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Optimal Information Disclosure

Luis Rayo
University of Utah

Ilya Segal
Stanford University

A sender randomly draws a “prospect” characterized by its profitability
to the sender and its relevance to a receiver. The receiver observes
only a signal provided by the sender and accepts the prospect if his
Bayesian inference about the prospect’s relevance exceeds his op-
portunity cost. The sender’s profits are typically maximized by partial
information disclosure, whereby the receiver is induced to accept less
relevant but more profitable prospects (“switches”) by pooling them
with more relevant but less profitable ones (“baits”). Extensions in-
clude maximizing a weighted sum of sender profits and receiver sur-
plus and allowing the sender to use monetary incentives.

I. Introduction

An Internet advertising platform can provide some information to users
about the relevance of its ads. This information can be signaled by such
features as the ads’ positions on the Web page, their font size, color,
use of flashing, and so forth. Suppose that users have rational expec-
tations and are sophisticated enough to interpret these signals. Then
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user welfare would be maximized by communicating the ads’ relevance
to them, thus allowing fully informed decisions about which ads to click.

The platform, however, may care not just about user welfare but also
about its own profits. Suppose that each potential ad is characterized
by its value to consumers and its per-click profits to the platform, and
the two are not always aligned. Then the platform would increase its
profits by inducing users to click on more profitable ads. While the
platform would not be able to fool rational users systematically to induce
them to click more on less relevant ads, a similar effect could be achieved
by withholding some information from them, pooling the less relevant
but more profitable ads with those that are more relevant and less
profitable.

Similar information disclosure problems arise in other economic set-
tings. For example, a bond rating agency chooses what information to
disclose to investors about bond issuers, who also make payments to the
agency for the rating. Likewise, a school chooses what information to
disclose to prospective employers about the ability of its students, who
also pay tuition to the school. In these cases, the profit-maximizing
disclosure rule may be partially but not fully revealing.

This paper characterizes the optimal disclosure rule in a simple styl-
ized version of such settings. Our basic model has two agents: the
“sender” and the “receiver.” The sender (who can be alternatively in-
terpreted as an advertising platform, rating agency, or school) has a
probability distribution over “prospects” (ads, bonds, or students, re-
spectively). Each prospect is characterized by its profitability to the
sender and its value to the receiver (user, investor, or employer), which
are not observed by the receiver. First, the sender commits to an infor-
mation disclosure rule about the prospects. Next, a prospect is drawn
at random, and a signal about it is shown to the receiver according to
the rule. The receiver then makes a rational inference about the pros-
pect’s value from the disclosed signal and chooses whether to accept
the prospect (click on the ad, invest in the bond, hire the student) or
to reject it.

The problem of designing the optimal disclosure rule turns out to
be amenable to elegant analysis under the special assumption that the
receiver’s private reservation value (or opportunity cost of accepting a
prospect) is drawn from a uniform distribution, with support normalized
to the interval [0,1]. In this case, the probability of the receiver accepting
a prospect simply equals his expectation of its value. For convenience,
we also assume that the distribution from which prospects are drawn is
finite valued and that the sender can randomize in sending signals.1

1 We believe that such randomization would become unnecessary with a continuous,
convex-support distribution of prospects, but the full analysis of such a case is considerably
more challenging.
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Under these assumptions, we characterize the optimal rule. In particular,
we establish that this rule must have the following properties:

• It is potentially optimal to pool two prospects (i.e., send the same
signal for each of them with a positive probability) when they are
“unordered” (i.e., one has a higher profit and a lower value than
the other). When two prospects are “ordered” (i.e., one dominates
the other in both profit and value), it is never optimal to pool
them.

• When we describe each signal shown to the receiver by the pros-
pect’s expected profit and expected value conditional on the sig-
nal, the set of such signals must be ordered; that is, for any two
signals, one must dominate the other in both value and profit.

• Any set of prospects that are pooled with each other (i.e., result
in the same signal) with a positive probability must lie on a straight
line in the profit-value space. For the “generic” case in which no
three prospects are on the same line, this implies that any signal
can pool at most two prospects.

• Two line segments connecting pooled prospects cannot intersect
in the profit-value space.

• When one prospect is higher than another in both value and profit,
it can be pooled only into a higher signal than the other.

• In the “generic” case, the set of prospects can be partitioned into
three subsets—“bait” prospects, “switch” prospects, and “isolated”
prospects—so that any possible pooling involves one bait prospect
and one switch prospect, with the switch prospect having a higher
profit and a lower value than the bait prospect it is pooled with.
Each bait or switch prospect is pooled with other prospects with
probability one, whereas each isolated prospect is never pooled.

While these results tell us a great deal about the optimal disclosure
mechanism, they do not fully describe it: they still leave many ways to
choose the pooling partners of a given prospect and the probabilities
with which this prospect is pooled with its partners. Fortunately, the
sender’s expected profit-maximization problem for these pooling prob-
abilities turns out to have a concave objective function and linear con-
straints (i.e., that the probabilities add up to one). Its solution can then
be characterized by first-order conditions, which we derive.

In the general analysis we take the profitability of each prospect to
the sender as given. Yet we can apply this analysis to scenarios in which
the sender is an intermediary between the receiver and an independent
advertiser who owns the prospect. The sender’s mechanism design prob-
lem then includes the design of payments that the advertiser is charged
for the signal about his prospect that is shown to the receiver. For
example, an online advertising platform charges advertisers different
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payments for different signals (such as ad placement). In the extreme
case in which the sender has full information about the advertiser’s
profits, the sender can charge him payments that extract these profits
fully, in which case the disclosure design problem becomes the same as
if the sender owned the prospects. But we also consider the more in-
teresting case in which the advertiser has private information about the
prospects’ profitability to him. For example, online advertisers may have
private information about their per-click profits, and so any mechanism
designed by the platform will leave advertisers with some information
rents. By subtracting these rents from the total profits, we can calculate
the profits collected by the platform as the advertiser’s “virtual profits,”
which is the part of his profits that can be appropriated by the platform.

We consider an application in which the advertiser’s private infor-
mation is his per-click profit v. In addition, there is a signal r of the
advertiser’s relevance for the receiver that is observed by both the sender
and the advertiser. The prospect’s value for the receiver is given by a
function , which allows for the advertiser’s private information tov(v, r)
affect this value. The sender (e.g., an advertising platform) offers a
mechanism to the advertiser, which without loss can be a direct reve-
lation mechanism: the advertiser reports his profits v (e.g., through his
bid per click), which together with the relevance parameter r deter-
mines the probability distribution over the signals revealed to the re-
ceiver about the prospect as well as the advertiser’s payment to the
sender. Through an example, we argue that this model may help account
for some simple stylized features of Internet advertising.

We also consider a few extensions of the model. First, we study the
more general problem of finding Pareto-optimal disclosure rules that
maximize a weighted sum of sender profits and receiver surplus rather
than maximizing sender profits alone. This problem is relevant, for
example, if the sender faces competition from other platforms to attract
consumers. In this case, we would expect the sender to place a positive
weight on consumer surplus in order to expand her market share, with
a larger weight representing more intense competition. We show that
this problem is mathematically equivalent to the original problem upon
a linear change of coordinates. As the Pareto weight on consumer sur-
plus increases (e.g., platforms become closer competitors), the optimal
rule eventually becomes fully revealing.2

2 We do not consider two-sided competition, in which intermediary platforms compete
for advertisers as well as for consumers. In such a setting, the impact of competition on
information disclosure is likely to depend on the market arrangement. For example, the
literature on two-sided competition (e.g., Caillaud and Jullien 2003; Rochet and Tirole
2003; Armstrong 2006) shows that if advertisers “multi-home” (i.e., purchase ads on mul-
tiple platforms simultaneously), it is possible that competition favors only consumers. In
contrast, if advertisers “single-home” (such as students attending a single college), their
profits normally increase with competition, potentially at the expense of consumers. While
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Second, as noted above, we have assumed that the receiver has a
uniformly distributed private reservation value. This is a very special
distributional assumption (although similar assumptions have proven
necessary to obtain tractable results in other communication models,
such as Crawford and Sobel [1982] and Athey and Ellison [2008]). When
the reservation value is drawn from a nonlinear cumulative distribution
function (cdf) G, the desirability to pool any two prospects inevitably
depends on the specific shape of this function, and therefore much less
can be said in general. We show, however, that some of our basic char-
acterizations extend to this case.

Finally, we allow the sender to offer monetary transfers (subsidies or
taxes) conditional on the receiver accepting the prospect. For example,
the sender could be a seller who sets the price of her product in addition
to disclosing information. We find that given the optimal choice of
transfers, it becomes optimal to have a fully revealing disclosure rule
(regardless of how the receiver’s reservation value is distributed). In
this case, the receiver can be induced to accept low-value/high-profit
prospects using direct monetary incentives, and the original motivation
for pooling them with high-value/low-profit prospects disappears.

II. Related Literature

There exists a large literature on communicating information in sender-
receiver games: using costly signals such as education (Spence 1973) or
advertising (Nelson 1974; Kihlstrom and Riordan 1984), disclosure of
verifiable information (see Milgrom [2008] for a survey), or cheap talk
(Crawford and Sobel 1982). Our approach is distinct from this literature
in two key respects: (1) our sender is able to commit to a disclosure
rule (thus, formally, we consider the Stackelberg equilibrium rather than
the Nash equilibrium of the game), and (2) our sender has two-dimen-
sional rather than one-dimensional private information. These differ-
ences fundamentally alter the disclosure outcomes.

We believe that commitment to an information disclosure rule is a
sensible assumption in the applications discussed in the introduction.
We can view the sender as a “long-run” player facing a sequence of
“short-run” receivers. In such a repeated game, a patient long-run player
will be able to develop the reputation for playing his Stackelberg strategy,
provided that enough information is revealed concerning the history
of play (Fudenberg and Levine 1989). While an Internet advertising

this literature abstracts from information disclosure, its findings suggest that market con-
figurations that benefit consumers will increase transparency, whereas configurations fa-
voring advertisers (who potentially benefit from concealing information) may have the
opposite effect. (See also Hagiu and Jullien [2010] for a related discussion in the context
of consumer search.)
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platform may be tempted in the short run to fool users into clicking
more on profitable ads by overstating their relevance, pursuing this
strategy would be detrimental to the platform’s long-run profits.3

There exists a substantial literature on the optimal disclosure policy
for a monopolistic seller-auctioneer (e.g., Milgrom and Weber 1982;
Lewis and Sappington 1994; Ottaviani and Prat 2001; Ganuza 2004;
Calzolari and Pavan 2006; Johnson and Myatt 2006; Bergemann and
Pesendorfer 2007; Esö and Szentes 2007; Board 2009; Ganuza and Pen-
alva 2010). In this literature, the seller’s decision to disclose information
is determined by a trade-off between its impact on the total surplus and
its impact on the buyers’ information rents. Because of this trade-off,
full disclosure is not always optimal. The insights of our basic model
are driven by different forces, since the sender cannot extract any re-
ceiver rents using prices. However, when the sender uses optimal signal-
contingent prices, full disclosure becomes optimal despite the fact that
the sender cannot extract all information rents. This result is related
to the findings of Ottaviani and Prat (2001) and Esö and Szentes (2007),
as we discuss in Section VIII.C.

