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Abstract

The paper extends the optimal delegation framework to a dynamic environment

where the agent initially has private information merely about the distribution of

the state and learns the true state only as the relation proceeds. The principal may

want to elicit the agent’s initial information and offers a menu of delegation sets

where the agent first chooses a delegation set and subsequently an action within

this set. We characterize environments under which it is optimal and under which

it is not optimal to elicit the agent’s initial information and characterize optimal

delegation menus. In the former case, delegation sets may be disconnected and may

feature gaps.
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1 Introduction

How much decision making discretion should be delegated to privately informed, but

self-interested agents is an important question for the optimal design of firms’ gover-

nance structures, hierarchies, or for the regulation of markets. Following the seminal

work of Holmström [14, 15], a large body of literature studies this question in a setting

where monetary transfers are infeasible, and a principal offers a set of permissible actions

(a delegation set) to an agent who is perfectly informed about the decision relevant “state

of the world”. The principal has to trade off her benefit from utilizing the agent’s infor-

mation and her costs of giving up control. In the standard setting with one-dimensional

state and action spaces, the literature has identified conditions under which an optimal

delegation set takes the remarkably simple form of an interval. This amounts to imposing

upper and lower thresholds on the agent’s permissible actions. These thresholds depend

on the distribution of the state as well as the parties’ conflict of interest (bias).

In this paper, we study a novel issue by considering a dynamic setting where the agent

learns the state only gradually while, at the outset, he privately knows the distribution of

the state (to which we refer as the agent’s type). Rather than offering the same delegation

set to all types, a principal may then want to elicit (screen) the agent’s type by offering a

menu of delegation sets.1 Facing such a menu, the agent first chooses a delegation set when

he only knows his type, and then, after having observed the state, chooses an action from

this set. Since monetary transfers are infeasible, the only screening instrument available

is the degree of discretion provided by the delegation sets in the menu.

A classical application is the regulation of a monopolist (agent) where monetary trans-

fers are infeasible, and the regulator (principal) determines the monopolist’s discretion

over prices. In this case, the state corresponds to the monopolist’s marginal costs, and

the regulator’s objective is a weighted average of consumer surplus and profits. Our

setup captures the situation that at the regulation stage, marginal costs have not yet

been realized, but the monopolist has private beliefs about his future costs. In practice,

offering a menu of delegation sets resembles a regulatory framework where the regulator

does not impose a single regulatory plan but offers the regulated firm a choice among

several plans. Such regulatory options are observed in practice in the telecommunication

industry and can be interpreted as a screening instrument of the regulator.2

The contribution of our paper is to characterize environments under which it is opti-

mal and environments under which it is not optimal for the principal to elicit the agent’s

1Considering delegation menus is in the spirit of Holmström’s [14, 15] delegation principle. From an
optimal mechanism design perspective, this means we restrict attention to deterministic mechanisms.

2Sappington [38, p. 234] reports the case of regional Bell Operating Companies which, in the 90s,
were offered a menu of regulatory plans involving various combinations of earning sharings and price
caps and, in line with our model, argues that regulatory options elicit “the regulated firm’s superior
knowledge of its operating environment” [38, p. 272].
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type.3 In addition, we characterize optimal delegation menus. We show that for a large,

precisely determined class of environments, it is not optimal to elicit the agent’s type.

In this case, interval delegation remains optimal, establishing the robustness of interval

delegation as an optimal mechanism even if the agent’s private information arrives se-

quentially. In particular, this is the case whenever the bias is sufficiently small. Crucially,

however, we also show that the sequential arrival of information may call for richer forms

of restricting the agent’s discretion beyond simply imposing thresholds. In these envi-

ronments, the agent’s type is elicited, and optimal delegation sets may feature “gaps”,

allocating discretion over “extreme” actions only.

As a key conceptual contribution of our analysis, we identify a measure that captures

precisely the principal’s dynamic trade-off when designing a delegation menu. We refer to

this measure as virtual likelihood ratio. Formally, the virtual likelihood ratio is defined as

the likelihood ratio of agent type i’s over agent type j’s beliefs adjusted by an additional

term reflecting the bias. Intuitively, consider some state and suppose that, starting from

a situation in which the principal offers all actions to the agent, she inserts a tiny gap in

the delegation set by removing a small set of actions around the agent’s ideal action in

this state. In our setting, inserting a gap in the delegation set turns out to be costly in

expected terms for both the principal and the agent. The virtual likelihood ratio in the

given state is then equal to the ratio of the principal’s over the agent’s expected costs

from inserting a gap in the limit as the gap gets small.4

Our results can be summarized as follows. First, if virtual likelihood ratios are de-

creasing, then, for an arbitrary (finite) number of types, static delegation is optimal, that

is, the principal does not benefit from eliciting the agent’s type. Regardless of the shape

of the virtual likelihood ratio, we also show that static delegation is optimal when the

bias is small.5 Second, if virtual likelihood ratios are not decreasing, we provide sufficient

conditions and necessary conditions for sequential delegation to be optimal, that is, for

when the principal does benefit from eliciting the agent’s type. For tractability reasons,

we establish these conditions only for the case with two agent types.6 We show that

sequential delegation is optimal essentially if and only if the minimum of the appropriate

virtual likelihood ratio is sufficiently small. Moreover, we characterize the shape of an

3We allow for environments, that is, distributions and bias functions, which essentially satisfy the
conditions that, in a static setting, are necessary and sufficient for the optimal delegation set to be an
interval as shown by Amador and Bagwell [3]. As explained in detail below, we allow for the same general
preferences but consider slightly less general environments.

4The virtual likelihood ratio is a notion of a “virtual valuation” tailored to our dynamic mechanism
design setting without transfers and can be seen as an analogue to what, in dynamic mechanism design
with money, is sometimes referred to as informativeness measure as in Bester [4] and Courty and Li [8],
or as impulse response function as in Pavan et al. [35].

5Even though the formal proof for this result is similar to the case with decreasing virtual likelihood
ratios, the economic reason is rather different, as we explain the main text.

6In Section 5, we explain the difficulties with extending the analysis to more types.
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optimal menu if the appropriate virtual likelihood ratio is increasing. Then an optimal

delegation menu contains a delegation set that is either an interval that constrains the

agent’s discretion from both above and below, or else the union of an isolated smallest

action and an interval. Thus, optimal delegation sets may be disconnected, featuring

gaps “at the bottom” and allocating discretion over “extreme” actions only.

The intuition for why the virtual likelihood ratio plays such a central role for our

analysis can be best explained in the case with two types. In our setting, if types were

publicly known, each type would be offered an interval with an upper but no lower

threshold, the “low” type facing a more stringent threshold than the “high” type. The

best static delegation menu, which does not discriminate between types, then corresponds

to an interval whose threshold is a weighted average of these two thresholds. The basic

idea to improve upon the static menu is to offer the high type a delegation set where his

“discretion is shifted upwards”. This means that a more lenient threshold is imposed on

the high type, while he is being banned from taking some (previously available) smaller

actions. As we formally show, if the high type’s beliefs dominate the low type’s beliefs in

the likelihood ratio order, then the high type benefits more, in expected terms, than the

low type when the discretion provided by a delegation set is shifted upwards.7

Intuitively, since the high type receives a more lenient threshold when types are public,

the low type’s incentive constraint will be binding at an optimal delegation menu. This

means that the low type is just deterred from picking the delegation set offered to the high

type, and thus his expected costs from smaller actions not being available are equal to his

expected gains from larger actions being available. Hence, whether the principal benefits

from shifting the high type’s discretion upwards, while keeping the low type indifferent,

depends on how her relative expected costs from removing small actions, relative to the

corresponding costs for the low type, compare to her relative expected gains from adding

larger actions, relative to the corresponding gains for the low type.

Drawing on a representation of the principal’s payoff developed in Kováč and Mylo-

vanov [21], we show that the relative costs of removing a tiny set of actions in the high

type’s delegation set are given by the virtual likelihood ratio. Intuitively then, if the

virtual likelihood ratio is increasing, the most cost effective way to elicit the agent’s type

is to remove small actions in the high type’s delegation set in exchange for extending

the high type’s threshold. If sequential delegation is optimal, the high type is therefore

banned from choosing small actions. Reversely, if the virtual likelihood ratio is decreas-

ing, then roughly speaking, it is best to remove actions directly below the high type’s

threshold. As we show, this will imply that static delegation is optimal.

While we focus on the case where the bias is common knowledge, our insights readily

7Thus, the ranking of beliefs in terms of the likelihood ratio order in our setting is analogous to the
“Spence-Mirrlees” single-crossing condition in a standard screening problem.
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extend to the interesting special case that the bias is the agent’s private information,

and the distribution of the state is commonly known. For distributions with log-concave

densities it turns out that virtual likelihood ratios are decreasing. It is thus immediate

from our results that the principal does not benefit from eliciting the agent’s bias. We

also argue that with two types, our necessary conditions for the optimality of screening

the bias are rarely satisfied in the sense that many commonly used distributions violate

these conditions. Along with our results on the case with type-independent bias, this

suggests the general insight that what primarily matters for sequential delegation to be

optimal is the agent’s private information about the distribution, not about the bias.

Related literature

Our paper brings together the literatures on optimal delegation and on sequential screen-

ing (with money). Within the optimal delegation literature, our paper is most closely

related to Amador and Bagwell [3] who, to our knowledge, present the most general suf-

ficient and necessary conditions in the literature for interval delegation to be optimal.8

Next to the general setup, we draw on their sufficient conditions to prove our results on

the optimality of static delegation. The basic idea is to set up a relaxed problem and

to verify that the static delegation menu maximizes the Lagrangian associated to this

problem. To do so, we extend the sufficiency conditions in [3] to be applicable to our

Lagrangian objective.

Our result that the principal may elicit the agent’s type by allocating discretion over

only extreme actions is similar to the insight by Szalay [42] that offering extreme options

is optimal to induce an initially uninformed agent to acquire information. In fact, just

like offering extreme options to the high type dissuades the low type from mimicking the

high type in our case, so it dissuades the uninformed agent from staying uninformed in

[42]. Unlike [42], we explicitly identify monotonicity and single-crossing conditions under

which screening types is feasible.9 Moreover, [42] focuses on information acquisition costs

as the main determinant of the value of inducing information acquisition for a given

distribution of the state. In contrast, we identify how the benefits of screening depend on

the distribution of the state and the bias. In particular, inducing information acquisition

is optimal in [42] as long as information acquisition costs are small whereas in our setting,

eliciting the agent’s type is never optimal for certain distributions, or, whenever the bias

is sufficiently small.10

8Other contributions to the optimal delegation literature include Alonso and Matouscheck [1], Ivanov
[18], Koessler and Martimort [19], Kolotilin et al. [20], Kováč and Mylovanov [21], Liang [28], Martimort
and Semenov [30], Melumad and Shibano [31], and Mylovanov [33]. Unlike the optimal delegation
literature, a large literature studies delegation when decisions are non-contractible. See, for instance,
Alonso et al. [2], Bester [6], Bester and Krähmer [7], Dessein [10], Goltsman et al. [13], Krähmer [23],
Riordan and Sappington [36], and Semenov [39].

9In particular, this addresses the issue of incentive compatibility in the “other direction”, that the
high type does not mimic the low type. This issue, naturally, does not arise in [42].

10While Szalay [42] considers an unbiased agent, his results are robust to introducing a small bias.
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Two other contributions study an optimal delegation setting in which the agent is not

perfectly informed about the state. In Semenov [40], the agent only learns an imperfect

signal about the state. This corresponds to a static setup where the distribution of

the state features a mass-point, which induces a gap in the optimal delegation set. In

contrast, in our paper a gap helps to elicit the agent’s type.11 In independent work,

Tanner [43] does study sequential delegation but does not allow the agent to have private

information about the distribution, only about the bias. Using different arguments than

[43], we arrive at the same result that eliciting the bias is not optimal, but our methods

apply to a somewhat larger environment.

Within the sequential screening literature, our paper is closely related to Courty and

Li [8] who study a dynamic price discrimination problem where, as in our model, the

agent knows the distribution of the state (his valuation) at the time of contracting, but

learns the state only afterwards.12 Unlike in [8], monetary transfers are not feasible in

our setting, and we develop a different approach to derive an optimal mechanism. Our

results on the optimality of static delegation are closely related to Krähmer and Strausz

[26] who establish sufficient conditions so that a static contract, which pools types, is

optimal in the setting of [8] when the agent has an ex post outside option. As in [26], we

consider a setting with discrete types, and to show that static delegation is optimal, we

solve a relaxed problem where the incentive constraints we impose for a given type are

the same as those imposed for the corresponding type in the relaxed problem of [26].13

The paper is organized as follows. Section 2 describes the model. Section 3 provides

monotonicity and single-crossing notions. Section 4 provides sufficient conditions for the

optimality of static delegation, while section 5 provides necessary conditions and sufficient

conditions for the optimality of sequential delegation. Section 6 considers the case with

type-dependent bias, and Section 7 concludes. All proofs are in the appendix.

2 Model

A principal (she) and an agent (he) seek to implement a contractible action x ∈ R whose

payoff depends on a state of the world ω ∈ [ω, ω̄]. There are three periods. In period 1,

no party knows the true state, but the agent privately knows that the state is distributed

with cdf Fi on the support [ω, ω̄]. While the agent’s type i is his private information, it is

11An interesting question is what would happen in Semenov [40] if the agent’s information was revealed
sequentially. Our analysis does not, however, directly speak to this question, since our framework does
not cover the case where one agent type remains entirely ignorant.

12For work on dynamic mechanism design with money, see also Battaglini [5], Baron and Besanko [4],
Dai et al. [9], Esö and Szentes [11, 12], Hoffmann and Inderst [16], Inderst and Peitz [17], Krähmer and
Strausz [24, 25, 26, 27], Nocke et al. [34], and Pavan et al. [35].

13The relaxed problem is quite non-standard, as it involves global, instead of the familiar adjacent
incentive constraints.
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common knowledge that i is drawn from {1, . . . , I} with probability µi > 0. In period 2,

the agent privately observes the true state ω, and in period 3, the action is implemented.

We assume that Fi is twice continuously differentiable with strictly positive pdf fi = F ′i .

Drawing on Amador and Bagwell [3], the agent’s utility function U and the principal’s

utility function V are given as

U(ω, x) = ωx+ a(x), (1)

V (ω, x) = ωx+ a(x)− b(ω)x+ c(ω), (2)

where a : R→ R is twice differentiable and strictly concave, b : [ω, ω̄]→ R is continuously

differentiable, and c : [ω, ω̄]→ R is integrable. For reasons evident in the next paragraph,

we assume that limx→−∞−a′(x) < ω and limx→+∞−a′(x) > ω̄. Let

xA(ω) ≡ arg max
x∈R

U(ω, x) (3)

be the agent’s favorite action. By our assumptions on a, xA(ω) is uniquely determined by

the first order condition, ω+a′(xA(ω)) = 0, and is differentiable and strictly increasing.14

We refer to the function b as the agent’s bias, because it is a measure for the distance

between the agent’s and the principal’s favorite actions.15 As a special case, if b does not

depend on the state, we say the agent has constant bias.16

In period 1, the principal offers a mechanism to the agent. By the revelation princi-

ple for dynamic games (Myerson, [32]), we can restrict attention to direct and incentive

compatible mechanisms which implement an action as a function of sequential reports by

the agent about type and state, and induce the agent to report truthfully. By a straight-

forward extension of Holmström’s [14, 15] delegation principle, any such mechanism can

be implemented by an incentive compatible menu of delegation sets (D1, . . . , DI), where

Di ⊆ R specifies a set of contractible actions that the agent is permitted to take. Under

such a menu, the agent selects a delegation set Di from the menu before he observes the

state, and then, after having observed the state, chooses an action x in Di. A menu is

incentive compatible if agent type i selects Di from the menu.17

14Throughout the paper, we use the terms “increasing” and “decreasing” for weak monotonicity. When
we mean strict monotonicity, we explicitly write “strictly increasing” and “strictly decreasing”.

