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Abstract

I study optimal information design in auctions under two assumptions: first, the auction-

eer is constrained to provide any bidder with an information structure which is informative

only about this bidder’s, yet not the other bidders’ valuations. Second, the auctioneer can

correlate information structures across bidders. I show that correlating the information

structures across bidders induces correlation among bidders’ posterior valuations even if the

underlying true valuations are independent, and, in fact, allows the auctioneer to virtually

extract the public information first–best revenue.
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1 Introduction

A growing literature studies information design (aka Bayesian persuasion) as an instrument to

influence the actions of one or a set of agents to achieve a certain goal of the designer. Applications

include sender receiver games1, price discrimination2, auctions3, voting4, or belief concerns5.

The literature adopts the approach that the designer can supply agents with any information

structure which generates signals that are informative about an underlying payoff–relevant state

of the world and can commit, often without observing herself, to disclosing the signal realization

truthfully to the agents.

In this note, I study information design in auctions with two distinctive features. First, the

auctioneer is constrained by the fact that he can provide an agent with an information structure

only which is informative about this agent’s, yet not other agents’ valuations for the object. This

captures that in many auction settings, an agent’s valuation is ultimately this agent’s private in-

formation not only vis-a-vis the auctioneer, but also vis-a-vis the other agents. For example, if

agents’ valuations reflect their idiosyncratic tastes (rather than common values), then by issuing

more or less clear descriptions of the object, or by varying the time an agent is allowed to inspect

the object, an auctioneer can influence how well an agent is informed about her valuation, yet

in doing so, cannot affect what an agent believes about the other agents’ (independent) valua-

tions. Second, I allow the auctioneer to randomize over information structures and to correlate

them across agents. For example, the auctioneer may provide the information through one of

two “salesmen,” one of whom informs agents truthfully about their valuations, whereas the other

salesman has only praise for the object, irrespective of true valuations. The key observation of

this note is that if the auctioneer randomizes between the two salesmen and bidders are not

informed about the identity of the salesman chosen, then their posterior valuations become cor-

1Most notably, see Kamenica and Gentzkow (2011) and Rayo and Segal (2010). See also Kolotolin et al. (2015)

when the receiver is informed, Deimen and Szalay (2016) when information is endogenous, Ely (2017) when infor-

mation evolves dynamically, or Ivanov (2010) when the receiver can commit to an action.
2See Bergemann, Brooks, and Morris (2015), Rösler and Szentes (2017), Bergemann, Bonatti, and Smolin (2016).
3See Bergemann and Pesendorfer (2007), Bergemann and Wambach (2015), Esö and Szentes (2007), Bergemann,

Brooks, and Morris (2016, 2017).
4See Alsonso and Câmara (2016), Heese and Lauermann (2016).
5See Ely, Fraenkel, and Kamenica (2015) and Rodina (2016) for models with suspense and career concerned

agents, respectively.
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related. This is so even if the bidders’ underlying true valuations are stochastically independent.

But, if posterior valuations are correlated, then it is well known from Crémer and McLean (1988,

henceforth CM) that there are selling mechanisms with which the auctioneer can extract the full

trading surplus. In fact, I show that, by correlating information structures, the auctioneer can

obtain a revenue that is approximately equal to the first–best surplus which obtains if valuations

are public information.6

On a more conceptual note, because I assume that the auctioneer can give an agent only in-

formation about his own valuation, she cannot affect an agent’s (first-order) beliefs about the

other agents’ true valuations. She is therefore more constrained than a designer who can in-

form any agent about the entire profile of valuations (including those of other agents) and can

hence directly influence an agent’s first-order beliefs (about others’ valuations).7,8 However, by

correlating information structures across bidders, the auctioneer affects their higher-order beliefs:

In the auction, a bidder revises his beliefs about what a rival bidder believes about his (the ri-

val’s) valuation. Therefore, my auctioneer is less constrained than the auctioneer in the setting

of Bergemann and Pesendorfer (2007) who, like me, assume that bidders can be only informed

about their own valuations, but in addition restrict the auctioneer to only deterministically select

an agent’s information structure. Unlike in my setting with correlation, a bidder’s higher-order

beliefs are then unaffected because a signal is not informative about the signal received by the

rival bidder, and this difference is precisely why full rent extraction can be achieved in my setting

but not in Bergemann and Pesendorfer (2007). To the extent that higher-order beliefs matter in

many incomplete information games, and that the restriction that the designer cannot affect first-

