzkow (2011) establish that when there is only a single sender i, Vi(µ0) is the greatest

payoff that the sender can achieve:

Lemma 6. (Kamenica and Gentzkow 2011) For any belief µ, v̂i (µ) = Vi (µ) if and only if

Eτ [v̂i (µ′)] ≤ v̂i (µ) for all τ such that Eτ [µ′] = µ.

In light of this lemma, we refer to a belief µ such that v̂i (µ) = Vi (µ) as unimprovable for sender

i. Let Mi denote the set of unimprovable beliefs for sender i.

The lemma above establishes that, if there is a single sender, any belief induced in equilibrium

has to be unimprovable for that sender. Our main characterization result shows that when n ≥ 2,

any belief induced in equilibrium has to be unimprovable for all senders. Moreover, unlike in the

single sender case, this condition is not only necessary but sufficient: for any Bayes-plausible τ

whose support lies in the intersection M =
n
∩
i=1
Mi, there exists an equilibrium that induces τ .

Proposition 1. Suppose n ≥ 2. A Bayes-plausible distribution of posteriors τ is an equilibrium

outcome if and only if each belief in its support is unimprovable for each sender.

We provide a sketch of the proof here; a more detailed argument is in the Appendix. Suppose

that τ is an equilibrium outcome. If there were some µ ∈ Supp (τ) such that v̂i (µ) 6= Vi (µ)

for some sender i, Lemmas 5 and 6 imply that sender i could profitably deviate by providing

additional information when the realization of τ is µ. Conversely, suppose that τ is a Bayes-plausible

distribution of beliefs such that for each µ ∈ Supp (τ), v̂i (µ) = Vi (µ) for all i. Consider the strategy

profile where all senders send the same signal π with 〈π〉 = τ . No sender can then deviate to induce

any τ ′ ≺ τ . Moreover, the fact that all beliefs in the support of τ are unimprovable means that no

sender would want to deviate to any τ ′ � τ . Thus, this strategy profile is an equilibrium.

22Aumann and Maschler (1995) refer to Vi as the concavification of v̂i.
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An important feature of Proposition 1 is that it provides a way to solve for the informational

content of equilibria simply by inspecting each sender’s preferences in turn, without worrying about

fixed points or strategic considerations. This is particularly useful because identifying the set of

unimprovable beliefs for each sender is typically straightforward. In Section 7, we will use this

characterization to develop some applications. For now, Figure 3 illustrates how Proposition 1

can be applied in a simple example with hypothetical value functions. In this example, there are

two senders, A and B. Panel (a) displays v̂A and VA, while Panel (b) displays v̂B and VB. Panel

(c) shows the sets of unimprovable beliefs MA and MB, as well as their intersection M . Any

distribution of beliefs with support in M is an equilibrium outcome. A belief such as µ1 cannot

be induced in equilibrium because sender A would have a profitable deviation. A belief such as µ2

cannot be induced in equilibrium because sender B would have a profitable deviation.

Recall that, for ease of exposition, we have been taking some optimal a∗ (·) as given and focusing

on the game between senders. Proposition 1 thus characterizes the set of equilibrium outcomes

consistent with this particular strategy by Receiver. To take the multiplicity of Receiver-optimal

strategies into account, we could define a separate set of value functions v̂αi (µ) for each Receiver-

optimal strategy α. Then, a distribution of posteriors τ is an equilibrium outcome if and only if

there is an optimal action strategy α such that the support of τ lies in ∩i {µ|v̂αi (µ) = V α
i (µ)}.

Finally, observe that full revelation is an equilibrium in the example of Figure 3 (both µ = 0

and µ = 1 are in M). This is true whenever there are multiple senders, because degenerate beliefs

are always unimprovable. This also implies that an equilibrium always exists.23

Corollary 1. If n ≥ 2, full revelation is an equilibrium outcome.

As Sobel (2010) discusses, the existence of fully revealing equilibria under weak conditions is a

common feature of multi-sender strategic communication models. In many of these models, as in

ours, full revelation can be an equilibrium outcome even if all senders have identical preferences and

strictly prefer no information disclosure to all other outcomes – a seemingly unappealing prediction.

One response would be to introduce a selection criterion that eliminates such equilibria. Given

any two comparable equilibrium outcomes, every sender weakly prefers the less informative one.

23Kamenica and Gentzkow (2011) establish existence for the case n = 1. Consider an a∗ (·) where Receiver takes
a Sender-preferred optimal action at each belief. Such an a∗ (·) guarantees that v̂i is upper semicontinuous and thus
that an equilibrium exists.
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Figure 3: Characterizing equilibrium outcomes
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Hence, while the appropriate selection criterion might depend on the setting, selection criteria that

always pick out a minimally informative equilibrium are appealing. We discuss the implications of

such a selection criterion in Section 6.4 below. The approach we take in our formal results, however,

is to focus on set comparisons of the full range of equilibrium outcomes.

6 Competition and information revelation

6.1 Comparing competitive and collusive outcomes

One way to vary the extent of competition is to compare the set of non-cooperative equilibria to

what senders would choose if they could get together and collude. This might be the relevant

counterfactual for analyzing media ownership regulation or the effect of mergers on disclosure.