15Indeed, if a′(x) = −x, then the agent’s favorite action is xA(ω) = ω while the principal’s is ω− b(ω).
Note that it is not substantial that the bias formally enters V rather than U , but turns out to be
more convenient analytically. Note also that the specification includes the familiar case with quadratic
preferences: Define a(x) = −1/2 · x2, and add the action-irrelevant constant −1/2 · ω2 to U .

16While we focus on the case with type-independent bias in the main part of the analysis, we will
discuss the case with type-dependent bias bi(ω) in Section 6.

17Focusing on incentive compatible delegation menus is restrictive only in that it rules out “stochastic”
mechanisms which may implement lotteries over actions. For a detailed proof of the delegation principle
in the current context, see our working paper Kováč and Krähmer [22]. As is common when applying
the revelation principle, we also assume that type i, when indifferent between Di and Dj , selects Di for
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Formally, denote the action the agent chooses from a delegation set D in state ω by18

xD(ω) ∈ arg max
x∈D

U(ω, x). (4)

Conditional on type i, the agent’s and the principal’s expected utility from D are therefore

Ui(D) ≡
∫ ω̄

ω

U(ω, xD(ω)) dFi(ω), Vi(D) ≡
∫ ω̄

ω

V (ω, xD(ω)) dFi(ω). (5)

A delegation menu (D1, . . . , DI) is incentive compatible if for all i, j:

ICi,j : Ui(Di) ≥ Ui(Dj). (6)

The principal’s problem, referred to as P , can then be written as

P : max
D1,...,DI

∑
i

µiVi(Di) s.t. ICi,j for all i, j.

In general, the solution to P will not be unique.19 This is so, as one can always add

redundant actions to the solution which would not be chosen by the agent in any state. We

therefore restrict attention to minimal delegation menus where any action in a delegation

set is strictly chosen in some state and unchosen (redundant) actions are removed.20,21

We denote a solution to P by (D∗1, . . . , D
∗
I ). We say that static delegation is optimal if

there is a solution with D∗i = D∗j for all i, j. Otherwise, sequential delegation is optimal.

Delegation sets that are intervals will be crucial for our analysis. Since xA(ω) is

strictly increasing in ω, a delegation set D is an interval if, and only if there are ωL ≤ ωH

so that D = [xA(ωL), xA(ωH)]. We say D is truncated from above if ωL = ω and ωH < ω̄.

Assumptions and static trade-offs

Throughout the paper, we impose the following assumptions on the bias function and the

distributions (and we will not mention them explicitly in the statement of results).

A1. fi(ω) + (b(ω)fi(ω))′ > 0 for all ω and i.

A2. b(ω) ≥ 0 and b(ω̄) > 0.

A3.
∫ ω̄
ω

1− Fi(ω)− b(ω)fi(ω) dω > 0 for all i.

sure. This prevents stochastic allocations to result from mixing by the agent. See also Remark 2 below.
18Without loss of generality, we may assume that delegation sets are closed and bounded. In that case

the arg max is well defined. See footnote 15 in Amador and Bagwell [1].
19Analogously as in Homlström [15], Theorem 1, it can be shown that a solution to P exists.
20Amador and Bagwell [1] proceed in the same fashion.
21Observe that removing these actions does not upset incentive compatibility. In fact, it relaxes

incentive compatibility, as removing actions from Dj only reduces agent type i’s incentive to select it.
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For the benchmark case in which the agent’s type i is publicly known, Assumption

A1 will guarantee that it is suboptimal to insert a “gap” in a delegation set, and A3 will

guarantee that it is suboptimal to implement the action that would be best for the prin-

cipal in the absence of the agent. Jointly, A1–A3 will guarantee that for publicly known

type, the optimal delegation set is a non-degenerate interval truncated from above.22

To illuminate this, consider the principal’s basic trade-off. On the one hand, the

principal benefits from a larger delegation set since this allows her to better utilize the

agent’s information. On the other hand, due to conflicting interests, she is hurt from a

larger delegation set since this allows the agent to take more biased actions. To capture

these effects formally, let

uD(ω) = U(ω, xD(ω)) = max
x∈D

U(ω, x) (7)

be the agent’s utility in state ω. A familiar envelope and integration by parts argument

delivers that the principal’s expected utility from a delegation set is23

Vi(D) = uD(ω)b(ω)fi(ω) +

∫ ω̄

ω

uD(ω)[fi(ω) + (b(ω)fi(ω))′] dω − uD(ω̄)b(ω̄)fi(ω̄) + C,

︸ ︷︷ ︸
J Ii (D)

︸ ︷︷ ︸
J IIi (D)

︸ ︷︷ ︸
LCi(D)

(8)

where C is a constant independent of uD. Expression (8) says that the principal’s expected

utility is a weighted average of the agent’s utility uD across states: In the lowest state

ω, the agent’s utility receives the weight b(ω)fi(ω), and in interior states ω ∈ (ω, ω̄),

it receives weight fi(ω) + (b(ω)fi(ω))′. By Assumptions A1 and A2, these weights are

positive, and therefore, the terms J Ii (D) and J IIi (D) jointly can be interpreted as a

beneficial information effect that results from increasing the agent’s discretion. We will

refer to them respectively as first and second information effect. Moreover, we will refer

to fi(ω) + (b(ω)fi(ω))′ as virtual likelihood.

In contrast, in the largest state ω̄, the agent’s utility receives the weight −b(ω̄)fi(ω̄),

which is negative by A2. Hence, the principal’s utility is smaller the better off the agent

in state ω̄, and therefore, LCi(D) can be interpreted as a costly loss of control effect that

results from increasing the agent’s discretion.

22Within the class of preferences (1) and (2), Amador and Bagwell [3] provide necessary and sufficient
conditions for the optimality of interval delegation. Our conditions A1–A3 resemble the necessary condi-
tions in [3] and are only slightly more restrictive. Thus, within the preference class (1) and (2), relaxing
A1–A3 would essentially require to allow for non-intervals to be optimal with public types, which would
significantly complicate the analysis. Moreover, as shown in [3], for a negative bias at ω and ω̄, optimal
intervals are truncated from below. Our positive bias assumption A2 primarily reduces case distinctions
but is not substantial for the nature of our arguments (though specific conclusions might differ).

23To our knowledge, the argument was first developed in Kováč and Mylovanov [21]. See the appendix
for details.

9



Benchmarks

We now consider two important benchmark cases. In the first benchmark, the agent’s

type is publicly known, in which case we have:

Lemma 1. Let type i be publicly known. Then the optimal delegation set is an interval

truncated from above, i.e., D0
i = [xA(ω), xA(ω0

i )], where ω0
i ∈ (ω, ω̄) is the (unique)

solution to the equation ∫ ω̄

ω0
i

1− Fi(ω)− b(ω)fi(ω) dω = 0. (9)

In the second benchmark, the principal does not elicit the agent’s type and is restricted

to offer the same delegation set D to all types. We call a menu (D, . . . , D) a static delega-

tion menu. The principal’s expected utility from such a menu is
∫ ω̄
ω
V (ω, xD(ω)) dF st(ω)

where F st =
∑

i µiFi is the average distribution of the state, averaged across types.

Lemma 2. The optimal static delegation menu consists of intervals of the form Dst =

[xA(ω), xA(ωst)], where ωst < ω̄ is given by (9) with Fi replaced by F st.

Since Assumptions A1 and A3 carry over to F st, Lemma 2 follows immediately from

1. The intuition behind Lemma 1 can be seen from (8). In state ω̄, the agent chooses

the highest action available, say x̄. Since the bias is positive in ω̄, it is easy to see that

x̄ < xA(ω̄) at an optimal delegation set. “Filling all gaps gaps below x̄” is then beneficial,

because allowing the agent to pick all smaller actions x < x̄ does not affect uD(ω̄) and

so does not affect the loss of control effect. But, it (weakly) improves uD(ω) in the

other states ω ∈ [ω, ω̄) and so (weakly) raises both information effects. Thus, interval

delegation of the form [xA(ω), x̄] is optimal. Finally, increasing x̄ raises both the second

information effect and the loss of control effect. Equation (9) is the first order condition

where these two countervailing forces are in balance, and Assumption A3 ensures that ω0
i

is interior.24

As a convention, we from now on (re-)label the agent’s types so that25

ω0
1 < . . . < ω0

I . (10)

Thus, the optimal delegation menu with public types would violate incentive compatibil-

ity, because “low” types i would have incentives to mimic “high” types j > i. (Remark

3 below states a sufficient condition on the distributions Fi for the ordering (10).)

24While Lemma 1 follows therefore directly from Amador and Bagwell [3], we give an alternative, more
elementary, proof that extends the domain of objective functions for which the sufficient conditions in
[3] deliver the optimality of interval delegation. The main benefit of this exercise will, however, accrue
in our analysis of the sequential delegation problem where such objective functions naturally arise in the
form of Lagrangians.

25To reduce case distinction, we focus on the case that the ω0
i ’s are strictly ordered.

10



Next, we present an example that is used to illustrate our results throughout.

Example. Consider the problem of regulating a monopolist who chooses a price x facing

a linear demand q = A − x and constant marginal costs ω, where A > 1 and ω ∈
[ω, ω̄] = [0, 1]. At the outset, the monopolist has private beliefs Fi about his future

marginal costs. Once production starts, the monopolist learns the actual value of ω. The

monopolist maximizes his profit, while the regulator’s objective is a weighted average

of consumer surplus and profit, with weights ξ and 1 − ξ respectively, where ξ ∈ [0, 1]

measures the extent to which the regulator is “pro-consumer”. Thus,26

U(ω, x) = ωx+ (A− x)x, V (ω, x) = ωx+ (A− x)x− γ(A− w)x, (11)

with linear bias function b(ω) = γ(A− ω), where γ ≥ 0 and γ = ξ/(2− 3ξ). The agent’s

favorite action is then the monopoly price xA(ω) = 1
2
(A+ ω). For γ = 0, the regulator is

entirely “pro-business”, while for γ = 1, she maximizes total surplus.

Consider the case with two types i = 1, 2 and distributions

F1(ω) = ω, F2(ω) = κ3ω
3 + κ2ω

2 + (1− κ3 − κ2)ω, (12)

where κ3, κ2 ≥ 0 and κ3 + κ2 < 1. Since f2/f1 is increasing, type 1’s marginal costs are

smaller in the likelihood ratio order, and hence type 1 corresponds to the “more efficient”

type. (This also ensures (10), see Remark 3 below.) Assumption A2 is clearly satisfied,

and A1 is satisfied if and only if γ < 1, while A3 is satisfied if and only if γ < 1/(2A−1).

Then, Lemma 1 and 2 apply, and optimal static delegation involves a price cap.

Remarks

Remark 1. If the second inequality in A2 is violated, i.e., if b(ω̄) ≤ 0, then all weights

in (8) are non-negative. Thus, the principal’s expected utility is maximized when uD(ω)

is maximized point-wise for any ω ∈ [ω, ω̄]. Hence, “full delegation” is optimal: D0
i =

[xA(ω), xA(ω̄)] for all i. In this case, full delegation also solves the sequential problem P .

Remark 2. While our restriction to delegation menus, and thus to deterministic mech-

anisms follows most of the delegation literature, stochastic mechanisms may especially

help to relax our novel “dynamic” incentive constraints ICi,j.
27 The restriction to deter-

26A straightforward computation yields monopoly profit (x−ω)(A−x) and consumer surplus 1
2 (A−x)2.

We thus set a(x) = (A−x)x. To obtain the principal’s utility of the form (2), we normalize the regulator’s
objective by the factor 2/(2 − 3ξ) and set b(ω) = ξ/(2 − 3ξ) · (A − ω). For the normalization factor to
be positive, we require ξ ∈ [0, 2

3 ], and thus γ ≥ 0. We also omit terms that do not depend on the price.
27The technical reason is that the principal maximizes the objective (8), which is linear in uDi(ω), ω ∈

[0, 1], subject to the linear constraints (6). Samuelson [37] also studies a mechanism design problem with
a linear objective and linear constraints and shows examples where stochastic mechanisms are optimal.
This suggests that stochastic mechanisms could be optimal in specific cases in our setting, too.
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ministic mechanisms thus stacks the deck against sequential delegation to be optimal. We

focus on deterministic mechanisms to facilitate comparison with the literature and, not

least, due to serious tractability issues. An applied justification for ruling out stochastic

mechanisms is the often articulated concern that they may be hard to enforce in practice.

Remark 3. By (9), the upper threshold ω0
i depends both on the distribution and the bias

function. Therefore, there is, in general, no order of distributions that, by itself, would

ensure the ordering (10). However, for constant bias, (9) implies that ω0
i is the point

where the bias is equal to the mean residual life

mrli(ω) =

∫ ω̄
ω

1− Fi(ω̃) dω̃

1− Fi(ω)
. (13)

Hence, for constant bias, (10) holds if Fi has decreasing mean residual life for all i, and

Fi dominates Fi−1 in the mean residual life order: mrli(ω) ≥ mrli−1(ω) for all ω ∈ [ω, ω̄].

A sufficient condition for this is that Fi dominates Fi−1 in the likelihood ratio order,

i.e., fi/fi−1 is increasing (see Shaked and Shanthikumar, [41], Theorem 1.C.1, p. 43 and

Theorem 2.A.1, p. 83).

3 Upward shifts and single-crossing

We now turn to the analysis of the sequential delegation problem P . We first consider

the question under what conditions it is feasible and profitable to elicit the agent’s type i.

In standard screening problems, this is closely linked to monotonicity and single-crossing

conditions. In this section, we provide analogues of these conditions for our setting.

To motivate these conditions, we illustrate the main issues in the two types case.

Consider the question whether it is feasible and profitable for the principal to deviate

from the static menu (Dst, Dst), where Dst = [xA(ω), xA(ωst)], and instead elicit the

agent’s type by offering type 2 a different delegation set D̃2 6= Dst while maintaining

D1 = Dst. Given that Dst is an interval truncated from above, any different set D̃2 6=
Dst that maintains incentive compatibility must contain actions which are larger than

xA(ωst) (otherwise, type 2 would pick D1 = Dst), but must not include all actions in

[xA(ω), xA(ωst)] (otherwise, type 1 would pick D2). In this sense, D̃2 provides more

discretion than Dst over large actions, but less discretion over small actions. Generalizing

this notion for arbitrary delegation sets D̃ and D, we say that D̃ is an upward (discretion)

shift of D if there is ω̂ ∈ [ω, ω̄] so that

uD̃(ω) ≤ uD(ω) when ω ∈ [ω, ω̂],

uD̃(ω) ≥ uD(ω) when ω ∈ [ω̂, ω̄]. (14)

12



This means that in small states the agent is better off under D while in large states, he

is better off under D̃. Consequently, since the agent’s ideal action is increasing in the

state, D̃ contains at least one action which is at least as large as the largest action in D,

and D contains at least one action which is at most as large as the smallest action in D̃.

