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Abstract

The paper studies a repeated contest when contestants are uncertain about their true

relative abilities. When ability and effort are complements, a favourable belief about one’s

own ability stimulates effort and increases the likelihood of success. Success, in turn, rein-

forces favourable beliefs. We show that this implies that with positive probability players

fail to learn their true relative abilities in equilibrium, and one player wins the contest

with high probability forever. In this case, the prevailing player may be the actually worse

player, and persistent inequality arises. We discuss some features of the model when the

complementarity assumption is dropped.
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1 Introduction

This paper studies a repeated contest when the contestants initially do not know their intrinsic

relative abilities but can learn about them over time. Examples where contestants encounter

each other repeatedly include sports contests, promotion tournaments in small firms, research

contests in specialized areas, or court trials, but also conflicts between states or family dynasties.

In many of these cases, the players’ relative ability, for example, physical or mental strength,

is not known a priori.

If a contest is played repeatedly, by experiencing successes and failures, the players learn

about their relative abilities over time and by varying their choices, they can generate more or

less information that promotes or inhibits learning. This raises the issue whether equilibrium

play will identify the players’ relative abilities and whether the contest will, eventually, select

the relatively more able player.

To address such questions, we consider a simple contest with two players who can exert

either high or low effort. A player’s win probability depends on relative ability, effort, and luck.

We shall make the crucial assumption that a higher relative ability of one player translates

into a higher success probability only if both players exert the same level of effort. Whenever

the effort levels chosen by the players differ, relative ability does not matter for success in the

contest.

This reflects, for a example, a situation where low effort stands for non-participation in the

contest. Then the win probability of the participating player is not affected by how able or

unable his non-participating rival might be. In an environment with two players, two effort

levels and perfect monitoring of the contest outcome, this is a necessary requirement to make the

question at study interesting. Otherwise, whatever actions might be played, each observation

of the contest outcome would be informative and learning would obtain with certainty.

Whether learning obtains or not, therefore, depends on whether players will eventually

choose different effort levels in equilibrium. To study this question, we shall first look at the

case where relative ability and efforts are complements. This means that it is never myopically

optimal for a player to reduce his effort when his belief about his relative ability increases.

We derive our main result for this case and show that there is an equilibrium such that

whenever the players’ belief that one of them is the less able player is sufficiently large, this
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player chooses low effort and the other player, who is believed to be the more able player,

chooses high effort. We show that such a state where one player resigns is reached with positive

probability irrespective of true abilities. Hence, beliefs become persistent, and the players will

not learn their true relative abilities. Whenever this is the case, one player wins the contest

with a high probability forever and persistent inequalities arise in the long run. Moreover, the

prevailing player might be the “wrong”, that is, the actually relatively less able player.

The basic idea rests on a simple belief reinforcement argument. A player who is optimistic

about his relative ability will, due to complementarity, tend to choose high effort, resulting in

a higher number of actual successes. Increased successes, in turn, will promote the player’s

optimism further. So beliefs become self-fulfilling. At the same time, a pessimistic player

will thereby become discouraged and, as a result, ever more pessimistic. If the belief revision

proceeds fast, the pessimistic player will resign at some point. From then on, no further

information is revealed, and beliefs remain uncontradicted.1

We shall then discuss some features of the model when complementarity is dropped. In this

case, it is myopically optimal for a sufficiently optimistic player to reduce effort against a rival

who does not exert effort. This is because he believes that he will win anyway. We call this case

complacency. For simplicity, we shall only look at the repeated game with myopic players. For

moderate levels of beliefs, the same reinforcement mechanism as above will drive beliefs apart.

At some point, the pessimistic player becomes discouraged and reduces his effort, given the

optimistic player still exerts high effort. Whether learning obtains or not, depends then on the

optimal reaction of the optimistic player at this point. If complacency sets in at very high levels

of optimism only, it is optimal to stick to high effort, and therefore the belief process stops and

learning does not obtain. This is no longer true, if already a moderately optimistic player is

complacent. Such a player wants to reduce his effort against a resigning rival. However, the

rival’s optimal response against such a move is to exert high effort again, and no equilibrium

in pure strategies exists. Therefore, with positive probability each observation of the contest

outcome is informative. Learning is then complete.

Related work
1This sort of self-fulfilling prophecy is at the heart of social psychlogical accounts of the dynamics of optimism

and pessimism (see Aspinwall et al. (2001), Brocker (1984)).
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Our work is closely related to the literature on rational learning in two-armed bandit problems

(Rothschild (1974), Berry/Fristedt (1985)). Indeed, if a player’s choice of effort is exogenously

fixed to be either high or low forever, then the problem the other player faces in our setup is

a classical two-armed bandit problem with one safe and one risky arm. It is well known that

in this case the optimal strategy does not lead to the optimal action with certainty.2 This is

because after sufficiently many failures with the risky arm, the player switches to the safe arm

forever and his pessimistic belief about the risky arm remains uncontradicted even if the risky

action is optimal. By contrast, optimistic beliefs about the risky arm, when in fact the safe

action is optimal, will be contradicted.

The game setup is different because whether beliefs will be contradicted or not, depends on

what the other player does. In the complementarity case, when the pessimistic player resigns,

it becomes impossible in equilibrium that the optimistic player’s beliefs will be contradicted.

In this sense, learning is inhibited through the strategic interaction.3

Our model is a simple example of a multi-armed bandit game where an arm’s payoff depends

on the choices of a player’s opponents.4 Such games are studied in some generality in the work

of Kalai/Lehrer (1995).5 Their focus however is different from ours. They consider players

with only limited knowledge about their environment. Players then form subjective beliefs

about their environment, including their opponents’ behaviour, and are assumed to optimize

with respect to these beliefs. Kalai/Lehrer (1995) examine conditions such that the players’

behaviour converges to equilibrium play of the underlying incomplete information game. We

instead ask whether the players learn the underlying game, given they play an equilibrium of

the incomplete information game.

As for contests, learning issues are addressed by Squintani/Välimäki (2002) who consider
2For a characterization of incomplete learning type results in general single player bandit problems see

Easley/Kiefer (1988).
3We shall comment in more detail on the relation of our model to the single player bandit problem at the

end of Section 3.
4Multi-armed bandit games are also studied in the strategic experimenation literature (Bolton/Harris (1999),

Keller et al. (2005)). In these approaches, a player’s payoff is not affected directly by other players’ choices but

by the possibility to observe their payoffs.
5A bandit game of this type is also examined by Fishman/Rob (1998). They consider a dynamic Bertrand

game with two sellers who can learn about demand by experimenting with high or low prices. A seller’s payoff

from an experiment with a high price then directly depends on which price his rival chooses.
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a model where players are randomly matched to play a contest in which the dominant, i.e.,

winning action is unknown and in which the dominant action changes at random times. They

show that in contrast to myopic players, farsighted players optimally engage in experimentation

in equilibrium and therefore play the optimal action almost all of the time. This is different to

our results where experimentation stops and the optimal action is not identified with positive

probability for all discount factors. The reason is that in a setup with random matching

and exogenous state changes, our reinforcement mechanism is not at work, and occasional

experimentation might be optimal for non-myopic players.

Our work also contributes to the tournament literature. Only few papers consider tourna-

ments with players who do not know their abilities. One example is Rosen (1986) who studies

the optimal design of prizes in an elimination tournament. In an elimination tournament how-

ever, beliefs about relative abilities are not reinforced because after each period winners are

matched with similarily optimistic winners. A further example is Stone (2004). Stone shows

that players who are concerned about their self-image might be led to exert either very high

or very low effort so as to suppress self-relevant information that could threaten their ego. As

in our case, although for a different reason, in equilibrium one player will then resign and the

other player will exert high effort and win easily.

From amore applied side, our results suggest that contests might perform poorly as incentive

and selection mechanisms when players do not know their abilities. They also suggest an

explanation for the observed high degree of intergenerational mobility in labour markets. We

postpone this discussion to section 3.2. The rest of the paper is organized as follows. Section 2

presents the model. Section 3 analyzes the complementarity case and presents the main results.

Section 4 discusses the case with complacency. Section 5 concludes.

2 The Model

Time t = 0, 1, 2, ... is discrete and infinite. There are two players, P1 and P2, who, in each

period, engage in a contest. The winner prize is normalized to 1 and the loser prize to 0. After

each period t, players observe the contest outcome and the action taken by the other player in

t. The winning probability in period t is determined by the efforts spent by the players and by

a state of nature realized in t = 0 which specifies players’ relative abilities.
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There are two states. In state θ = 1, P1 is more able than P2, and in state θ = 2, P2 is

more able than P1. The realization of the state is unknown, also to players themselves. We

assume that there is no asymmetric information, that is, the players’ beliefs about states are

the same, and this is common knowledge. Denote by γtθ the players’ common belief in period

t that the state is θ. We shall also use plain γ to denote the probability γ1 that the state is

θ = 1. Let Γ = [0, 1] be the set of all possible beliefs γ.

There are two effort levels e ∈ {0, 1}, and the cost of spending effort e is ce, c > 0.

The true winning probability for P1 in a given period for given efforts e1 = i, e2 = j in state

θ is denoted by

pθij = P [P1 wins |e1 = i, e2 = j; θ] .

The corresponding true winning probability for P2 is 1− pθij.6

For states to reflect abilities, we set p1ii > 1/2 and p
2
ii < 1/2 for i = 0, 1. We further assume

that for given state, a player’s winning likelihood increases in his own’s and decreases in his

rival’s effort. Moreover, we make the following assumptions:

A1: pθ10 = p

A2: p− c > 1/2

A3: Either p211 < 1− p+ c or p111 > p− c.

A1 says that if players exert unequal levels of effort, then the contest outcome is independent

of θ. This reflects a specific form of strategic interaction in our contest. For example, if a player

is the only candidate to apply for a job, he gets the job with high probability, irrespective of θ.

In this sense, θ represents relative abilities.

A2 reflects the contest flavour of the game. It says that effort costs are moderate and implies

that for some belief γ, it is myopically optimal for both players to exert effort in the current

period, given the other player does so.7

A3 rules out the trivial case in which choosing high effort is a dominant strategy for both

players.
6The fact that the probability of a draw is 0 is not essential for the analysis.
7Myopically, P1’s is better of from choosing e1 = 1 rather than e1 = 0 if p111γ + p

2
11 (1− γ) − c ≥ 1− p or,

equivalently, if p− c ≥ 1− p111 +
¡
p111 − p211

¢
γ. Because p111 > 1/2, this inequality is implied by A2 for large γ.

