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Abstract

We amend an error in [S. Parreiras, Correlated information, mechanism design and

informational rents, J. of Econ. Theory 123 (2005) 210–217]. Consequently, it is in general

not possible to reinterpret a mechanism design model that violates the spanning condition

of Crémer and McLean [Econometrica 56 (1988) 1247–1258] as one in which agents hold

private information about the informativeness of their signals about other agents’ types.

Instead, such an interpretation is warranted only when the weights used to span an agent’s

set of beliefs stand in a singular relation with the prior type distribution that is known

as an alternative characterization of Blackwell dominance.
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1 Introduction

Parreiras [4] studies a mechanism design problem where the agents’ private information is corre-

lated, but the set of agents’ beliefs fails to satisfy Crémer and McLean’s [2] spanning condition,

which says that no agent type’s belief is in the convex hull of the other types’ beliefs. In par-

ticular, Parreiras considers a finite Bayesian game Γ = (N, (Ci)i∈N , (Ti)i∈N , (pi)i∈N , (ui)i∈N ),

where N is the set of players, and for each i ∈ N , Ci is the set of possible actions, Ti is the set

of types, pi is player i’s belief over the types of other players conditional on i’s own type. He

makes the intriguing claim that one may reinterpret any such game, in which beliefs violate the

spanning condition, as a model in which an agent’s private information consists of two parts:

knowledge about his type and knowledge about the precision of his beliefs about the other

agents’ types. Thus, one may view agents as receiving two private signals. First, each agent i

receives a binary signal θ with values in {θ, θ} that tells him how informative his second private

signal is about the types t−i of other agents −i. Second, agent i receives a signal Xθ that, to-

gether with the first signal θ, reveals his type ti and induces the belief pi over the types of other

players. The signal Xθ is more informative than the signal Xθ in the sense of Blackwell [1].

For this interpretation to be meaningful, the first signal θ should be stochastically independent

of the types t−i of other agents.
1

We show that Parreiras’ result rests on a hidden assumption which makes his offered inter-

pretation applicable to only a very restricted class of models. We first illustrate in the simplest

case where agent i has three types Ti ≡ {t1i , t
2
i , t

3
i } that stochastic independence alone implies

that Parreiras’ interpretation is valid only for sets of beliefs (pi(·|ti))ti , for which the spanning

weights used to generate the dependent belief are uniquely pinned down by the (marginal) prior

type distribution, p(ti). Second, we amend the gap in the proof of Parreiras’ Proposition 2 and

show that, in general, the result is only true when the spanning weights stand in a singular

relation with the prior type distribution.

2 Three Types

First suppose that Ti ≡ {t1i , t
2
i , t

3
i } and that the spanning condition on the beliefs pi fails. This

means that the belief of some agent type, say pi(·|t
2
i ), is a (strict) convex combination of the

1See Footnote 2 in Parreiras.

2



other two agent type beliefs, pi(·|t
1
i ) and pi(·|t

3
i ). Formally, there exists λ ∈ (0, 1) such that

pi(t−i|t
2
i ) = λpi(t−i|t

1
i ) + (1− λ)pi(t−i|t

3
i ). (C1)

Following Parreiras, let Ti ≡ {t1i , t
3
i } denote the maximal subset of Ti so that the beliefs of any

type ti ∈ Ti about t−i cannot be expressed as a convex combination of the other types. In

Parreiras’ the construction, agent i first privately observes either θ or θ. The signal realization

θ reveals to agent i that ti ∈ Ti\Ti = {t2i }, whereas signal realization θ reveals to agent i that

ti ∈ Ti = {t1i , t
3
i }.

Now, stochastic independence of θ and t−i implies that the agent’s beliefs over t−i when

the agent observes θ equal his beliefs over t−i when he observes θ. In particular, if the agent

observes θ, he is sure that he is of type t2i . Hence, after observing θ, his belief about t−i is

pi(t−i|θ) = pi(t−i|t
2
i )

= λpi(t−i|t
1
i ) + (1− λ)pi(t−i|t

3
i ), (1)

where the second equality follows from (C1).