In this sense, D̃ shifts discretion from small to large actions relative to D. In particular,

any set D̃ is an upward shift of an interval truncated from above provided D̃ contains

one action at least as large as the upper end of this interval.28

Returning to our illustration with two types, when is it feasible to offer type 2 a

delegation set D̃2 which is an upward shift of Dst? Suppose that discretion has been

reallocated between Dst and D̃2 so that type 1 is just indifferent between selecting Dst

and D̃2 (IC12 is binding). This means that if type 1 selects D̃2, then his expected gain

from the increased discretion over large actions is just compensated by his expected

loss from the reduced discretion over small actions. Intuitively, this maintains type 2’s

incentive constraint if type 2’s beliefs dominate type 1’s beliefs in a sufficiently strong

stochastic dominance order. An appropriate order turns out to be the likelihood ratio

order, which requires that f2/f1 is increasing. Type 2 then assigns higher likelihood than

type 1 to large states and lower likelihood to small states. Since the agent’s ideal action

is increasing in the state, type 2, when selecting D̃2, is therefore more likely than type

1 to utilize the larger discretion over large actions, and he is less likely to suffer from

the reduced discretion over smaller actions. In expected terms, type 2 therefore benefits

more from the upward discretion shift than type 1, and since type 1 was indifferent by

construction, type 2 prefers the upward discretion shift.

We generalize these considerations in part (a) of the next lemma where type i cor-

responds to type 2 and type j to type 1 in the example. Part (b) covers the logically

identical reverse case.

Lemma 3. Let D̃ be an upward shift of D and consider types i, j.

(a) If fi/fj is increasing, then Uj(D̃) ≥ Uj(D) implies that Ui(D̃) ≥ Ui(D).

(b) If fi/fj is decreasing, then Uj(D̃) ≤ Uj(D) implies that Ui(D̃) ≤ Ui(D).

Part (a) implies that if type i’s delegation set Di is replaced by an upward shift

(D replaced by D̃) in a way so that type j’s incentive constraint ICj,i is maintained

(Uj(D) = Uj(D̃)), then type i’s incentive constraint ICi,j is automatically satisfied. Part

(b) has a similar interpretation. The monotone likelihood ratio conditions in part (a)

and (b) are thus the analogues to the “Spence–Mirrlees” single-crossing condition in a

standard screening problem.

28Let D = [xA(ω), xA(ω′)] be an interval with largest action xA(ω′) for some ω′. Suppose D̃ contains
an action larger or equal to xA(ω′). Let ỹ be the smallest such action. Let ω̂ be the state in which the
agent is indifferent between xA(ω′) and ỹ. Then uD̃(ω) ≤ uD(ω) for ω ≤ ω̂, while uD̃(ω) ≥ uD(ω) for

ω ≤ ω̂. Thus, D̃ is indeed an upward shift of D.
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We next turn to the question how shifting discretion upwards in an incentive compat-

ible way affects the principal’s utility. There are three effects, corresponding to the two

information and the loss of control effects in expression (8).

Lemma 4. Let D̃ be an upward shift of D. Then for all types i, J Ii (D̃) ≤ J Ii (D) and

LCi(D̃) ≥ LCi(D).

The lemma says that shifting discretion upwards (weakly) decreases the first informa-

tion effect, J Ii , and (weakly) increases the loss of control effect, LCi. Both forces (weakly)

lower the principal’s utility. Intuitively, when there is less (more) discretion over small

(large) actions, then in the lowest (largest) state, a less (more) favorable action is available

for the agent, thus u(ω) decreases and so does J Ii (u(ω̄) increases and so does LCi).

Lemma 4 makes clear that the only channel by which the principal can benefit from

an incentive compatible upward shift is the second information effect, J IIi . As the next

lemma shows, whether this effect goes up or down depends on the monotonicity of the

virtual likelihood ratio which will play a crucial role in our analysis:

ρi,j(ω) =
fi(ω) + (b(ω)fi(ω))′

fj(ω)
. (15)

Lemma 5. Let D̃ be an upward shift of D and consider types i, j.

(a) If ρi,j is increasing, then Uj(D̃) ≥ Uj(D) implies J IIi (D̃) ≥ J IIi (D).

(b) If ρi,j is decreasing, then Uj(D̃) ≤ Uj(D) implies J IIi (D̃) ≤ J IIi (D).

The reasoning behind Lemma 5 is the same as behind Lemma 3, yet since in the

expression for J IIi , the agent’s utility is weighed by the virtual likelihood, what matters

now is not the likelihood ratio but the virtual likelihood ratio.

Lemma 5 suggests an intuitive interpretation of the steepness of the virtual likelihood

ratio as a measure of the costs and benefits of screening the agent. In the context of

our motivating question, offering type 2 an upward shift D̃2 of Dst which maintains type

1’s incentive constraint will, all else equal, be less profitable, the less steep is ρ2,1. To

see this, suppose that type 1’s beliefs put more weight on large states in the sense that

they change from f1 to f̂1 so that f̂1/f1 is increasing, implying that the virtual likelihood

ratio becomes less steep which means that ρ̂2,1/ρ2,1 is increasing. This increases type

1’s incentive to select D̃2 instead of Dst, as he now considers it more likely to benefit

from the larger discretion over larger actions and less likely to be hurt from the smaller

discretion over smaller actions. Therefore, type 1’s incentive compatibility constraint

becomes more stringent: under a less steep virtual likelihood ratio, screening costs are

higher. Similarly, if f2 + (bf2)′ changes to f̂2 + (bf̂2)′ so that [f̂2 + (bf̂2)′]/[f2 + (bf2)′]
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is decreasing, the virtual likelihood ratio becomes less steep. Thus, shifting discretion

upwards from Dst to D̃2 becomes less profitable for the principal.

Note that the virtual likelihood ratio depends jointly on the bias and the distribution.

Thus, the effect of the bias on the virtual likelihood ratio, and thus on the costs and

benefits of screening, is in general not clear-cut.

Example (ctd). In the price regulation example where b(ω) = γ(A− ω),

ρi,j(ω) = (1− γ)
fi(ω)

fj(ω)
+ γ(A− ω)

f ′i(ω)

fj(ω)
. (16)

If types are ranked by the monotone likelihood ratio (fi/fj increasing for i > j), it follows

that ρi,j is increasing if the regulator is very pro–business (γ close to 0). For large γ > 0,

the shape of ρi,j is, in general, not clear-cut, however. For the specification (12),

dρ2,1(ω)

dω
= 6κ3(1− 3γ)ω + 6κ3Aγ + 2κ2(1− 2γ). (17)

Hence, ρ2,1 is increasing if and only if 3Aκ3 ≥ 6κ3+k2 or γ ≤ (3κ3+κ2)/(9κ3+2κ2−3Aκ3),

that is, if the market size A is sufficiently large, or the regulator is sufficiently pro-business.

Further, ρ2,1 is decreasing if and only if 3Aκ3 < κ2 and γ ≥ κ2/(2κ2 − 3Aκ3), that is, if

the market size A is sufficiently small, and the regulator is sufficiently pro-consumer.

4 Optimality of static delegation

In this section, we derive sufficient conditions for static delegation to be optimal. We

show that static delegation is optimal whenever virtual likelihood ratios are decreasing

and whenever the bias is small.

Proposition 1. If ρi,j is decreasing for all i, j ∈ {1, . . . , I} such that i > j, then the

optimal static menu (Dst, . . . , Dst) solves the principal’s problem P.

The intuition can best be seen for two types i = 1, 2. Consider the relaxed problem

where we ignore type 2’s incentive constraint. Type 1’s incentive constraint is then

binding at the optimum of the relaxed problem: U1(D1) = U1(D2). This is intuitive since

with public types, D0
1 ⊂ D0

2, and so type 1’s incentive constraint is violated. Moreover,

D1 is an interval truncated from above: D1 = [xA(ω), xA(ω1)], ω1 < ω̄. Intuitively, D1

would contain gaps otherwise. Adding some actions to the gap would then relax type 1’s

incentive constraint and increase the principal’s utility, because it would increase both

information effects J I1 and J II1 in (8), but not affect the loss of control effect LC1 (because

when adding an action in a gap, the action in state ω̄ and thus uD(ω̄) remain the same).
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To see that the relaxed problem has a static solution, suppose to the contrary that

D2 6= D1. We argue that the principal can improve by offering the static menu (D1, D1).

Indeed, since D1 is an interval truncated from above, D2 is an upward shift of D1.29 As a

result, Lemma 4 implies that if D2 is replaced by D1, the first information effect increases

and the loss of control effect decreases. Moreover, since ρ2,1 is decreasing and since type

1’s incentive constraint is binding, part (b) of Lemma 5 implies that also the second

information effect goes up. Hence, all effects work in the direction of static delegation.

In other words, if the virtual likelihood is decreasing, the benefits from offering type 2

an upward shift D2 of D1 are smaller than the associated costs of providing incentives for

type 1 not to select D2. Intuitively, conditional on facing type 2, the principal considers

large states less (virtually) likely than type 1 and small states more (virtually) likely

than type 1. Thus, in expected terms, the increased discretion over large actions, which

boosts the agent’s utility u(ω) in large states, benefits the principal less than type 1,

and the reduced discretion over small actions, which depresses the agent’s utility u(ω)

in small states, hurts the principal more than type 1. Therefore, the principal’s benefits

increasing type 2’s discretion over large actions are outweighed by the associated reduction

of discretion over small actions which is necessary to achieve incentive compatibility.

To account for the case with more than two types, our actual proof of Proposition 1 in

the appendix is based on the Kuhn-Tucker theorem. Our proof strategy is to (i) identify

a relaxed problem so that (ii) the corresponding Lagrangian is maximized by the static

delegation menu. Both steps are not straightforward and intertwined.

To illustrate, suppose that the only incentive constraints involving type i in the relaxed

problem are ICi,j and ICk,i, j 6= i, k 6= i, and denote the multipliers by λi,j and λk,i. Due

to the additive structure, the Lagrangian can then be written as

L = µiVi(Di) + λi,j[Ui(Di)− Ui(Dj)]− λk,i[Uk(Dk)− Uk(Di)] + C1, (18)

where C1 does not depend on Di (but still on Dm, m 6= i). Now recall that Ui(D) =∫ ω̄
ω
uD(ω)fi(ω)dω for each type i. Together with (8), this delivers that

L = µiuDi
(ω)b(ω)fi(ω)− µiuDi

(ω̄)b(ω̄)fi(ω̄)+

+

∫ ω̄

ω

uDi
(ω)
{
µi[fi(ω) + (b(ω)fi(ω))′] + λi,jfi(ω)− λk,ifk(ω)

}
dω + C2, (19)

where C2 does not depend on Di. Observe that this expression essentially looks like (8),

yet with a different, the Lagrangian virtual likelihood µi[fi(ω)+(b(ω)fi(ω))′]+λi,jfi(ω)−
λk,ifk(ω), which now depends on the multipliers. The issue stated in point (ii) above is

when expression (19) is maximized by an interval delegation set, and in particular, by

29See footnote 28 for a detailed argument.
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Dst. We stress that the sufficient conditions for interval delegation to be optimal identified

by Amador and Bagwell [3] (see footnote 22) are not directly applicable here, since the

objective (19) is not of the form (8), as it contains additional terms with the multipliers.

We therefore extend the sufficient conditions in [3] to a domain of objective functions

that (potentially) includes objectives of the form (19) (see Lemma A.2 in the Appendix

for details). That is, if the Lagrangian virtual likelihood satisfies these conditions, an

interval maximizes (19), and, in addition, if the multipliers have the “right” magnitude,

this interval is Dst.

Since the Lagrangian virtual likelihood depends on the multipliers, whether it satis-

fies our sufficient conditions depends on the set of constraints we select for the relaxed

problem, which is the issue under point (i) above. Interestingly, considering the familiar

relaxed problem that imposes the adjacent constraints IC1,2, . . . , ICI−1,I does not work.

Instead, we adopt an idea developed in Krähmer and Strausz [26] and consider the (non-

adjacent) constraints that no type ` with ω0
` < ωst has an incentive to mimic any type

h with ω0
h > ωst.30 Under the assumption that ρi,j is decreasing, it can then be shown

that the Lagrangian virtual likelihoods induced by these constraints satisfy our sufficient

conditions (from Lemma A.2). In fact, as the proof reveals, it is sufficient to require that

ρh,` is decreasing only for such types ` and h.

Example (ctd). For the specification (12), as remarked above, ρ2,1 is decreasing if and

only if 3Aκ3 < κ2 and γ ≥ κ2/(2κ2 − 3Aκ3). In this case, static delegation is optimal by

Proposition 1. As a numerical example, consider A = 7
5
, κ3 = 0, and κ2 = 19

20
. Then these

conditions, together with Assumptions A1–A3 are satisfied, if and only if γ ∈ [1
2
, 9

14
).

An interesting question is what happens when the parties’ conflict of interest as mea-

sured by the bias is small. Proposition 1 may not be applicable in this case, because

virtual likelihood ratios may not be decreasing. In fact, for small b(ω) the virtual like-

lihood ratio ρi,j is approximately equal to the likelihood ratio fi/fj. Hence, increasing

likelihood ratios—which is a sufficient condition for our types ordering (10) (see Re-

mark 3)—are inconsistent with decreasing virtual likelihood ratios for small bias. As we

now show, however, static delegation is always optimal for small bias, irrespective of the

shape of the virtual likelihood ratio.

Proposition 2. Consider a bias b(ω) so that Assumptions A1–A3 are satisfied. Then

static delegation is optimal when the bias is equal to αb(ω) and α > 0 is sufficiently small.

If the bias is small, then the optimal delegation set with public types is close to “full”

delegation for all types (Di = [xA(ω), xA(ω̄)]). Intuitively, there is therefore little benefit

30[26] use this idea to show a result with a similar flavour, that is, in a unit good sequential screening
problem with money, a “static” contract is optimal when the agent has an ex post outside option.
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in screening types. To illustrate the underlying issue, consider, in the two types case, a

deviation from the optimal static menu and suppose the principal offers Dst to type 1 and

an upward shift D̃2 of Dst to type 2 so that type 1 is kept indifferent. By Lemma 4, the

difference between the first information effects is then negative, J I2 (D̃2) − J I2 (Dst
2 ) ≤ 0,

and the difference between the loss of control effects is positive, LC2(D̃2)−LC2(Dst
2 ) ≥ 0.

While both effects thus work in favor of static delegation, it is evident from (8) that both

differences converge to zero, as the bias gets small. Moreover, the difference between the

second information effects, J II2 (D̃2)−J II2 (Dst
2 ), also converges to zero. This is so, because

as the bias gets small, Dst converges to “full” delegation, that is, to the set [xA(ω), xA(ω̄)].