Pooling information about two prospects may be interpreted as “bun-
dling” them together since it forces the receiver to accept both of them
or none. Under this interpretation, our model is related to the literature
on bundling (e.g., Stigler 1968; Adams and Yellen 1976; McAfee, Mc-
Millan, and Whinston 1989). One difference from this literature is again
the sender’s inability to extract surplus using prices. Another difference
is that we assume that the receiver has no private information about
the relative value of different prospects. In contrast, this literature has
shown bundling to be optimal when the buyer has sufficient private
information about his relative value for different goods (i.e., his values
for different goods are not too positively correlated).

Another related literature is that on certification intermediaries, start-
ing with Lizzeri (1999). In Lizzeri’s basic model, the certification in-
termediary is able to capture the whole surplus by revealing either no
information or just enough information for consumers to make efficient
choices. The key features distinguishing our model from this literature
are the two-dimensional space of prospects and lack of price flexibility,
which lead to partial information disclosure and partial pooling in spe-
cific directions. Adding price flexibility to our model (as considered in
Sec. VIII.C) could make it more appropriate for some applications.

Our model is also related to that of Rayo (2010), who examines the
optimal mechanism for selling conspicuous goods whose main purpose

3 If the sender lacked commitment power, she would be unable to credibly separate
any two prospects (with positive profits) unless they happened to deliver exactly the same
value for the receiver, since the sender would rather pretend to have the more valuable
prospect leading to a higher probability of acceptance.
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is assumed to be signaling of wealth. This is parallel to our model once
we interpret the seller as the sender, consumers as prospects, and con-
spicuous goods as signals. The main difference from our model is again
in the dimension of the type space: the type in Rayo’s model is one-
dimensional, and prospects/consumers who have a higher value are
also the ones for whom signaling a higher type is more profitable.

Kamenica and Gentzkow (2009) and Ostrovsky and Schwarz (2008)
consider games in which a sender with commitment power influences
a rational receiver through her choice of information disclosure. Ka-
menica and Gentzkow find general conditions under which such influ-
ence is desirable for the sender, whereas Ostrovsky and Schwarz study
the equilibrium disclosure in matching markets. In contrast to these
papers, we offer a detailed characterization of the optimal rule for the
case in which the sender’s information is two-dimensional and the re-
ceiver’s opportunity cost is private information.

Athey and Ellison (2008) and Hagiu and Jullien (2010) consider an
intermediary platform’s placement of sellers (or their ads) when con-
sumers search among sellers sequentially and face a search cost.4 While
these papers do not consider general information disclosure mecha-
nisms, the placement of a seller conveys information about his value to
consumers. Athey and Ellison focus on one-dimensional seller types, so
that the more profitable sellers also have higher quality, and show that
the platform optimally orders sellers according to their quality. Hagiu
and Jullien instead consider two sellers and allow the higher-value seller
to be potentially less profitable to the platform. They show that the
intermediary might gain from “diverting” search, that is, forcing con-
sumers to visit the low-value seller before gaining access to the high-
value one. This strategy is related to the pooling strategy in our model
in the sense that the high-value seller is used as bait to increase demand
for the low-value seller (although our pooling strategy is more elaborate
as we consider an arbitrary number of prospects). Hagiu and Jullien
also study how the placement of sellers affects their equilibrium choice
of prices, which we do not consider.

III. Setup

We begin with two players: the sender and the receiver. The sender is
endowed with a prospect, which is randomly drawn from a finite set

. The probability of prospect i being realized is denotedP p {1, … , N }
by , with . Each prospect is characterized by itsp 1 0 � p p 1 i � Pi ii�P

4 See also Armstrong, Vickers, and Zhou (2009) for a related search model in which a
platform can credibly communicate that a product is high quality by making it prominent.
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payoffs , where is the prospect’s profitability to the sender2(p , v ) � � pi i i

and is its value to the receiver.vi

The realized prospect is not directly observed by the receiver. Instead,
the receiver is shown a signal s about this prospect according to an
information disclosure rule defined as follows.5

Definition 1. A “disclosure rule” consists of a finite set S ofAj, S S
signals and a mapping that assigns to each prospect i aj : P r D(S)
probability distribution over signals.6j(i) � D(S)

For example, at one extreme, the full separation rule is implemented
by taking the signal space and the disclosure rule ifS p P j(i) p 1s

and otherwise. At the other extreme, the full pooling rules p i j(i) p 0s

is implemented by letting S be a singleton.
After observing the signal s, the receiver, who has knowledge of the

disclosure rule, decides whether to “accept” ( ) or “not accept”a p 1
( ) the prospect. Whenever the receiver accepts the prospect, hea p 0
forgoes an outside option worth r, which is a random variable inde-
pendent of i drawn from a cdf G over [0, 1]. Thus, the sender and
receiver obtain payoffs, respectively, equal to ap and .a(v � r)

We assume that the sender commits to a disclosure rule before the
prospect is realized. Thus, the timing is as follows:

1. The sender chooses a disclosure rule , which is observed byAj, S S
the receiver.

2. A prospect is drawn.i � P
3. A signal is drawn from distribution and shown to thes � S j(i)

receiver.
4. The receiver privately observes r and accepts or rejects the pros-

pect.

Example 1. A search engine (the sender) shows a consumer (the
receiver) an online advertisement with a link. On the basis of the char-
acteristics of this advertisement (s) and his own opportunity cost (r),
the consumer decides whether or not to click on the link. The online
advertisement, for instance, may describe a product sold by a separate
firm, in which case the search engine’s payoff (p) may correspond to
a fee paid by such firm. We consider this possibility in greater detail in
Section VII.

Conditional on observing signal s, the receiver optimally accepts the

5 In principle, the sender may be able to “exclude” a prospect (e.g., by not showing it
to the receiver at all). For expositional simplicity we do not consider this possibility for
the time being. Our analysis will thus apply conditional on the probability distribution of
the prospects that are not excluded. (When all prospects have nonnegative profits, the
sender will indeed find it optimal not to exclude any of them.) We explicitly introduce
optimal exclusion decisions in Sec. V below.

6 The restriction to a finite set of signals is without loss of generality in this setting.
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prospect if and only if his expected value conditional on this signal,
, is greater than or equal to r. Thus, the probability that�[vFs] a p 1

(the receiver’s “acceptance rate”) is given by prob{r ≤ �[vFs]} p
.G(�[vFs])

In what follows, we normalize the values of v to lie in the interval [0,
1] and we assume that r is uniformly distributed over this interval. Under
the uniform distribution, the acceptance rate becomes G(�[vFs]) p

, which is linear in the posterior value . As a result, the ex�[vFs] �[vFs]
ante probability of acceptance (with the first expectation�(G(�[vFs]))
taken over signals) is independent of the disclosure rule:

�(G(�[vFs])) p �(�[vFs]) p �[v],

where is the ex ante expected value of the prospect. Thus, while�[v]
the disclosure rule can change the probability with which a given pros-
pect is accepted (e.g., a low-value prospect is accepted more often when
pooled with a high-value prospect), it cannot change the average prob-
ability of acceptance across prospects.7

The expected surplus obtained by the receiver given signal s is

1

1 2{ }max �[vFs] � r, 0 dr p �[vFs] .� 2
0

As for the sender, conditional on signal s having been sent and accepted,
her expected profit is . Hence her expected profit from sending�[pFs]
this signal is . When an ex ante expectation is taken over�[pFs] 7 �[vFs]
signals, the receiver’s and sender’s expected payoffs for a given disclo-
sure rule are, respectively,

1 2U p �( �[vFs] ), (1)R 2

U p �(�[pFs] 7 �[vFs]). (2)S

Observe that for the purpose of computing the parties’ payoffs, a
disclosure rule is characterized by the total probabilityAj, S S q ps

that each signal is sent, as well as the parties’ posterior� p j(i) s � Si si�P

expected payoffs conditional on each signal:

7 When G is nonlinear, the disclosure rule may affect the ex ante acceptance rate (e.g.,
under full separation and under full�(G(�[vFs])) p �[G(v)] �(G(�[vFs])) p G(�[v])

pooling), which gives the sender an additional motive to reveal or conceal information
depending on the curvature of G. In Sec. VIII.B we show that this additional motive may
heavily affect the desirability of pooling prospects, and therefore much less can be said
in general about the optimal rule (although some basic characterizations do extend to
this case).
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1
�[vFs] p p j(i)v ,� i s iq i�Ps

1
�[pFs] p p j(i)p .� i s iq i�Ps

Thus, showing the receiver a signal s is equivalent to showing him a
single fully disclosed prospect with payoffs . This obser-(�[pFs], �[vFs])
vation will prove useful in analyzing optimal disclosure rules.

Note, in particular, that if we have two different signals with the same
expected payoffs , they can be merged into one signal(�[pFs], �[vFs])
with their combined probability. Thus, we can restrict attention without
loss to disclosure rules that are nonredundant, that is, where different
signals have different expected payoffs , and all signals(�[pFs], �[vFs])
are sent with positive probabilities. We will also view different disclosure
rules that coincide up to a relabeling of signals as equivalent. We can
then say, for example, that there is a unique (nonredundant) full-sep-
aration rule and a unique (nonredundant) full-pooling rule.

Consider the effect of information disclosure on the two parties’ pay-
offs. As far as the receiver is concerned, it is clear that the more infor-
mation is disclosed to him, the higher his expected payoff. Thus, the
receiver’s expected payoff is maximized by the full-separation rule,
which gives him a payoff of . One way to see this is using Jensen’s1 2�[ v ]2
inequality. Namely, for any disclosure rule,

1 1 12 2 2�( �[vFs] ) ≤ �( �[v Fs]) p �[ v ].2 2 2

At the other extreme, under full pooling, the receiver’s expected
payoff is only . Again by Jensen’s inequality, this is the smallest1 2�[v]2
possible payoff among all disclosure rules:

1 1 12 2 2�[v] p [�(�[vFs])] ≤ �(�[vFs] ).2 2 2

We now turn to the problem of choosing the disclosure rule to max-
imize the sender’s expected payoff, which proves to be substantially
more complicated and in general is not solved by either full separation
or full pooling.