A similar statement holds for P2.
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Notice also that because p = p110 > p
1
11 > 1/2, A1 and A2 together imply that p− c > 1− p.

The following table summarizes the stage game payoffs in state θ where P1 is the row player,

and P2 is the column player.

e2 = 0 e2 = 1

e1 = 0 pθ00, 1− pθ00 1− p, p− c

e1 = 1 p− c, 1− p pθ11 − c, 1− pθ11 − c

(1)

Table 1: Stage game payoffs.

Since the true winning probabilities are unknown, players have to form expectations. Denote

by

πij (γ) = p
1
ijγ + p

2
ij (1− γ)

P1’s expected winning probability for efforts e1 = i and e2 = j, given belief γ. We shall

occasionally write π (i, j; γ) for πij (γ).

Players are assumed to be Bayesian rational and to discount future profits by a common

discount factor δ ∈ [0, 1).

Remark: The specification can be seen as a reduced version of a more general model where also

the win probabilities for unequal effort choices are unknown. For example, P1’s win probability

p10 could be either high or low, reflecting the absolute ability of P1. It would then appear

reasonable to assume that higher absolute ability translates into higher relative ability, but rel-

ative abilities could still differ, conditional on absolute abilities being equal. Our specification

looks at that latter contingency.

3 Complementarity

In this section we assume that p100 < p − c and 1 − p200 < p − c. That is, given a player

exerts no effort, it is myopically optimal for the rival player to exert effort, irrespective of

beliefs. Together with the other assumptions, this implies that, given player −i’s behaviour, it

can never be myopically optimal for player i to reduce his effort as γi increases. We call this
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property (effective) complementarity between effort and relative ability.8 We shall discuss the

other case below.

3.1 Analysis

As common in repeated games, there may be many equilibria. To rule out equilibria with im-

plicit agreements between the players, we restrict attention to Markov strategies and look for

a Markov Perfect Bayesian equilibrium (MPBE). We state most of the definitions and results

in terms of P1. Corresponding defnitions and results hold for P2.

Strategies

A Markov strategy depends only on the payoff relevant information in date t but not on the

entire history up to t. In our setup, the only payoff relevant information in date t is players’

beliefs in t. Denote by σ (and ϕ respectively) the event that P1 wins (loses) the contest in a

given period. Let

Ht =
©¡
e11, e

1
2,ω

1, ..., et1, e
t
2,ω

t
¢
| esi ∈ {0, 1} ,ωs ∈ {σ,ϕ} , 1 ≤ s ≤ t

ª
(2)

be the set of all possible histories up to t, and let H = ∪Ht be the set of all possible histories.9

Definition 1 1) A (pure) strategy ηi = (ηti)t=0,1,... for player i is a sequence of mappings

ηti : Ht → {0, 1} from histories into actions. The set of all strategies for player i is denoted by

Σi.

2) A (stationary) Markov strategy ηi : Γ→ {0, 1} for player i maps beliefs into actions.

Notice that we require a Markov strategy to be stationary, that is, to be the same for all periods.

Because players are Bayesian rational, beliefs are derived by Bayes’ rule. Let γ σ
θ be the up-

dated belief that the state is θ upon P1 winning. That is, γ σ
θ (e1 = i, e2 = j; γ) = p

θ
ijγ/πij (γ).

We shall also write plain γ σ
θ for γ

σ. Define γ ϕ
θ and γ ϕ likewise.

8In contrast to proper complementarity, we do not have that, given player −i’s behaviour, i’s incentives to
choose high effort increases in γi. For example, if e2 = 0, then P1’s incentive to choose e1 = 1 is π10− c−π00 =

p− c−
¡
p100 − p200

¢
γ1 − p200 which is declining in γ1.

9Note, H0 = {∅}.
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Utility

To define a player’s expected utility, we need first to define the appropriate probability mea-

sure.10

A Markov strategy η2 of P2 gives rise to a law of motion that can be controlled by P1.

This results in transition probabilities that govern the evolution of beliefs. More formally, for

e1 ∈ {0, 1},

q (γ0 | e1, η2 (γ) , γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π (e1, η2 (γ) ; γ) if γ0 = γσ

1− π (e1, η2 (γ) ; γ) if γ0 = γϕ

(3)

defines a transition kernel from current beliefs γ into next period beliefs γ0. q may be viewed

as the (expected) conditional probability that the next period belief is γ0, conditional on the

current belief being γ.

Suppose that P1 plays a strategy η1 ∈ Σ1, and let the initial belief be γ0. Then the

probability of a finite sequence ωt = (ω1, ...,ωt) ,ωs ∈ {σ,ϕ} of successes and failures for P1 is

P t
£
ωt ; η1, η2, γ

0
¤
=

tY
s=1

q
¡
γs | ηs−11 (hs−1) , η2

¡
γs−1

¢
, γs−1

¢
, (4)

where hs is the (unique) history induced by ωs, η1, η2, and γs is the (unique) belief induced by hs.

It is well known, that the measures P t thus defined constitute a consistent family of probability

measures. Hence, by Kolmogorov’s consistency theorem, there is a unique probability measure

P [ · ; η1, η2, γ0] on the set of infinite sequences ω = (ω1, ...,ωt, ...) ,ωt ∈ {σ,ϕ} such that P and

P t coincide on the set of finite sequences of length t.

With this P1’s expected utility from strategy η1 ∈ Σ1 against a Markov strategy η2 at initial

belief γ is given by

U1 (η1, η2; γ) =

Z ∞X
t=0

δt
£
π
¡
ηt1 (ht) , η2

¡
γt
¢
; γt
¢
− cηt1 (ht)

¤
dP (ω ; η1, η2, γ) , (5)

where the integration is over all infinite sequences ω, and ht and γt are the (unique) histories

and beliefs induced by ω, η1, η2, γ.

Best Response
10Our construction of the probability space is somewhat sloppy. We neglect measurability issues and the

proper definition of σ-algebras.
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P1’s best response η∗1 against a Markov η2 is thus given as a solution to the maximization

problem

sup
η1∈Σ1

U1 (η1, η2; γ) . (MP)

We derive the best response by dynamic programming. The Bellman equation for problem

(MP) is

V1 (γ) = max
e1∈{0,1}

{π (e1, η2 (γ) ; γ)− ce1 + (BE)

+δ [π (e1, η2 (γ) ; γ)V1 (γ
σ) + (1− π (e1, η2 (γ) ; γ))V1 (γ

ϕ)]} .

It is well known that a solution V1 to (BE) coincides with supU1. Furthermore, if a solution to

(BE) exists, then the maximizer in (BE) at γ coincides with the best response in (MP) at γ.

In particular, the best response is (stationary) Markov (see Blackwell (1965)).

Hence, to establish existence of a Markov best response, it remains to show that (BE) has a

solution V1. We do this in the usual way by showing that V1 is the limit of iterated applications

of a contraction mapping. We have the following proposition. Details are in Appendix A.

Proposition 1 For all η2, V1 exists and is bounded.

Threshold Strategies

The previous considerations show that a best response against a Markov strategy exists and

is again Markov. This could be used to establish the existence of a MPBE by an abstract

existence theorem (see Maskin/Tirole (2001)). However, it would not tell much about how the

equilibrium looks like, and how the system evolves over time in this equilibrium. Therefore,

we shall further restrict the strategy space so as to derive a more specific equilibrium. We

shall look for an equilibrium in threshold strategies. A threshold strategy is a strategy where a

player chooses high effort only when the belief about his relative strength is sufficiently large.

More formally:

Definition 2 A Markov strategy ηi for player i is called threshold strategy if there is a number

ri ∈ Γ such that

η1 (γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if γ > r1

∈ {0, 1} if γ = r1

0 if γ < r1

, η2 (γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if γ > r2

∈ {0, 1} if γ = r2

1 if γ < r2.

10



The reason why the strategy is not specified at the threshold ri is technical.11 We impose

the tie-breaking rule that if the player is indifferent at ri, he chooses ei = 0. Notice that, by

definition, every threshold strategy is Markov.

A threshold strategy divides the belief space Γ into two connected sets: one in which effort

is chosen, and one in which no effort is chosen. We call the latter no-effort set.

Definition 3 Let ηi be a threshold strategy. Define by

N (ηi) = {γ | ηi (γ) = 0} (6)

the set of beliefs where player i chooses no effort under ηi.12

Alternatively, the no-effort set can be described by intervals in Γ. The size of the no-effort set

measures how aggressive a strategy is. The smaller a player’s no-effort set, the more aggressive

this player.

Equilibrium

Our aim is to show that there is a MPBE in threshold strategies. For this, we proceed as

follows. We first show that a best response against a threshold strategy is again a threshold

strategy. We then establish a monotonicity property that says that a player optimally responds

less aggressive against a more aggressive rival. We then use this monotonicity property to show

that we can define a function bri : Γ → Γ such that bri (r−i) is the threshold of player i’s best
response against a threshold strategy of player −i with threshold r−i. We then establish thatbri is continuous on the compactum Γ which implies that there are thresholds (r∗1, r

∗
2) at whichbr1 and br2 intersect. The threshold strategies corresponding to (r∗1, r∗2) serve then as equilibrium

candidates. We relegate the formal proof to Appendix B and state the result directly.

Theorem 1 There are threshold strategies (η∗1, η
∗
2) with corresponding thresholds (r

∗
1, r

∗
2) that

constitute a MPBE, and it holds:
11Since we want to establish an equilibrium in threshold strategies, we need to make sure, first of all, that a

best response against a threshold strategy is again a threshold strategy. If we prescribe a player, for example, to

play e = 0 at the threshold, the best response of the rival player is generally not to play e = 0 at the threshold

as well.
12If no cause for confusion, we shall omit the argument and write Ni instead of N (ηi).
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(i) r∗1 > 0⇔ p211 < 1− p+ c.

(ii) r∗2 < 1⇔ p111 > p− c.

(iii) N∗
1 ∩N∗

2 = ∅.