As a consequence, the benefits from permitting agent type 2 to choose actions which are

larger than those offered by Dst become smaller and smaller since the likelihood of the

set of (large) states in which the increased discretion could be utilized goes to zero. Our

proof shows that, as the bias gets small, the difference between the second information

effects converges faster than the differences between the first information and the loss of

control effects. This implies that, as the bias gets small, static delegation is optimal.

We point out that Proposition 2 critically rests on the fact that the optimal delegation

sets with public types converge to the same set for small bias, and is not universally true

for all sequential delegation settings. In our working paper (Kováč and Krähmer, [22]),

we explore a setting with two types where the support of F1 is a proper subset of the

support of F2 and show that even for small bias, sequential delegation may be optimal.

5 Sequential delegation

We now ask whether sequential delegation can be optimal. We establish a necessary

condition and a sufficient condition for the case with two types i = 1, 2. As we argue

later, insofar as only the question whether sequential delegation can be optimal at all is

concerned, these conditions can, mutatis mutandis, also be applied for more types. For

two types, we will then also identify properties of the shape of an optimal sequential

delegation menu. For reasons outlined below, this is much less tractable with more types.

We begin by deriving an intuitive sufficient condition for the optimality of sequential

delegation. To describe the basic idea, consider the optimal static delegation menu with

D1 = D2 = [xA(ω), xA(ωst)]. If types were public, then since ωst < ω0
2, the principal

would benefit from extending the upper end of D2 in order to be closer to the optimal

delegation set for type 2. Since types are private, however, if the principal wants to extend

the upper end of D2, she must remove some other actions in D2 so as to deter type 1

from picking D2. Removing actions makes it more costly for the agent to pick D2, and

so if actions are removed whose removal is very costly for type 1 in expectation, there is

more scope for extending the upper end of D2 without violating incentive compatibility.
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D̃2(θ, η, ε)

Figure 1: Marginal sequential delegation.

However, removing actions from D2 is not only costly for type 1, but by (8) also for

the principal herself since it reduces the information effect. Thus, when removing an

action, the principal has to put her own and type 1’s costs in proportion. Intuitively,

the principal benefits from replacing a set of actions within D2 by a set of actions at the

upper end of D2 if her relative gain from extending the interval, relative to agent type

1’s gain, is larger than her relative costs from removing actions, relative to agent type 1’s

costs.

We now make these considerations precise. Take a static delegation menu with D1 =

D2 = [xA(ω), xA(θ)] for some θ < ω̄ (for example, think of θ = ωst from Lemma 2).

We create a sequential delegation menu by leaving D1 unchanged, and modifying D2 by

slightly extending its upper end and including a small gap starting at the action xA(η),

where η ∈ (ω, θ], within D2 so that type 1 remains indifferent. Formally, let

D2(θ, η, ε) = [xA(ω), xA(η)] ∪ [xA(η + δ), xA(θ + ε)], (20)

where ε > 0 and δ = δ(ε) > 0 is the unique value such that U1(D1) = U1(D2(θ, η, ε)). We

refer to this modification as marginal sequential delegation (see Figure 1). A calculation

(shown in the appendix) yields that the effect of marginal sequential delegation on the

principal’s expected utility, conditional on type 2, is equal to

∂V2(D2(θ, η, ε))

∂ε

∣∣∣
ε=0

=

[
−ρ2,1(η)

∫ ω̄

θ

1− F1(ω)dω +

∫ ω̄

θ

1− F2(ω)− b(ω)f2(ω)dω

]
x′A(θ). (21)

Therefore, marginal sequential delegation is profitable for the principal if

R2,1(ω) ≡
∫ ω̄
θ

1− F2(ω)− b(ω)f2(ω) dω∫ ω̄
θ

1− F1(ω) dω
> ρ2,1(η). (22)

This inequality captures precisely the principal’s trade-off. The expected gain from ex-

tending the upper end of D2 by ε can be computed to be ε ·
∫ ω̄
θ

1−F2(ω)− b(ω)f2(ω) dω

for the principal and ε ·
∫ ω̄
θ

1 − F1(ω) dω for agent type 1. Thus, the left hand side of

(22) represents the principal’s relative gain from extending the interval, relative to agent

type 1’s gain. Moreover, it turns out that the expected cost of including a δ-gap around
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xA(η) is δ3 · [f2(η) + (b(η)f2(η))′] for the principal and δ3 · f1(η) for agent type 1. Thus,

the right hand side of (22) represents the principal’s relative costs from removing actions

from D2, relative to agent type 1’s costs.

By construction, marginal sequential delegation is incentive compatible for type 1. So

far, we have (silently) ignored the question whether it is also incentive compatible for type

2. Observe that the set D2(θ, η, ε) is an upward shift of the interval D1 = [xA(ω), xA(θ)].

We now impose that f2/f1 be increasing. By part (a) of Lemma 3, this ensures that type

2’s incentive constraint is automatically satisfied under marginal sequential delegation.

Lemma 6. If f2/f1 is increasing, marginal sequential delegation is incentive compatible.

We can now state our characterization result for two types which essentially says that

sequential delegation is optimal if and only if marginal sequential delegation is optimal.

Recall the definition of R2,1 in (22).

Proposition 3. (a) If f2/f1 is increasing, then

R2,1(ωst) > min
η≤ωst

ρ2,1(η) (23)

is sufficient for sequential delegation to be optimal.

(b) If R2,1 is decreasing, then (23) is necessary for sequential delegation to be optimal.

Part (a) follows straightforwardly from our previous considerations. If marginal se-

quential delegation is feasible and profitable, then some sequential delegation menu is

optimal for problem P .

Part (b) is more interesting. Clearly, if (23) is violated, then marginal sequential

delegation is not profitable. In other words, static delegation is locally optimal. In

principle, this still leaves room for a global modification to be profitable. The condition

that R2,1 is decreasing ensures that this is not the case, and plays the role of a second

order condition. Because the principal’s expected utility is, in general, not concave, an

additional condition is needed to ensure that a local is also a global optimum.

To prove part (b), we show that static delegation is optimal if condition (23) is vi-

olated. As with Proposition 1, we use the Kuhn-Tucker theorem to establish this. The

result does not directly follow from Proposition 1, as the conditions that R2,1 is decreas-

ing and the reverse of (23) are weaker than the requirement in Proposition 1 that ρ2,1 be

decreasing. For the two types case, these weaker conditions are sufficient, however.31

Condition (23) is somewhat tedious to check since ωst is only implicitly given. As a

corollary of Proposition 3, we now provide conditions that do not depend on ωst.

31Note that for the two types case, Proposition 1 follows from part (b) of Proposition 3 by Lemma
A.4 in the appendix.
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Lemma 7. Let f2/f1 be increasing, R2,1 be decreasing, and ρ2,1 be increasing. If R2,1(ω0
1) >

ρ2,1(ω), then there is a critical µ̂2 ∈ (0, 1] so that sequential delegation is optimal if and

only if µ2 ≤ µ̂2.

To see the result, note that under the conditions of the lemma, sequential delegation

is optimal if and only if R2,1(ωst) > ρ2,1(ω) by Proposition 3. In the appendix, we show

that ωst as defined in (2) and understood as a function of µ2 increases monotonically

from ω0
1 to ω0

2 as µ2 goes from 0 to 1. Hence, as R2,1 is decreasing, R2,1(ω0
1) > ρ2,1(ω)

implies that R2,1(ωst) > ρ2,1(ω) if and only if µ2 is below a critical cut-off.

One may wonder whether there are environments in which all the conditions in

Lemma 7 can be jointly satisfied. Our example shows that this is indeed the case.

Example (ctd). Consider the specification (12), with A = 7
5
, κ3 = 19

20
, and κ2 = 0. A

straightforward computation reveals that Assumptions A1–A3 are satisfied if and only if

γ < 5
9
. Moreover, f2/f1 is increasing, and ρ2,1 is increasing (see (17)). Furthermore, R2,1 is

decreasing on [0, 1] if and only if γ ≥ 95
251

. Finally, it can be verified that R2,1(ω0
1) > ρ2,1(ω)

for all γ ∈ [ 95
251
, 5

9
). In this case, all assumptions of Lemma 7 are satisfied.

Proposition 3 provides conditions when sequential delegation is optimal with two

types. We now study how a delegation menu looks like in this case. We begin with type

1’s delegation set. As argued after Proposition 1, at the solution to the relaxed problem

where we disregard type 2’s incentive constraint, type 1’s incentive constraint is binding

(i.e., U1(D1) = U1(D2)) and D1 is an interval, truncated from above. This implies that

type 2’s incentive constraint is automatically satisfied if f2/f1 is increasing. The reason

is that since D1 is an interval truncated from above, D2 must be an upward shift of D1

and therefore it follows from part (a) of Lemma 3 that U2(D2) ≥ U2(D1).

Lemma 8. Suppose f2/f1 is increasing. There is a solution to P so that type 1’s incentive

constraint is binding, and D∗1 is an interval:

U1(D∗1) = U1(D∗2), and D∗1 = [xA(ω), xA(ω∗1)], where ω∗1 ∈ [ω0
1, ω̄]. (24)

Next, we aim to narrow down the possible shapes of type 2’s delegation set D∗2 at

an optimum. Condition (22) suggests that D∗2 can, in general, look rather complicated.

Intuitively, suppose that the upper endpoint of D∗2 is the agent’s optimal action in state

θ, xA(θ). Recall that if (22) holds, it is beneficial to marginally extend the upper end of

D2 and insert a marginal gap around the action xA(η). Reversely, if it does not hold, it is

beneficial to lower the upper end of D2 and include action xA(η). Hence, at an optimum,

D∗2 contains all actions xA(η) for which (22) is violated and no actions xA(η) for which

(22) holds. Therefore, absent any structure on the shape of the right and left hand side

in (22) it looks rather daunting to pin down D∗2.

21



xA(ω̄)xA(ω)

xL

xL z

z

y

D∗2

D̃∗2

Figure 2: Example of construction of D̃∗2.

Yet, we can narrow down the possible shapes of type 2’s delegation set if the benefits

ratio R2,1 is decreasing, and the cost ratio ρ2,1 is increasing. The former says that the

marginal benefit of extending the upper end of D2 becomes smaller the larger the upper

end. The latter says that the marginal cost of inserting a gap around an action becomes

smaller the smaller the action. Intuitively, the upper end of D2 should thus be gradually

extended and, starting at the bottom of D2, ever larger actions should be removed until

the marginal benefits equal the marginal costs. The next result makes this precise.

Proposition 4. Let f2/f1 be increasing, R2,1 be decreasing, and ρ2,1 be increasing. Then

there is a solution to P which satisfies (24) and such that there are actions xL ≤ xA(ω),

y, z ∈ [xA(ω), xA(ω̄)], y ≤ z so that

(a) D∗2 = [y, z], or

(b) D∗2 = {xL} ∪ [y, z].

The basic idea to show the lemma is that for any D∗2 we can use Lemma 5(a) to

construct a profitable modification of D∗2 of the form (a) or (b). For example, suppose D∗2

has a smallest action xL ≤ xA(ω) and a largest action z ≤ xA(ω̄) but is not of the form

(b) (see Figure 2). Then, because U1(D∗1) = U1(D∗2) by Lemma 8, an intermediate value

argument implies that there is a modification D̃∗2 of the first type in (b) so that type 1

stays indifferent between D∗1 and D̃∗2. By construction, the first condition of Lemma 5(a)

is met, and D̃∗2 is an upward shift of D∗2 (all “gaps” have been “merged” and moved to

the bottom). Thus, since ρ2,1 is increasing by assumption, Lemma 5(a) implies that the

principal prefers D̃∗2 to D∗2.

Thus, if sequential delegation is optimal, the optimal delegation set for type 2 is a

(possibly degenerate) interval, truncated from below and above, as in (a), or it contains

a single gap “at the bottom” as in (b). Moreover, since IC1,2 is binding (Lemma 8), the

largest action in D∗2 is larger than that in D∗1, i.e., xA(ω∗1) < z.

Under the condition that f2/f1 is increasing, R2,1 is decreasing and that ρ2,1 is increas-

ing, Lemma 7 and Proposition 4 give a fairly complete qualitative picture of the solution

to P . In principle, one could now precisely pin down an optimal sequential delegation

menu by optimizing over the possible forms (a) and (b) in Proposition 4.
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γ

xL

y z

Figure 3: Type 2’s optimal delegation set (A = 7
5
, κ3 = 19

20
, κ2 = 0, µ2 = 1

20
).

Example (ctd). Figure 3 illustrates type’s 2 delegation set D∗2 in the optimal delegation

menu (obtained numerically) for the regulation example with distributions given by (12).

Given A, κ3, κ2, and µ2, consider some feasible γ on the vertical axis.32 Draw the

corresponding horizontal line. D∗2 is then the intersection of that line with the plotted

region (e.g., for γ = 2
5
, we have D∗2 = {xL} ∪ [y, z] = {0.650} ∪ [0.822, 0.949]). The figure

indicates that static delegation is optimal for sufficiently low values of γ (γ ≤ 0.064),

consistent with Proposition 2. Otherwise, sequential delegation is optimal. �

We conclude this section with remarks on the robustness of our analysis.

Number of types

Our result on optimal sequential delegation for two types characterizes both, when se-

quential delegation is optimal (Proposition 3) and how an optimal delegation menu looks

like (Proposition 4). To prove this, we have exploited the fact that when we ignore IC2,1,

then D1 is an interval, truncated from above, and IC1,2 is binding. This means that type

2’s delegation set D2 is necessarily an upward shift of D1. In other words, the solution

(D1, D2) to the relaxed problem where IC2,1 is ignored is monotone in the upward shift

order. Under the single-crossing condition that f2/f1 is increasing, this implies that IC2,1

is automatically satisfied by Lemma 3.

With more than two, say with three types, this logic fails. Even if we knew that at

the relaxed problem where only IC1,2 and IC2,3 are imposed, all constraints are binding,

then D2 will typically not be an interval, and hence nothing guarantees that D3 is an

upward shift of D2. In other words, the difficulty with more than two types is to show

that the optimal delegation sets for an appropriately relaxed problem are upward shifts

of one another and would also solve the original problem.33

32Recall from the example above that Assumptions A1–A3 are satisfied if and only if γ < 1/(2A−1) =
5
9 ≈ 0.556 (upper bound for γ in the figure) and that the assumptions of Lemma 7 as well as Proposition 4
hold for γ ≥ 95

251 ≈ 0.378.
33We conjecture, however, that even in the case with more than two types, delegations sets will
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On the other hand, it is comparatively easy to derive sufficient conditions for the

optimality of sequential delegation along the lines of Proposition 3. For this, one only

needs to identify a profitable modification of the optimal static menu. To sketch the

idea, fix a type k and split the set of types in a group i ≤ k and a group j > k

Consider the marginal modification where all types i ≤ k receive the optimal static

delegation set Dst and all types j > k receive D2(ωst, η, ε) as defined in (20) where now

Uk(D
st) = Uk(D2(ωst, η, ε)).