IV. Characterizing Profit-Maximizing Disclosure

The goal is to find a disclosure rule that maximizes the expected product
of the two coordinates and :�[pFs] �[vFs]

�(�[pFs] 7 �[vFs]). (3)

We begin with a simple exercise that will form a key building block
for the analysis. The sender’s expected gain from pooling two prospects
i and j into one signal (while disclosing information about the other

This content downloaded from 131.220.47.167 on Thu, 11 Jul 2013 07:09:19 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


optimal information disclosure 959

prospects as before) is given by

(p � p )�[pFk � {i, j }] 7 �[v Fk � {i, j }] � p pv � p pvi j k k i i i j j j

p p � p p p v � p vj j j ji i i ip (p � p ) 7 7 � p pv � p pv (4)i j i i i j j jp � p p � pi j i j

p pjip � (p � p)(v � v ).i j i jp � pi j

Thus, we see that the profitability of pooling two prospects depends on
how their payoffs are ordered.

Definition 2. Two prospects i, j are ordered if either (p , v ) ≤i i

or . The two prospects are unordered if ,(p , v ) (p , v ) ≤ (p , v ) (pj j j j i i i

or . The two prospects are strictly�v ) ≤ (p , �v ) (p , �v ) ≤ (p , �v )i j j j j i i

ordered if they are ordered and not unordered; they are strictly unordered
if they are unordered and not ordered.

Examination of (4) immediately yields the following lemma.
Lemma 1. Pooling two prospects yields (strictly) higher profits for

the sender than separating them if the prospects are (strictly) unordered
and yields (strictly) lower profits if the prospects are (strictly) ordered.

One intuition for this result is that pooling two prospects preserves
the expected acceptance rate but shifts it from the more valuable to
the less valuable prospect. When the more valuable prospect is also
more profitable (the “ordered” case), this shift reduces the sender’s
expected profits. When instead the more valuable prospect is less prof-
itable (the “unordered” case), this shift raises the sender’s expected
profits.

The simple observation in lemma 1 has far-reaching implications for
the optimal disclosure rule with any number of prospects. The simplest
one is as follows.

Lemma 2. In a profit-maximizing disclosure rule, the set of the sig-
nals’ payoffs

{(�[pFs], �[vFs]) : s � S }

is ordered (i.e., any two of its elements are ordered).
Proof. If there were two signals , sent with positive proba-s s � S1 2

bilities such that and are not ordered,(�[pFs ], �[vFs ]) (�[pFs ], �[vFs ])1 1 2 2

then by lemma 1 the expected profits would be increased by pooling
these two signals into one. QED

Further characterization of the optimal rule requires the following
concept.

Definition 3. The pool of signal is the set of prospects fors � S Ps

which this signal is sent with positive probability, that is,

P p {i � P : j(i) 1 0}.s s
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The following two lemmas significantly narrow down the type of pool-
ing that can arise in an optimal rule. Lemma 3 tells us that multiple
prospects can share a given signal only if all their payoffs lie on the
same straight line.

Lemma 3. In a profit-maximizing disclosure rule, for any given signal
, the payoffs of the prospects in the pool of s, , lies � S {(p , v ) : i � P }i i s

on a straight line with a nonpositive slope.8

Proof. Suppose in negation that the payoffs do not lie on a straight
line. Then the convex hull of , which we denote by H,{(p , v ) : i � P }i i s

has a nonempty interior, which contains . Therefore, H con-�[(p, v)Fs]
tains for a small enough ; that is, there exists�[(p, v)Fs] � (d, d) d 1 0

such thatl � D(P)s
�[(p, v)Fs] � (d, d) p l 7 (p ,v ).� i i i

i�Ps

Now replace the original signal s with two new signals and ands s1 2

consider the new disclosure rule that for each hasˆ ˆj i � P p j (i) ps i s1

and , where is chosen small enough soˆ�l p j (i) p p j(i) � �l � 1 0i i s i s i2

that for all . (Let for all i and all .)ˆ ˆp j (i) 1 0 i � P j(i) p j(i) t � S\{s}i s s t t2

By construction, we obtain

�[(p, v)Fs ] p �[(p, v)Fs] � (d, d)1

and

� q � �s7 �[(p, v)Fs ] � 7 �[(p, v)Fs ] p �[(p, v)Fs],1 2q qs s

where is the total mass of signal s. This in turn impliesqs

�
�[(p, v)Fs ] p �[(p, v)Fs] � (d, d).2 q � �s

Thus, the points and are strictly ordered, and�[(p, v)Fs ] �[(p, v)Fs ]1 2

by lemma 1 the expected profit from separating signals and iss s1 2

strictly higher than the expected profit from pooling them into one
signal s. This contradicts the optimality of the original disclosure rule.
Finally, that the straight line containing has a nonpositive slope alsoPs

follows from lemma 1. QED
We illustrate our characterizations using figures in which prospects

and signals are represented by balls (with the size of each ball propor-
tional to the mass of the corresponding prospect or signal). The proof
of lemma 3 is illustrated in figure 1. If a given signal pools prospects

8 Note that it is important for this lemma, unlike the previous results, that randomized
disclosure rules be allowed. By virtue of this lemma, allowing for randomization actually
simplifies the characterization of optimal disclosure, contrary to what one might expect
a priori. We expect that randomization becomes superfluous when the prospects are drawn
from a continuous distribution on a convex set; however, analysis of such a case requires
different techniques and is not undertaken here.
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Fig. 1.—Pooling along straight lines

with payoffs that do not lie on the same line (black balls), then the
posterior payoffs of this signal (white ball) would belong to the interior
of the convex hull of the prospects’ payoffs. But this would allow the
sender to split the original signal into two signals (patterned balls) with
posterior payoffs that are ordered relative to each other, and since the
sender’s payoff increases when separating ordered prospects (lemma
1), this alternative strictly dominates the original policy.

Let the pooling segment of signal s denote the convex hull of the payoffs
of the prospects in the pool of s. (From lemma 3, a pooling segment
is contained in a straight line and therefore is a line segment.)

Lemma 4. In a profit-maximizing disclosure rule j, if the pooling
segments of two signals do not lie on the same line, they can intersect
only if they share an endpoint.

Proof. Suppose, in negation, that the pooling segments of ands1

do not lie on the same line and yet they intersect at point x, whichs 2

lies in the interior of at least one of the pooling segments. Let prospects
and be the endpoints of the pooling segment of (while belonginga b s1 1 1

to the pool of ) and let prospects and be the endpoints of thes a b1 2 2

pooling segment of (while belonging to the pool of ). For ,s s j p 12 2

2, let be such that . Sincel � [0, 1] l (p , v ) � (1 � l )(p , v ) p xj j a a j b bj j j j

for some j, we may assume without loss that .l � (0, 1) l � (0, 1)j 1

Now consider a new disclosure rule that is identical to j with theĵ

following exception: for all , 2,j ( k p 1
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ˆ ˆp j (a ) p p j (a ) � �l , p j (b ) p p j (b ) � �(1 � l ),a s j a s j j b s j b s j jj j j j j j j j

ˆ ˆp j (a ) p p j (a ) � �l , p j (b ) p p j (b ) � �(1 � l ),a s k a s k k b s k b s k kk j k j k j k j

where is chosen small enough so that and areˆ ˆ� 1 0 p j (a ) p j (b )a s j b s jj j j j

positive.
By construction, and j place the same total probability on everyĵ

signal. In addition, the posterior payoffs for the affected signals aresj

identical under both rules:

1
ˆ� [(p, v)Fs ] p p j (i)(p , v )�ĵ j i s i ijq i�Psj

1 �
p p j (i)(p , v ) � [l (p , v ) � (1 � l )(p , v )]� i s i i j a a j b bj j j j jq qi�Ps sj j

�
� [l (p , v ) � (1 � l )(p , v )]k a a k b bk k k kqsj

p � [(p, v)Fs ],j j

where

ˆq p p j (i) p p j (i),� �s i s i sj j j
i�P i�P

and the last equality above follows from the fact that both expressions
in brackets are equal to x.

As a result, delivers the same payoff for the sender as j and isĵ

therefore optimal. Nevertheless, since , the pool of signall � (0, 1)1

now contains all four prospects, which is a contradiction to lemmas 2

3. QED
The proof of lemma 4 is illustrated in figure 2. Suppose that prospects
and are pooled into signal , prospects and are pooled intoa b s a b1 1 1 2 2

signal , and the corresponding pooling segments intersect at an in-s 2

terior point x. Since the posterior payoffs of the corresponding signals
lie in the interior of the convex hull of the four prospects, the sender
could have instead constructed each of the two signals using a positive
mass from each of the four prospects without affecting the signals’
position or total mass.9 Notice that this change would not affect the
sender’s profit. However, since the payoffs of the four prospects do not
lie on a straight line, we have contradicted lemma 3.

A consequence of lemmas 2–4 is that the optimal disclosure rule is
monotonic. Namely, if the payoffs of prospect dominate the payoffs′i

9 To achieve this, an � mass from signal (containing a positive mass of both ands a1 1

) can be transferred to point x (step 1) and then merged with signal (step 2), and,b s1 2

simultaneously, an � mass from signal (containing a positive mass of both and )s a b2 2 2

can be transferred to point x (step 1′) and then merged with signal (step 2′).s1

This content downloaded from 131.220.47.167 on Thu, 11 Jul 2013 07:09:19 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


optimal information disclosure 963

Fig. 2.—Pooling segments do not intersect

of prospect i and it is strictly optimal to separate the two prospects from
each other (i.e., their payoffs do not lie on the same horizontal or
vertical line), then prospect is optimally assigned a higher signal than′i
prospect i and so enjoys a higher acceptance rate.

Lemma 5. In any optimal disclosure rule, for any two signals s,
and any two distinct prospects , , if ,′ ′

′ ′ ′s � S i � P i � P (p , v ) ≥ (p , v )s s i i i i

then either or it is optimal to pool the two sig-′�[(p, v)Fs ] ≥ �[(p, v)Fs]
nals.

Proof. Let , , , ,′ ′ ′
′ ′x p (p , v ) x p (p , v ) y p �[(p, v)Fs] y p �[(p, v)Fs ]i i i i

, and . By lemma′ ′ ′L p {lx � (1 � l)yFl � �} L p {lx � (1 � l)y Fl � �}
2, we must have either or . Now suppose in negation that′ ′y ≥ y y ≤ y
only the second inequality holds and that it is not optimal to pool the
two signals; hence .′y ! y

By lemma 3, both L and must have a nonpositive slope, and since′L
, we must have ; hence the two lines have at most one in-′ ′y ! y L ( L

tersection. Moreover, since and , L and must intersect at′ ′ ′x ≥ x y ! y L
a point C that lies in both line segments [x, y] and .10 But then′ ′[x , y ]
we can find and such that the line segments and′

′j � P j � P [x, (p , v )]s s j j

(which belong to the pooling segments of s and , respec-′ ′
′ ′[x , (p , v )] sj j

tively) intersect at C, and this intersection occurs in the interior of at
least one of the line segments because . But since we also know′x ( x
that the lines L and on which these segments lie do not coincide,′L
this contradicts the optimality of the disclosure rule by lemma 4. QED

10 The term .[x, y] p {lx � (1 � l)yFl � [0, 1]}
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We can further narrow down the structure of optimal pooling when
we focus on the “generic” case.