6More precisely, I consider an independent private values environment where bidders have finitely many possible

valuations. The main question in the general environment is whether signals and a correlation device can be con-

structed so that agents’ beliefs about each other satisfy CM’s spanning condition. The argument extends beyond the

auction setting to all mechanism design settings, including environments with interdependent values, where CM is

applicable.
7In fact, if the auctioneer could affect agent’s first-order beliefs without restriction, her problem would be almost

trivial, because she could simply make agents’ valuations common knowledge among them and then elicit them

through a kind of shoot-the-liar mechanism.
8Settings in which a designer is entirely unrestricted in the choice of information structure are explored in various

papers by Bergemann and Morris (2016) and Bergemann, Brooks, and Morris (2015, 2016, 2017) which characterize,

in various contexts, entire equilibrium sets as a function of all possible information structures allowing signals to

agents to condition on the underlying payoff–relevant state in arbitrary ways.
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order beliefs is rather natural in many applications, the relevance of inducing correlation among

information structures goes beyond the auction application studied in this note.9

The (almost) full surplus extraction result that I establish rests heavily on the use of CM mech-

anisms which are controversially discussed in the literature, because they abstract from limited

liability or risk aversion.10 However, if agents can sustain some losses, or are not too risk averse,

there will still be benefits, though in a less stark form, from inducing correlation among agents’

valuations.11 Another objection raised against CM mechanisms is that they rest on demanding

common knowledge assumptions and are rarely observed in practice. Addressing the question

whether correlating information structures is beneficial in detail-free and practically observed

mechanisms (such as first price auctions) would require a general analysis of how such mech-

anisms perform as a function of the correlation among agents’ valuations. This, in itself, is an

interesting question, but beyond the scope of this note.12

In independent work, Zhu (2017) pursues an idea similar to mine and considers an infor-

mation plus mechanism design setting where agents have ex ante private information, and the

designer can (commit to) disclose information about an initially unknown “shock” that affects all

agents’ preferences. Zhu (2017) establishes an equivalence between private and public disclo-

sure by constructing an information structure so that the designer can achieve the same when she

can and when she cannot observe the signal realizations disclosed to agents. This information

structure has the feature that any individual signal released to an agent is entirely uninforma-

tive about the state, but when observed jointly, signals identify the state.13 With two agents, Zhu

9In terms of notions of correlated equilibrium in incomplete information games (Bergemann and Morris, 2016,

Forges, 2006), when one views the agents’ messages available in the selling mechanism as corresponding to the

actions of a basic game, then my construction corresponds to a correlated equilibrium where agents have no ex ante

information beyond the prior and with the restriction that the mediator can condition the recommendation to an

agent not on the entire state but only on an “aspect” of the state which only this agent can understand.
10In fact, in the case in which the first-best surplus almost fully extracted, there is almost no correlation between

bidders’ posterior valuation, and transfers by the bidders are nearly unbounded in some contingencies.
11In a similar vein, Dequiedt and Martimort (2015) propose a model of vertical contracting where correlation

among the retailers’ costs helps to extract more, yet not the full rent from retailers. This suggests that if the principal

could design the retailers’ information, even though she could not extract the full surplus, she would still benefit by

correlating information structures across retailers.
12This question is somewhat different from Bergemann, Brooks, and Morris (2017) who derive worst (rather than

best) case revenues over all possible correlations of bidder valuations in the first price auction.
13For a general characterization of such complementary signals, see also Börgers, Hernando-Veciana, and Krähmer
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(2017)’s construction employs a CM mechanism to elicit private signal realizations without cost.14

While not shown explicitly by Zhu (2017), his information structure can, as in my approach, be

generated as the result of correlating information structures which provide agents with informa-

tion only about their own yet not the other agents’ preferences, but in contrast to my paper, Zhu

(2017) does not focus on rent extraction.