An outcome τ is collusive if τ ∈ arg maxτ ′ Eτ ′ (
∑
v̂i (µ)). Note that it is without loss of

generality to assume that, in choosing the collusive outcome, senders put equal weight on each

player’s utility; if, say due to differences in bargaining power, the collusive agreement placed weight

δi on sender i, we could simply redefine each vi as δivi.
24

Proposition 2. Let T ∗ be the set of equilibrium outcomes and T c the set of collusive outcomes. T ∗

is no less informative than T c. Moreover, T ∗ is strongly more informative than T c along chains.

If there is a single sender, the proposition holds trivially as T ∗ = T c, so suppose throughout

this subsection that n ≥ 2. We begin the proof with the following Lemma.

Lemma 7. If τ∗ ∈ T ∗, τ c ∈ T c, and τ c % τ∗, then τ c ∈ T ∗ and τ∗ ∈ T c.

Proof. Suppose τ∗ ∈ T ∗, τ c ∈ T c, and τ c % τ∗. By Lemma 5, we know Eτc [v̂i (µ)] ≤ Eτ∗ [v̂i (µ)]

for all i; otherwise, the sender i for whom Eτc [v̂i (µ)] > Eτ∗ [v̂i (µ)] could profitably deviate to τ c.

Since τ c ∈ T c, we know Eτc [
∑
v̂i (µ)] ≥ Eτ∗ [

∑
v̂i (µ)]. Therefore, Eτc [v̂i (µ)] = Eτ∗ [v̂i (µ)] for all

i which implies τ∗ ∈ T c. Now, we know τ c ∈ T ∗ unless there is a sender i and a distribution of

posteriors τ ′ % τ c s.t. Eτ ′ [v̂i (µ)] > Eτc [v̂i (µ)]. But since τ∗ ∈ T ∗, Eτc [v̂i (µ)] = Eτ∗ [v̂i (µ)], and

τ ′ % τ c % τ∗, this cannot be.

24Moreover, it is not important that the collusive agreement maximizes the sum rather than the product of senders’
payoffs. If we define a collusive outcome as an argmax of Eτ ′

(∏
max

{
v̂i (µ)− v0i , 0

})
where v0i denotes sender i’s

“disagreement payoff,” Proposition 2 would still hold, with a nearly identical proof. The definition of collusion based
on the product of payoffs would be appropriate if firms reached a collusive agreement through Nash bargaining rather
than through a merger.

19



Lemma 7 establishes one sense in which competition increases the amount of information re-

vealed: no non-collusive equilibrium outcome is less informative than a collusive outcome, and no

equilibrium outcome is less informative than a non-equilibrium collusive outcome. The lemma also

plays a central role in the proof of Proposition 2:

Proof. Suppose T c %w T ∗. To establish that T ∗ is no less informative than T c, we need to show

this implies T ∗ %w T c. For any τ c ∈ T c, we know by Corollary 1 there exists τ∗ ∈ T ∗ such that

τ∗ % τ c. For any τ∗ ∈ T ∗, T c %w T ∗ implies there is a τ ′ ∈ T c s.t. τ ′ % τ∗. By Lemma 7, we

must then have τ∗ ∈ T c. Thus, there is a τ c ∈ T c, namely τ∗, s.t. τ c - τ∗. Now, consider any

chain C that intersects T and T ′. Consider any τ∗ ∈ T ∗ ∩ C and any τ c ∈ T c ∩ C. By Lemma 7,

τ∗ ∨ τ c ∈ T ∗ ∩ C and τ∗ ∧ τ c ∈ T c ∩ C. Therefore, T ∗ ∩ C %s T
c ∩ C.

Note that the proposition allows for T ∗ to be non-comparable to T c. The two sets can indeed

be non-comparable in both the strong and the weak order. We will discuss the importance of these

caveats below when we analyze whether competition necessarily makes Receiver better off.

6.2 Varying the number of senders

A second way to vary the extent of competition is to compare the set of equilibria with many

senders to the set of equilibria with fewer senders. This might be the relevant counterfactual for

assessing the impact of lowering barriers to entry on equilibrium advertising in an industry.

Proposition 3. Let T and T ′ be the sets of equilibrium outcomes when the sets of senders are J

and J ′ ⊂ J , respectively. T is no less informative than T ′. Moreover, T is weakly more informative

than T ′ if |J ′| > 1, and weakly more informative than T ′ along chains if |J ′| = 1.

As suggested by the statement of the proposition, the basic intuition behind this result is

somewhat different when we consider a change from many senders to more senders (i.e., when

|J ′| > 1), and when we consider a change from a single sender to many senders (i.e., when |J ′| = 1)

In the former case, Proposition 1 implies that T ⊂ T ′. In other words, adding senders causes the

set of equilibrium outcomes to shrink. But, Corollary 1 implies that, even as the set of equilibrium

outcomes shrinks, full revelation must remain in the set. Hence, loosely speaking, adding senders
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causes the set of equilibrium outcomes to shrink“toward” full revelation. We formalize this intuition

in the following lemma, which will also be useful in proving Proposition 4 below.