Definition 4. The problem is generic if (1) no three prospects lie
on the same straight line, and (2) for all i, we have andj � P p ( pi j

.v ( vi j

In this case, lemma 3 tells us that no more than two prospects can
share the same signal.11 Thus, any given signal s either fully reveals a
specific prospect i or, alternatively, pools exactly two different prospects
{i, j}. Then the disclosure rule induces a “pooling graph” on P, in which
two prospects are linked if and only if they are pooled into one signal.
(Note that by lemma 2 it cannot be optimal to have two distinct signals
that both pool the same two strictly unordered prospects, since then
the two signals would themselves be strictly unordered.)

Definition 5. For two prospects i, , if and , thenj � P p ≥ p v ≤ vi j i j

we say that i is “to the southeast (SE)” of j and that j is “to the northwest
(NW)” of i.

Proposition 1. In the generic case, an optimal disclosure rule par-
titions P into three subsets: the set V of “bait prospects,” the set P of
“switch prospects,” and the set I of “isolated prospects,” so that for any
signal s, the pool consists either of a single prospect or of twoP i � Is

prospects {i, j} with and , with i being to the NW of j. Eachi � V j � P

bait or switch prospect is pooled with other prospects with probability
one, whereas each isolated prospect is never pooled.

Proof. Observe that a given prospect i cannot be optimally pooled
with a prospect to the SE of it and, simultaneously, with anotheri SE

prospect to the NW of it. Indeed, were this to happen, with andi sNW SE

representing the two respective signals, the posteriorss �[(p, v)Fs ]NW SE

and would be strictly unordered (here also using generic-�[(p, v)Fs ]NW

ity), and so by lemma 2 this could not be an optimal rule.
Thus, for any given prospect i, there are just three possibilities: (i) it

does not participate in any pools, in which case we assign i to I; (ii) all
of its pooling partners are to the SE of i, in which case we assign it to
V; and (iii) all of its pooling partners are to the NW of i, in which case
we assign it to P. Finally, note that a given bait or switch prospect i
cannot be pooled with a given partner j and, simultaneously, separated
with positive probability. Indeed, were this to happen, with ands p {i, j }

representing the two respective signals, the posteriorss p {i}
and would be strictly unordered (again using�[(p, v)F{i, j }] �[(p, v)F{i}]

genericity), and so by lemma 2 this could not be optimal. QED
Intuitively, a bait is a prospect used to attract consumers by offering

11 If we instead considered a continuous distribution of prospects, then this notion of
genericity would not be appropriate, and we would typically expect many prospects to be
pooled into one signal.
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them a high value, whereas a switch is a profitable prospect that exploits
the attracted consumers. (Of course, rational consumers take the prob-
ability of being switched into account.) The substantive contribution of
the proposition is in showing that the role of a pooled prospect in the
optimal disclosure rule cannot change across signals: it is either always
used as a bait or always used as a switch.

Example 2 (Taxonomy of optimal pooling with four prospects). We
focus on the case in which all prospects are pooled ( ). The op-I p M
timal pooling possibilities are as follows:

a. and or and : three signalsFVF p 1 FPF p 3 FV F p 3 FPF p 1
(“fan”);

b. : (1) two signals, one-to-one pooling between V andFVF p FPF p 2
P (“two lines”); (2) three signals (“zigzag”); (3) four signals
(“cycle”).

Figure 3 illustrates these possibilities (a, fan; b, two lines; c, zigzag; d,
cycle). Furthermore, it turns out that cycles are “fragile”: they can be
optimal only for nongeneric parameter combinations, and even for such
combinations there exists another optimal pooling graph that does not
contain cycles (see Sec. VI).

V. Solving for Optimal Disclosure

The results in the previous section tell us a great deal about the optimal
disclosure rule but do not fully describe it. In this section we discuss
how to solve for the optimal rule. For simplicity we restrict attention to
the generic case in which by lemma 3 we can restrict attention to signals
that either pool a pair of prospects or separate a single prospect. Thus,
we can take , where a single-element sig-S p {s O P : FsF p 1 or FsF p 2}
nal {i} separates prospect i and a two-element signal {i, j} is a pool of
prospects i and j.

One way to describe such a disclosure rule is by defining, for any two-
element signal , the weight —namely, the mass of{i, j } O P b p p j (i)ij i {i,j }

prospect i that is pooled into signal . Given these weights, we can{i, j }
calculate the sender’s expected payoff (3) as follows. For each signal {i,
j} that is sent with positive probability (i.e., ), the expectedb � b 1 0ij ji

payoff from using this signal relative to that from breaking it up into
separation can be obtained using formula (4) by substituting into it

and . Thus, the sender’s expected payoff can be writtenp p b p p bi ij j ji

as

F(b) p p pv � g(b , b )Z , (5)� �i i i ij ji ij
i�P {i,j }OS

where

This content downloaded from 131.220.47.167 on Thu, 11 Jul 2013 07:09:19 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


966 journal of political economy

Fig. 3.—Taxonomy with four prospects

ab/(a � b) if a � b 1 0
g(a, b) p {0 otherwise,

and

Z p (p � p)(v � v ) for all i, j � P.ij i j i j

The sender will choose nonnegative weights to maximize this function
subject to the constraints

b ≤ p for all i � P,� ij i
j(i

b ≥ 0 for all {i, j } O P.ij

(When the first constraint holds with strict inequality for some prospect
i, this means that with the remaining probability the prospect is
separated.)
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Furthermore, note that the sender strictly prefers not to use any sig-
nals {i, j} for which (i.e., for strictly ordered prospects). Thus, weZ 1 0ij

can restrict attention to pools from the set

U p {{i, j } O P : Z ≤ 0}.ij

The sender’s program can then be written as

max p pv � g(b , b )Z (6)� �i i i ij ji ij
U i�P i,j �U{ }b��

subject to

b ≤ p for all i � P, (7)� ij i
j:{i,j }�U

b ≥ 0 for all {i, j } � U. (8)ij

Lemma 6. The objective function in (6) is continuous and concave
on .U��

Proof. For continuity, it suffices to show that the function isg(a, b)
continuous on . Continuity at any point fol-2(a, b) � � (a, b) ( (0, 0)�

lows from the fact that it is a composition of continuous functions.
To see continuity at (0, 0), note that ; henceg(a, b) � [0, min {a, b}]

.lim g(a, b) p 0 p g(0, 0)a,br�0

For concavity, since for all , it suffices to show thatZ ≤ 0 {i, j } � Uij

is a concave function on . We first show that it is concave on2g(a, b) ��

by expressing its Hessian at any as2� \{(0, 0)} (a, b) ( (0, 0)�

22 �b ab2D g(a, b) p 2( )3 ab �a(a � b)

and noting that it is negative semidefinite. Moreover, since g is contin-
uous at (0, 0), its concavity is preserved when adding this point to the
domain. QED

This lemma implies that the set of solutions to the above program is
convex and compact. We now proceed to write first-order conditions
for this program. However, before we do so, a word of caution is in
order: The function proves nondifferentiable in at pointsF(b) (b , b )ij ji

where . Indeed, on the one hand, the partial derivative ofb p b p 0ij ji

F with respect to either or is zero at any such point. (The reasonb bij ji

is simply that raising one of the weights while holding the other at zero
has no effect on the information disclosed to the receiver.) However,
on the other hand, the directional derivative of F in any direction in
which and are raised at once is not zero: in particular, it is positiveb bij ji

when i and j are strictly unordered.
We can still make use of first-order conditions for program (6) in the

variables , for signals {i, j} such that , holding theb b (b , b ) ( (0, 0)ij ji ij ji

set of such signals fixed at some . Letting denote the LagrangeŜ O U mi

multipliers with adding-up constraints (7), we can write the first-order
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conditions as
2bji

FZ F ≤ m , with equality if b 1 0. (9)ij i ij2(b � b )ij ji

In particular, for signals {i, j} and {i, k} to both be sent with positive
probabilities for prospect i, we must have

b bji ki� �FZ F p FZ F.ij ik
b � b b � bij ji ik ki

Thus, one way to solve for an optimal disclosure rule is by trying
different sets of signals , writing interior first-order conditions forŜ O U
all signals from to be sent with positive probabilities, solving for theŜ
optimal weights b given , and calculating the resulting expected profitŜ
for the sender. Then we can choose the set that maximizes her ex-Ŝ
pected profits. In this case, we can also use proposition 1 to narrow
down the set of possible signal combinations that could be optimal. Still,
when the set P of prospects is large, this procedure may be infeasible
since the set of possible signal combinations can grow exponentiallyŜ
with the number of prospects. For such cases, we propose an alternative
approach: choose and introduce the additional constraints� 1 0 b �ij

for each . Within this constrained set, the objectiveb ≥ � {i, j } � Uji

function is totally differentiable; hence the solutions can be character-
ized by the respective first-order conditions. Then, by taking � to zero,
we approach a solution to the unconstrained program.

Finally, while so far we have not allowed the sender to exclude pros-
pects (fully or partially), it is easy to introduce this possibility. Fix a
prospect i. When , the sender will never strictly gain from ex-p ≥ 0i

cluding this prospect since it can always be separated from the others
while delivering a nonnegative payoff. In this case, the original first-
order conditions (9) for the weights remain valid. However, whenbij

, prospect i will not be included in isolation but might still bep ! 0i

pooled with other prospects to increase their acceptance rate. Thus, the
overall probability with which prospect i is included becomes p pi

. We now substitute for in the sender’s objective (6) and� b p pij iij:{i,j }�U

obtain the following first-order conditions for :bij

2bji
FZ F ≤ m � FpF 7 v , with equality if b 1 0, (10)ij i i i ij2(b � b )ij ji

which are identical to the original first-order conditions (9) except for
the constant . This constant captures the fact that the best al-FpF 7 vi i

ternative to pooling is now to exclude the prospect rather than include
it in isolation, with representing the benefit of exclusion relativeFpF 7 vi i

to isolation.
Conditional on any given set of signals , we obtain the optimalŜ O U

values of across all prospects by combining the original first-orderbij
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conditions (9) (for prospects such that ) with the new first-orderp ≥ 0i

conditions (10) (for prospects such that ), together with the com-p ! 0i

plementary slackness conditions associated with the adding-up con-
straints (7).

VI. Cycles and Generic Uniqueness

In this section we provide a condition for the sender’s problem to have
an essentially unique solution. This condition also rules out the opti-
mality of cycles (as in fig. 3d). We continue to restrict attention to the
generic case.