That an auctioneer can benefit from endogenously creating correlation among bidder valua-

tions has been observed in other contexts. Krähmer (2012) shows how an auctioneer can create

correlation by randomizing over investments that improve valuations stochastically. Obara (2008)

studies an auction model where buyers can take (hidden) actions that influence the joint distri-

bution of their valuations. He demonstrates that almost full surplus extraction can be attained by

a mechanism which implements a mixed action profile by buyers and has them report not only

their valuation but also the realization of their actions.

Finally, Bergemann and Wambach (2015) also construct a disclosure policy and a mechanism

which allows the seller to extract the first–best surplus. In contrast to my approach, which is static

and relaxes incentive constraints through creating correlation, their disclosure rule relaxes incen-

tive constraints by gradually releasing information to agents and screening them dynamically.

This article is organized as follows. The next section presents a simple example which conveys

the main idea of the note. Sections 3 and 4 present the model and the main result. Section 5

contains concluding remarks. All proofs are in the appendix.

2 Example

Consider a seller who has one object for sale. There are two potential buyers who each have

either a low valuation vL or a high valuation vH for the object (vL < vH). Valuations are equally

likely and independent across buyers. (Thus, the underlying model displays independent private

values.) Initially, no one knows the true valuations, but the seller, next to designing a selling

mechanism, can provide buyers with a (private) signal about their valuation.

Specifically, the seller selects at random one of two (pre–programmed) “salesmen”, T and

(2013).
14With more than two agents, Zhu (2017) more generally allows for settings without quasi-linear preferences and

uses techniques from the implementation literature to construct mechanisms that elicit the agents’ private signal

realizations without cost.
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N , who offer, say, descriptions of the object. When listening to the description of the “truthful”

salesman T , each buyer can privately figure out his own valuation. The “non–truthful” salesman

N , in contrast, always claims the object to be of high value. Formally, salesman T sends the

message h to a buyer if this buyer has a high valuation, and he send the message ` to a buyer if

this buyer has a low valuation. Salesman N always sends the message h, irrespective of a buyer’s

true valuation. Note that the information provided to a buyer depends on this buyer’s valuation

only, yet not on the other buyer’s valuation. Therefore, a message informs a buyer about his own

true valuation only, yet not about the other buyer’s true valuation.

Crucially, buyers are not informed about the type of the salesman. Therefore, because both

buyers face the same salesman, their posterior valuations will be correlated. In fact, receiving

message ` reveals to a buyer that he has a low valuation; and, at the same time, makes it more

likely that the other buyer received message `, too. The reason is that observing message `

increases the likelihood (in fact, reveals) that salesman T has been selected, and thus, because

salesman T more frequently than salesman N submits message ` (to the other buyer), increases

the probability that the other buyer observed `, too.

Formally, let λ ∈ (0,1) be the probability with which salesman T is selected. Let v̂st = E[v|s, t]

be a buyer’s posterior expected valuation, conditional on herself observing s ∈ {`, h}, and the

other buyer observing t ∈ {`, h}. Denote by bs(t) = Pr(other buyer observed t|s) her belief that

the other buyer observed t ∈ {`, h}. The following table depicts these values.

v̂s` v̂sh bs(`)

s = ` vL vL 1/2

s = h vH
2−2λ
4−3λ vL +

2−λ
4−3λ vH

λ
4−2λ

Table 1: posterior beliefs

Because beliefs are correlated (i.e., b`(`) 6= bh(`)), the seller can employ a CM type of mecha-

nism to elicit the buyers’ private information without leaving information rents.15 Therefore, for

a fixed λ ∈ (0, 1), the seller can extract the maximum trading surplus, given the buyers’ posterior

15Observe that CM’s requirement that beliefs be convexly or linearly independent is met, because a buyer’s belief

matrix
�

b`(`)
b`(h)

bh(`)
bh(h)

�

=

�

1/2
1/2

λ
4−2λ
4−3λ
4−2λ

�

has full rank for all λ < 1. (For λ= 0, message ` is never observed, and posterior beliefs are equal to prior beliefs.)
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valuations:

Pr(both buyers observe `) · v̂`` + Pr(exactly one buyer observes h) · v̂h`

+Pr(both buyers observe h) · v̂hh

= λ
1
4

v̂`` +λ
1
2

v̂h` + [λ
1
4
+ (1−λ)]v̂hh.