Property (i) characterizes the case in which there are some beliefs γ in which P1 chooses low

effort. If the condition on the right hand side of (i) does not hold, then choosing high effort

is a dominant strategy for P1 in all states. Property (ii) is the corresponding condition for

P2. Notice that assumption A3 guarantees that either (i) or (ii) holds. Property (iii) says that

there are some beliefs γ at which both players choose high effort, and that at least one player

exerts effort in equilibrium.

Learning

We can now state our main result that players will with positive probability fail to learn their

true abilities. Let

T (ω) = min
©
t ≥ 0 | γt (ω) ∈ N∗

1 ∪N∗
2

ª
(7)

be the first period in which one player ceases to spend effort. If this period is reached, the

process stops and no information is generated any more. Intuitively, N∗
1 ∪N∗

2 might be reached

in finite time because it contains small neighbourhoods around γ = 0 or γ = 1. Therefore, if,

say r∗2 > 0, and if P1 experiences a long sequence of consecutive successes, the belief tends to

γ = 1 and P2’s no-effort set is reached. More precisely, we have the following result.

Theorem 2 (i) Let r∗1 > 0 and r
∗
2 < 1. Then for all states θ,

P [T <∞ | η∗1, η∗2; θ] = 1. (8)

(ii) Let either r∗1 > 0 or r
∗
2 < 1 and let γ

0 /∈ {0, 1}. Then for all states θ,

P [T <∞ | η∗1, η∗2; θ] > 0. (9)

Thus, learning will be incomplete, and with positive probability one player will be discouraged

in the long run. If both no-effort sets contain a small neighbourhood, this happens with

probability 1. We relegate the proof to Appendix C.

Theorem 2 implies that with positive probability the no-effort set of the actually more able

player is reached such that, eventually, the actually weaker player wins the contest forever.
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This naturally directs interest to properties of the distribution of the first entry time into N∗
i :

Ti (ω) = min
©
t ≥ 0 | γt (ω) ∈ N∗

i

ª
. (10)

The following result is straightforward.

Proposition 2 For all states θ, the likelihood to reach the rival player’s no effort set in finite

time is increasing in one’s own and decreasing in the rival’s belief.

Proof : The higher γi, the closer the belief γi is at N∗
−i. Therefore, less successes are required

to move into N∗
−i. ¤

In Appendix D, we illustrate how in principle a quantitative expression for the distribution

of the first entry time can be obtained. The basic idea is to transform the belief process γt into

a random walk with (linear) drift, Y t, such that γ crossing through a threshold r∗i is equivalent

to Y crossing through corresponding threshold α. The first passage time of Y through these

corresponding thresholds can then be computed by the use of martingale techniques.

3.2 Discussion

Relation to single decision maker bandit problems

The problem of a player in our game is closely related to the problem of a single decision maker

who faces a two-armed bandit with a safe and a risky arm. In fact, if P2 always plays action

e2 = 1,13 then P1’s problem is a two-armed single decision maker bandit problem where the

“safe” action e1 = 0 yields per period payoff 1−p and the “risky” action e1 = 1 yields (average)

per period payoff pθ11 − c with probability γθ .

It is well known that the optimal strategy in this case is to choose the risky action as long as

P1’s belief γ1 is above some threshold level and to choose the safe action otherwise.14 Therefore,

the optimal strategy does not always lead to the optimal action in state θ = 1. This is because

a sufficiently long series of failures leads P1 to choose the safe action. From this point on, no

new information is revealed and P1’s “overly” pessimistic beliefs remain uncontradicted. By

contrast, in state θ = 2, the optimal strategy always leads to the optimal action. Otherwise, P1
13By Theorem 1 (ii), this is the case if p111 ≤ p− c.
14Unless e1 = 1 is a dominant strategy; that is, unless p211 > 1− p+ c.
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would hold overly optimistic beliefs in the long run and play the risky action infinitely often.

But since the risky action reveals information in each period, such optimistic beliefs cannot,

eventually, remain uncontradicted.

The latter changes in our game setup. Here, not only overly pessimistic but also overly

optmistic beliefs of P1 might remain uncontradicted in the long run because optimistic beliefs

of P1 go along with pessimistic beliefs of P2, triggering the latter to resign and the contest

outcome to be uninformative. In this sense, the presence of P2 inhibits learning.

Implications of our results

Contests are often used as mechanisms to either induce effort or select able players.15 Our

contest, however, does not necessarily achieve these aims. With positive probability, one player

will reduce his effort to 0, and in addition, the “wrong”, that is, the less able player might

eventually be selected by the contest. (For example, in state θ = 1, P2 has a positive likelihood

to be the long term winner.) This suggests that contests might perform poorly when con-

testants have limited knowledge about their ability, because the latter makes them vulnerable

to self-fulfilling prophecies. To draw this conclusion in general, however, one would need to

specify more precisely the options and constraints a designer has in setting up the contest and

the mechanisms he could use other than a contest.

Our results are also relevant to the discussion on the intergenerational mobility in labour

markets. Labour market success–getting accepted to a good university, getting a job, or

getting promoted–is often determined by relative performance, i.e., contests. Seen as an

intergenerational model, it predicts a strong correlation between the labour market success of

parents and of their children. In fact, in our model persistent inequality arises in the long

run, and one player may eventually win the contest with probability p forever and become rich

whereas the other player will be discouraged and stay poor. This is consistent with substantial

empirical evidence that parental earnings are a reliable predictor for childrens’ earnings (see

Solon (1999)) for a review). Yet, what appears to be puzzling is that the labour market success

of successful parents’ children cannot be accounted for by their superior education, or the

inheritance of wealth, or cognitive ability (Bowles et al. (2001)). Our model suggests that

optimistic or pessimistic beliefs transmitted to children by parental upbringing may possibly
15See, for example, Lazear/Rosen (1981), Meyer (1991, 1991).
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be one of the missing elements in explaining the intergenerational stability of labour market

outcomes.16

In general, the model points to the importance of beliefs in the determination of success.

If beliefs are more broadly interpreted in terms of psychological attitudes such as optimism,

pessimism, or self-confidence, then our results such as this in Proposition 2 illustrate how such

attitudes might have real consequences.

4 Complacency

We shall now discuss some features of the model when the complementarity assumption is

dropped. For simplicity, we focus on the symmetric case in which the relative advantage of P1

in state 1 is the same as that of P2 in state 2; that is, pθii = 1 − pθii. In this case, dropping

complementarity means p100 > p− c. We shall only look at the case of myopic players (δ = 0).

The analysis with farsighted players is considerably more complicated and beyond the scope of

the paper.

The main difference to the complementarity specification is that if a player is convinced

that he is the better player, he optimally stops exerting effort when his rival does so, hence

the wording complacency. To illustrate, suppose γ = 1. Then, it is easily seen that P1’s best

response against e2 = 1 is e1 = 1, and that against e2 = 0 is e1 = 0. By contrast, P2’s best

response against e1 = 0 is e2 = 1, and that against e1 = 1 is e2 = 0. So, while P1 wants to

match the action of P2, P2 wants to chose an action opposed to that of P1. Hence, there is no

equilibrium in pure strategies.

More precisely, P1’s best response, BR1, is now determined by two thresholds, r1, er1 such
that

BR1 (1) = 1⇐⇒ γ ≥ r1, (11)

BR1 (0) = 0⇐⇒ γ ≥ er1. (12)

16See also Picketty (1995) who argues that persistent intergenerational income inequality can be explained as

a result of incomplete learning in a rational experimentation setup.
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A little bit of algebra yields that

r1 =
p111 + c− p
2p111 − 1

∈
µ
0,
1

2

¶
, (13)

er1 = p100 + p− c− 1
2p100 − 1

∈
µ
1

2
, 1

¶
. (14)

Note that er1 < 1 if and only if the complacency assumption holds. By symmetry, we obtain
the analogous thresholds for P2 as r2 = 1− r1 and er2 = 1− er1.
The equilibrium can now be characterized by the following four sets:

Mα = [0, er2] ∪ (er1, 1] , M01 = (er2, r1] , M11 = (r1, r2] , M10 = (r2, er1] . (15)

For i, j ∈ {0, 1}, if γ ∈Mij, the equilibrium is given by (e∗1, e
∗
2) = (i, j). If γ ∈Mα there is only

an equilibrium in mixed strategies. The mixing probabilities of P1 and P2, respectively, can be

computed to

α1 (γ) =
p− c− p100 − (1− 2p100) γ
(2γ − 1) (1− p111 − p100)

, α2 (γ) = α1 (1− γ) . (16)

The following picture illustrates P1’s equilibrium strategy if er2 < r1.
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Figure 1: Equilibrium strategy of P1
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Learning

We consider now the repeated game for myopic players. Whether learning obtains or not,

depends on whether M01 and M10 are empty or not.17 If they are not empty, then updating

stops as soon as the belief process reaches M01 or M10. By an argument analogous to that in

the proof of Theorem 2, it follows that learning will be incomplete. If M01 and M10 are empty,

however, in each period with positive probability an action pair is played for which the contest
17Because of symmetry: M01 = ∅ ⇔M10 = ∅.
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outcome is informative. Therefore, with probability 1, players will make an infinite number of

informative observations, and thus the true state will eventually be revealed.

Notice, M01 is not empty if and only if r1 ≥ er2. A little bit of algebra yields that the latter
is equivalent to p111 ≥ p100. As p111 − p100 declines to 0, M01 shrinks to ∅. We summarize these

observations in the following proposition.

Proposition 3 For all states θ learning is complete if and only if p100 ≥ p111.

The condition p100 ≥ p111 says that the relative advantage for P1, conditional on being more

able, is smaller when both players exert effort than when both players do not exert effort. It

implies that whenever it is optimal for P1 to respond with e1 = 1 against e2 = 0, it cannot

be optimal for P2 to respond with e2 = 0 against e1 = 1. In this case, as opposed to the

complementarity case, learning is promoted by the presence of the other player.

These considerations illustrate for the myopic case what changes when the complementarity

assumption is abandoned. The main difficulty with farsighted players is that one has to allow

for mixed strategies. Suppose, for example, that the game has two periods. Then in period 2

the myopic equilibrium is played. This implies that a player may not wish to learn between

period 1 and 2 that he is more able, because when doing so he might be led to reduce his effort

in period 2 and thereby triggering a more aggressive response by his rival in period 2. We do

not know how this twist affects the learning incentives in the long run.