We begin by noting that there is a trivial reason why the set of solutions
to program (6), which we denote , may contain multiple elements.B*
Suppose that there is an optimum such that for some pair {i,b* � B*
j} we have . In this case, for any , and so doesb* p 0 g(b , b*) p 0 b bji ij ji ij ij

not affect the value of the sender’s objective (6). Thus, provided that
the adding-up constraint (7) is slack, can be chosen arbitrarily.bij

In order to abstract from this artificial source of multiplicity, we restrict
attention to the subset of optima such that

b p 0 ⇔ b p 0 for all {i, j } � U. (11)ij ji

Denote this subset of optima (11) holds}. The followingB̂ p {b � B*:
results establish properties of these optima.

Lemma 7. The set of optima is convex and compact. Thus, by theB̂
Krein-Milman theorem, it is the convex hull of its vertices.

Proof. See the Appendix.
The subset may in principle contain two types of optima: cyclic andB̂

acyclic. (Formally, we say that b is cyclic if its pooling graph contains a
cycle, namely, a set of prospects [ ], with , such thati , i , … , i K 1 21 2 K

both and are strictly positive for every , 2, …,b b k p 1i ,i i ,ik (kmodK)�1 (kmodK)�1 k

K.)12

Lemma 8. An optimum is acyclic if and only if it is a vertexˆb � B
of .B̂

Proof. See the Appendix.
Under a specific condition for the prospects’ payoffs (which holds

generically), cycles cannot arise, and, therefore, from lemmas 7 and 8,
the optimum is guaranteed to be unique.

Proposition 2. There exists an acyclic optimum. Moreover, if for
every subset of prospects ( ) with K even and greater thani , i , … , i1 2 K

or equal to four, we have

12 The expression equals k when and equals zero when .(k mod K) k ! K k p K
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K

k�(�1) FZ F ( 0,� i ,ik (kmodK)�1
kp1

then contains a single element.B̂
Proof. See the Appendix.

VII. An Independent Advertiser

Here we assume that the prospect is owned by a new player, called the
advertiser, rather than the sender. This prospect is characterized by a
parameter vector (v, r) that is randomly drawn from a finite set V #

. The first component v represents the profit obtained by the2R O �

advertiser if the prospect is accepted ( ). The second componenta p 1
r is a “relevance” parameter that, in combination with v, determines
the benefit obtained by the receiver conditional on ac-v(v, r) � [0, 1]
cepting the prospect.

The prospect’s profit parameter v is privately observed by the adver-
tiser, and its relevance parameter r is jointly observed by the advertiser
and the sender. In this way, the sender enjoys at least partial knowledge
of v. (The receiver observes neither v nor r.) Let denote theh(vFr)
probability of v conditional on r, with cumulative function .H(vFr)

The sender sells a signal lottery to the advertiser using a direct rev-
elation mechanism. For each value of r, this mechanism requests a
report of the advertiser’s profitability v and, on the basis of this report,v̂

determines (1) a lottery and (2) a monetary transferˆj(v, r) � D(S)
from the advertiser to the sender.13 The goal of the senderˆt(v, r) � �

is to maximize expected revenues subject to the relevant par-�[t(v, r)]
ticipation and incentive constraints. For the time being we assume that
the sender does not exclude any of the advertiser’s prospects, but we
discuss this possibility below.

The timing is as follows:

1. The sender chooses a mechanism consisting of a disclosure rule
and a transfer rule .j : V # R r D(S) t : V # R r �

2. The advertiser draws a prospect .(v, r) � V # R
3. The advertiser reports and transfers to the sender.ˆ ˆv t(v, r)
4. A signal is drawn from distribution and shown to theˆs � S j(v, r)

receiver.
5. The receiver privately observes r and accepts or rejects the pros-

pect.

13 Equivalently, the monetary transfer could be made contingent on receiver acceptance
(such as having per-click rather than per-impression payments in online advertising auc-
tions), in which case would simply represent the expected transfer conditional onˆt(v, r)

.ˆ(v, r)
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We assume that the receiver has knowledge of the mechanism chosen
by the sender as well as the prior distribution of (v, r). Accordingly, for
any given signal s, the receiver’s acceptance rate is given by ,�[v(v, r)Fs]
where the expectation is taken over (v, r).

The net expected profit obtained by an advertiser who is endowed with
prospect (v, r) and reports type is given byv̂

ˆ ˆv 7 �[�[vFs]Fj(v, r)] � t(v, r),

where the first expectation is taken over s according to the lottery
. The advertiser’s participation and incentive constraints require,ˆj(v, r)

respectively, that this payoff must be nonnegative and maximized at
.v̂ p v

For any given r, the highest transfers that the sender can obtain are
determined by the binding participation constraint for the advertiser
with the lowest value of v and the binding downward-adjacent incentive
constraints for all other advertisers. Accordingly, the sender’s objective
becomes

�[t(v, r)] p �(�[p(v, r)Fs] 7 �[v(v, r)Fs]), (12)

where denotes the “virtual profit” that the sender obtains fromp(v, r)
an advertiser with prospect (v, r). This virtual profit is given by

1 � H(vFr)′p(v, r) p v � (v � v) , (13)
h(vFr)

where denotes the type immediately above v (or if v is the′ ′v v p v

largest type), and is the inverse hazard rate for v.[1 � H(vFr)]/h(vFr)
In addition, the advertiser’s incentive constraints require that the

sender restrict herself to disclosure rules that result in a monotonicAj, S S
allocation. Namely, for any given r, the expected probability that a p

must be a nondecreasing function of the advertiser’s profit v:1

�[�[vFs]Fj(v, r)] is nondecreasing in v for all r. (M)

Aside from the monotonicity constraint, the sender’s problem of max-
imizing (12) is identical to the original problem of maximizing (3),
where p and v are now simply indexed by (v, r). Consequently, whenever
the monotonicity constraint is slack, all results derived in Sections IV–VI
apply. The following conditions guarantee that this constraint is in fact
slack.

Condition 1. is increasing in v for all r.p(v, r)
Condition 1 is met, for example, when (i) v takes only two values or

(ii) the distribution H has an increasing hazard rate h(vFr)/[1 �
and adjacent types v, are evenly spaced.′H(vFr)] v

Condition 2. is nondecreasing in v for all r.v(v, r)
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Condition 2 indicates that a more profitable advertiser also delivers
higher consumer surplus.14

Lemma 9. Under conditions 1 and 2 the monotonicity constraint
(M) does not bind.

Proof. Consider a disclosure rule that maximizes (12) and isAj*, S S
such that the posterior payoffs of all signals are strictly ordered (which
is without loss for the sender because of lemma 2 and the fact that any
pair of signals with posterior payoffs that are both ordered and unor-
dered can be pooled without changing her objective). We show that
such a disclosure rule satisfies (M).

Suppose not. Then, for some r, there must exist a pair and , withv v1 2

, such thatv ! v1 2

�[�[vFs]Fj*(v , r)] 1 �[�[vFs]Fj*(v , r)].1 2

This inequality implies that there exist two signals and withs s1 2

and such thatj*(v , r) j*(v , r) 1 0s 1 s 21 2

�[vFs ] 1 �[vFs ]. (14)1 2

When combined with the fact that the posterior payoffs of all signals
are strictly ordered, this inequality implies that

�[pFs ] 1 �[pFs ]. (15)1 2

However, since v and p are, respectively, nondecreasing and increasing
in v, we have and . But when com-v(v , r) ≤ v(v , r) p(v , r) ! p(v , r)1 2 1 2

bined with (14) and (15), these inequalities contradict lemma 5. QED
Finally, whenever a prospect delivers negative virtual profits p(v, r)

(which is possible from [13] even when true profits v are positive), the
sender may wish to exclude it. Provided that the monotonicity constraint
is slack so that the sender’s problem reduces to the original one, we
can compute the optimal probability of inclusion using the first-order
conditions (10) derived in Section V.

A stylized application.—In practice, online search engines typically dis-
play links to their search results in three broad categories: left-hand-
side sponsored links, left-hand-side organic links (displayed immediately

14 For instance, a more profitable advertiser may have a higher-quality product and
therefore charge a higher price than his competitors. But this higher price may only
partially capture the consumer’s higher willingness to pay for the advertiser’s product,
therefore leaving more surplus for the consumer. To see this more formally, consider a
simple example, gracefully suggested by Michael Schwarz. Suppose that the advertiser has
an underlying private type t. When a consumer clicks on the respective ad, he draws a
gross private value z for the advertiser’s product, with z uniformly distributed over [0, t],
and purchases the product when z exceeds its price. Assuming zero marginal costs, the
optimal price for the advertiser is . This price delivers expected profits for thet/2 t/4
advertiser (which correspond to v in our model) and expected surplus for the consumert/8
(which corresponds to v). As a result, profits and consumer value are positively related.
(This type of example can also be extended to include a role for the relevance parameter
r.)
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below the sponsored links), and right-hand-side sponsored links. The
engine receives direct revenues from all sponsored links (which are
auctioned off), but not from the organic ones (which are chosen on
the basis of a measure of consumer value). The links on the left normally
enjoy a significantly higher acceptance rate (or click-through) than
those on the right.

In addition, it is reasonable to assume that many consumers do not
draw a sharp distinction between the top organic links and the spon-
sored links on the left (e.g., despite being Bayesian updaters, users may
optimally devote limited attention resources to distinguish between the
two).15 In fact, search engines normally offer only a very mild visual
distinction between these two types of links on the left, such as slight—
sometimes almost imperceptible—background shading, which is sug-
gestive of an attempt to pool.16 Thus, we can roughly interpret this
scenario as the engine showing two types of signals: a low-quality “right-
hand-side” signal that includes only low-revenue sponsored links and a
high-quality “left-hand-side” signal that is shared by top organic and
sponsored links.17

The following simple example illustrates how the model can provide
a stylized rationale for the above practice.18

Example 3. Suppose that the sender (search engine) has three pros-
pects. The first two prospects (1 and 2) represent advertisers that share
the same value of r but have different profit levels v, with .v 1 v 1 01 2

Therefore, from equation (13), prospect 1 delivers a higher virtual profit
for the sender—namely, —and therefore condition 1 is met. Sup-p 1 p1 2

pose that is positive. Moreover, suppose that consumer value is in-p2

creasing in v—namely, —so that condition 2 is met as well. Finally,v 1 v1 2

suppose that the third prospect represents an organic link that delivers
no profit to the sender ( ) but delivers high value for the con-p p 03

sumer, with , . (To formally fit this example in the model letv 1 v v3 1 2

, R p {sponsored, organic}, and suppose that only theV p {v , v , 0}1 2

combinations ( , sponsored), ( , sponsored), and (0, organic) occurv v1 2

with a positive probability so that the remaining combinations can be
ignored.)