As λ approaches 1, this converges to the full information first–best trading surplus 1/4·vL+3/4·vH .

Hence, by choosing λ close to one, the seller obtains virtually the same revenue as if buyers’ (true)

valuations were public information. Notice that for λ= 1, the first–best is not attainable, because

in this case, a buyer’s observation is not informative about the other buyer’s observation, and thus

beliefs are independent.

In the next section, I show that the logic of the example generalizes to any auction environment

with finitely many bidder valuations.

3 The model

There is one principal (seller) who has one object for sale, and there are two agents (bidders)

i, j ∈ {1, 2}.16 Agent i’s true valuation for the object is v i
m > 0 where m is drawn from a finite set of

statesM i = {1, . . . , M i}, M i ≥ 2, with probability pi
m > 0. Let pi ∈∆(M i) be the corresponding

probability distribution (the prior).17 To make the problem interesting, p1 and p2 are assumed

to be stochastically independent.18 Thus, the underlying model displays independent private

values. Without loss of generality, I assume M1 ≥ M2. Players are risk-neutral and have quasi-

linear utilities. That is, if an agent i obtains the object with probability x i and makes payments

y i to the principal, his utility is v i
m x i − y i, and the principal’s utility is y1 + y2.

At the outset, no one (including agents) has information about the valuations beyond the

(commonly known) prior, but the principal can, without observing herself, disclose information

to the agents. My objective is to study information disclosure under two distinctive assumptions:

First, the principal can only disclose information to an agent which informs him about his, yet not

the other agent’s valuation. This captures the notion that valuations are private information not

16I consider two agents to simplify notation. The generalization to more than two agents is straightforward.
17Throughout, I denote by ∆(A) the set of probability distributions over A.
18If the underlying valuations are correlated, the problem is straightforward, because the principal could simply

disclose valuations perfectly and then elicit them at no cost by a CM mechanism.

7



only vis-a-vis the principal, but also vis-a-vis the other agent. Second, the principal can correlate

the disclosure of signals across the agents.

Specifically, an information structure for agent i consists of a set S i = {1, . . . , S i} of possible

observations (or “signals”) and for all m ∈ M i, a conditional distribution πi
m ∈∆(S

i) over the set

of signals. That is, πi
m(s) = Pr(s | m) is the probability that signal s occurs, conditional on agent

i’s valuation being v i
m. Let Πi = (πi

1, . . . ,πi
M i) be the corresponding S i ×M i–matrix.

To capture the idea that the principal can correlate the disclosure of signals across agents,

I allow the principal to design a set {Πi
1, . . . ,Πi

K i} of information structures for agent i19 and to

correlate information structures across agents by choosing the joint probability

λk` = Pr(Π1 = Π1
k,Π2 = Π2

`
) (1)

with which agent 1 is endowed with Π1
k, and agent 2 is endowed with Π2

`
. Let Λ= (λk`)k` be the

associated K1 × K2–matrix. I refer to Λ as a correlation strategy.

I refer to a combination ((S i,Πi
1, . . . ,Πi

K i)i=1,2,Λ) of information structures for agent 1 and 2

and a correlation strategy as a (correlated) information structure. I say that a correlated infor-

mation structure has “full support” if any information structure Πi
k, k = 1, . . . , K i, for agent i and

any signal s ∈ S i occurs with positive probability.