Lemma 8. Suppose T and T ′ are sets of outcomes s.t. T ⊂ T ′ and τ ∈ T . Then T is weakly more

informative than T ′.

Proof. Suppose T and T ′ are sets of outcomes s.t. T ⊂ T ′ and τ ∈ T . For any τ ′ ∈ T ′ there exists

a τ ∈ T , namely τ̄ , s.t. τ % τ ′. For any τ ∈ T there exists a τ ′ ∈ T ′, namely τ , s.t. τ % τ ′.

In the latter case (|J ′| = 1), the key observation is that no τ ∈ T \ T ′ can be less informative

than a τ ′ ∈ T ′. Otherwise, the single sender in J ′ would prefer to deviate from τ to τ ′. We now

turn to the formal proof of Proposition 3.

Proof. If J is a singleton, the proposition holds trivially, so suppose that |J | ≥ 2. First, consider

there case where |J ′| > 1. By Proposition 1, T ⊂ T ′, and by Corollary 1, τ ∈ T . Hence, the

proposition follows from Lemma 8. Second, consider the case where |J ′| = 1. Let i denote the

sender in J ′. To establish that T is no less informative than T ′, we need to show that T ′ %w T

implies T %w T
′. Suppose T ′ %w T . By Corollary 1, for any τ ′ ∈ T ′, we know there exists τ ∈ T ,

namely τ , such that τ % τ ′. Given any τ ∈ T , T ′ %w T implies there is a τ ′ ∈ T ′ s.t. τ ′ % τ . But,

then it must be the case that τ is also individually optimal for sender i, i.e., τ ∈ T ′; otherwise, by

Lemma 5, sender i could profitably deviate to τ ′ and hence τ would not be an equilibrium. Now,

consider any maximal chain C that intersects T ′. Since C is maximal, it must include τ . Moreover,

τ ∈ T . Hence, for any τ ′ ∈ T ′ ∩ C there is a τ ∈ T ∩ C, namely τ , s.t. τ % τ ′. It remains to show

that for any τ ∈ T ∩ C there is a τ ′ ∈ T ′ ∩ C s.t. τ % τ ′. Given any τ ∈ T ∩ C, since C is a chain,

every element of T ′ ∩C is comparable to τ . Consider any τ ′ ∈ T ′ ∩C. Since T ′ intersects C, there

must be some such τ ′. If τ ′ - τ , we are done. Suppose τ ′ % τ . Then, it must be the case that τ is

also individually optimal for sender i, i.e., τ ∈ T ′; otherwise, by Lemma 5, sender i could profitably

deviate to τ ′ and hence τ would not be an equilibrium.

6.3 Varying the alignment of senders’ preferences

A third way to vary the extent of the competition is to make senders’ preferences more or less

aligned. This counterfactual sheds lights on the efficacy of adversarial judicial systems and advocacy

21



more broadly (Shin 1998; Dewatripont and Tirole 1999).

Given that senders can have any arbitrary state-dependent utility functions, the extent of pref-

erence alignment among senders is not easy to parametrize in general. Hence, we consider a specific

form of preference alignment: given any two functions f, g : A× Ω→ R we let
{
vb
}
b∈R+

denote a

collection of preferences where some two senders, say j and k, have preferences of the form

vj (a, ω) = f (a, ω) + bg (a, ω)

vk (a, ω) = f (a, ω)− bg (a, ω)

while preferences of Receiver and of other senders are independent of b. The parameter b thus

captures the extent of preference misalignment between two of the senders.

Proposition 4. Let T and T ′ be the sets of equilibrium outcomes when preferences are vb and vb
′
,

respectively, where b > b′. T is weakly more informative than T ′.

Proof. For each i, let Mi and M ′i denote the sets of unimprovable beliefs for sender i when pref-

erences are vb and vb
′
, respectively. Let M = ∩iMi and M ′ = ∩iM ′i . Let M̃ = Mj ∩Mk and

M̃ ′ = M ′j ∩M ′k. Let f̂ (µ) = Eµ [f (a∗ (µ) , ω)] and ĝ (µ) = Eµ [g (a∗ (µ) , ω)]. Consider any µ ∈ M̃ .

For any τ s.t. Eτ [µ′] = µ, we know that µ ∈ M̃j implies Eτ

[
f̂ (µ′) + bĝ (µ′)

]
≤ f̂ (µ) + bĝ (µ) and

µ ∈ M̃k implies Eτ

[
f̂ (µ′)− bĝ (µ′)

]
≤ f̂ (µ) − bĝ (µ). Combining these two inequalities, we get

f̂ (µ)− Eτ

[
f̂ (µ′)

]
≥ b |ĝ (µ)− Eτ [ĝ (µ′)]| ,which means f̂ (µ)− Eτ

[
f̂ (µ′)

]
≥ b′ |ĝ (µ)− Eτ [ĝ (µ′)]|.

This last inequality implies Eτ

[
f̂ (µ′) + b′ĝ (µ′)

]
≤ f̂ (µ) + b′ĝ (µ) and Eτ

[
f̂ (µ′)− bĝ (µ′)

]
≤

f̂ (µ) − bĝ (µ). Since these two inequalities hold for any τ s.t. Eτ [µ′] = µ, we know µ ∈ M̃ ′.