15 We are grateful to Glenn Ellison for this observation.
16 The Chinese search engine Baidu offers no distinction whatsoever between some of

its sponsored and organic links. This practice would be illegal in the United States.
17 We abstract from the fact that the specific position in which a sponsored link is

displayed (within a given side of the page) also has an important effect on click-through.
18 Since the sender has only one prospect, while in practice search engines display

multiple links at once, for the model to literally apply we need to make the additional
strong assumption that there is no complementarity/substitutability across links, so that
when presented with multiple links, the user clicks on every link that delivers an expected
value higher than his opportunity cost—in which case the model with one prospect is
equivalent to a model with many.
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Notice that prospects 1 and 2 are ordered but pros-(p , v ) 1 (p , v )1 1 2 2

pect 3 lies to the NW of the first two, , and , . Moreover,p ! p p v 1 v v3 1 2 3 1 2

since conditions 1 and 2 are met, lemma 9 indicates that the mono-
tonicity constraint is slack, and therefore the optimal disclosure policy
solves program (6).

Lemma 10. The optimal disclosure rule for example 3 involves two
signals and . Advertiser , 2 is assigned signal with probabilitys s i p 1 s1 2 i

one. The organic prospect, in contrast, serves as a bait and is randomly
assigned one of the two signals (with possibly degenerate probabilities).
Other things equal, the bait shares the signal of advertiser i with a higher
probability if (1) this advertiser has a larger mass and (2) the payoffspi

of this advertiser are more unordered vis-à-vis the payoffs of the bait
(i.e., is larger).19FZ Fi3

Proof. See the Appendix.
The two signals and in the lemma can be interpreted as the left-s s1 2

hand-side and right-hand-side signals that are used in practice. While
the organic prospect in the example can in principle serve as bait for
both advertisers, it will be pooled exclusively with the high-profit ad-
vertiser whenever is large relative to . This would occur, forFZ F FZ F13 23

instance, when the difference in profitability between the two advertisers
is sufficiently large.20

While stylized, this example helps explain why, in practice, not all
sponsored links are grouped together (e.g., on the right) and also why
search engines do not introduce a sharper distinction between the top
organic and sponsored links on the left (e.g., by placing the high-
revenue sponsored links in an altogether separate location). Indeed,
the example tells us that if all sponsored links were grouped, advertisers
that are likely to be ordered would be bundled, therefore reducing
profits. And it also tells us that introducing a sharper distinction on the
left would make the organic links a less effective bait.

VIII. Extensions

A. Pareto-Optimal Disclosure Rules

Here we consider the more general problem of maximizing a weighted
average of expected receiver surplus and expected sender profit rather
than focusing on expected profit alone. The objective becomes

19 Recall that the example assumes . If instead , then prospect 2 would bep 1 0 p ! 02 2

ordered relative to prospects 1 and 3, and given that it delivers negative virtual profits, it
would be strictly optimal to exclude it. Similarly, if , excluding this prospect wouldp p 02

be weakly optimal. In either case, prospects 1 and 3 would be pooled with probability
one.

20 Indeed, , which is increasing in .FZ F p Fv � v Fp pi3 i 3 i i
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1 2l�( �[vFs] ) � (1 � l)�(�[pFs] 7 �[vFs]), (16)2

where is an arbitrary Pareto weight on the receiver. Thisl � [0, 1]
problem captures a scenario in which competition against other plat-
forms to attract consumers induces the sender to place a positive weight
on consumer surplus.21

From linearity of the expectation operator, the above objective can
be expressed as

l
� � v � (1 � l)pFs 7 �[vFs] .( [ ] )2

It follows that the problem of maximizing (16) is mathematically equiv-
alent to the original problem after a linear transformation of the pros-
pect’s payoffs (p, v) into the new payoffs , withˆ ˆ(p(l), v) p(l) p

.22 Graphically, we can think of this transformation as(l/2)v � (1 � l)p
a horizontal shift of the payoffs of each prospect toward a ray with slope
2, where the new payoffs correspond to a weighted average between (p,
v) and . Figure 4 provides an illustration with three prospects1( v, v)2
(black balls). Patterned balls correspond to , and white balls cor-1l p 2
respond to . Notice that as l grows, prospect 1 eventually losesl p 1
both potential pooling partners.

In the extreme when the sender cares exclusively about receiverl p 1
surplus, and therefore, full separation becomes optimal. For interme-
diate levels of l it may still be optimal to pool some pairs of prospects
but not others. Let

ˆ ˆZ (l) p [p(l) � p (l)](v � v )ij i j i j

l 2p (v � v ) � (1 � l)(p � p)(v � v ),i j i j i j2

so that the transformed payoffs of any two prospects i and j are ordered
if any only if .Z (l) ≥ 0ij

If the original payoffs of these prospects, and , are strictly(p , v ) (p , v )i i j j

ordered, it follows that the new payoffs are strictly ordered as well.
However, if the original payoffs are unordered, then the new payoffs

21 This model could also apply to the case in which prospects are owned by an inde-
pendent advertiser (see n. 22). Here we abstract away from competition across platforms
to attract the advertiser, but such competition would be immaterial if this advertiser em-
ploys a constant-return technology and advertises simultaneously on every platform that
meets his participation constraint. In this case, the analysis in Sec. VII remains valid, with
p interpreted as the sender’s virtual profits per consumer.

22 If the sender acts as an intermediary, the assumption in Sec. VII that p is increasing
and v is nondecreasing in v remains sufficient for the monotonicity constraint to be slack.
Indeed, when , this assumption implies that is also increasing in v (as requiredˆl ! 1 p(l)
by lemma 9), and when , we obtain full separation, in which case the monotonicityl p 1
constraint is automatically met.
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Fig. 4.—Pareto-weighted payoffs

remain unordered if and only if , whereˆl � [0, l ]ij

�1

1 v � vji
l̂ p 1 � .ij F F( )2 p � pi j

Notice that whenever . Thus, in the “generic” case in whichl̂ ! 1 v ( vij i j

prospects have different values, full separation is strictly optimal for all
l close to one.

B. Nonuniform Acceptance Rate

Here we return to the original problem of maximizing expected profits,
but we discuss the case in which the receiver’s reservation value r is
drawn from a general distribution G over [0, 1]. Conditional on ob-
serving a given signal s, the receiver’s acceptance rate becomes

. Thus, the sender’s expected profit fromprob{r ≤ �[vFs]} p G(�[vFs])
sending this signal is . If an ex ante expectation is taken�[pFs] 7 G(�[vFs])
over signals according to j, the sender’s payoff is now

�(�[pFs] 7 G(�[vFs])). (17)

We begin by computing the sender’s expected gain from pooling two
prospects i and j into one signal relative to separating themŝ p {i, j }
(while disclosing information about the other prospects as before). This
gain is given by
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ˆ ˆ(p � p )�[pFs] 7 G(�[vFs]) � p pG(v ) � p pG(v )i j i i i j j j

p pjip � (p � p)[G(v ) � G(v )] (18)i j i jp � pi j

ˆ ˆ ˆ� (p � p )�[pFs] 7 {G(�[vFs]) � �[G(v)Fs]}.i j

When both prospects have the same acceptance rate G, pooling has
no impact. In contrast, when , pooling has two effects. First,G(v ) ( G(v )i j

as before, it shifts the acceptance rate from the more valuable prospect
(with a higher rate G) to the less valuable prospect. This effect is cap-
tured by the first term in (18), which indicates that the shift in accep-
tance rate raises the sender’s payoff when the more valuable prospect
is also less profitable (the unordered case), and vice versa.

Second, depending on the curvature of G, pooling may also change
the overall acceptance rate. This effect is captured by the expression in
braces in the last term in (18). For example, when G is strictly concave,
pooling increases the overall acceptance rate (by Jensen’s inequality the
expression in braces is positive), therefore raising profits. The opposite
occurs when G is strictly convex. Once both effects are combined, we
obtain the following lemma.

Lemma 11. Pooling two prospects with different acceptance rates
yields (strictly) higher profits for the sender than separating them if
the prospects are (strictly) unordered and G is (strictly) concave and
yields (strictly) lower profits if the prospects are (strictly) ordered and
G is (strictly) convex.

From (18), we also learn that when G is nonlinear, the desirability to
pool any two prospects with different values (and positive profits) in-
evitably depends on the specific shape of G. Indeed, if we let v̄ p

, the left-hand side of (18) simplifies toˆ ¯�[vFs] p p[G(v) � G(v )] �i i i

. But since lies anywhere between and¯ ¯p p[G(v ) � G(v)] G(v) G(v )j j j i

, this expression can always be either positive or negative, depend-G(v )j
ing on the shape of G.23 Consequently, when G is allowed to have an
arbitrary shape, not much can be said in general about the optimal
rule.

Nevertheless, we show that two of the lemmas in Section IV remain
valid (provided that G is differentiable and strictly increasing): (1) the
payoffs of prospects that are pooled together must lie on a straight line,
and (2) pooling segments cannot intersect at an interior point.

Lemma 12. Assume that G is differentiable and strictly increasing.
In a profit-maximizing disclosure rule j, for any given signal , thes � S

23 For example, when and is arbitrarily close to ,¯G(v ) ( G(v ) G(v) max {G(v ), G(v )}i j i j

pooling inevitably benefits the sender because it sharply increases the overall acceptance
rate. The opposite occurs when is arbitrarily close to .¯G(v) min {G(v ), G(v )}i j
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payoffs of the prospects in the pool of s, , lie on a straight{(p , v ) : i � P }i i s

line.
Proof. See the Appendix.
To provide intuition for this result, it is useful to examine the cur-

vature of the sender’s profit function . Along direction (Dp,p 7 G(v)
Dv), this curvature is given by

2d ′ ′′ 2[(p � tDp) 7 G(v � tDv)] p 2G (v)DpDv � G (v)pDv . (19)2dt

Note that the first term is proportional to Dv, whereas the second term
is proportional to . Thus, starting from an arbitrary point (p, v) with2Dv

, we can always find an ordered direction with suffi-′G (v) 1 0 (Dp, Dv)
ciently small Dv along which the first term is larger than the second,
and therefore is strictly convex.24 Consequently, if a given signalp 7 G(v)
pools prospects that do not lie on a straight line, this signal can always
be spread out in a direction of convexity (as in fig. 1, but now spread
out along a direction with sufficiently small slope), therefore increasing
expected profits.

Lemma 13. Assume that G is differentiable and strictly increasing.
In a profit-maximizing disclosure rule j, if the pooling segments of two
signals do not lie on the same line, they can intersect only if they share
an endpoint.

Proof. See the Appendix.
Beyond these results, little can be said about the optimal pooling

graph for arbitrary G, given that its curvature can greatly influence the
outcome. More can be said, however, when the curvature of G is mild.
For example, if G is everywhere concave and its curvature is not strong
enough to lead to pooling of strictly ordered prospects, then all the
additional characterization results in Section IV continue to hold.