The timing is as follows. The principal publicly commits to a correlated information structure

and a selling mechanism. Then a pair of information structures (Π1
k1 ,Π2

k2) is drawn according to

the correlation strategy. Agents do not observe which information structures are drawn, but each

agent i is privately informed about the signal s ∈ S i that has been realized under Πi
ki . Agents

then decide whether or not to participate in the selling mechanism. If an agent rejects, he gets his

outside option normalized to zero, otherwise, the mechanism is implemented. By the revelation

principle, I can focus on direct and incentive compatible mechanisms which require each agent

i to report a signal and which induce truthful reporting. Moreover, because an agent’s outside

option can be replicated within the mechanism by never allocating the object to him and never

make him pay, I can also restrict attention to individually rational mechanisms which supply each

agent for all signals with at least 0 expected utility. Therefore, the objective of the principal is

to design an information structure as well as an incentive compatible and individually rational

mechanism to maximize her expected revenue.
19Note that I implicitly assume that the set of signals is independent of k and thus the same for all information

structures. This is without loss of generality.
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In what follows, posterior beliefs will be important. Let agent i’s posterior mean valuation,

conditional on herself observing s, and the other agent observing t be

v̂ i
st = E[v i

m| agent i observed s, agent j observed t], (2)

where the expectation is taken over the states m. Let

bi
s(t) = Pr(agent j observed t | agent i observed s) (3)

be the probability that agent i, when having observed s, assigns to agent j having observed t.

Let bi
s ∈ ∆(S

j) be the corresponding distribution, and let Bi = (bi
1, . . . , bi

S i) be the associated

S j×S i–matrix. Note that conditional probabilities (conditional on signals) are well defined if the

information structure has full support.

I conclude this section with showing how the belief matrix Bi is derived from the information

structure using Bayes’ rule. To do so, let g i
k(s) = Pr(s | k) =

∑

mπ
i
km(s)p

i
m be the probability with

which signal s is observed conditional on Πi
k being selected for agent i. Denote by g i

k ∈ ∆(S
i)

the associated distribution, and by

G i = (g i
1, . . . , g i

K i) (4)

the associated S i × K i–matrix.

Moreover, let g i(s) be the unconditional probability that agent i observes s (unconditional on

the realization of the correlation strategy), and let g i ∈∆(S i) be the associated distribution.20

Lemma 1 Let a full support information structure be given. Then

Bi = G jΛ>G i>D(g i)−1, (5)

where D(g i) is the S i × S i–matrix with the coordinates of g i on the diagonal and 0s elsewhere.

4 Optimal design

In this section, I show that the principal can design an information structure and a mechanism

that yield her virtually the same revenue as if the agents’ valuations were publicly known. When

20Formally, g1 =
∑

k(
∑

`λk`)g1
k and g2 =
∑

k(
∑

`λ`k)g
2
k .
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valuations are publicly known, the principal optimally offers the object to the agent with the

highest valuation at a price equal to this valuation. Hence, she obtains the first-best revenue

RFB = E[max{v1
m, v2

n}], (6)

where the expectation is taken over the distribution of states (m, n). Clearly, the first–best revenue

is an upper bound on the principal’s revenue when valuations are not publicly known.

Two other benchmarks are of interest. The first is the case when the principal can condition

the information disclosed to an agent on the entire profile of valuations. In this case, the principal

could simply fully disclose the valuations of both agents to each agent and elicit valuations at no

cost by some “shoot-the-liar” mechanism, and therefore attain the first–best revenue.

In the second case, the principal is restricted to condition an agent’s information on that agent’s

valuation and cannot correlate the information structures provided to agents. This case has been

studied by Bergemann and Pesendorfer (2007) who show that the principal’s revenue is then

bounded away from the first–best. In contrast, the main result of this paper says that, by corre-

lating information structures, the principal can virtually extract the first–best surplus:

Proposition 1 The principal can virtually attain the first–best revenue. That is, for all ε > 0, there

is an information structure and a selling mechanism under which the principal’s revenue exceeds

RFB − ε.

I establish the proposition through a sequence of lemmata. The basic idea is that by correlat-

ing information structures across agents, their posterior valuations get correlated which allows

the extraction of all rents through a CM type of mechanism. Moreover, to obtain almost first–

best, I will construct an information structure which almost perfectly informs agents about their

valuations. More precisely, the conditions to apply CM in the present setting are as follows.