5 Conclusion

The paper considers a dynamic contest when the players do initially not know their intrinsic

ablities. If relative ability and effort are complements, a belief reinforcement effect encourages

optimistic players and discourages pessimistic players. This implies that players may fail to learn

their true abilities in the long run, and one player may eventually win with high probability.

As a consequence, persistent inequality arises, and the actually worse player may prevail in the

long run.

The specific form of our contest limits the generality of our results. However, as discussed

in the previous section, some qualitative characteristics of the belief reinforcement mechanism

might, under some conditions, carry over when the complementarity assumption is dropped.
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But we do not know what happens with continuous effort levels or a richer state space. We

therefore see our work as a first step to explore issues of learning in dynamic contests.

Generalizing our framework could also provide a better understanding of the extent to which

the possibility that players become subject to self-fulfilling prophecies impairs the performance

of contests as incentive and selection mechanisms. Such self-fulfilling prophecies can be expected

to become particurlarly important when one also allows players to accumulate wealth over time,

a possibility set aside in our setup. The wealthier player can then invest more resources in the

contest, thus, increasing his likelihood to succeed, and, in turn, to become even wealthier.

Appendix A: Existence of Value Function

Proof of Proposition 1: We show that V1 is the limit of iterated applications of a contraction

mapping. Let S be the space of all bounded functions on Γ equipped with the supremum norm.

Let ψ ∈ S, and define the mapping F : S → S by

Fψ (γ) = max
e1∈{0,1}

{π (e1, η2 (γ))− ce1+ (17)

+ δ [π (e1, η2 (γ))ψ (γ
σ) + (1− π (e1, η2 (γ)))ψ (γ

ϕ)]} .

Hence, V1 is the solution to the fixed point problem FV = V .18

We show in the next paragraph that F is a contraction. Since F is a contraction, it follows

by Banach’s fixed-point theorem that FV = V has a unique solution. This establishes existence

of V1. Moreover, it is well known that V1 is the limit of iterated applications of F on an arbitrary

starting point ψ ∈ S. Notice that Fψ ∈ S since all functions on the right hand side of (17) are

bounded. Thus, all elements of the sequence (Fnψ)n=1,2,... are in S. Since S is complete, the

limit is in S, thus bounded.

To establish that F is a contraction, we check Blackwell’s sufficiency conditions:

(i) For all ψ,φ ∈ S with ψ ≥ φ on Γ, it holds that Fψ ≥ Fφ on Γ.

(ii) For all ψ ∈ S and ξ > 0, there is a β ∈ (0, 1) such that F (ψ + ξ) ≤ Fψ + βξ.

As for (i): Let ψ,φ ∈ S with ψ ≥ φ on Γ. Let
³
eψ1 , e

φ
1

´
∈ {0, 1}2 be the maximizers of Fψ and

18Note that both F and the corresponding fixed point V1 depend on a specific Markov strategy η2. Provided

it does not cause confusion, we shall suppress this dependency.
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Fφ, respectively. Then19

Fψ = π
³
eψ1 , η2

´
− ceψ1 + δ

h
π
³
eψ1 , η2

´
ψ σ +

³
1− π

³
eψ1 , η2

´´
ψ ϕ
i

(18)

≥ π
³
eφ1 , η2

´
− ceφ1 + δ

h
π
³
eφ1 , η2

´
ψ σ +

³
1− π

³
eφ1 , η2

´´
ψ ϕ
i

(19)

≥ π
³
eφ1 , η2

´
− ceφ1 + δ

h
π
³
eφ1 , η2

´
φσ +

³
1− π

³
eφ1 , η2

´´
φϕ
i

(20)

= Fφ. (21)

The first inequality follows by definition of the maximum, and the second inequality follows by

the assumption that ψ ≥ φ.

As for (ii): Let ψ ∈ S and ξ > 0, and let β = δ. Then

F (ψ + ξ) = max
e1∈{0,1}

{π (e1, η2)− ce1 + δ [π (e1, η2)ψ
σ + (1− π (e1, η2))ψ

ϕ] + (22)

+δ [π (e1, η2) ξ + (1− π (e1, η2)) ξ]} (23)

= Fψ + βξ. (24)

This shows that F is a contraction. ¤

Appendix B: Proof of Theorem 1

The proof makes use of several propostions that we shall show below. We first characterize a

best response against a threshold strategy.

Proposition 4 Let η2 be a threshold strategy. Then it holds:

(i) V1 is (weakly) increasing in γ and constant on N2 with

V1 (γ) =
p− c
1− δ

for all γ ∈ N2.

(ii) A best response for P1 against η2 is given by

η∗1 (γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if V1 (γ) > (1− p) / (1− δ)

0 V1 (γ) = (1− p) / (1− δ) .

(25)

(iii) η∗1 is a threshold strategy with threshold r
∗
1 = sup {γ ∈ Γ|V1 (γ) = (1− p) / (1− δ)}.20

19In what follows, we shall occasionally suppress the argument γ and write ψσ instead of ψ (γσ ) etc.
20If V1 (γ) > (1− p) / (1− δ) for all γ, then we define r∗1 = 0.
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The next proposition states that the best response correspondence is monotone.

Proposition 5 Let η2, eη2 be threshold strategies. Denote by BRi player i’s best response cor-
respondence on the set of threshold strategies of player −i.Then it holds:

(i) η1 = BR1 (η2) =⇒ N (η1) ∩N (η2) = ∅.

(ii) η2 ≥ eη2 =⇒ BR1 (η2) ≤ BR1 (eη2).21
Our next aim is to define a function that maps thresholds of player −i’s threshold strategies

on the thresholds of player i’s corresponding best response threshold strategies. To do so, we

need the following result.

Proposition 6 Let η2, eη2 be threshold strategies with corresponding thresholds r2, er2. Let η1 =
BR1 (η2) , eη1 = BR1 (eη2) be best responses with corresponding thresholds r1, er1. Then it holds:

r2 = er2 =⇒ r1 = er1. (26)

Denote by THi (ηi) the threshold of threshold strategy ηi. Proposition 6 allows us to make the

following definition.

Definition 4 Let r−i be a threshold for player −i induced by a threshold strategy η−i. Then

the function bri : Γ→ Γ is defined by

bri (r−i) = THi (BRi (η−i)) .
We shall show existence of equilibrium by using that br1 and br2 have an intersection (r∗1, r∗2).
To establish that an intersection exists, it is sufficient to show that bri is continuous on Γ. The

existence of an intersection follows then by a standard fixed-point theorem.

Proposition 7 The function bri is continuous for all r−i ∈ Γ.

We are now in the position to prove Theorem 1.

Proof of Theorem 1: Existence: Because bri is continuous on Γ, and Γ is compact, there

is an intersection (r∗1, r
∗
2) such that br1 (r∗2) = br2 (r∗1). Now, define the strategies µ = 1(r∗1 ,1]

,

21ηi ≥ eηi if and only if ηi (γ) ≥ eηi (γ) for all γ ∈ Γ. Equivalently: ηi ≥ eηi if and only if N (ηi) ⊆ N (eηi).
20



ν = 1[r∗1 ,1]
for P1, and ξ = 1[0,r∗2)

, ζ = 1[0,r∗2] for P2. Then, by definition of bri, BR1 (η2) ∈ {µ, ν}
for η2 ∈ {ξ, ζ}, and BR2 (η1) ∈ {ξ, ζ} for η1 ∈ {µ, ν}. Thus, for an equilibrium to exist we have

to show that there is a pair (η∗1, η
∗
2) ∈ {µ, ν}×{ξ, ζ} such that BR1 (η∗2) = η∗1 andBR2 (η

∗
1) = η∗2.

To do so, we go through all possible combinations (BR1 (ξ) , BR1 (ζ) , BR2 (µ) , BR2 (ν)) of

best responses and show that only combinations can arise in which there is a pair (η∗1, η
∗
2) of

mutual best responses. We can represent the possible cases by arrow diagrams such as

µ& ← ξ

ν → - ζ
(27)

where the arrow, for example, at µ points toBR2 (µ); that is, the diagram indicated corresponds

to the best response combination (µ, µ, ζ, ξ). A pair (η∗1, η
∗
2) of mutual best responses exists if

two arrows point directly towards each other. For example, in the diagram indicated, (µ, ζ) is

such a pair.

There are 16 such diagrams, and it is tedious but straightforward to see that there are only

two diagrams in which there is no pair of mutual best responses. These diagrams are

A)
µ& ← ξ

ν % ← ζ
, and B)

µ→ . ξ

ν → - ζ
. (28)

We shall now show that these two diagrams are incompatible with the monotonicity of BR.

To rule out case A), notice that µ < ν and ξ < ζ. Because ξ < ζ, Proposition 5 implies that

BR1 (ξ) ≥ BR1 (ζ). Hence, it cannot be that BR1 (ξ) = µ and BR1 (ζ) = ν. Case B) is ruled

out with an identical argument. This establishes existence of an equilibrium.

As for (i): “⇒”: Let r∗1 > 0. By Proposition 5 (i), η∗2 (γ) = 1 for all γ < r∗1. Notice that

P1’s utility from e1 = 1 against η2 (γ) = 1 is at least

λ = p111γ + p
2
11 (1− γ)− c+ δ

1− p
1− δ

. (29)

This is so because P1 gets p111γ + p
2
11 (1− γ) − c in the current period and then more than

1 − p in all future periods. Therefore for all γ < r∗1: (1− p) / (1− δ) = V1 (γ) ≥ λ. That is,

p111γ + p
2
11 (1− γ)− c ≤ 1− p for all γ < r∗1. Because the weak inequality holds for all γ < r∗1

and its left hand side is increasing, it must hold with strict inequality for γ = 0. This implies

that p211 < 1− p+ c. This shows “⇒”.

“⇐”: Let p211 < 1− p+ c. Suppose to the contrary that r∗1 = 0. Because η∗1 is a threshold

strategy, this implies that η∗1 = 1 for all γ except possibly for γ = 0. There are now two cases:
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(a) Γ\N∗
2 contains an open neighbourhood, or (b) it does not. In case (a), we show that there

is a γ such that η∗1 (γ) = 1 and V1 (γ) < (1− p) / (1− δ), a contradiction to Proposition 4 (ii).