The marginal modification is then profitable for the principal if the appropriately

adjusted analogue to condition (23) holds.34 The modification is incentive compatible if

Ui(D
st) ≥ Ui(D2(ωst, η, ε)) for all i ≤ k, and Uj(D2(ωst, η, ε)) ≥ Uj(D

st) for all j > k.

Since D2(ωst, ε) is an upward shift of Dst, Lemma 3 implies that this is true if fi/fk is

decreasing for all i ≤ k, and fj/fk is increasing for all j > k.

Non-monotone virtual likelihood ratios

While our results in the two types case are most clear-cut when the virtual likelihood

ratio ρ2,1 is monotone, our analysis suggests insights also for the case when ρ2,1 is not

monotone. If, for example, ρ2,1 is U-shaped with a minimum at η̂ ∈ (ω, ω̄), then the logic

outlined before the statement of Proposition 4 can be adapted to show that D2 has a

gap around xA(η̂), that is, “in the middle” (rather than “at the bottom”). The reason is

that if the principal has to remove some actions from D2 under the constraint that type

1’s incentive constraint be binding, then it is most cost-effective to insert a gap around

xA(η̂) where ρ2,1 is smallest.

In our working paper (Kováč and Krähmer, [22]), we analyze the situation in which

the agent receives an imperfect signal about the state with type 2 receiving a more precise

signal than type 1, implying that F2 is more spread out than F1. Virtual likelihood ratios

are then not monotone. In fact, ρ2,1 drops sharply at one point and increases sharply at

some other larger point. Consistent with the considerations in the previous paragraph,

we show in the working paper that if sequential delegation is optimal, type 2’s delegation

set will be the disjoint union of an interval and a single action.35

qualitatively look like in Proposition 4 as long as virtual likelihood ratios are increasing. This is based
on the logic outlined before the statement of Proposition 4 which suggests that the optimal way to
prevent low types from mimicking high types is to substitute small for large actions in the high types
delegation set.

34Because the modification affects the principal’s utility from all types j > k, instead of F2, one has
to work with the conditional distribution of the state, conditional on j > k.

35More precisely, with replacement noise, the induced distributions F1 and F2, unlike in the current
setup, do not have the same support, with the support of F1 included in the support of F2. F1 can,
however, be approximated by a sequence of smooth distributions Fn

1 that have the same support as F2.
For n large, the virtual likelihood ratio drops sharply at the lower end of the support of F1 and increases
sharply at the upper end of the support of F1. Another difference to the current setup is that for small
bias, Assumptions A1–A3 are violated for the average distribution F st which implies that the optimal
static delegation set may not be an interval. For this case, it turns out that sequential delegation is
always optimal.
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6 Type-dependent bias

In this section, we return to our comment in footnote 16 and consider the case that the

bias function depends on the agent’s type i. We first note that at no point in the analysis,

we used that the bias function did not depend on i, and thus all our results remain true

as long as Assumptions A1–A3 hold when b(ω) is replaced by bi(ω).

An interesting special case arises when the agent has only private information about

the bias, but the distribution of the state is common knowledge: Fi = F . The question is

then whether it is optimal to elicit the bias from the agent. To explore this question, we

consider the case with constant bias bi > 0.36 In independent work, Tanner [43] analyzes

this case for the uniform distribution and for a subclass of the preferences (1) and (2),

and finds that the principal does not elicit the bias. Our results, which are based on

arguments very different from Tanner’s, allow us to readily extend this finding to any

distribution with log-concave density. Moreover, we argue that for the two types case,

eliciting the bias is suboptimal if the density has decreasing mean residual life.

Lemma 9. Consider the case with constant, type-dependent bias and type-independent

distribution. Assume that (a) f is log-concave, or (b) there are two types (i = 1, 2) and

F has decreasing mean residual life. Then it is optimal not to elicit the agent’s bias.

To understand (a), observe that the virtual likelihood ratio now becomes ρi,j(ω) =

1+ bi ·f ′(ω)/f(ω), which is decreasing if and only if f ′/f is decreasing, which means that

f is log-concave. Thus, part (a) is an immediate consequence of Proposition 1.

Part (b) of Lemma 9 is a consequence of Proposition 3(b). To see this, observe first

that f2/f1 = f/f = 1 is now always (weakly) increasing. Furthermore,

R2,1(ω) = 1− b2
1− F (ω)∫ ω̄

ω
1− F (ω̃)dω̃

is decreasing (25)

if and only if the mean residual life (see (13)) is decreasing. Finally, we verify in the

appendix that the necessary condition (23) is violated with type-independent distribution

and constant bias. Hence, Proposition 3(b) implies that eliciting the bias is not optimal.

Both, log-concave density and decreasing mean residual life are fairly mild require-

ments that are satisfied by a large class of distributions. Thus, together with Proposi-

tion 3, Lemma 9 makes clear that what matters for sequential delegation to be optimal

is primarily the agent’s private information about the distribution, not about the bias.

36Assumptions A1 and A3 impose upper bounds on the feasible set of biases: bi < Eω − ω and
f ′(ω)/f(ω) > −1/bi for all ω.
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7 Conclusion

In this paper, we have provided insights into the nature of optimal delegation when the

agent’s private information arrives sequentially. Our results demonstrate the robustness,

but also the limits, of interval delegation in this dynamic setting. While interval dele-

gation remains optimal in a large class of environments, the agent’s discretion may be

restricted in richer ways than simply imposing minimum or maximum thresholds on his

actions. In this sense, the principal’s desire to elicit the agent’s type provides a novel

rationale for restricting the discretion of a privately informed agent, next to restraining

agents from pursuing partisan interests or to motivate them to acquire costly information.

The Lagrangian techniques developed in this paper are likely to be useful in other

optimal delegation settings whenever additional constraints on the agent’s utility must

be met. Examples are settings where the agent has to be supplied with a given level of

expected utility. This may arise when there are participation constraints, but also in a

dynamic setting where each period a new state is drawn, and eliciting the state in the

current period requires to promise the agent a certain continuation value.

A Appendix

Preliminaries

Proof of formula (8). By standard arguments, xD(ω) is increasing and satisfies the enve-

lope condition37

uD(ω2)− uD(ω1) =

∫ ω2

ω1

xD(ω)dω. (26)

By (1) and (2), and using integration by parts, we obtain:

Vi(D)− Ui(D) =

∫ ω̄

ω

[−b(ω)xD(ω) + c(ω)]fi(ω) dω (27)

= −b(ω̄)fi(ω̄)uD(ω̄) + b(ω)fi(ω)uD(ω) +

∫ ω̄

ω

(b(ω)fi(ω))′uD(ω)dω + C,

where C =
∫ ω̄
ω
c(ω)fi(ω) dω does not depend on D. This implies (8).

Lemma A.1. Let

Γi(ω) ≡
∫ ω̄

ω

1− Fi(ω̃)− b(ω̃)fi(ω̃) dω̃. (28)

(a) The equation Γi(ω) = 0 has a unique solution in the interval (ω, ω̄), denoted ω0
i .

Moreover, Γi(ω) > 0 for all ω ∈ [ω, ω0
i ), Γi(ω) < 0 for all ω ∈ (ω0

i , ω̄), and Γi(ω̄) = 0.

37The formal argument is identical to the argument in Kováč and Mylovanov [21] for quadratic pref-
erences.
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(b) Let D be a delegation set with maximal action xA(θ̂) = maxD, θ̂ < ω̄. In addition,

for θ̂ ≤ θ, let D(θ̂, θ) = D ∪ [xA(θ̂), xA(θ)]. Then

∂Vi(D(θ̂, θ))

∂θ
= Γi(θ)x

′
A(θ). (29)

Proof of Lemma A.1. (a) Γi is strictly convex, since Γ′′i (ω) = fi(ω) + (b(ω)fi(ω))′ > 0

due to A1. Moreover, Γi(ω) > 0 by A3 and clearly Γi(ω̄) = 0, which together with

strict convexity implies that Γi can attain the value 0 at most once in the interval (ω, ω̄).

Because Γ′i(ω̄) = b(ω̄)fi(ω̄) > 0, we have Γi(ω) < 0 for ω sufficiently close to ω̄. The

existence of a solution then follows from continuity. The remaining inequalities follow

from the convexity of Γi and Γi(ω
0
i ) = 0.

(b) By (8),

Vi(D(θ̂, θ)) = c+

∫ θ

θ̂

U(ω, xA(ω))[fi(ω) + (b(ω)fi(ω))′] dω

+

∫ ω̄

θ

U(ω, xA(θ))[fi(ω) + (b(ω)fi(ω))′] dω − U(ω̄, xA(θ))b(ω̄)fi(ω̄), (30)

where c is a constant that does not depend on θ. By Leibniz’ rule,

∂Vi(D(θ̂, θ))

∂θ
= U(θ, xA(θ))[fi(θ) + (b(θ)fi(θ))

′]− U(θ, xA(θ))[fi(θ) + (b(θ)fi(θ))
′]

+

∫ ω̄

θ

∂

∂θ
U(ω, xA(θ))[fi(ω) + (b(ω)fi(ω))′] dω − b(ω̄)fi(ω̄)

∂

∂θ
U(ω̄, xA(θ))

=

∫ ω̄

θ

[ω + a′(xA(θ))]x′A(θ)[fi(ω) + (b(ω)fi(ω))′] dω

− b(ω̄)fi(ω̄)[ω̄ + a′(xA(θ))]x′A(θ)

=

[ ∫ ω̄

θ

(ω − θ)[fi(ω) + (b(ω)fi(ω))′] dω − b(ω̄)fi(ω̄)(ω̄ − θ)
]
x′A(θ), (31)

where the third equality follows from the agent’s first-order condition, θ+ a′(xA(θ)) = 0.

The desired equality (29) follows now from integration by parts.

Proofs for Section 2

The proof of Lemma 1 is based on the following lemma.

Lemma A.2. Let g : [ω, ω̄] → R be a differentiable function, g ∈ R be a constant, and

let ω0 ∈ [ω, ω̄]. Assume that the following conditions hold:

(c1) g′(ω) ≤ 0 for all ω ∈ [ω, ω0].

(c2)
∫ ω̄
ω
g(ω̃) dω̃ ≤ 0 for all ω ∈ [ω0, ω̄], with equality at ω0.

(c2’) g ≥ 0.
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Then the delegation set D0 = [xA(ω), xA(ω0)] solves the maximization problem

max
D

uD(ω)g + uD(ω̄)g(ω̄) +

∫ ω̄

ω

uD(ω)(−g′(ω)) dω. (32)

Proof of Lemma A.2. The envelope condition (26) and integration by parts imply

uD(ω̄)g(ω̄) +

∫ ω̄

ω0

uD(ω)(−g′(ω)) dω = uD(ω0)g(ω0) +

∫ ω̄

ω0

xD(ω)g(ω) dω. (33)

The objective function (32) can therefore be written as

uD(ω)g + uD(ω0)g(ω0) +

∫ ω0

ω

uD(ω)(−g′(ω)) dω +

∫ ω̄

ω0

xD(ω)g(ω) dω. (34)

The first three terms in (34) are linear in uD. We now show that all coefficients at uD

are non-negative. The coefficient in the first term, g, is non-negative by (c2’). Moreover,

all coefficients in the third term, −g′(ω), are non-negative by (c1). Finally, as to the

second term, observe that g(ω0) is equal to −Ḡ′(ω0), where Ḡ(ω) =
∫ ω̄
ω
g(ω̃) dω̃. By (c2),

Ḡ(ω0) = 0, while Ḡ(ω) ≤ 0 for all ω > ω0. Thus, Ḡ′(ω0) ≤ 0.

As the next step, we show that the fourth term in (34) is bounded from above by 0.

Using integration by parts for the Riemann-Stieltjes integral we obtain38

∫ ω̄

ω0

xD(ω)g(ω) dω = −xD(ω̄)Ḡ(ω̄) + xD(ω0)Ḡ(ω0) +

∫ ω̄

ω0

Ḡ(ω) dxD(ω). (35)

Now the first and the second term on the right hand side are equal to zero by definition

of Ḡ and due to (c2), respectively. Moreover, the third term is non-positive, as xD is

increasing and due to (c2). Thus, indeed
∫ ω̄
ω0 xD(ω)g(ω) dω ≤ 0.

It follows from the previous arguments that (34) is maximized by the delegation set

D = [ω, ω0
i ], as for this set: xD(ω) = xA(ω) on [ω, ω0

i ] and xD(ω) is constant on [ω0, ω̄].

The former implies that the first three terms in (34) are maximized point-wise, while the

fourth term attains its upper bound, as
∫ ω̄
ω0 g(ω) dω = 0 due to (c2).

Proof of Lemma 1. The existence and uniqueness of the solution ω0
i follow from part (a)

of Lemma A.1. Now we verify that conditions (c1), (c2), (c2’) from Lemma A.2 are

satisfied when we set g(ω) = 1− Fi(ω)− b(ω)fi(ω) and g = fi(ω)b(ω). Clearly, (c1) and

(c2’) are satisfied by Assumptions A1 and A2. Finally, (c2) follows directly from part (a)

of Lemma A.1.

38Recall that xD is increasing.
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Proofs for Section 3

Proof of Lemma 3. (a) Let us denote ∆(ω) = uD̃(ω)− uD(ω). Then

Ui(D̃)− Ui(D) =

∫ ω̄

ω

∆(ω) fi(ω) dω

=

∫ ω̂

ω

∆(ω)
fi(ω)

fj(ω)
fj(ω) dω +

∫ ω̄

ω̂

∆(ω)
fi(ω)

fj(ω)
fj(ω) dω

≥ fi(ω̂)

fj(ω̂)

∫ ω̂

ω

∆(ω)fj(ω) dω +
fi(ω̂)

fj(ω̂)

∫ ω̄

ω̂

∆(ω)fj(ω) dω

=
fi(ω̂)

fj(ω̂)

∫ ω̄

ω

∆(ω)fj(ω) dω =
fi(ω̂)

fj(ω̂)
[Uj(D̃)− Uj(D)] ≥ 0, (36)

where ω̂ is given by (14), since D̃ is an upward shift of D. The inequality in the third

line follows from the inequalities: fi(ω)/fj(ω) ≤ fi(ω̂)/fj(ω̂) (since fi/fj is increasing)

and ∆(ω) ≤ 0 (due to (14)) for ω ≤ ω̂, while fi(ω)/fj(ω) ≥ fi(ω̂)/fj(ω̂) and ∆(ω) ≥ 0

for ω ≥ ω̂. The final inequality follows by assumption. This establishes part (a).

Part (b) follows from an analogous chain of inequalities as in part (a) but, since fi/fj

is now decreasing, the inequalities are now reversed. This completes the proof.

Proof of Lemma 4. By (14), uD̃(ω) ≤ uD(ω) and uD̃(ω̄) ≥ uD(ω̄), implying the claim.

Proof of Lemma 5. The proof is identical to the proof of Lemma 3 where we replace fi(ω)

by fi(ω) + (b(ω)fi(ω))′.

Proofs for Section 4

The proof of Proposition 1 makes use of the following two lemmata. Lemma A.3 is a

slightly modified version of Luenberger’s [29] sufficiency condition (Theorem 1, p. 220)

tailored to our maximization problem over menus of delegation sets.