Hence, M̃ ⊂ M̃ ′. Therefore, since Mi = M ′i for all i /∈ {j, k}, we know M ⊂ M ′. This in turn

implies T ⊂ T ′. By Corollary 1, we know τ ∈ T . Hence, the proposition follows directly from

Lemma 8.

Note that proofs of both Proposition 3 and Proposition 4 rely on the fact that, as competition

increases (whether through adding senders or increasing misalignment of their preferences), the set

of equilibrium outcomes shrinks. This is worth noting since it suggests another sense, not fully

captured by the propositions, in which competition increases information revelation. Specifically,
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T ⊂ T ′ implies that the set of unimprovable beliefs is smaller when there is more competition;

hence, with more competition there are fewer prior beliefs such that no revelation is an equilibrium

outcome.

Proposition 4 establishes that as preference misalignment b grows, the set of equilibrium out-

comes shrinks and the extent of information revealed in equilibrium increases. A natural conjecture,

therefore, may be that in the limit where two senders have fully opposed preferences, full revelation

becomes the only equilibrium.

Specifically, suppose there are two senders j and k s.t. vj = −vk. Does the presence of two

such senders guarantee full revelation? It turns out the answer is no. For example, if v̂j is linear,

and j and k are the only 2 senders, then Mj = Mk = ∆ (Ω) and any outcome is an equilibrium.

Moreover, it will not be enough to simply assume that v̂j is non-linear; as long as it is linear along

some dimension of ∆ (Ω), it is possible to construct an equilibrium that is not fully revealing along

that dimension. Accordingly, we say that v̂j is fully non-linear if it is non-linear along every edge

of ∆ (Ω), i.e., if for any two degenerate beliefs µω and µω′ , there exist two beliefs µl and µh on the

segment [µω, µω′ ] such that for some γ ∈ [0, 1], v̂j (γµl + (1− γ)µh) 6= γv̂j (µl) + (1− γ) v̂j (µh). If

vj = −vk and v̂j is fully non-linear, then full revelation is indeed the unique equilibrium outcome.

Proposition 5 establishes the analogous result for the more general case where there is some subset

of senders for whom the game is zero-sum.

Proposition 5. Suppose there is a subset of senders J ⊂ {1, ..., n} s.t. (i) for any a and ω,∑
i∈Jvi (a, ω) = 0, and (ii) there exists i ∈ J s.t. v̂i is fully non-linear. Then, full revelation is the

unique equilibrium outcome.

6.4 Does competition make Receiver better off?

Propositions 2, 3, and 4 establish a sense in which moving from collusion to non-cooperative play,

adding senders, and making senders’ preferences less aligned all tend to increase information reve-

lation. Since more information must weakly increase Receiver’s utility, increasing competition thus

tends to make Receiver better off.

To make this observation more precise, we translate our set comparisons of the informativeness

of outcomes into set comparisons of Receiver’s utilities. Given two lattices (Y,�) and (Z,≥), a
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function f : Y → Z is said to be increasing if y � y′ implies f (y) ≥ f (y′). Moreover, if the domain

of f is a chain, then an increasing f preserves the set order:

Lemma 9. If f : (∆ (∆ (Ω)) ,%) → (R,≥) is increasing, then for any chain C ⊂ ∆ (∆ (Ω)),

∀T, T ′ ⊂ C, T %s(w) T
′ ⇒ f (T ) ≥s(w) f (T ′).

Proof. First consider the strong order. Consider any y ∈ f (T ) and y′ ∈ f (T ′). If y ≥ y′, then

y ∨ y′ ∈ f (T ). Suppose y′ > y. Let τ and τ ′ be any elements of f−1 (y) ⊂ T and f−1 (y′) ⊂ T ′,

respectively. Since f is increasing and y > y′, we know τ ′ > τ . Hence, since T % T ′, it must be

the case that τ ′ ∈ T . Hence, y ∧ y′ = y′ = f (τ ′) ∈ f (T ). Now consider the weak order. Given

y ∈ f (T ), consider any τ ∈ f−1 (y). Since T %w T
′ there is a τ ′ ∈ T ′ s.t. τ % τ ′. Let y′ = f (τ ′).

Since f is increasing, y ≥ y′. Given y′ ∈ f (T ′), consider any τ ′ ∈ f−1 (y′). Since T %w T
′ there is

a τ ∈ T s.t. τ % τ ′. Let y = f (τ) . Since f is increasing, y ≥ y′.

By Blackwell’s Theorem (1953), the function fu : (∆ (∆ (Ω)) ,%) → (R,≥), which maps dis-

tributions of posteriors into the expected utility of a decision-maker with a utility function u, is

increasing for any u. Hence, Lemma 9 allows us to translate the results of the previous three

subsections into results about Receiver’s payoff.

Corollary 2. Let T ∗ be the set of equilibrium outcomes and T c be the set of collusive outcomes.