Because of (a) and because η∗2 is a threshold strategy, Γ\N∗
2 contains γ = 0. Thus, for each

k ∈ N, we can find a γk close to 0 such that, first, the action profile (1, 1) is played for at least

k periods even if P1 were to experience k successes in a row and, second, π (1, 1; γt)− c remains

smaller than 1− p in these k periods, because by assumption p211 − c < 1− p. Hence, starting

at γk, P1’s per period payoff is less than 1 − p for at least k periods and, trivially, less than

p− c from then on. Thus,

V1 (γk) <
kX
t=0

δt (1− p) +
∞X
t=k

δt (p− c)

Hence, V1 (γk) < (1− p) / (1− δ) for sufficiently large k.

In case (b), η∗2 = 0 for all γ > 0. We show that for sufficiently small γ, P2 is better off by

playing e2 = 1 rather than e2 = 0. Indeed, since for all γ > 0 the action profile (1, 0) is played,

P2’s value is V2 (γ) = (1− p) / (1− δ). However, by an argument similar to that in part (i), if

P2 plays e2 = 1 he obtains at least¡
1− p111

¢
γ +

¡
1− p211

¢
(1− γ)− c+ δ

1− p
1− δ

.

But since p211 < 1− p+ c, this is strictly larger than (1− p) / (1− δ) for sufficiently small γ, a

contradiction to V2 (γ) = (1− p) / (1− δ). This completes “⇐”.

As for (ii): (ii) follows from identical arguments as in (i).

As for (iii): This is an immediate consequence of Proposition 5 (i).

Remaining proofs of propositions 4 to 7:

Proof of Proposition 4: To show (i), we show that the fixed point mapping F preserves

the property “(weakly) increasing in γ and constant on N2”. Denote by S+,c the set of all

functions in S that are increasing in γ and constant on N2. Notice that S+,c is complete.22 The

following proposition states that F maps S+,c in S+,c.

Proposition 8 Let η2 be a threshold strategy, and let ψ ∈ S+,c. Then Fψ ∈ S+,c.
22This is because the functions in S+,c are only weakly increasing.
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Now, since F preserves S+,c, all elements of a sequence (F nψ)n=1,2,... with ψ ∈ S+,c are in S+,c.

Since S+,c is complete, the limit V1 is in S+,c.

To determine V1 on N2, compare the value of e1 = 1 and the value of e1 = 0. Since

η2 (γ) = 0, there is no updating when P1 plays e1 = 1, and e1 = 1 gives

p− c+ δV1 (γ) .

Choosing e1 = 0 gives

π00 (γ) + δ [π00 (γ)V1 (γ
σ) + (1− π00 (γ))V1 (γ

ϕ)]

Since V1 is increasing, it is maximal on N2, thus

V1 (γ) ≥ π00 (γ)V1 (γ
σ) + (1− π00 (γ))V1 (γ

ϕ) .

Moreover, by complementarity, p−c > π00 (γ). Hence, e1 = 1 is a maximizer against η2 (γ) and

V1 (γ) = p− c+ δV1 (γ) for all γ ∈ N2. (30)

Thus, V1 (γ) = (p− c) / (1− δ). This shows (i).

Proof of Proposition 8: We first show that Fψ is constant on N2. Let γ ∈ N2. e1 = 0

yields

π00 (γ) + δ [π00 (γ)ψ (γ
σ) + (1− π00 (γ))ψ (γ

ϕ)] ,

and e1 = 1 yields p − c + δψ (γ). Since ψ is increasing and constant on N2, it is maximal on

N2. Thus,

ψ (γ) ≥ π00 (γ)ψ (γ
σ) + (1− π00 (γ))ψ (γ

ϕ) .

Moreover, by complementarity, p− c > π00 (γ). Hence, e1 = 1 is a maximizer of Fψ (γ). Thus,

Fψ (γ) = p− c+ δψ (γ) for all γ ∈ N2. (31)

Since, by assumption, ψ is constant on N2, it follows that Fψ is constant on N2.

It remains to show that Fψ is increasing in γ. Let γ ≥ eγ. We have to show that Fψ (γ) ≥
Fψ (eγ). Let e1, ẽ1 ∈ {0, 1} be the maximizers of Fψ (γ) and Fψ (eγ), respectively. We begin by
observing that since η2 is a threshold strategy, η2 (γ) ≤ η2 (eγ). Hence, there are the following
cases: A): η2 (γ) = 0 and η2 (eγ) = 1, and B): η2 (γ) = η2 (eγ).
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Consider first case A). Since η2 (γ) = 0, γ ∈ N2. Thus, it follows from the first part of the

proof that e1 = 1 is a maximizer of Fψ (γ) and Fψ (γ) = p− c+ δψ (γ). We want to show that

this is larger than

Fψ (eγ) = π (ẽ1, η2 (eγ))− cẽ1 + δ [π (ẽ1, η2 (eγ))ψ (eγ σ) + (1− π (ẽ1, η2 (eγ)))ψ (eγ ϕ)] . (32)

Now, because P1’s win probability increases in P1’s and decreases in P2’s effort, it follows that

p−c ≥ π (ẽ1, 1). Moreover, because ψ is increasing and constant on N2,ψ (γ) is maximal. Thus,

ψ (γ) ≥ ψ (eγ σ) and ψ (γ) ≥ ψ (eγ ϕ). These two observations imply that Fψ (γ) ≥ Fψ (eγ).
Consider next case B): η2 (γ) = η2 (eγ). We begin by noting that because e1 is a maximizer

of Fψ (γ) it follows that

Fψ (γ) ≥ π (ẽ1, η2 (γ))− cẽ1 + δ [π (ẽ1, η2 (γ))ψ (γ
σ) + (1− π (ẽ1, η2 (γ)))ψ (γ

ϕ)] , (33)

where γ σ and γ ϕ are computed on the basis of ẽ1. Denote the right hand side of (33) by ζ. We

shall now show that ζ ≥ Fψ (eγ).
To see this, observe first that because η2 (γ) = η2 (eγ), it follows that π (ẽ1, η2 (γ)) =

π (ẽ1, η2 (eγ)). Observe second that if ẽ1 6= η2 (γ), then updating stops, and γ σ = γ ϕ = γ.

Likewise, eγ σ = eγ ϕ = eγ. If ẽ1 = η2 (γ), then updating continues, and monotonicity of Bayes’

rule implies that γ σ ≥ eγ σ and γ ϕ ≤ eγ ϕ. Therefore, in either case we have that γ σ ≥ eγ σ and

γ ϕ ≤ eγ ϕ, and because ψ is increasing, it follows that ψ (γ σ) ≥ ψ (eγ σ) and ψ (γ ϕ) ≥ ψ (eγ ϕ).

These two observations imply that ζ ≥ Fψ (eγ), and this completes the proof. ¤
We now show part (ii) of Proposition 4. Let η2 be a threshold strategy. It may be that

for some γ ∈ Γ, P1 is indifferent between e1 = 1 and e1 = 0. In these cases, we impose the

tie-breaking rule that P1 chooses e1 = 0. The best response gets thus single-valued at each

γ ∈ Γ. Let η1 be such a single-valued best response against η2. We show:

(a) If η1 (γ) = 0, then V1 (γ) = (1− p) / (1− δ).

(b) If η1 (γ) = 1, then V1 (γ) > (1− p) / (1− δ).

In other words: η1 (γ) = 1 if and only if V1 (γ) > (1− p) / (1− δ).

As for (a): Let η1 (γ) = 0. Suppose, η2 (γ) = 0. The first step in the proof of Proposition

8 implies that P1 optimally chooses e1 = 1 if η2 (γ) = 0, contradicting η1 (γ) = 0. Therefore,

η2 (γ) = 1. In this case, since η1 (γ) = 0, there is no updating, and P1’s value is given by

V1 (γ) = 1− p+ δV1 (γ) . (34)
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This implies that V1 (γ) = (1− p) / (1− δ).

As for (b): Let η1 (γ) = 1. Suppose, η2 (γ) = 0. Then, by part (i),

V1 (γ) = (p− c) / (1− δ) > (1− p) / (1− δ) .

Suppose, η2 (γ) = 1. We have seen under (a) that the value from e1 = 0 against η2 (γ) = 1,

conditional on optimal continuation, is equal to (1− p) / (1− δ). Our tie-breaking rule implies

that P1 strictly prefers e1 = 1 to e1 = 0, if η1 (γ) = 1. Thus, if η1 (γ) = 1, it must be that

V1 (γ) > (1− p) / (1− δ).

It remains to show part (iii) of Proposition 4. Due to part (ii),

N1 = {γ |V1 (γ) = (1− p) / (1− δ)} is the no-effort set of P1’s best response against a thresh-

old stratey η2. Since V1 is increasing, it follows that r1 = supN1 is a threshold according to

Definition 2. ¤

We now turn to the proofs of Propositions 5 to 7. We start by providing a useful formula

to compute utility differences. To do so, we introduce some notation.

Let η2, eη2 be threshold strategies for P2 with η2 ≥ eη2. Let η1 be an abritrary threshold
strategy for P1 with N (η1) ∩N (η2) = ∅. Divide N (eη2) into the following sets:

A = N (η1) ∩N (eη2) , B = N (eη2) \ (A ∪N (η2)) . (35)

The following picture illustrates these sets.

......................................................................................................................................................................................................................................................................................................................................................................................

Figure 2: The sets A and B
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Notice that B is well defined and non-empty because, by assumption, η2 ≥ eη2. We shall now
define first entry times into these sets. Define for j = A,B

Tj (ω) = min
©
t ≥ 0 | γt (ω) ∈ j

ª
. (36)

Furthermore, define by

{TA < TB} = {ω |TA (ω) <∞, TA (ω) < TB (ω)} (37)
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the event that the belief reaches A in finite time and that A is reached before B.23 Define

likewise {TB < TA}. Then we have the following result.