Lemma A.3. Let Ω be an arbitrary set (Ω 6= ∅). Let f : Ω→ R and G : Ω→ Rk (where

k ∈ N) be two functions and let y ∈ Rk. Suppose there exists λ ∈ Rk, λ ≥ 0 and an

element x0 ∈ Ω such that G(x0) = y and

f(x0) + λTG(x0) ≥ f(x) + λTG(x) (37)

for all x ∈ Ω. Then x0 solves the problem maxx∈Ω f(x) s.t. G(x) ≥ y.

Lemma A.4. For all i, j, define

Ri,j(θ) =

∫ ω̄
θ

1− Fi(ω)− b(ω)fi(ω) dω∫ ω̄
θ

1− Fj(ω) dω
. (38)

If ρi,j is decreasing, then Ri,j is decreasing, and Ri,j(ω) ≤ ρi,j(ω) for all ω ∈ [ω, ω̄].
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Proof of Lemma A.3. Let x ∈ Ω be such that G(x) ≥ y. Then, since λ ≥ 0, it follows

that λTG(x) ≥ λTy = λTG(x0). This, together with (37), yields

f(x0) + λTG(x0) ≥ f(x) + λTG(x) ≥ f(x) + λTG(x0). (39)

Hence, f(x0) ≥ f(x), and thus x0 indeed solves maxx∈Ω f(x) s.t. G(x) ≥ y.

Proof of Lemma A.4. We proceed in three steps.

Step 1. We show a general statement: If g1, g2 : [ω, ω̄] → R are integrable functions

such that g1 > 0 and g2(ω)/g1(ω) is decreasing in ω, then
∫ ω̄
θ
g2(ω) dω/

∫ ω̄
θ
g1(ω) dω is

decreasing in θ and it is bounded from above by g2(θ)/g1(θ).

To see this, let θ1, θ2 ∈ [ω, ω̄] with θ1 < θ2. Monotonicity and positivity of g1 imply∫ ω̄
θ2
g2(ω) dω∫ ω̄

θ2
g1(ω) dω

=

∫ ω̄
θ2

g2(ω)
g1(ω)

· g1(ω) dω∫ ω̄
θ2
g1(ω) dω

≤
∫ ω̄
θ2

g2(θ2)
g1(θ2)

· g1(ω) dω∫ ω̄
θ2
g1(ω) dω

=
g2(θ2)

g1(θ2)
. (40)

By an analogous argument,

g2(θ2)

g1(θ2)
≤
∫ θ2
θ1
g2(ω) dω∫ θ2

θ1
g1(ω) dω

. (41)

Now (40) and (41) imply that∫ ω̄
θ2
g2(ω) dω∫ ω̄

θ2
g1(ω) dω

≤
∫ θ2
θ1
g2(ω) dω +

∫ ω̄
θ2
g2(ω) dω∫ θ2

θ1
g1(ω) dω +

∫ ω̄
θ2
g1(ω) dω

=

∫ ω̄
θ1
g2(ω) dω∫ ω̄

θ1
g1(ω) dω

. (42)

Hence,
∫ ω̄
θ
g2(ω) dω/

∫ ω̄
θ
g1(ω) dω is decreasing. It is bounded by g2(θ)/g1(θ) due to (40).

Step 2. We show that [1−Fi(θ)−b(θ)fi(θ)]/[1−Fj(θ)] is decreasing in θ. For this observe

that
1− Fi(θ)− b(θ)fi(θ)

1− Fj(θ)
=

∫ ω̄
θ
fi(ω) + (b(ω)fi(ω))′ dω∫ ω̄

θ
fj(ω) dω

− b(ω̄)fi(ω̄)

1− Fj(θ)
. (43)

Now, the first term on the right hand side is decreasing due to Step 1 with g2 = fi+(bfi)
′

and g1 = fj, while the second term (including the minus sign) is decreasing, as b(ω̄)fi(ω̄) ≥
0, and 1− Fj(θ) is decreasing. Moreover, it follows from Step 1 and from b(ω̄)fi(ω̄) ≥ 0

that [1− Fi(θ)− b(θ)fi(θ)]/[1− Fj(θ)] ≤ [fi(θ) + (b(θ)fi(θ))
′]/fj(θ).

Step 3. Finally, let g2 = 1−Fi−bfi and g1 = 1−Fj. ThatRi,j(θ) =
∫ ω̄
θ
g2(ω) dω/

∫ ω̄
θ
g1(ω)dω

is decreasing now follows by the monotonicity established in Step 1 and 2. That Ri,j ≤ ρi,j

follows from the bound established in Step 1 and the final inequality in Step 2.
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Proof of Proposition 1.39 Define the non-empty sets40

L =
{
` ∈ {1, . . . , I} | ω0

` < ωst
}
, H =

{
h ∈ {1, . . . , I} | ω0

h > ωst
}
. (44)

We show that (Dst, . . . , Dst) solves the relaxed problem

R : max
(D1,...,DI)

∑
i

µiVi(Di) s.t. IC`,h for all ` ∈ L, h ∈ H. (45)

Since (Dst, . . . , Dst) satisfies all ignored constraints, it then also solves problem P .41

Let λ`,h be the multiplier associated to IC`,h, and let λ be the |L| · |H| × 1 vector of

λ`,h’s. The Lagrangian for problem R is

L(D1, . . . , DI , λ) =
∑
`∈L

(
µ`V`(D`) +

∑
h∈H

λ`,h[U`(D`)− U`(Dh)]

)
+
∑
h∈H

µhVh(Dh). (46)

Using (8) and the fact that Ui(Dj) =
∫ ω̄
ω
uDj

(ω)fi(ω) dω, it follows from inspection that

L(D1, . . . , DI , λ) =
∑

i Li(Di, λ), where for ` ∈ L and h ∈ H,

L`(D`, λ) = µ`uD`
(ω)f`(ω)b(ω)− µ`uD`

(ω̄)f`(ω̄)b(ω̄)

+

∫ ω̄

ω

uD`
(ω)

{
µ`[f`(ω) + (b(ω)f`(ω)′)] +

∑
h∈H

λ`,hf`(ω)

}
dω, (47)

Lh(Dh, λ) = µhuDh
(ω)fh(ω)b(ω)− µhuDh

(ω̄)fh(ω̄)b(ω̄)

+

∫ ω̄

ω

uDh
(ω)

{
µh[fh(ω) + (b(ω)fh(ω)′)]−

∑
`∈L

λ`,hf`(ω)

}
dω. (48)

In what follows we show that there exists λ ≥ 0 (component-wise) such that Dst max-

imizes L`(D`, λ) for each ` ∈ L, as well as Lh(Dh, λ) for each h ∈ H. This will imply

that the menu (Dst, . . . , Dst) maximizes L(D1, . . . , DI , λ). According to Lemma A.3,

(Dst, . . . , Dst) solves problem R.42

We proceed in three steps. In Step 1, we propose the multipliers. We derive them

from a restricted problem allowing only for intervals. In Steps 2 and 3, we show that for

the proposed multipliers, Dst maximizes L`(D`, λ) and Lh(Dh, λ).

39The selection of the constraints of the relaxed problem, and Step 1 of the proof below are adopted
from the proof of Theorem 1 in Krähmer and Strausz [26].

40To see non-emptyness, recall from Lemma 2 that
∑

i µiΓi(ω
st) = 0. Now, if ω ≤ ω0

1 , then by
Lemma A.1, Γi(ω) ≥ 0 (with strict inequality for all i > 1). Thus,

∑
i µiΓi(ω) > 0. Analogously∑

i µiΓi(ω) < 0 for ω > ω0
I . Therefore ω0

1 < ωst < ω0
I .

41If ω0
i = ωst for some type i ∈ {1, . . . , I}, we ignore all constraints for type i. Because ωst maximizes

the principal’s expected utility conditional on such a type i, we omit it from further considerations. For
the remainder of the proof, we for simplicity assume that there is no such type i.

42Observe that for the delegation menu (Dst, . . . , Dst) all IC`,h constraints hold with equality, as
required in Lemma A.3.
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Step 1. We establish the multipliers λ`,h. For this consider a restricted problem where

all delegations sets Di are intervals of the form [xA(ω), xA(ω̂i)], where ω̂i ∈ [ω, ω̄]. As

this problem differs from problem R only in the domain, it has the same Lagrangian.

Moreover, the maximization of each of the Li’s is just a single-variable maximization

problem with respect to ω̂i. By an analogous argument as in the proof of part (b) of

Lemma A.1, the first-order conditions for the restricted problem are

` ∈ L : µ`Γ`(ω
st) +

∑
h∈H

λ`,h

∫ ω̄

ωst

1− F`(ω) dω = 0, (49)

h ∈ H : µhΓh(ω
st)−

∑
`∈L

λ`,h

∫ ω̄

ωst

1− F`(ω) dω = 0, (50)

with Γi(ω) defined by (28). This is a system of I linear equations in the |L|·|H| unknowns

λ`,h. We show that it has a non-negative solution λ, that is, λ`,h ≥ 0. To see this, it is

useful to write the system in matrix notation Aλ = β. Let β be the I × 1 vector with

component βi = −µiΓi(ωst). Consider the index m with λm = λ`,h, and define αm as the

I×1 vector with the entry
∫ ω̄
ωst 1−F`(ω) dω in the `-th and the entry −

∫ ω̄
ωst 1−F`(ω) dω

in the h-th row and 0’s elsewhere:

αTm =

(
0, . . . , 0,

∫ ω̄

ωst

1− F`(ω) dω, 0, . . . , 0,−
∫ ω̄

ωst

1− F`(ω) dω, 0, . . . , 0

)
. (51)

↑
`

↑
h

Finally, let A = (α1, . . . , α|L|·|H|). It can now be seen by inspection that the system (49),

(50) is equivalent to Aλ = β.

To see that Aλ = β has a non-negative solution, recall from Farkas’ lemma that

exactly one of the following two statements is true:

There exists a λ ∈ R|L|·|H| such that Aλ = β and λ ≥ 0. (52)

There exists a y ∈ RI such that yTA ≥ 0 and yTβ < 0. (53)

We show that the second statement is not true. Assume, to the contrary, it is true,

i.e., such a y exists. Then yTαm ≥ 0 for all m ∈ {1, . . . , |L| · |H|}, or equivalently

(y` − yh)
∫ ω̄
ωst 1− F`(ω)dω ≥ 0. Hence, y` ≥ yh for all ` ∈ L, h ∈ H, and thus,

max
h∈H

yh ≤ min
`∈L

y`. (54)

Recall that ω0
` ≤ ωst and ω0

h ≥ ωst by definition of L and H. Then by part (a) of
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Lemma A.1, we have β` = −µ`Γ`(ωst) ≥ 0 and βh = −µhΓh(ωst) ≤ 0. Thus,

yTβ =
∑
`∈L

β`y` +
∑
h∈H

βhyh ≥ min
`∈L

y`
∑
`∈L

β` + max
h∈H

yh
∑
h∈H

βh ≥ max
h∈H

yh
∑
i∈L∪H

βi = 0, (55)

where the second inequality follows from (54), and the final equality from the definition

of ωst and β.

Step 2. We show that for the multipliers established in Step 1, Dst maximizes L`(D`, λ)

for all ` ∈ L. For this we apply Lemma A.2 where we set

g(ω) = µ`(1−F`(ω)−b(ω)f`(ω))+
∑
h∈H

λ`,h(1−F`(ω)) and g = µ`f`(ω)b(ω). (56)

Then g(ω̄) = −µ`b(ω̄)f`(ω̄) and −g′(ω) = µ`(f`(ω) + (b(ω)f`(ω))′) +
∑

h∈H λ`,hf`(ω), and

thus the objective function in (32) becomes equal to L`(D`, λ).

By Lemma A.2, it is thus sufficient to verify that conditions (c1), (c2), (c2’) are

satisfied for ω0 = ωst. Clearly, condition (c2’) is satisfied by Assumption A2. It follows

from Assumption A1 and from λ ≥ 0 that g′(ω) < 0 for all ω ∈ [ω, ω̄]. This shows that

(c1) is satisfied. Moreover, it also implies that Ḡ(ω) =
∫ ω̄
ω
g(ω̃) dω̃ is convex. Now recall

that the first-order condition (49) can be rewritten as Ḡ(ωst) = 0. This together with

the convexity of Ḡ and Ḡ(ω̄) = 0 implies that Ḡ(ω) ≤ 0 for all ω ∈ [ωst, ω̄]. Thus, indeed

(c2) is satisfied.

Step 3. We show that for the multipliers established in Step 1, Dst maximizes Lh(Dh, λ)

for all h ∈ H. We again apply Lemma A.2 where we set

g(ω) = µh(1−Fh(ω)−b(ω)fh(ω))−
∑
`∈L

λ`,h(1−F`(ω)) and g = µhfh(ω)b(ω). (57)

Then g(ω̄) = −µhb(ω̄)fh(ω̄) and −g′(ω) = µh(fh(ω)+(b(ω)fh(ω))′)−
∑

`∈L λ`,hf`(ω), and

thus the objective function in (32) becomes equal to Lh(Dh, λ).

By Lemma A.2, it is thus sufficient to verify that conditions (c1), (c2), (c2’) are

satisfied for ω0 = ωst. First, (c2’) is satisfied by Assumption A2. Second, we verify

(c1). Assume, to the contrary, that (c1) does not hold, i.e., that g′(ω) > 0 for some

ω = ω̃ < ωst. Let us rewrite

−g′(ω) = µh[fh(ω) + (b(ω)fh(ω))′]−
∑
`∈L

λ`,hf`(ω)

=

[
µh −

∑
`∈L

λ`,h
1

ρh,`(ω)

]
[fh(ω) + (b(ω)fh(ω))′]. (58)

Then it follows from the assumption that ρh,` is decreasing and from Assumption A1, that
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the first factor (in square brackets) is decreasing.43 Thus, g′(ω) > 0 for all ω > ω̃. As

b(ω̄) > 0, by Assumption A2, we have g(ω̄) = −µhb(ω̄)fh(ω̄) ≤ 0, and we obtain g(ω) =

g(ω̄) −
∫ ω̄
ω
g′(ω̃) dω̃ < 0 for all ω ∈ (ω̃, ω̄). Since ω̃ < ωst, this implies

∫ ω̄
ωst g(ω) dω < 0,

which contradicts the first-order condition (50).

Finally, we verify (c2). Consider first ω ∈ [ω0
h, ω̄]. Recall that then Γh(ω) < 0 due to

part (a) of Lemma A.1. As λ`,h ≥ 0, it follows immediately that
∫ ω̄
ω
g(ω) dω ≤ 0 for all

ω ∈ [ω0
h, ω̄]. Thus, it remains to show the desired inequality in (c2) for ω ∈ [ωst, ω0

h). In

this case, part (a) of Lemma A.1 implies that Γh(ω) > 0. Let us now rewrite

∫ ω̄

ω

g(ω̃) dω̃ = µhΓh(ω)−
∑
`∈L

λ`,h

∫ ω̄

ω

1−F`(ω̃) dω̃ =

[
µh−

∑
`∈L

λ`,h

∫ ω̄
ω

1− F`(ω̃) dω̃

Γh(ω)

]
Γh(ω).