Instead, if agent i observes θ, he learns ti ∈ Ti so that he updates the probability that he is

of type ti ∈ Ti from p(ti) to p(ti)/Pr(Ti). Consequently his updated belief about t−i is

pi(t−i|θ) =
p(t1i )

Pr(Ti)
pi(t−i|t

1
i ) +

p(t3i )

Pr(Ti)
pi(t−i|t

3
i ). (2)

Comparison of (1) and (2) reveals that pi(t−i|θ) and pi(t−i|θ) coincide only if λ = p(t1i )/Pr(Ti).

Hence, only in this case an interpretation in the spirit of Parreiras is possible. Otherwise, his

Proposition 2 is violated, because stochastic independence fails.

3 General Case

Our second observation is that also in the general case with any number of types, Parreiras’

construction implies a close relation between the prior p(ti) and the weights used to span interior

beliefs in the convex hull of the set of the agent’s beliefs. In the “only if”-part of the proof

of Proposition 2, Parreiras defines Ti as the set of “extreme” types x of agent i whose beliefs

pi(· | x) are the extreme points of the convex hull of {pi(· | ti) | ti ∈ Ti}. Since the spanning

condition is violated by assumption, the set of “interior” types Ti \Ti is non–empty and for any
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y ∈ Ti \ Ti, there are weights λxy ∈ [0, 1], x ∈ Ti,
∑

x∈Ti
λxy = 1 so that

pi(· | y) =
∑

x∈Ti

λxypi(· | x). (C1’)

Parreiras then constructs a signal X θ̄ with realizations x in Ti, a signal Xθ with realizations y

in Ti \ Ti, and garbling probabilities B(x, y) that imply the Blackwell ranking between X θ̄ and

Xθ. Since the garbling probabilities add to one, we need

∑

y∈Ti\Ti

B(x,y) = 1. (C2’)

Parreiras’ construction yields2

B(x,y) = λxy

p(y)

p(x)

Pr(Ti)

(1− Pr(Ti))
.

This, together with (C2’) reveals that the weights used to generate interior beliefs have to

satisfy the condition

p(x)

Pr(Ti)
=

∑

y∈Ti\Ti

λxy

p(y)

1− Pr(Ti)
. (3)

The “only if”–part of Parreiras’ Proposition 2 has, therefore, to be amended as follows.

Proposition 2 (amended) If condition (C1’) and, in addition, condition (3) hold, then it is

possible to write the type set of agent i as Ti = {x1, . . . , xn} × {θ, θ̄} and find signals Xθ and

X θ̄ so that X θ̄ Blackwell–dominates Xθ.

Hence, for Parreiras’ insight to hold, the additional condition (3) is needed. Because in the

three types case the set Ti \ Ti is a singleton and, hence, p(y) = 1− Pr(Ti), condition (3) boils

down to the condition λx = p(x)/Pr(Ti) that we derived in the previous section.

To give an intuitive interpretation of condition (3), observe that p(x)/Pr(Ti) is the probabil-

ity that agent i is of type x, conditional on being an extreme type. Similarly, p(y)/(1−Pr(Ti))

is the probability that agent i is of type y, conditional on being an interior type. Thus, condition

(3) says that the conditional distribution of a type x conditional on being extreme corresponds

to the distribution of the compound lottery which, first, plays out an interior type y and then,

conditional on y, plays out x according to the “transition probabilities” λxy.

2Because, unfortunately, there are some typos in the expression of B(x,y) in Parreiras [4, p. 215], we provide

an explicit derivation of B(x,y) in the appendix.
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The additional condition (3) limits the applicability of the proposition and raises the ques-

tion how restrictive the new condition (3) over and above condition (C1’) actually is. As already

shown for the three type case, we now argue that a mechanism design setup that satisfies (C1’)

generically fails to satisfy the new condition (3). To develop this argument, recall that the

underlying primitive that determines whether (3) and (C1’) are satisfied is the joint probability

distribution on the type space Ti × T−i. Our claim is that if one considers a joint distribution

which jointly satisfies (C1’) and (3) then there always exists a perturbed probability distribu-

tion close to the original one which still satisfies condition (C1’) yet violates (3). To see this,

fix two extreme types x′, x′′ ∈ Ti and, starting from the joint distribution Pr, define for some

δ ≈ 0 the perturbed probability as

Prδ(x
′, t−i) = Pr(x′, t−i) · (1 + δ),

P rδ(x
′′, t−i) = Pr(x′′, t−i) ·

(

1 +
p(x′)

p(x′′)
δ

)

.

for all t−i, while leaving the probability of types (ti, t−i) for all ti 6∈ {x′, x′′} and t−i unchanged.