Proposition 9 The utility difference from playing η1 against η2 rather than against eη2 is given
by

U1 (η1, η2)− U1 (η1, eη2) (38)

=

Z
{TA<TB}

δTA(ω)
∙
1− p
1− δ

− U1 (η1, eη2) ¡γTA(ω)¢¸ dP (ω ; η1, η2, γ) (39)

+

Z
{TB<TA}

δTB(ω)
∙
U1 (η1, η2)

¡
γTB(ω)

¢
− p− c
1− δ

¸
dP (ω ; η1, η2, γ) . (40)

Proof : Let γ0 = γ ∈ Γ, and let ω be an infinite sequence ω = (ω1, ...,ωt, ...) ,ωt ∈ {σ,ϕ} of

successes and failures of player 1. Let (γt)t=1,2,... be the unique sequence of beliefs induced by

ω under strategies η1, η2, and initial state γ0. Let ηti = ηi (γ
t). P1’s utility of η1 against η2 is

U1 (η1, η2) =

Z ∞X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢
− cηt1

¤
dP (ω ; η1, η2, γ) (41)

=

Z
{TA<TB}

∞X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢
− cηt1

¤
dP (ω ; η1, η2, γ) (42)

+

Z
{TB<TA}

∞X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢
− cηt1

¤
dP (ω ; η1, η2, γ) (43)

+

Z
{TA=TB=∞}

∞X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢
− cηt1

¤
dP (ω ; η1, η2, γ) (44)

We can split the sum in (42) into dates before and after A is reached, that is, the integral in

(42) is equal toZ
{TA<TB}

TA−1X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢
− cηt1

¤
+ δTA(ω)U1 (η1, η2)

¡
γTA(ω)

¢
dP (ω ; η1, η2, γ) . (45)

For (43) we obtain the corresponding expression. Now notice that the two profiles (η1, η2) and

(η1, eη2) coincide as long as A or B is not reached. Hence, before A or B is reached both the

transition probabilities and the current payoff are the same under (η1, η2) and under (η1, eη2).
23Again, we neglect measurability issues. If we had defined the probability space properly, it would however

be easy to show that Tj is a stopping time and that {TA < TB} is measurable.

26



Therefore, Z
{TA<TB}

TA−1X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢
− cηt1

¤
dP (ω ; η1, η2, γ) (46)

+

Z
{TB<TA}

TB−1X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢
− cηt1

¤
dP (ω ; η1, η2, γ) (47)

=

Z
{TA<TB}

TA−1X
t=0

δt
£
π
¡
ηt1, eηt2; γt¢− cηt1¤ dP (ω ; η1, eη2, γ) (48)

+

Z
{TB<TA}

TB−1X
t=0

δt
£
π
¡
ηt1, eηt2; γt¢− cηt1¤ dP (ω ; η1, eη2, γ) . (49)

By the same argument, since (η1, η2) and (η1, eη2) coincide on the set {TA = TB =∞}, the
integral in (44) is the same under (η1, η2) and (η1, eη2). Therefore, we can write the utility
difference from playing η1 against η2 rather than against eη2 as

U1 (η1, η2)− U1 (η1, eη2) (50)

=

Z
{TA<TB}

δTA(ω)U1 (η1, η2)
¡
γTA(ω)

¢
dP (ω ; η1, η2, γ) (51)

−
Z
{TA<TB}

δTA(ω)U1 (η1, eη2) ¡γTA(ω)¢ dP (ω ; η1, eη2, γ) (52)

+

Z
{TB<TA}

δTB(ω)U1 (η1, η2)
¡
γTB(ω)

¢
dP (ω ; η1, η2, γ) (53)

−
Z
{TB<TA}

δTB(ω)U1 (η1, eη2) ¡γTB(ω)¢ dP (ω ; η1, eη2, γ) . (54)

To complete the proof, we need two further arguments. First, since (η1, η2) and (η1, eη2) coincide
as long as A or B is not reached, a path ω reaches A or B in finite time under (η1, η2) if and

only if it does so under (η1, eη2). Thus, we can replace dP (ω ; η1, eη2, γ) by dP (ω ; η1, η2, γ) in
(52) and (54).

Second, when A is reached under (η1, η2), P1 stops exerting effort while P2 does not, hence

the process stops, and thus

U1 (η1, η2)
¡
γTA(ω)

¢
=
1− p
1− δ

. (55)

Similarily, when B is reached under (η1, eη2), P2 stops exerting effort while P1 does not, hence
the process stops, and thus

U1 (η1, eη2) ¡γTB(ω)¢ = p− c
1− δ

. (56)

Collecting terms yields now the desired expression. ¤
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Proof of Proposition 5: As for (i): Proposition 4 (i) and (ii) imply that P1 optimally

chooses e1 = 1 on N2 . This implies the claim.

As for (ii): Let η2 ≥ eη2. Denote by η1, eη1 the corresponding best responses, and by V1, eV1
the corresponding value functions of P1. By Proposition 4, (ii), η1 (γ) = 1 if and only if

V1 (γ) > (1− p) / (1− δ). Hence, it is enough to show that eV1 (γ) ≥ V1 (γ) for all γ ∈ Γ. We

shall show that η1 gives a higher utility against eη2, than η1 gives against η2. That is,

U1 (η1, eη2) ≥ U1 (η1, η2) . (57)

By definition of a best response, this implies eV1 ≥ U1 (η1, eη2) ≥ U1 (η1, η2) = V1.
To show (57), notice that by (i), N (η1) ∩ N (η2) = ∅. Hence we can apply Proposition 9 to

obtain

U1 (η1, η2)− U1 (η1, eη2) (58)

=

Z
{TA<TB}

δTA(ω)
∙
1− p
1− δ

− U1 (η1, eη2) ¡γTA(ω)¢¸ dP (ω ; η1, η2, γ) (59)

+

Z
{TB<TA}

δTB(ω)
∙
U1 (η1, η2)

¡
γTB(ω)

¢
− p− c
1− δ

¸
dP (ω ; η1, η2, γ) . (60)

We shall now show that this expression is non-positive. To see this, observe first that when A

is reached under (η1, eη2), both players stop exerting effort. The worst thing that can happen
to P1 in this case is that he loses in the current period and the next period belief is such that

(0, 1) is played from then on and P1 would receive a period payoff of 1− p forever (note that

this follows from complementarity: p200 > 1− p+ c > 1− p). Hence,

U1 (η1, eη2) ¡γTA(ω)¢ ≥ π00 (γ) + δ
1− p
1− δ

≥ 1− p
1− δ

. (61)

Second, notice that because η1 is a best response against η2, U1 (η1, η2)
¡
γTB(ω)

¢
= V1

¡
γTB(ω)

¢
.

Thus, U1 (η1, η2)
¡
γTB(ω)

¢
≤ (p− c) / (1− δ) according to Proposition 4 (i). This completes the

proof. ¤

Proof of Proposition 6: If η2 = eη2, the claim is trivially true. If η2 6= eη2, then there
are only two threshold strategies with equal thresholds, η2 = 1[0,r2] and eη2 = 1[0,r2). Notice that
η2 ≥ eη2. Let V1 and eV1 be the value functions against η2 and eη2, respectively. Suppose now to
the contrary that r1 6= er1. Then Proposition 5 implies that er1 < r1. Thus, there is a non-empty
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interval I ⊂ (er1, r1), and it follows that V1 (γ) = (1− p) / (1− δ) for all γ ∈ I. We shall show

that there is a γ ∈ I such that

U1 (eη1, η2) (γ) > 1− p
1− δ

, (62)

which yields a contradiction, because by definition of a best response V1 (γ) ≥ U1 (eη1, η2) (γ).
To prove (62), notice first that since I ∩N (eη1) = ∅, it holds that eV1 > (1− p) / (1− δ) on

I. Hence, (62) is implied if there is a γ ∈ I such that

U1 (eη1, η2) (γ) = eV1 (γ) . (63)

We shall now show (63). To do so, we apply Proposition 9. (Notice: the strategy denoted η1

in the Proposition, is now eη1). Due to Proposition 5 (i), A = N (eη1) ∩N (eη2) = ∅. Moreover,
B = N (eη2) \ (A ∪N (η2)) = {r2}. Thus,

U1 (eη1, η2) (γ)− eV1 (γ) (64)

= U1 (eη1, η2) (γ)− U1 (eη1, eη2) (γ) (65)

=

Z
{T{r2}<∞}

δT{r2}(ω)
∙
U1 (eη1, η2) ¡γT{r2}(ω)¢− p− c

1− δ

¸
dP (ω ; eη1, η2, γ) . (66)

We now show that there is a γ ∈ I such that P
£
T{r2} <∞ ; eη1, η2, γ¤ = 0, hence the integral is

0. To do so, let

Γtr2 =
©
γ | ∃ω : γt (ω) = r2, given γ0 = γ and (eη1, η2) is playedª (67)

the set of all possible initial beliefs γ such that {r2} can be possibly hit after t periods. De-

fine by Γr2 = ∪tΓt (r2) the set of all initial beliefs such that {r2} can be hit in finite time.

Since in each period, there are only two events, success and failure, Γtr2 is finite. Accordingly,

Γr2 = ∪tΓt (r2) is countable. Hence the intersection I ∩ (¬Γr2) is non-empty and for all initial

beliefs γ ∈ I ∩ (¬Γr2), {r2} is not reached in finite time, that is, P
£
T{r2} <∞ ; eη1, η2, γ¤ = 0.

This completes the proof. ¤

Proof of Proposition 7: Let
¡
rn−i
¢
n
be a sequence with limit r−i. We show that lim bri ¡rn−i¢ =

r−i. To do so, we make use of the following Proposition.

Proposition 10 Let
¡
ηn−i
¢
n
be a sequence of threshold strategies with ηn−i →

n→∞
η−i (pointwisely).

Let rni = bri ¡TH−i ¡ηn−i¢¢ and ri = bri (TH−i (η−i)). Then
rni →

n→∞
ri (68)
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To complete the proof, it therefore suffices to construct a sequence
¡
ηn−i
¢
n
,η−i of threshold

strategies with TH−i
¡
ηn−i
¢
= rn−i and TH−i (η−i) = r−i such that

¡
ηn−i
¢
converges to η−i (point-

wisely). We demonstrate the construction for i = 1 (the other case is analogous).

Define ηn2 = 1[0,rn2 ]. There are two cases. (I): there are infinitely many sequence members

rn2 ≥ r2 and (II): otherwise. Now define η2 = 1[0,r2] in case (I), and η2 = 1[0,r2) in case (II). It

then follows that ηn2 converges to η2 pointwisely and this completes the proof. ¤

Proof of Proposition 10: We only show left-continuity, that is, if ηn2 ∙ η2, then rn1 ∙ r1.