Lemma 2 (Crémer and McLean, 1988) Let a full support information structure be given. Suppose

that for all i, the matrix Bi satisfies the “spanning condition”, that is, no bi
s is in the convex hull

of bi
1, . . . , bi

s−1, bi
s+1, . . . , bi

S i . Then there is an incentive compatible and individually rational selling

mechanism so that the principal’s revenue R̂ is equal to the first–best trading surplus, given the induced

distribution of posterior valuations, i.e.,

R̂= E[max{v̂1
st , v̂2

ts}], (7)

where the expectation is taken over the joint distribution of signals (s, t) of agent 1 and agent 2.
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While the spanning condition implies that agents’ beliefs are correlated, it more specifically

says that no signal (of agent i) is redundant in the sense that its informational content (about

j’s posterior valuations) could be replicated by randomizing over a set of other signals (of i).

When the number of signals is the same for both agents, then Bi is a square matrix, and the

spanning condition is equivalent to Bi being regular. I now construct an information structure

which delivers such a regular Bi. I choose the set S i of signals to be equal to set of states,M 1,

for agent 1 (recall that the number of states for agent 1, M1, is weakly larger than that for agent 2).

Intuitively, this is the minimal set of signals to include the possibility that one of the information

structures Πi
k for agent i is perfectly informative.

Lemma 3 For i = 1,2, let S i =M 1 and K i = M1.

(i) There are Πi
k, k = 1, . . . , K i, so that whenever Λ is regular, then the correlated information

structure ((S i,Πi
1, . . . ,Πi

K i)i=1,2,Λ) has full support and Bi is regular (and thus satisfies the

spanning condition).

(ii) Moreover, the information structure Πi
1 for agent i can be chosen to be perfectly informative,

that is, conditional onΠi
1, agent i observes the realization s = m if and only if his true valuation

is v i
m.

To show part (i), I construct an information structure with the feature that every signal

s ∈ S i = M 1 has positive probability under some Πi
k. The full support property then follows

because regularity of Λ implies that every Πi
k occurs with positive probability. Moreover, under

the information structure constructed, the matrices G j and G i have full rank. Regularity of Bi

then follows from (5). It is noteworthy that there are various ways to construct an information

structure with the desired properties, the proof presents merely one of them.

The role of part (ii) is that it permits the construction of an information structure that informs

agents almost perfectly about their true valuations by choosing a correlation strategyΛ that places

almost full probability weight on the perfectly informative information structure Π1
1 and Π2

1 for

agents 1 and 2. This together with Lemma 2 implies that by adopting such a correlation strategy,

the principal will obtain nearly the first–best revenue. The next lemma makes this more precise.

To state it, let Λ̃ be the degenerate correlation strategy that selects the perfectly informative

information structure Π1
1 and Π2

1 with probability 1. That is, λ̃11 = 1, and λ̃k` = 0 otherwise.
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Lemma 4 Let the information structure for agent 1 and 2 constructed in Lemma 3 be given. Consider

a sequence of regular correlation strategies which converges to Λ̃.21 Then the principal’s revenue R̂

converges to the first–best revenue RFB along the sequence.

5 Concluding remarks

While I have presented my argument within the context of an auction setting, it equally applies

more generally to all mechanism design settings such as public goods, bilateral trade, including

ones with interdependent values, as long as CM arguments are applicable. Similarly, the argument

carries over to the single agent case with the only difference that, instead of conditioning the

agent’s payments on the reports of the other agents, one needs to condition them on the realization

of the correlation strategy ex post.22

One key assumption of my approach is that agents have no private information ex ante. A

series of papers studies optimal disclosure of additional information when agents have some, yet

imperfect ex ante information23, but none of these papers considers the possibility of designing

correlated ex post information structures.

Another avenue of future work that this note suggests is to explore more systematically the

implications of constraints on the information design technology, such as the constraint that a

designer cannot disclose to an agent what another agent privately values or thinks. While in the

auction application studied in this note, such a constraint does (almost) not affect the designer’s

revenue, this will, of course, be different in general.