C. Receiver Incentives

We now consider the case in which the sender offers the receiver a
monetary transfer conditional on accepting the prospect—witha � �

a potentially different a for each signal s. (Note that the sender may
represent the seller of a product whose price and production cost are
�a and �p, respectively.) We allow r to be drawn from a general dis-
tribution G over [0, 1].

Given a signal s, the receiver’s expected value from accepting the
prospect, inclusive of the transfer a, is given by . Thus,w p �[vFs] � a

he accepts the prospect if and only if , which occurs with prob-r ≤ w

24 Indeed, for small the acceptance rate G is approximately linear, and thereforeDv
the curvature of the sender’s objective is essentially determined by the sign of .DpDv
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ability . The sender’s expected profit conditional on acceptance isG(w)
. We can now treat , rather than a, as�[pFs] � a p �[p � vFs] � w w � �

the sender’s choice variable (which is selected separately for each s).
For each signal s, letting denote the expected jointy p �[p � vFs]

surplus given s, the sender’s expected payoff from the optimal w can
be represented as25

U (y) p max (y � w) 7 G(w). (20)S
w��

This representation allows us to see that full information disclosure is
optimal.26

Proposition 3. When the sender uses monetary incentives, full in-
formation disclosure is optimal for any distribution G over [0, 1].

Proof. The function in (20) is convex because it is the upperUS

envelope of a family of functions , each of which is linear(y � w) 7 G(w)
in y. It follows from Jensen’s inequality that full separation is optimal:
for any disclosure rule ,Aj, S S

�[U (�[p � vFs])] ≤ �[�[U (p � v)Fs]] p �[U (p � v)],S S S

where is the expected profit under full separation. QED�[U (p � v)]S

To develop intuition for this result, suppose that the sender pools
two prospects into one signal s and offers the receiver value w for this
signal. The sender can then instead separate the prospects, offering the
receiver value w for each of the prospects. This modification will not
change the probability of the receiver accepting each prospect, nor will
it change the sender’s expected profit conditional on acceptance, which
will continue to be . Hence, the sender will achieve exactly�[p � vFs] � w
the same profit with full disclosure as he did with pooling. Observe also
that with full disclosure it need not be optimal to offer the same receiver
value w for both prospects. The sender will thus become strictly better
off with full disclosure whenever optimality requires offering different
receiver values for different prospects.

Example 4. Suppose that r is uniformly distributed over [0, 1], so

25 The maximization program in (20) is guaranteed to have a solution. When ,y ≤ 0
any (which implies ) is optimal. When , the existence of a solutionw ! 0 G(w) p 0 y 1 0
follows from the fact that the objective function is upper semicontinuous over the relevant
(compact) domain of optimization, namely, . (This upper semicontinuity in turnw � [0, y]
follows from the fact that the cdf G is nondecreasing and right continuous.)

26 This result extends to the case in which the sender maximizes a weighted sum of
receiver surplus and sender profits (as in Sec. VIII.A). The optimized objective becomes

w

U (y) p max l (w � r)dG(r) � (1 � l)(y � w) 7 G(w) ,S �{ }
w�� 0

where we restrict attention to (with , the sender would wish to makel � [0, 1/2] l 1 1/2
an infinite money transfer to the receiver). Since receiver surplus does not directly depend
on y, the same argument as in the proof of proposition 3 implies that is a convexUS

function, and therefore full disclosure is optimal.
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that over this interval. The sender’s optimized payoff (20)G(w) p w
then equals

0 if y ! 0
1 2U (y) p y if y � [0, 2]S 4{y � 1 if y 1 2.

(This expression follows from the optimality of setting whenw p 0
, when , and when .) Note that is1y ! 0 w p y y � [0, 2] w p 1 y 1 2 US2

linear when , strictly convex when (since in this regiony ! 0 y � [0, 2]
w changes with y), and again linear when . The sender is indifferenty 1 2
between pooling and separating two prospects whenever it is optimal
to induce the same acceptance rate for both of them. This occurs when
(i) each prospect generates a weakly negative joint surplus p � v ≤i i

(since the optimal acceptance rate is zero for both prospects), (ii)0
each prospect generates a joint surplus weakly larger than twop � vi i

(since the optimal acceptance rate is one for both prospects), or (iii)
the two prospects generate the same joint surplus . In every otherp � vi i

case, because of the strict convexity of over [0, 2], separating theUS

two prospects is strictly optimal.
Despite disclosing all information, the sender does not generally im-

plement first-best efficiency. Indeed, first-best efficiency means that the
receiver accepts prospect i if and only if . When ′p � v ≥ r G (p �i i i

, implementing this acceptance requires the sender to offer av ) 1 0i

transfer for this prospect, leaving him with exactly zero profits,a p pi

whereas a positive profit could be obtained with a transfer below ,pi

which creates inefficiency.27 This inefficiency can be viewed as resulting
from monopoly pricing. Equivalently, it can be attributed to the sender’s
incentive to extract the receiver’s information rents due to the latter’s
private information about r.

The result that full disclosure is optimal when transfers are allowed
is related to the findings of Ottaviani and Prat (2001) and Esö and
Szentes (2007) but does not follow from them. Ottaviani and Prat show
that a monopolist facing a price discrimination problem finds it optimal
to publicly reveal a signal affiliated to the buyer’s private information.
In their model, the payoff-relevant state is one-dimensional, whereas our
state, (p, v, r), cannot be collapsed into a single dimension while sat-
isfying their affiliation condition. Esö and Szentes note that full disclo-
sure is always optimal when the seller/auctioneer can offer buyers a
mechanism before the disclosure, specifying how the disclosed infor-
mation will be used. (Their main contribution lies in showing that in
many cases the same outcome can be achieved when the disclosed in-
formation is observed only by the buyers and needs to be elicited by

27 For example, when G is uniform, the receiver is induced to accept prospect i if and
only if , which implies that the acceptance rate is inefficiently low.p � v ≥ 2ri i
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the mechanism.) In contrast, in our model with transfers, full disclosure
turns out to be optimal even in the absence of ex ante contracting.28

Note that offering money transfers may prove impractical in some
applications because the receiver can potentially game the contract (e.g.,
there may exist a mass of strategic Internet users with very low clicking
costs that are not interested in the advertiser’s product per se but nev-
ertheless click on the ad in order to exploit the transfer), or it may
prove infeasible if the sender cannot directly contract with the receiver
(e.g., a university may not be capable of offering payments to future
employers of its students).

IX. Conclusion

We have studied a sender-receiver disclosure game in which the sender
is endowed with a random prospect that has two-dimensional payoffs—
known only to the sender—and the receiver has a private opportunity
cost of accepting this prospect. The sender’s problem is to select an
information disclosure rule (a mapping from prospects to lotteries over
signals) that maximizes her expected profits. We have shown that under
the assumption that the receiver’s opportunity cost is uniformly distrib-
uted over [0, 1], the optimal randomized disclosure rule can be fully
characterized and is generically unique.

When there are no monetary transfers between these players (as in
the case of an Internet user not paying to click on the links offered by
a search platform), the sender’s optimal disclosure rule typically involves
partial disclosure. For generic parameter values, the set of prospects is
partitioned into three subsets: “bait” prospects, “switch” prospects, and
“isolated” prospects, so that any possible pooling signal involves one bait
prospect and one switch prospect. Each bait or switch prospect is pooled
with other prospects with probability one, whereas each isolated pros-
pect is never pooled. In contrast, when transfers are introduced (as in
the case of a buyer-seller relationship), this bait-and-switch strategy is
replaced with direct incentives, and full disclosure becomes optimal.

We also considered an environment in which the sender is an inter-
mediary between the receiver and an independent advertiser who owns

28 In our model the sender would not benefit from eliciting the receiver’s r before
disclosing information provided that G is increasing and differentiable, and the receiver’s
“virtual cost” of accepting the prospect, , is increasing in r. (This′J(r) p r � G(r)/G (r)
virtual cost accounts for the receiver’s information rents, which are not captured by the
sender.) Indeed, the virtual surplus is maximized by inducing acceptance for prospect i
if and only if , which can be achieved in the ex post mechanism with fullp � v ≥ J(r)i i

disclosure that offers, for each prospect i, receiver value when ,w p 0 p � v ! J(0)i i i

when , and otherwise. Since the receiver with�1w p 1 p � v 1 J(1) w p J (p � v ) r pi i i i i i

is left with zero utility under both ex post and ex ante contracting, the sender’s expected1
profit is the same by the revenue equivalence theorem.
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the prospect. Through a simple example, we have argued that this model
can help account for a stylized feature of Internet advertising: the use
of organic links as baits for those sponsored links that are most profitable
for the platform, with the latter visually separated from less profitable
links. Finally, we have shown that the problem of finding Pareto-optimal
disclosure rules turns out to be mathematically equivalent to the original
problem of maximizing sender profits, upon a linear change of coor-
dinates. As the Pareto weight on receiver welfare increases, the optimal
rule eventually becomes fully revealing.

In future work, it would be interesting to extend this model along
several dimensions:

1. Allowing different receiver types to have different preferences
across prospects: in this case, we would expect an additional reason
for hiding information, which occurs in models of optimal bun-
dling with heterogeneous consumers.

2. Allowing the sender to be endowed with multiple prospects at
once, with these prospects being complements or substitutes in
the receiver’s payoff.

3. Studying mechanisms in which the receiver is asked to report his
opportunity cost before being presented with a prospect (as in the
model of Esö and Szentes [2007] but without the possibility of
monetary transfers).