Right-continuity is shown with identical arguments.

Let V n1 and V1 be the value functions associated with the best responses η
n
1 and η1 against

ηn2 and η2. The proof proceeds in two steps. In STEP 1, we show that limV n1 = V1. In STEP

2, we show that limV n1 = V1 implies that r
n
1 ∙ r1.

STEP 1: To show the pointwise convergence of V n1 to V1, notice that since, η
n
2 ≤ ηn+12 ≤ η2

by assumption, it follows from the proof of Proposition 5 that V n1 ≥ V n+11 ≥ V1. Thus, since

V n1 is bounded from below, the (pointwise) limit exists and limn V n1 ≥ V1. We shall show that

U1 (η
n
1 , η

n
2 )− U1 (ηn1 , η2)→ 0. (69)

Thus, since limU1 (ηn1 , η
n
2 ) exists, it exists limU1 (η

n
1 , η2), and the two limits coincide. This

implies that limV n1 = limU1 (η
n
1 , η

n
2 ) = limU1 (η

n
1 , η2) ≤ U1 (η1, η2) = V1, where the inequality

holds because η1 is a best response against η2. Because we also have that limV n1 ≥ V1, it follows

that limV n1 = V1.

To show (69), let ε > 0. Let τ ∈ N be such that

δτ
µ

p

1− δ

¶
< ε. (70)

Define by

Γτ =
©
γ ∈ Γ | there is an ω such that γt (ω) = γ for some t ∈ {0, ..., τ}

ª
(71)

the set of all possible beliefs up to time τ . Because there are only two events, success or failure,

in each period, Γτ contains at most 2τ + 1 <∞ elements. Therefore it exists

ξτ = min
γ∈Γτ \N(η2)

dist (γ, N (η2)) , (72)
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where dist (γ, N (η2)) is the smallest (Euclidean) distance between γ and the closure of N (η2).

In particular, ξτ > 0.24

Define by Cn = N (ηn2 ) \N (η2) the set where ηn2 and η2 differ. Let rn2 and r2 be the thresholds

associated with ηn2 and η2. By Proposition 5 ηn2 ∙ η2 implies rn2 ∙ r2. Thus, there is a number
nτ such that

r2 − rn2 < ξτ /2 for all n > nτ , (73)

and it follows by construction that the belief process can not reach Cn
τ
before time τ ; that is,

Cn
τ ∩ Γτ = ∅. The following picture illustrates the set Cn.

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 3: The set Cn for n > nτ
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To determine |U1 (ηn1 , η2)− U1 (ηn1 , ηn2 )|, notice first that it follows from the proof of Proposition

5 that U1 (ηn1 , η
n
2 ) ≥ U1 (ηn1 , η2), and we can delete the absolute value operator. To determine

U1 (η
n
1 , η2) − U1 (ηn1 , ηn2 ), we shall apply Proposition 9 (where now η2 plays the role of eη2, and

ηn1 , η
n
2 play the role of η1, η2 respectively). Notice first that by Proposition 5 (i), A = N (η

n
2 ) ∩

N (ηn1 ) = ∅. Thus, B = N (ηn2 ) \ (A ∪N (η1)) = Cn. Hence, we obtain that

U1 (η
n
1 , η2)− U1 (ηn1 , ηn2 ) =

Z
{TCn<∞}

δTCn(ω)
∙
p− c
1− δ

− U1 (ηn1 , η2)
¡
γTCn(ω)

¢¸
dP (ω ; η1, η2, γ) .

(74)

Because U1 (ηn1 , η2)
¡
γTCn(ω)

¢
is certainly larger than −c/ (1− δ), it follows that

U1 (η
n
1 , η2)− U1 (ηn1 , ηn2 ) ≤

p

1− δ

Z
{TCn<∞}

δTCn (ω) dP. (75)

Now we can write the integral asZ
{TCn<τ}

δTCn (ω) dP +

Z
{τ≤TCn<∞}

δTCn (ω) dP. (76)

The first term is smaller than P [TCn < τ ] which is 0, because, by construction, the belief

process cannot reach Cn before time t = τ . Moreover, the second term is smaller than
24If Γτ ⊂ N (η2), then Γτ \N (η2) = ∅, and ξτ = 0. In this case, γ0 ∈ N (η2). Therefore, V1

¡
γ0
¢
=

(p− c) / (1− δ), and it follows directly that V1 ≥ V n1 .
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δτP [τ ≤ TCn <∞] ≤ δτ . Hence, we obtain

U1 (η
n
1 , η2)− U1 (ηn1 , ηn2 ) ≤ δτ

µ
p

1− δ

¶
< ε. (77)

This shows step 1.

STEP 2: Suppose to the contrary that (rn1 )n does not converge to r1. Since η
n
2 ≤ ηn+12 ≤ η2

by assumption, it follows from Proposition 5 that rn1 ≤ rn+11 ≤ r1. Hence, it exists r1 = lim rn1
and there is an ε > 0 such that r1 − r1 > ε. Moreover, by Proposition 5 (i), r1 ≤ r2 and, by

assumption, rn2 ∙ r2. Thus there is a K ∈ N such that
¯̄
r1 − rk2

¯̄
< ε/2 for all k > K. Thus,

min
©
rK2 , r1

ª
− rn1 > ε/2 for all n. Hence, we can pick beliefs γ,eγ ∈ ¡r1,min©rK2 , r1ª¢ with

γ − eγ > ε/4. Notice that, by construction, ηn1 (eγ) = ηn1 (γ) = 1 and ηn2 (eγ) = ηn2 (γ) = 1 for all

n > K. Therefore,

V n1 (γ)− V n1 (eγ) = π (1, 1; γ)− π (1, 1;eγ) (78)

+ δ [π (1, 1; γ)V n1 (γ
σ) + (1− π (1, 1; γ))V n1 (γ

ϕ)] (79)

− δ [π (1, 1;eγ)V n1 (eγ σ) + (1− π (1, 1;eγ))V n1 (eγ ϕ)] . (80)

We shall now estimate this expression. First, the first line computes to (p111 − p211) (γ − eγ) and
is therefore strictly larger than (p111 − p211) (ε/4). Next, because V n1 (γ σ) ≥ V n1 (γ ϕ) and because

π (1, 1; γ) ≥ π (1, 1;eγ), the second line is larger than
δ [π (1, 1;eγ)V n1 (γ σ) + (1− π (1, 1;eγ))V n1 (γ ϕ)] . (81)

Moreover, monotonicity of Bayes’ rule implies that V n1 (γ
σ) ≥ V n1 (eγ σ) and V n1 (γ

ϕ) ≥ V n1 (eγ ϕ).

Therefore, the second and the third line taken together are larger than zero. Hence,

V n1 (γ)− V n1 (eγ) > ¡p111 − p211¢ (ε/4) for all n > K. (82)

Now, by construction, γ,eγ < r1 ≤ r2. Thus, η1 (eγ) = η1 (γ) = 0 and η2 (eγ) = η2 (γ) = 1. Hence,

at γ and eγ, learning stops under (η1, η2). Consequently, V1 (γ) = V1 (eγ). Now recall that, by
hypothesis, limV n1 = V1, hence V

n
1 (γ)− V n1 (eγ)→ V1 (γ)− V1 (eγ) = 0, a contradiction to (82).

This establishes step 2 and completes the proof. ¤

Appendix C: Proof of Theorem 2

Proof of Theorem 2: (i) Let λ be the the smallest number such that, starting from initial

belief γ0 = r∗1, the belief process (γ
t)t moves to a belief γ

σ...σ ≥ r∗2 after λ consecutive successes
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for P1, conditional on both players choosing e1 = e2 = 1. Notice that because (γt) is Markov,

it is also true that if γt = r∗1 then γt+λ ≥ r∗2 after λ consecutive successes for P1. Moreover,

because γt converges to 1 if P1 wins infinitely often, λ is finite. Now, for k = 0, 1, ... define by

Ak =
©
ω|ωλk+1 = ... = ω(k+1)λ = σ

ª
(83)

the event that P1 wins λ times in a row beginning in period t (k) = λk + 1. Define by

A∞ = ∩∞m=0 ∪k≥m Ak the event that Ak occurs infinitely often. The Lemma of Borel-Cantelli

(see Chow/Teicher 1978, p. 60, Thm 1) implies that P [A∞|θ] = 1 for all θ. This is so because

Ak is stochastically indepent of Ak+1 and because
P
P [Ak|θ] =

P¡
pθ11
¢λ
=∞.

Now notice that A∞ is included in the event {T <∞}. To see this, let ω ∈ A∞. Then

there is a k such that ω ∈ Ak. There are two possibilities: first, γt(k) (ω) ∈ N∗
1 ∪N∗

2 in which

case T (ω) ≤ t (k) < ∞. Second, γt(k) (ω) /∈ N∗
1 ∪ N∗

2 . In this case, monotonicity of Bayes’

rule implies that γt(k+1) (ω) ∈ N∗
2 . This is so because, given that (γ

t)t (ω) moves into N
∗
2

after λ success of P1 starting from γ0 = r∗1, then it does so a forteriori when it starts from

γ0 > r∗1. Hence, T (ω) ≤ t (k + 1) < ∞. This shows that A∞ ⊆ {T <∞}. Since, in addition,

P [A∞] = 1, the assertion follows.

(ii) Suppose r∗1 = 0 and r
∗
2 < 1. Then by a similar argument as in (i) for each initial belief

γ ∈ (0, 1) there is a finite number λ (γ) such that starting from γ the belief process moves into

N∗
2 after λ (γ) consecutive successes of P1. The probability of this to happen is

¡
pθ11
¢λ(γ)

> 0

for all θ. This implies the assertion. The argument for the case r∗1 > 0 and r
∗
2 = 1 is identical.

¤

Appendix D: Derivation of Entry Time

In this appendix, we provide a quantitative expression for the first entry time. We shall look at

the special case in which p211 = 1/2 and p
1
11 > p− c. That is, in state θ = 2 P1 is as able as P2.