(59)

By assumption, ρh,` is decreasing, and by Lemma A.4, Γh(ω)/
∫ ω̄
ω

1−F`(ω̃) dω̃ is decreas-

ing. Thus, for ω ∈ [ωst, ω0
h) the term in the square brackets is decreasing (as Γh(ω) > 0),

while it is equal to 0 for ω = ωst (due to (50)). Hence, indeed
∫ ω̄
ω
g(ω̃) dω̃ ≤ 0 for

ω ∈ [ωst, ω0
h). This verifies (c2) and completes the proof.

Proof of Proposition 2. Let b(ω) be such that Assumptions A1–A3 are satisfied. We

show first that A1–A3 are also satisfied when the bias is αb(ω), where α ∈ (0, 1]. First,

consider A1. It is clearly satisfied when (b(ω)fi(ω))′ ≥ 0. It is also satisfied when

(b(ω)fi(ω))′ < 0, because then fi(ω) + (αb(ω)fi(ω))′ = fi(ω) + α(b(ω)fi(ω))′ ≥ fi(ω) +

(b(ω)fi(ω))′ > 0. Second, A2 is clearly satisfied. Third, consider A3. It is clearly satisfied

when
∫ ω̄
ω
b(ω)fi(ω) dω < 0. It is also satisfied when

∫ ω̄
ω
b(ω)fi(ω) dω ≥ 0, because then∫ ω̄

ω
1− Fi(ω)− αb(ω)fi(ω) dω ≥

∫ ω̄
ω

1− Fi(ω)− b(ω)fi(ω) dω > 0.

Before proceeding with the proof, let us prove the following useful result:

α

∫ ω̄
ωst b(ω)fi(ω) dω∫ ω̄
ωst 1− Fi(ω) dω

→ 1 for all i as α→ 0. (60)

To see this, recall from Lemma 2 that ωst satisfies
∫ ω̄
ωst 1− F st(ω)− αb(ω)f st(ω) dω = 0.

Thus,

α =

∫ ω̄
ωst 1− F st(ω) dω∫ ω̄
ωst b(ω)f st(ω) dω

, (61)

and it follows from the Implicit function theorem that ωst → ω̄ as α→ 0.44 By (61), the

43As ω0
i 6= ωst for all i ∈ L∪H, each of the conditions (49), (50), and thus also each of the Lagrangians

(47), (48), contains at least one multiplier that is positive. In other words: (i) For any ` ∈ L there is
h ∈ H such that λ`,h > 0. (ii) For any h ∈ H there is ` ∈ L such that λ`,h > 0.

44In order to apply the Implicit function theorem, we need to verify that the derivative of the right
hand side of (61) with respect to ωst is not equal to zero. Indeed, a straightforward computation reveals
that the derivative is equal to −1/(2b(ω̄)) 6= 0.
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ratio in (60) can be rewritten as∫ ω̄
ωst 1− F st(ω) dω∫ ω̄
ωst 1− Fi(ω) dω

·
∫ ω̄
ωst b(ω)fi(ω) dω∫ ω̄
ωst b(ω)f st(ω) dω

→ f st(ω̄)

f`(ω̄)
· b(ω̄)f`(ω̄)

b(ω̄)f st(ω̄)
= 1, (62)

where the limit for ωst → ω̄ is obtained by using L’Hospital’s rule for each fraction (twice

for the first one and once for the second one). This proves (60).

Let us now denote

m1 = min
ω, i

fi(ω), m2 = max
ω, i

fi(ω), m3 = max
ω, i
|(b(ω)f2(ω))′|, µ = min

i
µi. (63)

Minima and maxima exist due to continuity. Moreover, µ > 0 and, due to positive

densities, also m1 > 0. Now, consider ε > 0 such that

ε <
µ

m2 + µ
m1. (64)

By (60), there is ᾱ > 0 so that for all α ∈ (0, ᾱ):

αm3 < ε, and

∣∣∣∣− 1 + α

∫ ω̄
ωst b(ω)fi(ω) dω∫ ω̄
ωst 1− Fi(ω) dω

∣∣∣∣ < ε for all i. (65)

We are now in the position to show that static delegation is optimal when α ∈ (0, ᾱ).

We proceed as in the proof of Proposition 1. Fix α ∈ (0, ᾱ) (and thus the corresponding

ωst) and consider the relaxed problem R with constraints IC`,h as defined in the proof

of Proposition 1. We again show that Dst maximizes L`(D`, λ) as well as Lh(Dh, λ) for

each ` ∈ L, h ∈ H. The desired claim then follows from Lemma A.3

In Step 1, we establish the multipliers by the first-order conditions (49) and (50). In

addition, (49) and (65) imply:

∑
`∈L

∑
h∈H

λ`,h =
∑
`∈L

µ`

[
− 1 + α

∫ ω̄
ωst b(ω)f`(ω) dω∫ ω̄
ωst 1− F`(ω) dω

]
<
∑
`∈L

µ` · ε < ε. (66)

In Step 2, we show that Dst maximizes L`(D`, λ) with λ established in Step 1. Because

αb(ω) satisfies A1–A3, as remarked above, we can use the same proof as in Step 2 in the

proof of Proposition 1.

In Step 3, we show that Dst maximizes Lh(Dh, λ). We apply Lemma A.2 in the same

way as in Step 3 in the proof of Proposition 1 and we set

g(ω) = µh(1−Fh(ω)−αb(ω)fh(ω))−
∑
`∈L

λ`,h(1−F`(ω)), and g = µhαfh(ω)b(ω). (67)
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We now verify (c1), (c2), (c2’). Clearly, (c2’) is satisfied. In order to verify (c1), we have

−g′(ω) = µh[fh(ω) + α(b(ω)fh(ω))′]−
∑
`∈L

λ`,hf`(ω)

≥ µh(m1 − αm3)−m2

∑
`∈L

λ`,h ≥ µh(m1 − ε)−m2ε > 0, (68)

where the last inequality follows from (64), and the previous ones from (63), (65), and

(66). Thus, we have g′(ω) < 0 for all ω ∈ [ω, ω̄], and this verifies (c1). Verification of

(c2) then follows from an identical argument as in Step 2 of Proposition 1. (Again αb(ω)

satisfies A1–A3, as remarked above.) This completes the proof.

Proofs for Section 5

Proof of formula (21). For small ε > 0 and arbitrary δ > 0 consider the delegation set

D̃2(θ, η, δ, ε) = [xA(ω), xA(η)] ∪ [xA(η + δ), xA(θ + ε)], (69)

and denote the principal’s and agent type 1’s expected utility from this delegation set

respectively as Ṽ2(θ, η, δ, ε) and Ũ1(θ, η, δ, ε).

Observe that for δ(ε) defined in the text in (20), D2(θ, η, ε) = D̃2(θ, η, δ(ε), ε). In

particular, V2(D2(θ, η, ε)) = Ṽ2(θ, η, δ(ε), ε), and since, by assumption, Ũ1(θ, η, δ(ε), ε) =

U1(D2(θ, η, ε)) = U1(D1), we obtain

∂V2(D2(θ, η, ε))

∂ε
= −

∂
∂δ
Ṽ2(θ, η, δ(ε), ε)

∂
∂δ
Ũ1(θ, η, δ(ε), ε)

· ∂
∂ε
Ũ1(θ, η, δ(ε), ε) +

∂

∂ε
Ṽ2(θ, η, δ(ε), ε). (70)

We now compute the partial derivatives on the right hand side. By Lemma A.1,45

∂

∂ε
Ṽ2(θ, η, δ, ε) =

∫ ω̄

θ+ε

1− F2(ω)− b(ω)f2(ω) dω · x′A(θ + ε), (71)

∂

∂ε
Ũ1(θ, η, δ, ε) =

∫ ω̄

θ+ε

1− F1(ω) dω · x′A(θ + ε). (72)

To compute the partial derivatives with respect to δ, let ω′ be the state in which the agent

is indifferent between the actions xA(η) and xA(η + δ). Hence, for states ω ∈ (η, ω′),

the agent chooses xA(η) from D2, and for ω ∈ (ω′, η + δ), he chooses xA(η + δ). For

ω ∈ (η + δ, θ + ε), he chooses his favorite action, and in all other states, he chooses an

45The expression for ∂
∂ε Ũ1 follows by setting b = 0 in part (b) of Lemma A.1.
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action that does not depend on δ. Thus, type 1’s expected utility from D2 is

Ũ1(θ, η, δ, ε) =

∫ ω′

η

U(ω, xA(η))f1(ω) dω +

∫ η+δ

ω′
U(ω, xA(η + δ))f1(ω) dω

+

∫ θ+ε

η+δ

U(ω, xA(ω))f1(ω) dω + C, (73)

where C is a constant that does not depend on δ. Therefore, by Leibniz’ rule,

∂

∂δ
Ũ1(θ, η, δ, ε) = U(ω′, xA(η))f1(ω′)

∂ω′

∂δ
− U(ω′, xA(η + δ))f1(ω′)

∂ω′

∂δ

+ U(η + δ, xA(η + δ))f1(η + δ)

+

∫ η+δ

ω′

∂

∂x
U(ω, xA(η + δ))f1(ω) dω · x′A(η + δ)

− U(η + δ, xA(η + δ))f1(η + δ). (74)

Because of the agent’s indifference between xA(η) and xA(η+ δ) in state ω′, the first two

terms cancel. In addition, the third and the fifth term cancel as well. Moreover,

∂

∂x
U(ω, xA(η + δ)) = ω + a′(xA(η + δ)) = ω − (η + δ) (75)

due the first order condition for xA. Thus,

∂

∂δ
Ũ1(θ, η, δ, ε) =

∫ η+δ

ω′
[ω − (η + δ)]f1(ω) dω · x′A(η + δ). (76)

With identical steps, we also obtain

∂

∂δ
Ṽ2(θ, η, δ, ε) =

∫ η+δ

ω′
[ω − (η + δ)][f2(ω) + (b(ω)f2(ω))′] dω · x′A(η + δ). (77)

Now, if ε goes to zero, so does δ(ε). Using this in (70) and collecting terms delivers

∂V2(D2(θ, η, ε))

∂ε

∣∣∣
ε=0

=

[
− lim

ε→0

∂
∂δ
Ṽ2(θ, η, δ(ε), ε)

∂
∂δ
Ũ1(θ, η, δ(ε), ε)

·
∫ ω̄

θ

1− F1(ω) dω

+

∫ ω̄

θ

1− F2(ω)− b(ω)f2(ω) dω

]
x′A(θ), (78)

provided the limit exists. We now show that it does exist and, in fact, equals ρ2,1(η)

which will then imply formula (21). Indeed, when δ goes to zero, then ω′ converges to η

and, hence, the integrals in (76) and (77) converge to zero. Applying L’Hospital’s Rule
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twice, we obtain

lim
ε→0

∂
∂δ
Ṽ2(θ, η, δ(ε), ε)

∂
∂δ
Ũ1(θ, η, δ(ε), ε)

= lim
δ→0

∫ η+δ

ω′
[ω − (η + δ)] [f2(ω) + (b(ω)f2(ω))′] dω∫ η+δ

ω′
[ω − (η + δ)]f1(ω) dω

= ρ2,1(η), (79)

and this completes the proof.

Proof of Lemma 6. The proof follows from the main text.

Proof of Proposition 3. (a) The proof follows from the main text.

(b) We show that if (23) is violated, then static delegation is optimal. We proceed

similarly as in the proof of Proposition 1, with L = {1} and H = {2}. The relaxed

problem R now involves only one constraint, IC1,2. We again show that Dst maximizes

L1(D1, λ1,2) as well as L2(D2, λ1,2). The desired claim then follows from Lemma A.3.

In Step 1, we establish the value of the multiplier. From (50) we have:

λ1,2 =
µ2Γ2(ωst)∫ ω̄

ωst 1− F1(ω) dω
. (80)

In Step 2, we show that for λ1,2 established in Step 1, the delegation set Dst maximizes

the Lagrangian L1(D1, λ1,2). The proof is identical to Step 2 in Proposition 1.

In Step 3, we show that Dst maximizes L2(D2, λ1,2). We use Lemma A.2 with

g(ω) = µ2(1− F2(ω)− b(ω)f2(ω))− λ1,2(1− F1(ω)) and g = µ2f2(ω)b(ω). (81)

Then g(ω̄) = −µ2b(ω̄)f2(ω̄) and −g′(ω) = µ2(f2(ω)+(b(ω)f2(ω))′)−λ1,2f1(ω), and, thus,

the objective function in (32) becomes equal to L2(D2, λ1,2).

We verify that conditions (c1), (c2), (c2’) are satisfied for ω = ωst. Clearly, condition

(c2’) is satisfied. In order to verify (c1), we use (80) and obtain:

−g′(ω) = µ2[f2(ω) + (b(ω)f2(ω))′]− λ1,2f1(ω)

= µ2

[
ρ2,1(ω)− Γ2(ωst)∫ ω̄

ωst 1− F1(ω) dω

]
f1(ω). (82)

Our assumption that (23) is violated implies that the term in the square brackets is non-

negative for all ω ≤ ωst. Thus, indeed (c1) holds. Finally, the proof of (c2) is almost

identical to the proof of (c2) in Step 3 in Proposition 1.46 This completes the proof.

Proof of Lemma 7. We first show that ωst as a function of µ2 increases monotonically

46The only difference is that now we directly assume that Γ2(ω)/
∫ ω̄

ω
1 − F1(ω̃) dω̃ is decreasing, and

thus we do not need to prove it.
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from ω0
1 to ω0

2 as µ2 goes from 0 to 1. For this, let us define the following function

Γst(ω, µ2) = (1− µ2)Γ1(ω) + µ2Γ2(ω) = Γ1(ω) + µ2[Γ2(ω)− Γ1(ω)]. (83)

Recall from Lemmata 1 and 2 that, for a given µ2, ωst is a unique solution to the equation

Γst(ωst, µ2) = 0. Moreover, as argued in footnote 40, ωst ∈ (ω0
1, ω

0
2).

Let µ̃2 > µ2 and consider ω̃st, ωst ∈ (ω0
1, ω

0
2) such that Γst(ω̃st, µ̃2) = 0 and Γst(ωst, µ2) =

0. We show that ω̃st ≥ ωst. Indeed, as ω0
1 < ω̃st < ω0

2, Lemma A.1 implies Γ1(ω̃st) < 0

and Γ2(ω̃st) > 0 so that Γ2(ω̃st) − Γ1(ω̃st) > 0. Thus, (83) implies that Γst(ω̃st, µ2) <

Γst(ω̃st, µ̃2) = 0. Hence, Lemma A.1 applied to Γst yields ω̃st > ωst, as desired.

In order to show the convergence, consider now the inverse relationship, i.e., µ2 as a

function of ωst, given by µ2 = −Γ1(ωst)/[Γ2(ωst)−Γ1(ωst)]. If ωst → ω0
1, then Γ1(ωst)→ 0

and µ2 → 0. Finally, if ωst → ω0
2, then Γ2(ωst)→ 0 and µ2 → 1.

The remainder of the proof now follows from the argument in the main text.

Proof of Lemma 8. Consider the relaxed problem

R : max
D1,D2

µ1V1(D1) + µ2V2(D2) s.t. IC1,2.