Let T and T ′ be the sets of equilibrium outcomes when the sets of senders are J and J ′ ⊂ J ,

respectively. Let T b and T b
′

be the sets of equilibrium outcomes when preferences are vb and vb
′
,

respectively, where b > b′. For any maximal chain C that intersects T ′:

1. Receiver’s payoffs under T ∗ ∩ C are strongly greater than under T c ∩ C

2. Receiver’s payoffs under T ∩ C are weakly greater than under T ′ ∩ C

3. Receiver’s payoffs under T b ∩ C are weakly greater than under T b
′ ∩ C

By the definition of Blackwell informativeness, Corollary 2 applies not only to Receiver, whom

senders are trying to influence, but also to any third-party who observes the signal realizations and

whose optimal behavior depends on ω.25

25In the statement of Corollary 2, we do not need to assume that C intersects T ∗ or T c because an empty set is
strongly above and below any set and we do not need to assume that C intersects T , T b, or T b

′
because all these sets

contain τ̄ so any maximal chain must intersect them.
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An alternative to comparing sets of Receiver’s payoffs is to consider a selection criterion that

picks out a particular outcome from the overall set. As mentioned in Section 5, selection criteria that

always pick out a minimally informative equilibrium may be appealing. Under any such criterion,

there is a strong sense in which competition makes Receiver better off. Proposition 2 implies that

any minimally informative equilibrium gives Receiver a weakly higher payoff than any comparable

collusive outcome. Propositions 3 and 4 imply that any minimally informative equilibrium with

more senders or less aligned preferences gives Receiver a weakly higher payoff than any comparable

minimally informative equilibrium with fewer senders or more aligned sender preferences.

Whether we consider the entire equilibrium set or a particular selection rule, however, our

results apply only to mutually comparable outcomes. This is a substantive caveat. If the outcomes

under more and less competition are non-comparable, it is possible that the outcome with more

competition makes Receiver worse off.

For example, suppose there are two dimensions of the state space, horizontal and vertical.

Senders benefit by providing information only about the vertical dimension but strongly dislike

providing information about both dimensions. In this case, competition could lead to a coordina-

tion failure; there can exist an equilibrium in which senders provide only horizontal information,

even though all senders and Receiver would be strictly better off if only vertical information were

provided:

Example 1. The state space is Ω = {l, r} × {u, d}. The action space is A = {l,m, r} × {u, d}.

Denote states, beliefs, and actions by ordered pairs (ωx, ωy), (µx, µy), and (ax, ay), where the first

element refers to the l-r dimension and the second element refers to the u-d dimension. The prior

is µ0 =
(

1
2 ,

1
2

)
. Receiver’s preferences are u (a, ω) = 1

100ux (ax, ωx)+uy (ay, ωy), where ux (ax, ωx) =

2
3I{ax=m}+I{ax=ωx} and uy = I{ay=ωy}. There are two senders with identical preferences: v1 (a, ω) =

v2 (a, ω) = I{ax=m}I{ay=ωy}. A distribution of posteriors τ∗ with support on beliefs
(
0, 1

2

)
and

(
1, 1

2

)
is an equilibrium outcome. The set of collusive outcomes, T c, is the same as the set of equilibrium

outcomes with a single sender, T ′. Each of these sets consists of distributions of posteriors with

support on
([

1
3 ,

2
3

]
× {0}

)
∪
([

1
3 ,

2
3

]
× {1}

)
. It is easy to see that Receiver is strictly better off under

any outcome in T c ∪ T ′ than she is under τ∗.
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7 Applications

7.1 A criminal trial

In Kamenica and Gentzkow (2011), we introduce the example of a prosecutor trying to persuade a

judge that a defendant is guilty. Here, we extend that example to include two senders, a prosecutor

(p) and a defense attorney (d).

There are two states, innocent (ω = 0) and guilty (ω = 1). The prior is Pr (ω = 1) = µ0 = 0.3.

Receiver (the judge) can choose to either acquit (a = 0) or convict (a = 1). Receiver’s utility

is u (a, ω) = I{a=ω}. The prosecutor’s utility is vp (a, ω) = a. The defense attorney’s utility is

vd (a, ω) = −a.

If the prosecutor were playing this game by himself, his optimal strategy would be to choose a

signal that induces a distribution of posteriors with support
{

0, 1
2

}
that leads 60% of defendants

to be convicted. If the defense attorney were playing this game alone, his optimal strategy would

be to gather no information, which would lead the judge to acquit everyone. Because vp + vd = 0,

all outcomes in this game are collusive outcomes.

When the attorneys compete, the unique equilibrium outcome is full revelation. This follows

directly from Proposition 5, since vp = −vd and the v̂i’s are fully non-linear. Thus, the set of

equilibrium outcomes is strongly more informative than both the set of collusive outcomes and the

outcomes each sender would implement on their own, consistent with Propositions 2 and 3. In this

example, competition clearly makes Receiver better off.