Appendix

A. Proof of Lemmas 7 and 8 and Proposition 2

We begin with some preliminary results.
Lemma 14. Suppose that and are optimal disclosure rules. Then,′ ′Aj, S S Aj , S S

for any pair of signals and , the posterior payoffs and′ ′s � S s � S �[(p, v)Fs]
are ordered.′�[(p, v)Fs ]

Proof. Suppose without loss that the sets S and have no signal in common′S
(which is always possible through a relabeling of signals). Now consider a new
disclosure rule that results from randomizing between the two original′′ ′′Aj , S S
rules and with equal probability assigned to each. Namely,′ ′ ′′Aj, S S Aj , S S S p

and for every and .1′ ′′ ′ ′′S ∪ S j (i) p [j(i) � j (i)] i � P s � Ss s s2
Since S and do not intersect, for any given and , the posterior′ ′ ′S s � S s � S

payoffs and are equal under the original and new disclosure′�[(p, v)Fs] �[(p, v)Fs ]
rules. As a result, the expected payoff delivered by is′′ ′′Aj , S S

′′p j (i)�[pFs] 7 �[vFs] p�� i s′′s�S i�P

1 ′p j(i)�[pFs] 7 �[vFs] � p j (i)�[pFs] 7 �[vFs] ,�� ��i s i s{ }′2 s�S i�P s�S i�P
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where the two terms in braces represent, respectively, the payoffs delivered by
and . It follows that is also optimal. Consequently, from lemma′ ′ ′′ ′′Aj, S S Aj , S S Aj , S S

2, the set of posterior payoffs under , which is composed of all posterior′′ ′′Aj , S S
payoffs from the original disclosure rules, must be ordered. QED

Corollary 1. Suppose that b and are solutions to program (6). If a given′b

pair of prospects is pooled under both b and , then the posterior′{i, j } � U b

payoffs conditional on signal {i, j} must be equal for both solutions.�[(p, v)F{i, j }]
As a result, .′ ′b /b p b /bij ji ij ji

Proof. For each solution, the posterior payoffs lie on the straight�[(p, v)F{i, j }]
line with negative slope connecting and . Consequently, if these(p , v ) (p , v )i i j j

posterior payoffs differed across solutions, they would be strictly unordered, a
contradiction to lemma 14. QED

Proof of lemma 7. That is convex follows from the fact that the objective inB̂
(6) is concave (lemma 6) and the set of vectors that satisfy constraintsUb � �

(7), (8), and (11) is convex. For compactness, it suffices to show that containsB̂
its boundary. Suppose that belongs to the boundary of and let ,′ nˆ ˆb B b � B

, be a sequence converging to . Constraint (11) and corollary 1′n p 1, 2, … b

imply that there exists a constant such that, for every n and everyC 1 0
, . When we take the limit as , this equality implies thatn n{i, j } O U b p Cb n r �ij ji

satisfies constraint (11). In addition, since the objective is continuous,′b F(b)
must also be an optimum. It follows that . QED′ ′ ˆb b � B
Proof of lemma 8. We begin with necessity (⇒). Suppose that is not aˆb � B

vertex of . Since is convex, there must exist an optimum that is′ˆ ˆ ˆB B b � B
arbitrarily close to b and yet . Indeed, we can select such that, for every′ ′b ( b b

, . Let denote the subset of pairs such′ ˆ{i, j } � U b 1 0 ⇔ b 1 0 U O U {i, j } � Uij ij

that . Since b is not a vertex of , is nonempty. Moreover, from corollaryˆ ˆb 1 0 B Uij

1,
′b bij ij ˆp for all {i, j } � U. (A1)′b bji ji

Now let . Constraint (7), which by proposition 1 binds for all pooled′Db p b � bij ij ij

prospects, implies

Db p 0 for all i � P. (A2)� ij
ˆj:{i,j }�U

Since , there must exist a pair such that . Moreover,′ ˆb ( b {i, j } � U Db ( 0ij

whenever , (A1) implies that (with ), andDb ( 0 Db ( 0 sign(Db ) p sign(Db )ij ji ji ij

equation (A2) in turn implies that there exists a prospect k, with , suchk ( i
that (with ). It follows that we can select an in-Db ( 0 sign(Db ) ( sign(Db )jk jk ji

finite sequence of prospects (with repeated elements) such that, fori , i , …1 2

all , we have and . Moreover, sincek p 1, 2, … i ( i Db ( 0 Db ( 0k k�1 i i i ik k�1 k k�1

requires by construction that and the set of prospects P is finite, b mustb 1 0i ik k�1

contain a cycle.
We now turn to sufficiency ( ). Suppose that contains a cycle amongˆ⇐ b � B

prospects ( ). Without loss, denote these prospects ( ). No-i , i , … , i 1, 2, … , K1 2 K

tice from proposition 1 that K must be even. For notational simplicity, let K �
and when . For every k in the cycle, let1 p 1 k � 1 p K k p 1 g pk

(i.e., the share of k in signal ) and letb /(b � b ) {k, k � 1} A pk,k�1 k,k�1 k�1,k k

. The first-order conditions (9) for weights and (which are�FZ F b bk,k�1 k,k�1 k,k�1
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both positive) are
�(1 � g ) 7 A p g 7 A p l . (A3)k k k�1 k�1 k

Multiplying these first-order conditions across k and rearranging terms, we obtain
K

1 � gk p 1. (A4)�
kp1 gk

We now show that there exist two optima , both different from b′ ′′ ˆb b � B
such that , which in turn implies that b is not a vertex of . Select1 ′ ′′ ˆb p (b � b ) B2
a small and, for all , let� 1 0 k p 1, 2, … , K

′ ′b p b � D , b p b � D ,k,k�1 k,k�1 k k,k�1 k,k�1 k (A5)
′′ ′′b p b � D , b p b � D ,k,k�1 k,k�1 k k,k�1 k,k�1 k

where the values of satisfy andD D p �k 1

1 � gk
D p � 7 D . (A6)k�1 k

gk

(That the above equation can be satisfied for all k follows from eq. [A4] and
the fact that K is even.) For all other pairs , let . Notice′ ′′{i, j } � U b p b p bij ij ij

that, provided that � is small, and satisfy (11) and . Moreover,1′ ′′ ′ ′′b b b p (b � b )2
combining equations (A5) and (A6), we obtain

′ ′′b b bk,k�1 k,k�1 k,k�1p p .′ ′′b b bk�1,k k�1,k k�1,k

As a result, and lead to the same values of as the original optimum b,′ ′′b b gk

and therefore they also meet the first-order conditions (A3). It follows that ,′b

. QED′′ ˆb � B
Proof of proposition 2. The first part of the proposition follows directly from

lemmas 7 and 8. For the second part, we show that, under the assumed condition,
no can be cyclic. As a result, from lemmas 7 and 8, must be a singleton.ˆ ˆb � B B
Suppose in negation that contains a cycle among a subset of prospectsˆb � B
denoted ( ). Notice from proposition 1 that K must be even. Moreover,1, 2, … , K
from the proof of lemma 8, for every k in this subset, the first-order conditions
(A3) must be met. Combining these first-order conditions to solve for the value
of , we obtaing1

K1 kg p g � (�1)A ,�1 1 kA kp11

where . But this equation can hold only when p
K k�A p FZ F � (�1)Ak k,(k mod K)�1 kkp1

0, which is ruled out by the assumed condition. QED

B. Proof of Lemma 10

The optimal disclosure rule solves the sender’s program (6) with ,P p {1, 2, 3}
, and the payoffs described in the example, so thatU p {{1, 3}, {2, 3}} (p , v ) Zi i 13

and are strictly negative. Since prospects 1 and 2 have only one potentialZ 23

pooling partner each (prospect 3), we can set, without loss, andb p p13 1

, so that the full masses of prospects 1 and 2 are pooled, respectively,b p p23 2

into the signals {1, 3} and {2, 3}. Denote these signals and .s s1 2
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It remains only to find optimal weights and (with ), whichb b b � b p p31 32 31 32 3

indicate how the mass of prospect 3 (the bait) is distributed between ands1

. The corresponding first-order conditions (9) for these two weights ares2

2p1 7 FZ F ≤ l , with equality if b 1 0,13 3 31( )b � p31 1

and
2p 2 7 FZ F ≤ l , with equality if b 1 0.23 3 32( )b � p32 2

Depending on the parameter values, we have three possible types of solutions.
First, if

2p1 7 FZ F ≥ FZ F,13 23( )p � p3 1

we obtain a corner solution in which and . In this case, the baitb p p b p 031 3 32

is exclusively pooled with advertiser 1 into signal , and advertiser 2 receivess1

his own signal . Second, ifs2

2p 2FZ F ≤ 7 FZ F,13 23( )p � p3 2

we obtain the opposite corner solution in which and . Third,b p 0 b p p31 32 3

in all other cases, we obtain an interior solution with , , so that theb b 1 031 32

bait shares part of his mass with each advertiser. In this case, both first-order
conditions above hold with equality and we obtain

1 � b /p Z31 1 13�p .
1 � b /p Z32 2 23

Inspection of this expression delivers the last statement in the lemma. QED

C. Proof of Lemma 12

Suppose not. Then the convex hull of , which we denote by H,{(p , v ) : i � P }i i s

has a nonempty interior that contains . In addition, H contains�[(p, v)Fs]
for small , . Let be such that�[(p, v)Fs] � (d , d ) d d 1 0 l � D(P)1 2 1 2 s

�[(p, v)Fs] � (d , d ) p l 7 (p , v ).�1 2 i i i
i�Ps

Now consider a new disclosure rule that replaces the original signal s withĵ

two new signals and and for each has andˆ ˆs s i � P p j (i) p �l p j (i) p1 2 s i s i i s1 2

, where is chosen small enough so that for allˆp j(i) � �l � 1 0 p j (i) 1 0 i �i s i i s2

. (Also set for all i and all .) Let andˆ ¯P j(i) p j(i) t � S\{s} (p̄, v) p �[(p, v)Fs]s t t

for , 2. By construction, we obtain¯(p̄ , v ) p �[(p, v)Fs ] k p 1k k k

¯ ¯(p̄ , v ) p (p̄, v) � (d , d ) (A7)1 1 1 2

and

� q � �s¯ ¯ ¯(p̄ , v ) � (p̄ , v ) p (p̄, v),1 1 2 2q qs s

where . These equations in turn implyq p � p j(i)s i si�Ps
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�
¯ ¯(p̄ , v ) p (p̄, v) � 7 (d , d ). (A8)2 2 1 2q � �s

The sender’s gain from adopting relative to j isĵ

¯ ¯ ¯� 7 p̄ G(v ) � (q � �) 7 p̄ G(v ) � q 7 p̄G(v) p1 1 s 2 2 s

�(q � �)s ¯ ¯(p̄ � p̄ )[G(v ) � G(v )]2 1 2 1qs

� q � �s¯ ¯ ¯� q p̄G(v) � 7 G(v ) � 7 G(v ) .s 1 2[ ]q qs s

From (A7) and (A8) and letting , this gain is equal toa p �/(q � �)s

�(q � �)s ¯ ¯(1 � a)d [G(v � ad ) � G(v � d )]1 2 2qs

� q � �s¯ ¯ ¯� q p̄G(v) � 7 G(v � d ) � 7 G(v � ad ) ,s 2 2[ ]q qs s

which we denote by . Now fix small �, . Notice that isF(�, d , d ) d 1 0 F(�, d , 0)1 2 1 1

zero, and the partial derivative is strictly positive:(�/�d )F(�, d , 0)2 1

� �(q � �)s 2 ′ ¯F(�, d , 0) p (1 � a) d G (v) 1 0.1 1
�d q2 s

It follows that is strictly positive for any small , which contradictsF(�, d , d ) d 1 01 2 2

the optimality of the original disclosure rule j. QED

D. Proof of Lemma 13

Identical to the proof of lemma 4 (see Sec. IV), but with lemma 12 replacing
lemma 3 in the last line of the proof. QED
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