To prove the claim, it suffices to show that there is a solution (Dr
1, D

r
2) to R so that:

(a) Dr
1 = [xA(ω), xA(ω̂)] for some ω̂ ∈ [ω, ω̄];

(b) IC1,2 is binding: U1(Dr
1) = U1(Dr

2);

(c) U2(Dr
2) ≥ U2(Dr

1).

Proof of (a). By contradiction, suppose that Dr
1 6= [xA(ω), xA(ω̂)] for all solutions to

R. If xDr
1
(ω̄) > xA(ω̄), then our assumptions on U imply that there is a unique action

x̄ < xA(ω̄) so that U(ω̄, x̄) = U(ω̄, xDr
1
(ω̄)). If xDr

1
(ω̄) ≤ xA(ω̄), we define x̄ = xDr

1
(ω̄).

Because U has the single-crossing property ∂2U/∂ω∂x = 1 > 0, it follows by definition

of x̄ that U(ω, x̄) ≥ U(ω, xDr
1
(ω̄)) for all ω.

Now, define

D̃r
1 =

{
[xA(ω), x̄] if x̄ ∈ [xA(ω), xA(ω̄)],

{xA(ω)} if x̄ 6∈ [xA(ω), xA(ω̄)].
(84)

It is easy to see that the considerations above imply:

uD̃r
1
(ω) ≥ uD1(ω) for all ω ∈ [ω, ω̄]. (85)

We now argue that offering D̃r
1 instead of Dr

1 would relax IC1,2 and improve the

principal’s expected utility from type 1. Hence, there is also a solution to R in which Dr
1

is an interval of the form [xA(ω), xA(ω̂)], a contradiction.

To see this, observe first that by (85), the modification evidently increases type 1’s

expected utility: U1(D̃r
1) ≥ U1(Dr

1), and hence IC1,2 is relaxed by the modification.
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To see that the modification is (weakly) profitable, suppose first that x̄ ∈ [xA(ω), xA(ω̄)].

In this case, we have uDr
1
(ω̄) = uD̃r

1
(ω̄). Hence, since b(ω̄) > 0 by A2, the third term in

(8), LC1, is the same for D̃r
1 and Dr

1. Moreover, by (85) and due to A1 and A2, the two

first terms in (8), J I1 and J II2 , are larger or equal for D̃r
1 than for Dr

1. This implies the

claim.

Suppose next that x̄ 6∈ [xA(ω), xA(ω̄)] (and hence x̄ < xA(ω)). With the same argu-

ment as in the previous paragraph, we can infer that V1({x̄}) ≥ V1(Dr
1). It is therefore

sufficient to show that V1(D̃r
1) = V1({xA(ω)}) > V1({x̄}). Indeed, note that the principal’s

expected utility from a singleton {xs} is

V1({xs}) =

∫ ω̄

ω

[ωxs + a(xs)− b(ω)xs]f1(ω) dω + C, (86)

where C does not depend on xs. Now for xs < xA(ω), we obtain for the derivative:

∂V1({xs})
∂xs

=

∫ ω̄

ω

[ω − b(ω)]f1(ω) dω + a′(xs) > ω + a′(xA(ω)) = 0, (87)

where the inequality follows from A3 and the strict concavity of a, and the final equality

from the agent’s first order condition ω + a′(xA) = 0. Hence, V1({xs}) is increasing in xs

when xs ≤ xA(ω). Since x̄ < xA(ω), we get V1({xA(ω)}) > V1({x̄}), as desired.

Proof of (b). Suppose to the contrary that U1(Dr
1) > U1(Dr

2) for all solutions to R
that satisfy (a). Note first that then ω̂ ≤ ω0

1, as otherwise, if ω̂ > ω0
1, the principal

could slightly decrease the upper endpoint xA(ω̂) of Dr
1 without violating IC1,2. Indeed,

this would be profitable, since by part (b) of Lemma A.1: ∂V1([xA(ω), xA(ω̂)])/∂ω̂ =

Γ1(ω̂)x′A(ω̂) < 0, where the inequality follows from ω̂ > ω0
1 and part (a) of Lemma A.1.

Second, we show that there is solution to R with Dr
2 ⊆ [xA(ω), xA(ω̂)]. Otherwise,

since Dr
1 = [xA(ω), xA(ω̂)] and U1(Dr

1) > U1(Dr
2), the set Dr

2 displays a “gap”, that is,

there are y, z ∈ Dr
2 with y < z so that (y, z) ∩ Dr

2 = ∅. Then, for ε > 0 sufficiently

small, the principal could add the interval of actions (y, y + ε) to Dr
2 without violating

IC1,2. Moreover, by (8), such a change would increase the principal’s expected utility

conditional on facing type 2 (since it leaves LC2 unaffected and (weakly) increases J I2

and J II2 ). This shows that there is a solution with Dr
2 ⊆ [xA(ω), xA(ω̂)].

Finally, we show that there is a solution with Dr
2 = [xA(ω), xA(ω̂)] = Dr

1 which then

contradicts the initial assumption that U1(Dr
1) > U1(Dr

2) for all solutions. Indeed, other-

wise, the previous paragraph implies that a solution toR exists with Dr
2 ⊂ [xA(ω), xA(ω̂)].

Let xA(ˆ̂ω) = maxDr
2, ˆ̂ω ≤ ω̂. We argue that it would then be profitable to replace Dr

2

by D̂r
2 = [xA(ω), xA(ω̂)]. Indeed, this operation (trivially) maintains IC2,1. To see that it

also improves the principal’s expected utility conditional on type 2, we can use the same

arguments as in the proof of part (a) to show that for the interval
ˆ̂
Dr

2 = [xA(ω), xA(ˆ̂ω)], we
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have V2(
ˆ̂
Dr

2) ≥ V2(Dr
2). Now, if ˆ̂ω = ω̂, then

ˆ̂
Dr

2 = D̂r
2, and the claim is shown. If ˆ̂ω < ω̂,

then by part (b) of Lemma A.1, we have that ∂V2([xA(ω), xA(ˆ̂ω)])/∂ ˆ̂ω = Γ2(ˆ̂ω)x′A(ˆ̂ω) > 0,

where the inequality follows since ˆ̂ω < ω̂ ≤ ω0
1 < ω0

2 and part (a) of Lemma A.1. (Re-

call that ω̂ ≤ ω0
1 by the first paragraph of the proof of part (b).) This implies that

V2(D̂r
2) ≥ V2(

ˆ̂
Dr

2) ≥ V2(Dr
2) and is what we wanted to show.

Proof of (c). Consider a solution (Dr
1, D

r
2) to R that satisfies (a) and (b). Then Dr

2 is

an upward shift of Dr
1. Therefore, since U1(Dr

1) = U1(Dr
2) by part (b), and since f2/f1 is

increasing by assumption, part (a) of Lemma 3 implies the claim.

Proof of Proposition 4. We proceed in two steps.

Step 1. We show that there is an optimal delegation menu that satisfies (24) and where

D∗2 contains no action xH > xA(ω̄). Assume to the contrary that D∗2 contains some action

xH > xA(ω̄) in every optimal menu. In this case, because redundant actions are removed

by convention, the agent selects xH from D∗2 in state ω̄, and we can write D∗2 = D′2∪{xH}
for D′2 = D∗2 ∩ (−∞, xA(ω̄)). Let y = maxD′2 < xA(ω̄). Our assumptions on U imply

that there is a unique action x̄ < xA(ω̄) so that U(ω̄, x̄) = U(ω̄, xH), and since xH is

chosen over y in state ω̄, we have y < x̄.

Let us define ψ(z) = U1(D′2 ∪ {z}). As shown in the proof of part (a) of Lemma 8

By construction, agent type 1 prefers the delegation set D′2 ∪ {x̄} over D∗2, and prefers

D∗2 over D′2: ψ(x̄) = U1(D′2 ∪ {x̄}) ≥ U1(D∗2) ≥ U1(D′2) = ψ(y). Since ψ is continuous, it

follows from the intermediate value theorem that there is an action ỹ ∈ [y, x̄] so that

U1(D′2 ∪ {ỹ}) = ψ(ỹ) = U1(D∗2). (88)

We now argue that the modification is feasible and (weakly) profitable for the principal.

Indeed, the modification is incentive compatible, as IC1,2 remains binding by construc-

tion. Also, IC2,1 is satisfied by part (a) of Lemma 3, because D′2∪{ỹ} is an upward shift

of D∗1 (since IC1,2 is binding and D∗1 is an interval, truncated from above; see footnote

28) and f2/f1 is increasing.

We now show that replacing D∗2 by D′2 ∪ {ỹ} is (weakly) beneficial by showing that

∆ ≡ V2(D′2 ∪ {ỹ})− V2(D∗2) = [V2(D′2 ∪ {ỹ})− V2(D′2)]− [V2(D∗2)− V2(D′2)] ≥ 0. (89)

To compute ∆, let θ̃ be the unique state so that the agent is indifferent between y and ỹ:

θ̃y + a(y) = θ̃ỹ + a(ỹ). (90)

Note that for ω ≤ θ̃, the agent chooses the same action from D′2 ∪ {ỹ} and D′2, and for
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ω > θ̃, he chooses action ỹ from D′2 ∪ {ỹ}, while he chooses y from D′2. Hence, by (8),

V2(D′2 ∪ {ỹ})− V2(D′2) =

∫ ω̄

θ̃

[ωỹ + a(ỹ)− (ωy + a(y))][f2(ω) + (b(ω)f2(ω)′)] dω

− [ω̄ỹ + a(ỹ)− (ω̄y + a(y))]b(ω̄)f2(ω̄)

= (ỹ − y)

∫ ω̄

θ̃

[ω − θ̃][f2(ω) + (b(ω)f2(ω)′)] dω

− (ỹ − y)[ω̄ − θ̃]b(ω̄)f2(ω̄)

= (ỹ − y)

∫ ω̄

θ̃

1− F2(ω)− b(ω)f2(ω) dω, (91)

where the second equality follows from (90) and the final equality from integration by

parts. Likewise, since D∗2 = D′2 ∪ {xH},

V2(D∗2)− V2(D′2) = (xH − y)

∫ ω̄

θH

1− F2(ω)− b(ω)f2(ω) dω, (92)

where θH is the state in which the agent is indifferent between y and xH . Hence,

∆ = (ỹ − y)

∫ ω̄

θ̃

1− F2(ω)− b(ω)f2(ω)dω − (xH − y)

∫ ω̄

θH

1− F2(ω)− b(ω)f2(ω)dω. (93)

Agent type 1’s utility differences U1(D′2 ∪ {ỹ}) − U1(D′2) and U1(D∗2) − U1(D′2) can be

computed with analogous steps, and by (88) we obtain:

(ỹ − y)

∫ ω̄

θ̃

1− F1(ω) dω = (xH − y)

∫ ω̄

θH

1− F1(ω) dω. (94)

Plugging this into (93) delivers

∆ = (xH − y)

∫ ω̄

θH

1− F1(ω) dω×

×

[∫ ω̄
θ̃

1− F2(ω)− b(ω)f2(ω) dω∫ ω̄
θ̃

1− F1(ω) dω
−
∫ ω̄
θH

1− F2(ω)− b(ω)f2(ω) dω∫ ω̄
θH

1− F1(ω) dω

]
. (95)

Since y < xH and θ̃ < θH , this expression is non-negative because R2,1 is decreasing by

assumption, as desired.

Step 2. We show that there is an optimal delegation menu where D∗2 is of the form (a)

or (b) in the lemma. Assume to the contrary that every solution (D∗1, D
∗
2) to P which

satisfies (24) violates conditions (a) and (b). We derive a contradiction by constructing

a solution (D∗1, D̃
∗
2) to P that satisfies (a) or (b).

Because D∗2 ∩ (xA(ω̄),∞) = ∅ by Step 1, if D∗2 violates (a) and (b), then it holds:

(i) D∗2 ∩ [xA(ω), xA(ω̄)] = ∅; or
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(ii) ẑ = maxD∗2 < xA(ω̄), and there is at least one other action in D∗2∩ [xA(ω), xA(ω̄)].

In case (i), IC2,1 would clearly be violated since D∗1 satisfies (24). In case (ii), let

ŷ = min(D∗2 ∩ [xA(ω), xA(ω̄)]) < ẑ. Since D∗2 is not of the form (a) and (b), we have

D∗2 ∩ [xA(ω), xA(ω̄)] ⊂ [ŷ, ẑ]. (96)

We now construct a solution (D∗1, D̃
∗
2) to P so that D̃∗2 is of the form (b) in the lemma.

If D∗2 contains an action smaller than xA(ω), call this action xL. Otherwise, let xL be the

action smaller than xA(ω) so that type ω is indifferent between xL and ŷ. (Because of our

assumptions on U such an action is uniquely defined.) Add this action to D∗2. Because,

by construction, this does not affect the agent’s expected utility from the delegation set,

we abuse notation and call the resulting set again D∗2. Now define

D̂2 = {xL} ∪ [ŷ, ẑ];
ˆ̂
D2 = {xL} ∪ {ẑ}. (97)

Then, by construction, U1(D̂2) ≥ U1(D∗2) ≥ U1(
ˆ̂
D2). Therefore, since the agent’s utility

is continuous, by the intermediate value theorem there is a y ∈ (ŷ, ẑ) so that U1(D∗2) =

U1({xL} ∪ [y, ẑ]). Now, let

D̃∗2 = {xL} ∪ [y, ẑ]. (98)

We now argue that the principal (weakly) benefits from replacing D∗2 by D̃∗2. Indeed, the

same argument as after (88) work to show that the modification is incentive compatible.

To see that it is (weakly) profitable, observe that, by construction, D̃∗2 is an upward

shift of D∗2 that satisfies uD̃∗2 (ω) = uD∗2 (ω) and uD̃∗2 (ω̄) = uD∗2 (ω̄). The latter implies

that J I2 (D̃∗2) = J I2 (D∗2) and LC2(D̃∗2) = LC2(D∗2). Moreover, since U1(D∗1) = U1(D∗2) =

U1(D̃∗2) and since ρ2,1 is increasing by assumption, the upward shift property implies that

J II2 (D̃∗2) ≥ J II2 (D∗2) by Lemma 5(a). Therefore, by (8), the modification weakly improves

the principal’s utility. Hence, (D∗1, D̃
∗
2) is a solution to P . As D̃∗2 is of the form (b) in the

lemma, we obtain a contradiction.

Proofs for Section 6

Proof of Lemma 9. Part (a) follows from the main text. As to part (b), in light of the

arguments after the statement of the lemma, it is sufficient to verify that condition (23)

is violated, which now becomes

− 1− F (ωst)∫ ω̄
ωst 1− F (ω̃)dω̃

> min
η≤ωst

f ′(η)

f(η)
. (99)
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In fact, recall from (9) and Lemma 1 that, with constant bias and Fi = F ,∫ ω̄
ωst 1− F (ω̃)dω̃

1− F (ωst)
= µ1b1 + µ2b2. (100)

But, Assumption A1 implies that f ′(ω)/f(ω) > −1/bi for i = 1, 2 and ω ∈ [ω, ω̄]. Hence,

f ′(ω)/f(ω) > −1/max{b1, b2} > −1/(µ1b1 + µ2b2), which together with (100) yields a

contradiction to (99).
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