To make the analysis more interesting, we can relax the assumption that the two senders’

preferences are diametrically opposed. In particular, suppose that the defendant on trial is a

confessed terrorist. Suppose that the only uncertainty in the trial is how the CIA extracted the

defendant’s confession: legally (ω = 1) or through torture (ω = 0). Any information about the

CIA’s methods released during the trial will be valuable to terrorist organizations; the more certain

they are about whether the CIA uses torture or not, the better they will be able to optimize their

training methods. Aside from the attorneys’ respective incentives to convict or acquit, both prefer

to minimize the utility of the terrorists.
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Specifically, we assume there is a second receiver, a terrorist organization.26 The organization

must choose a fraction aT ∈ [0, 1] of its training to devote to resisting torture. The organiza-

tion’s utility is uT (aT , ω) = − (1− aT − ω)2. The attorneys’ utilities are vp (a, ω) = a − cuT and

vd (a, ω) = −a − cuT . The parameter c ∈ [4, 25] captures the social cost of terrorism internalized

by the attorneys.27

If the prosecutor were playing this game alone, his optimal strategy would be to choose a signal

that induces a distribution of posteriors
{

1
2 −

1√
c
, 1

2

}
. If the defense attorney were playing this game

alone, his optimal strategy would still be to gather no information. The unique collusive outcome

is no revelation. To identify the set of equilibrium outcomes, we apply Proposition 1. Panel (a) of

Figure 4 plots v̂p and Vp. We can see that Mp = {µ|v̂p (µ) = Vp (µ)} =
[
0, 1

2 −
1√
c

]
∪
[

1
2 , 1
]
. Panel

(b) plots v̂d and Vd. We can see that Md = {µ|v̂d (µ) = Vd (µ)} = [0, 1
2) ∪

[
1
2 + 1√

c
, 1
]
. Hence, as

panel (c) shows, M = Mp ∩Md =
[
0, 1

2 −
1√
c

]
∪
[

1
2 + 1√

c
, 1
]
. The set of equilibrium outcomes is

the set of τ ’s whose support lies in this M .

Competition between the attorneys increases information revelation. The set of equilibrium

outcomes is strongly more informative than both the set of collusive outcomes (cf: Proposition

2) and than what either sender would reveal on his own (cf: Proposition 3). Moreover, when the

extent of shared interest by the two attorneys is greater, i.e., when c is greater, the set of equilibrium

outcomes becomes weakly less informative (cf: Proposition 4).

7.2 Advertising of quality by differentiated firms

There are two firms i ∈ {1, 2} which sell differentiated products. The prices of these products are

fixed exogenously and normalized to one, and marginal costs are zero. The uncertain state ω is a

two-dimensional vector whose elements are the qualities of firm 1’s product and firm 2’s product.

Receiver is a consumer whose possible actions are to buy neither product (a = 0), buy firm 1’s

product (a = 1), or buy firm 2’s product (a = 2) . We interpret the senders’ choice of signals as a

choice of verifiable advertisements about quality.28

26As discussed in Section 4.2, our model is easily reinterpreted to allow multiple receivers.
27If c < 4, the outcome is the same as when c = 0; the preferences of the two senders are sufficiently opposed that

full revelation is the unique equilibrium outcome. If c > 25, both senders are so concerned about giving information
to the terrorists that neither wishes to reveal anything.

28Note that in this setting, our model allows for firms’ advertisements to provide information about the competitor’s
product as well as their own. This is a reasonable assumption in certain industries. For example, pharmaceutical
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Figure 4: Characterizing equilibrium outcomes for the criminal trial example
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There are three possible states: (i) both products are low quality (ω = (−5,−5)), (ii) firm 1′s

product is low quality and firm 2’s product is high quality (ω = (−5, 5)), or (iii) both products are

high quality (ω = (5, 5)). Let µ1 = Pr (ω = (−5, 5)) and µ2 = Pr (ω = (5, 5)).

The firms’ profits are v1 = I{a=1} and v2 = I{a=2}. Receiver is a consumer whose utility depends

on a, ω = (ω1, ω2) and privately observed shocks ε = (ε0, ε1, ε2) :29

u (a = 0, ω, ε) = ε0

u (a = 1, ω, ε) = ω1 + ε1

u (a = 2, ω, ε) = ω2 + ε2

We assume that the elements of ε are distributed i.i.d. type-I extreme value. Senders’ expected

payoffs at belief µ are thus

v̂1 (µ) =
exp [Eµ (ω1)]

1 + exp [Eµ (ω1)] + exp [Eµ (ω2)]

v̂2 (µ) =
exp [Eµ (ω2)]

1 + exp [Eµ (ω1)] + exp [Eµ (ω2)]
.

Figure 5 applies Proposition 1 to solve for the set of equilibrium outcomes. Panel (a) shows v̂1

and v̂2. Panel (b) shows V1 and V2. Panel (c) shows the sets of unimprovable beliefs M1 and M2

and their intersection M . The set of equilibrium outcomes is the set of τ ’s with supports in M .

Competition between the firms increases information revelation. The set of equilibrium out-

comes is weakly more informative than what either firm would reveal on its own (cf: Proposition 3).

Although not immediately apparent from Figure 5, the set of equilibrium outcomes is also weakly

more informative than the set of collusive outcomes, and is strongly so along chains (cf: Proposition

2). The functional form of senders’ utilities does not allow us to apply Proposition 4.

To understand the set of equilibria in this example, it is useful to consider the following two

simpler settings. First, suppose µ1 = 0, so the only possible states are ω = (−5,−5) and ω = (5, 5).