21As an example, consider the sequence Λ(N), N = 1,2, . . ., with λ(N)11 = 1 − 1/N , λ(N)kk = 1/(K1 − 1)N for k =

2, . . . , K1, and λ(N)k` = 0 for k 6= `.
22See Riordan and Sappington (1988) for how to extract full surplus in the adverse selection principal agent model

when there is correlation between the agent’s private information and a public ex post signal.
23See Esö and Szentes (2007), Bergemann and Wambach (2015), Krähmer and Strausz (2015), Li and Shi (2017).
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Appendix

Proof of Lemma 1 I omit the superindex i, and indicate by the superindex j the other agent. By

Bayes’ rule:

bs(t) =

∑

k,`λk`gk(s)g
j
`
(t)

g(s)
= (g1(s), . . . , gk(s))Λ









g j
1(t)
...

g j
K j(t)









·
1

g(s)
. (8)

Hence, (bs(1), . . . , bs(S)) = (g1(s), . . . , gk(s))ΛG j> ·1/g(s), and we can write the column vector bs

as

bs = G jΛ>









g1(s)
...

gK(s)









·
1

g(s)
. (9)

Basic matrix algebra now delivers

B = (b1, . . . , bS) = G jΛ>G>









1/g(1) 0 0

0
... 0

0 0 1/g(S)









= G jΛ>G>D(g)−1, (10)

as desired. Q.E.D.

Proof of Lemma 2 Let x i
s(t) be the probability that the mechanism allocates the object to agent i

if agent i reports s and agent j reports t, and let y i
s (t) be the respective transfers to the principal.

Denote by x i
s and y i

s the corresponding vectors in RS j
. Consider the first–best allocation rule,

given posterior valuations: x i
s(t) = 1 if v̂ i

st > v̂ j
ts, and, say, x i

s(t) = 1/2 if v̂ i
st > v̂ j

ts. Let

wi
s,s̃ =
∑

t

bi
s(t)v̂

i
st x

i
s̃(t) (11)

be the gross utility of agent i, who observed s, from reporting s̃.

Transfers are constructed as follows. Under the spanning condition, the separating hyperplane

theorem implies that for all s ∈ S i there is a vector ai
s ∈ R

S j
so that24

〈bi
s, ai

s〉= 0, and 〈bi
t , ai

s〉> 0 ∀t 6= s. (12)

24〈·, ·〉 denotes the scalar product.
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For numbers γi
s > 0, define the transfer y i

s = γ
i
sa

i
s + wi

s,s1, where 1 is the vector in RS j
consisting

only of 1’s. Then the mechanism is individually rational, because agents obtain zero expected

utility from truth-telling, as

wi
s,s − 〈b

i
s, y i

s 〉= wi
s,s −wi

s,s − γ
i
s〈b

i
s, ai

s〉= 0. (13)

Moreover, truth-telling is optimal if for all s, s̃,

wi
s,s − 〈b

i
s, y i

s 〉 ≥ wi
s,s̃ − 〈b

i
s, y i

s̃ 〉 ⇔ 0≥ wi
s,s̃ −wi

s̃,s̃ − γ
i
s̃〈b

i
s, ai

s̃〉, (14)

where the right inequality obtains after inserting transfers. Now observe that because 〈bi
s, ai

t〉 >

0 by (12), the right inequality can be met by choosing γi
t sufficiently large in which case the

mechanism is incentive compatible.

Because the allocation rule is first–best, and agents receive no rents, the principal’s revenue is

the first–best trading surplus R̂. And this completes the proof. Q.E.D.

Proof of Lemma 3 Let K = K1, and let EK be the identity matrix in RK ,K and let ek be the k-th

column vector of EK . Define:

• Π1
1 = EK , Π1

k = (ek, p1, . . . , p1) for k = 2, . . . , K .

• Π2
1 = (e1, . . . , eM2), Π2

k = (ek, p2
0, . . . , p2

0) for k = 2, . . . , K ,

where p2
0 is the K-dimensional vector coinciding with p2 in the first M2 rows and being 0 in

the last K −M2 rows.

As to part (i). To see that the information structure has full support, observe that an informa-

tion structure Πi
k, for agent i, i = 1, 2, can only occur with probability zero if Λ has a row or a

column consisting entirely of 0’s. But this is impossible if Λ is regular. Moreover, by construction,

for any signal s there is an information structure Pi i
k for agent i and a state m so that πi

km(s)> 0.