By construction, the perturbed probability distribution Prδ is well–defined for δ close enough

to zero and converges to the original one as δ approaches zero. Because the probabilities of

(x′, t−i) and (x′′, t−i) are scaled uniformly for all t−i, the beliefs induced by x′ and x′′ are

the same under the original and the perturbed probability distribution. By construction, the

beliefs induced by ti 6∈ {x′, x′′} coincide trivially for the original and the perturbed probability

distribution. As a result, the perturbation satisfies condition (C1’) if the original distribution

does so. However, the perturbed probability that x′ respectively x′′ occurs differs from the

original probability, whereas the perturbation does not affect the probability of an interior type

y ∈ Ti \ Ti. Consequently, the perturbation only changes the left hand side of (3). Hence,

if the original distribution satisfies (3), any perturbation Prδ violates it. This completes our

argument that, given a mechanism design model for which the spanning condition is violated,

condition (3) is singular in the sense that such a model rarely satisfies it.3

Finally, we can shed more light on Proposition 2 by stating conditions (C1’) and (3) in

terms of the signals Xθ and X θ̄. Let p(· | Xθ) be the random variable given by the posterior

belief over T−i induced when observing Xθ. By construction of X θ̄ and Xθ, (C1’) and (3) are

3The set of probability measures that satisfy (C1’) and violate (3) is dense and open within the set of

probability measures that satisfy (C1’).
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equivalent to

p(· | Xθ = y) =
∑

x∈Ti

λxyp(· | X
θ̄ = x) ∀y ∈ Ti \ Ti,

P r(X θ̄ = x) =
∑

y∈Ti\Ti

λxyPr(Xθ = y) ∀x ∈ Ti.

Observe that these two conditions mean that the posterior belief on T−i induced by X θ̄, under-

stood as a random variable, is a mean preserving spread of the posterior belief on T−i induced

by Xθ. In fact, by condition (5) of Theorem 12.2.2 in Blackwell and Girshick [2, p. 328], this

is equivalent to the Blackwell dominance of X θ̄ over Xθ. Thus, Proposition 2 (amended) is

essentially an expression of Blackwell and Girshick’s fundamental equivalence.
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Appendix

Construction of garbling weights B(x,y) We follow Parreiras and define the signals X θ̄ and

Xθ by setting

Pr(X θ̄ = x, t−i) =







0 if x 6∈ Ti

p(x,t
−i)

Pr(Ti)
if x ∈ Ti

, P r(Xθ = y, t−i) =







p(y,t
−i)

1−Pr(Ti)
if y 6∈ Ti

0 if y ∈ Ti

(4)

6



It then follows

p(ti = (y, θ)|t−i)

p(ti2 = θ)
= Pr(Xθ = y | t−i)

=
Pr(Xθ = y, t−i)

p(t−i)

=
p(y, t−i)

p(t−i)(1− Pr(Ti))
(by (4))

=
p(y)

p(t−i)(1− Pr(Ti))
pi(t−i | y) (by Bayes’ rule)

=
∑

x∈Ti

λxy

p(y)

p(t−i)(1− Pr(Ti))
pi(t−i | x) (by (C1’))

=
∑

x∈Ti

λxy

p(y)

p(x)p(t−i)(1− Pr(Ti))
p(x, t−i) (by Bayes’ rule)

=
∑

x∈Ti

λxy

p(y)Pr(Ti)

p(x)p(t−i)(1− Pr(Ti))
Pr(X θ̄ = x, t−i) (by (4))

=
∑

x∈Ti

λxy

p(y)Pr(Ti)

p(x)(1− Pr(Ti))
Pr(X θ̄ = x | t−i)

=
∑

x∈suppXθ

λxy

p(y)Pr(Ti)

p(x)(1− Pr(Ti))

p(ti = (x, θ)|t−i)

p(ti2 = θ)
.

Hence, Blackwell’s garbling condition requires B(x,y) = λxy
p(y)Pr(Ti)

p(x)(1−Pr(Ti))
.
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