In this case, the two firms’ preferences are aligned: they both want to convince the consumer that

ω = (5, 5). The equilibrium outcomes, which one can easily identify by looking at the µ2-edges

companies occasionally advertise clinical trials showing unpleasant side-effects or delayed efficacy of a rival product.
29As discussed in Section 4.2, our model is easily reinterpreted to allow Receiver to have private information.
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Figure 5: Characterizing equilibrium outcomes for the advertising example

(a) v̂ functions for senders 1 and 2
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in panel (c), involve partial information revelation. Next, suppose µ2 = 0, so the only possible

states are ω = (−5,−5) or ω = (−5, 5). Here, senders’ preferences are opposed: sender 2 would

like to convince Receiver that ω = (−5, 5), while sender 1 would like to convince the consumer that

ω = (−5,−5). The unique equilibrium outcome, which one can easily identify by looking at the

µ1-edges in panel (c), is full revelation. This is the case even though each firm on its own would

prefer a partially revealing signal.30 Finally, suppose that µ1 + µ2 = 1, so the only possible states

are ω = (−5, 5) or ω = (5, 5). The firms’ preferences are again opposed, and the unique equilibrium

outcome, which one can read off the hypotenuses in panel (c), is again full revelation. This is the

case despite the fact that firm 1 would strictly prefer no revelation.

In the full three-state example, the equilibrium involves full revelation along the dimensions

where senders’ preferences are opposed and partial revelation along the dimension where they are

aligned. Consequently, the consumer learns for certain whether or not the state is ω = (−5, 5), but

may be left uncertain whether the state is ω = (−5,−5) or ω = (5, 5).

8 Conclusion

In his review of the literature on strategic communication, Sobel (2010) points out that the existing

work on multiple senders has largely focused on extreme results, such as establishing conditions

that guarantee full revelation is an equilibrium outcome in cheap talk games. He remarks that

most of these analyses stop short of fully characterizing the equilibrium set. He also argues that

the existing models do not capture the intuition that consulting more than two senders can be

helpful even if different senders do not have access to different information.

In this paper, we assume that senders can costlessly choose any signal whatsoever, that their

signals can be arbitrarily correlated with those of their competitors, and that Receiver observes all

the information that is generated. Under these assumptions, we are able to address some of Sobel’s

concerns. We provide a simple way to identify the full set of pure-strategy equilibrium outcomes.

We show that under quite general conditions competition cannot reduce the amount of information

revealed in equilibrium, and in a certain sense tends to increase it. We also discuss the limitations

30The gain to firm 2 from increasing µ1 is much larger than the corresponding loss to firm 1; for this reason, at the
scale of Figure 5, v̂1 appears flat with respect to µ1 despite the fact that it is actually decreasing.
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of these results, in particular the fact that when outcomes with more and less competition are

informationally non-comparable, an increase in competition can potentially be harmful.

9 Appendix

9.1 Proof of Proposition 1

Lemma 10. For any sender i and any distribution of posteriors τ :

v̂i (µ) = Vi (µ) ∀µ ∈ Supp (τ)⇔ Eτ ′ [v̂i (µ)] ≤ Eτ [v̂i (µ)]∀τ ′ % τ.

Proof. Consider any i and any τ s.t. v̂i (µ) = Vi (µ)∀µ ∈ Supp (τ). Consider any τ ′ % τ and

π′ such that 〈π′〉 = τ ′. For any s s.t. µs ∈ Supp (τ), consider the conditional distribution of

posteriors 〈π′|s〉. We know E〈π′|s〉 [µ] = µs. Hence, by Lemma 6, E〈π′|s〉 [v̂i (µ)] ≤ v̂i (µs). Therefore,

Eτ ′ [v̂i (µ)] =
∑

s s.t. µs∈Supp(τ) p (s) E〈π′|s〉 [v̂i (µ)] ≤
∑

s s.t. µs∈Supp(τ) p (s) v̂i (µs) = Eτ [v̂i (µ)].

Conversely, suppose ∃µs ∈ Supp (τ) such that v̂i (µs) 6= V (µs). By Lemma 6, we know there

exists a distribution of posteriors τ ′s with Eτ ′s [µ] = µs and Eτ ′s [v̂i (µ)] > v̂i (µs). By Lemma 2, there

exists a π′ s.t. τ ′s = 〈π′|s〉. Let π be any signal s.t. 〈π〉 = τ . Let π′′ be the union of π \ {s} and

{s ∩ s′ : s′ ∈ π′}. Then 〈π′′〉 % 〈π〉 = τ and E〈π′′〉 [v̂i (µ)] = p (s) Eτ ′s [v̂i (µ)]+
∑

s̃∈π\{s} p (s̃) v̂i (µs̃) >

p (s) v̂i (µs) +
∑

s̃∈π\{s} p (s̃) v̂i (µs̃) = Eτ [v̂i (µ)]

With Lemma 10, it is straightforward to establish Proposition 1.