Hence, any signal occurs with positive probability.

To show that Bi is regular, I show that G1 and G2 are regular. This implies the claim by (5). To

see that G1 is regular, recall that G1 = (g1
1 , . . . , g1

K). Now observe that by definition, g1
k = Π

1
kp1.

Thus, I have to show that Πi
1p1, . . . ,Π1

K p1 are linearly independent. Note that by construction,

Π1
1p1 = p1, Π1

kp1 = p1
1ek + (1− p1

1)p
1. (15)
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To see linear independence, take α1, . . . ,αK so that

α1pi +
K
∑

k=2

αk[p
i
1ek + (1− pi

1)p
i] = 0 ⇔

�

α1 +
K
∑

k=2

α
p
k(1− pi

1)

�

pi +
K
∑

k=2

αkpi
1ek = 0. (16)

Because pi, e2, . . . , eK are linearly independent, the right equality implies:

α1 +
K
∑

k=2

αk(1− pi
1) = 0, and αkpi

1 = 0 k = 2, . . . K . (17)

But this implies that αk = 0 for all k and establishes that G1 is regular.

To see that G2 is regular, a similar argument can be used to show the linear independence of

Π2
1p2 = p2

0, Π2
kp2 = p2

1ek + (1− p2
1)p

2
0, k = 2, . . . , K . (18)

Finally, part (ii) follows from construction since Π1
1 = EK and Π2

1 = (e1, . . . , eM2). This com-

pletes the proof. Q.E.D.

Proof of Lemma 4 I have to show that as Λ converges to Λ̃, we have

R̂=
∑

(s,t)∈S 1×S 2

max{v̂1
st , v̂2

ts}Pr(s, t) →
∑

(m,n)∈M 1×M 2

max{v1
m, v2

n}p
1
mp2

n = RFB, (19)

where Pr(s, t) =
∑

k,`λk`g
1
k(s)g

2
`
(t).

Indeed, recall that under the information structure defined in Lemma 3, S 1 = S 2 =M 1, and

thatM 2 ⊆M 1. I show that for all (s, t) ∈M 1 ×M 2:

(v̂1
st , v̂2

ts) → (v1
s , v2

t ), and Pr(s, t) → p1
s p2

t . (20)

This implies (19), because the right part also implies that Pr(s, t)→ 0 for all (s, t) 6∈ M 1 ×M 2,

and since max{v̂1
st , v̂2

ts} is clearly bounded.

To establish the left part of (20), consider first agent 1. By Bayes’ rule, the probability that

agent 1’s valuation is v1
m conditional on (s, t) ∈M 1 ×M 2 is

Pr(v1
m | s, t) =

∑

n

∑

k,`λk`π
1
km(s)π

2
`n(t)p

1
mp2

n

Pr(s, t)
=

∑

n

∑

k,`λk`π
1
km(s)π

2
`n(t)p

1
mp2

n
∑

m,n

∑

k,`λk`π
1
km(s)π

2
`n(t)p1

mp2
n

. (21)

Recall from the proof of Lemma 3 that Π1
1 = EM1 and Π2

1 = (e1, . . . , eM2). Because Λ converging to

Λ̃ means that λ11→ 1 and λk`→ 0 for (k,`) 6= (1, 1), this implies that

Pr(v1
m | s, t)→ 1 if s = m, and Pr(v1

m | s, t)→ 0 otherwise . (22)
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Hence,

v̂1
st =
∑

m

v1
mPr(v1

m | s, t) → v1
s , (23)

as desired.

With similar steps it follows that v̂2
ts→ v2

t for all (s, t) ∈M 1 ×M 2.

Finally, to see the right part in (19), note that again since Π1
1 = EM1 and Π2

1 = (e1, . . . , eM2), if

Λ→ Λ̃, then

Pr(s, t) =
∑

m,n

∑

k,`

λk`π
1
km(s)π

2
`n(t)p

1
mp2

n (24)

converges to p1
s p2

t if (s, t) ∈M 1×M 2, and to 0 otherwise. This implies the claim and completes

the proof. Q.E.D.
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