Proof. Suppose n ≥ 2. Suppose v̂i (µ) = Vi (µ) ∀i ∀µ ∈ Supp (τ). By Lemma 1, there is a π

such that 〈π〉 = τ . Consider the strategy profile π where πi = π ∀i. Since n ≥ 2, we know

that ∨π−i = ∨π. Hence, for any π′i ∈ Π we have π′i ∨ π−i = π′i ∨ π D ∨π. Hence, by Lemma

3, 〈π′i ∨ π−i〉 % 〈∨π〉. Lemma 10 thus implies E〈∨π〉 v̂i (µ) ≥ E〈π′i∨π−i〉 v̂i (µ) . Hence, π is an

equilibrium.

Conversely, consider any equilibrium π. Consider any τ ′ % 〈∨π〉. By Lemma 5, for any sender i

there exists π′i ∈ Π such that 〈π′i ∨ π−i〉 = τ ′. Since π is an equilibrium, this means E〈∨π〉 [v̂i (µ)] ≥

[Eτ ′ v̂i (µ)] for all i. Lemma 10 then implies that v̂i (µ) = Vi (µ) ∀i ∀µ ∈ Supp (〈∨π〉).
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9.2 Proof of Proposition 5

We build the proof through the following three lemmas.

Lemma 11. If there is a subset of senders J ⊂ {1, ..., n} s.t. for any a and ω,
∑

i∈Jvi (a, ω) = 0,

then for any belief µ∗ induced in an equilibrium, for any τ s.t. Eτ [µ] = µ∗, we have Eτ [v̂i (µ)] =

v̂i (µ∗) for all j ∈ J .

Proof. Consider J s.t.
∑

i∈Jv (a, ω) = 0 ∀a, ω and any µ∗ induced in an equilibrium. We must have

v̂i(µ
∗) = Vi (µ∗) ∀i, and thus, by Lemma 6, Eτ [v̂i (µ)]− v̂i (µ∗) ≤ 0 ∀i. We also have

∑
i∈J v̂ (µ) =

0 ∀µ, which implies
∑

i∈J Eτ [v̂i (µ)] = 0. Hence,
∑

i∈J [Eτ [v̂i (µ)]− v̂i (µ∗)] = 0 ∀i ∈ J . Combining

this with the earlier inequality, we obtain that Eτ [v̂i (µ)]− v̂i (µ∗) = 0 ∀i ∈ J .

Lemma 12. If v̂j is non-linear, for any µ∗ ∈ int (∆ (Ω)) there exists a τ s.t. Eτ [µ] = µ∗ and

Eτ [v̂j (µ)] 6= v̂j (µ∗).

Proof. If v̂j is non-linear, there exist {µt}Tt=1 and weights βt s.t.
∑
βtv̂j (µt) 6= v̂j (

∑
t βtµt). Con-

sider any µ∗ ∈ int (∆ (Ω)). There exists some µl and γ ∈ [0, 1) s.t. µ∗ = γµl + (1− γ)
∑
βtµt.

If v̂j (µ∗) 6= γv̂i (µl) + (1− γ)
∑
βtv̂j (µt), we are done. So, suppose that v̂j (µ∗) = γv̂j (µl) +

(1− γ)
∑
βtv̂i (µt). Now, consider the distribution of posteriors τ equal to µl with probability

γ and equal to belief
∑
βtµt with probability 1 − γ. We have that Eτ [µ] = µ∗ and v̂j (µ∗) =

γv̂j (µl) + (1− γ)
∑
βtv̂j (µt) 6= γv̂j (µl) + (1− γ) v̂j (

∑
βtµt) = Eτ [v̂j (µ)].

Lemma 13. If v̂j is fully non-linear, then the restriction of v̂j to any n-dimensional face of ∆ (Ω)

is non-linear if n ≥ 1.

Proof. The definition of fully non-linear states that the restriction of v̂j to any 1-dimensional face

of ∆ (Ω) is non-linear. For any n ≥ 1, every n-dimensional face of ∆ (Ω) includes some (n− 1)-

dimensional face of ∆ (Ω) as a subset. Hence, if the restriction of v̂j to every (n− 1)-dimensional

face is non-linear, so is the restriction of v̂j to every n-dimensional face. Hence, by induction on n,

the restriction of v̂j to any n-dimensional face of ∆ (Ω) is non-linear if n ≥ 1.

With these lemmas, the proof of Proposition 5 follows easily.
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Proof. Suppose there is a subset of senders J ⊂ {1, ..., n} s.t. the conditions of the proposition

hold. Let j be the sender in J for whom v̂j is fully non-linear. Let µ∗ be a belief induced in an

equilibrium. Lemmas 11 and 12 jointly imply that µ∗ must be at the boundary of ∆ (Ω). Hence,

µ∗ is on some n-dimensional face of ∆ (Ω) . But, by Lemma 13, if n > 0, the restriction of v̂j to this

n-dimensional face is non-linear. Hence, Lemmas 11 and 12 imply that µ∗ must be on the boundary

of this n-dimensional face, i.e., it must be on some (n− 1)-dimensional face. Since this holds for

all n > 0, we know that µ∗ must be on a zero-dimensional face, i.e., it must be an extreme point of

∆ (Ω). Hence, any belief induced in an equilibrium is degenerate.
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