By Theorem 1 (i), (ii), r∗1 = 0 and r
∗
2 < 1. Thus, the action profile (1, 1) is played if γ < r

∗
2, and

the action profile (1, 0) is played if γ ≥ r∗2. We are interested in the likelihood that the belief

process enters N∗
2 in finite time although players are equally able, that is, in P [T2 <∞ | θ = 2].

Theorem 3 Let γ0 < r∗2 be the initial belief that the state is θ = 1. Define

α = 2

µ
log

p111
1− p111

¶−1µ
log

(1− γ0) r∗2
γ0 (1− r∗2)

¶
, β = −

µ
log

p111
1− p111

¶−1
log 4p111

¡
1− p111

¢
.
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Let q0 be the unique solution q > 1 to q2 − 2q1+β + 1 = 0. Then

P [T2 <∞ | θ = 2] ≈ q−α0 .

The comparative statics properties with respect to p111 are ambiguous. It can be shown that α

decreases, and q0 increases in p111. Therefore, the sign of the derivative of q
−α
0 with respect to

p111 generally depends on p
1
11. Intuitively, if p

1
11 is close to p − c, then r∗2 is close to 1 and the

contest outcome is not very informative. Therefore, P [T2 <∞ | θ = 2] should be exptected to

be small. On the other extreme, if p211 is close to 1, updating is strong, and only few successes

for P1 might be enough to enter N∗
2 . However, few failures of P1, which obtains with probablity

1/2 in θ = 2, are enough to identify the state.

Proof of Theorem 3: Fix θ = 2. For all sequences ω, define the random variable Xs (ω)

as equal to +1 if P1 wins in period s, and equal to −1 if P1 loses in period s. The sum

Lt (ω) =
Pt

s=1Xs (ω) is then P1’s lead after t periods, and (Lt + t) /2 is the number of P1’s

successes. Conditional on θ = 2, P1’s win probability is p211 = 1/2 as long as N2 has not been

reached by γt and so Lt is a symmetric random walk. For all ω such that γt (ω) /∈ N2, iterated

application of Bayes’ rule yields that

γt =
(p111)

(Lt+t)/2 (1− p111)
t−(Lt+t)/2 γ0

(p111)
(Lt+t)/2 (1− p111)

t−(Lt+t)/2 γ0 + (1/2)t (1− γ0)
. (84)

A little bit of algebra yields that

γt ≥ r⇐⇒ Lt ≥ α+ tβ, (85)

where α > 0 and β ∈ (0, 1) are as stated in the Theorem.

Define now the function ϕ (q) = q2− 2q1+β +1 and let q0 be the solution q > 1 to ϕ (q) = 0.

Notice that q0 is unique since β ∈ (0, 1). Define further the function h (x) = qx0 , and the process

Ht (ω) = h (Lt (ω)− tβ). It is easy to show that Ht is a martingale.

Let ξ > 0 and define by

Tα (ω) = min {t ≥ 0 |Lt (ω)− tβ ≥ α} , T−ξ (ω) = min {t ≥ 0 |Lt (ω)− tβ ≤ −ξ} (86)

the first passage times of Lt−tβ through α and−ξ, respectively. Denote by Tmin = min
¡
Tα, T

−
ξ

¢
the minimum of the two. By the same argument as in the proof of Theorem 2 (i), it follows
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that Tmin < ∞ almost surely. Thus, the stopped process Ht∧T is a bounded martingale, and

we can apply the optional sampling theorem (see Chung 1974, Thm 9.35). This says that

E [H0] = E [HTmin ]. Hence,

1 = E [H0] (87)

= E [HTmin ] (88)

= E
£
HTα |Tα < T−ξ

¤
P
£
Tα < T

−
ξ

¤
+E

h
HT−ξ

|T−ξ < Tα
i
P
£
T−ξ < Tα

¤
(89)

≈
³
qα0 − q−ξ0

´
P
£
Tα < T

−
ξ

¤
+ q−ξ0 . (90)

The approximation in the last line comes from the fact that Lt− tβ has only discrete values, so

HTα is not exactly equal to q
α
0 . Hence, P

£
Tα < T

−
ξ

¤
≈
³
1− q−ξ0

´
/
³
qα0 − q−ξ0

´
. With ξ →∞,

we obtain

P [T2 <∞ | θ = 0] = P [Tα <∞] ≈
1

qa0
. (91)

This shows the claim. ¤
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Appendix E: Missing calculations–not for publication

Missing Calculations on page 16

Proof of

r1 =
p111 + c− p
2p111 − 1

∈
µ
0,
1

2

¶
, (92)

er1 = p100 + p− c− 1
2p100 − 1

∈
µ
1

2
, 1

¶
. (93)

To determine r1, suppose e2 = 1. We show that e1 = 1 is a best response if and only if γ ≥ r1.

Indeed, P1’s utility from choosing e1 = 1 is

p111γ + p
2
11 (1− γ)− c =

¡
2p111 − 1

¢
γ + 1− p111 − c, (94)

where we have used the symmetry assumption p211 = 1− p111. P1’s utility from choosing e1 = 0

is 1− p. Thus e1 = 1 is a best response if and only if¡
2p111 − 1

¢
γ + 1− p111 − c ≥ 1− p⇐⇒ (95)

γ ≥ p
1
11 + c− p
2p111 − 1

= r1. (96)

Notice also that r1 < 1/2 if and only if p111 + c − p < p111 − 1/2 or, equivalently, p − c > 1/2.

But the latter holds by A2.

To determine er1, suppose e2 = 0. We show that e1 = 0 is a best response if and only if

γ ≥ er1. Indeed, P1’s utility from choosing e1 = 0 is

p100γ + p
2
00 (1− γ) =

¡
2p100 − 1

¢
γ + 1− p100, (97)

where we have used the symmetry assumption p200 = 1− p100. P1’s utility from choosing e1 = 1

is p− c. Thus e1 = 0 is a best response if and only if¡
2p100 − 1

¢
γ + 1− p100 ≥ p− c⇐⇒ (98)

γ ≥ p
1
00 + p− c− 1
2p100 − 1

= er1. (99)
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Notice also that er1 < 1 if and only if p100 + p − c − 1 < 2p100 − 1 or, equivalently, p100 > p − c.
But the latter is the complacency assumption. ¤

Derivation of mixing probabilities: Let α1 ∈ [0, 1] be the probability with which P1

chooses e1 = 1. Then P2’s utility from choosing e2 = 0 is

α1 (1− p) + (1− α1)
£¡
1− p100

¢
γ +

¡
1− p200

¢
(1− γ)

¤
(100)

= α1 (1− p) + (1− α1)
£¡
1− 2p100

¢
γ + p100

¤
, (101)

where again we have used symmetry to get from the first to the second line. Similarly, P2’s

utility from choosing e2 = 1 is

α1
£¡
1− p111

¢
γ +

¡
1− p211

¢
(1− γ)

¤
+ (1− α1) p− c (102)

= α1
£¡
1− 2p111

¢
γ + p111

¤
+ (1− α1) p− c. (103)

Thus, P2 is indifferent between e2 = 0 and e2 = 1 if and only if

α1 (1− p) + (1− α1)
£¡
1− 2p100

¢
γ + p100

¤
(104)

= α1
£¡
1− 2p111

¢
γ + p111

¤
+ (1− α1) p− c. (105)

Rearranging terms gives

α1
£
(1− p) + p−

¡
1− 2p100

¢
γ − p100 −

¡
1− 2p111

¢
γ − p111

¤
(106)

= p− c−
¡
1− 2p100

¢
γ − p100. (107)

The square bracket in the first line simplifies to 1−p111−p100−2 [1− p111 − p100] γ, thus we obtain

α1 (γ) =
p− c− p100 − (1− 2p100) γ
(2γ − 1) (1− p111p100)

, (108)

which is what is claimed on page 16. The mixing probability for P2 is α1 (1− γ) due to sym-

metry. ¤

Missing best response diagrams in the proof of Theorem 1: There are the follow-
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ing 16 best response diagrams

µ→ ← ξ

ν → ← ζ
,

µ→ ← ξ

ν → - ζ
,

µ→ . ξ

ν → ← ζ
,

µ→ . ξ

ν → - ζ
(109)

µ→ ← ξ

ν % ← ζ
,

µ→ ← ξ

ν % - ζ
,

µ→ . ξ

ν % ← ζ
,

µ→ . ξ

ν % - ζ
(110)

µ& ← ξ

ν → ← ζ
,

µ& ← ξ

ν → - ζ
,

µ& . ξ

ν → ← ζ
,

µ& . ξ

ν → - ζ
(111)

µ& ← ξ

ν % ← ζ
,

µ& ← ξ

ν % - ζ
,

µ& . ξ

ν % ← ζ
,

µ& . ξ

ν % - ζ
(112)

In all diagrams there are two arrows pointing directly towards each other except in the top

right and the bottom left diagram. These are diagrams A) and B). ¤

Missing calculations in the proof of Theorem 3 in Appendix C

Proof of inequality (85): Multiplying through by the denominator of γt gives that γt ≥ r is

equivalent to¡
p111
¢(Lt+t)/2 ¡

1− p111
¢t−(Lt+t)/2

γ0 ≥ r∗2
h¡
p111
¢(Lt+t)/2 ¡

1− p111
¢t−(Lt+t)/2

γ0 + (1/2)t
¡
1− γ0

¢i
.

(113)

Sorting for p111 gives ¡
p111
¢(Lt+t)/2 ¡1− p111¢t−(Lt+t)/2 ≥ r∗2 (1/2)t (1− γ0)

γ0 (1− r∗2)
. (114)

Taking log and multiplying through by 2 yields

(Lt + t) log p
1
11 + (t− Lt) log

¡
1− p111

¢
≥ 2

∙
t log (1/2) + log

r∗2 (1− γ0)

γ0 (1− r∗2)

¸
⇔ (115)

Lt
¡
log p111 − log

¡
1− p111

¢¢
≥ t

¡
2 log (1/2)− log p111 − log

¡
1− p111

¢¢
(116)

+ 2 log
r∗2 (1− γ0)

γ0 (1− r∗2)
(117)

Rearranging the log expressions gives

Lt log
p111

(1− p111)
≥ t

¡
− log 4p111

¡
1− p111

¢¢
+ 2 log

r∗2 (1− γ0)

γ0 (1− r∗2)
. (118)
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Dividing by log (p111/ (1− p111)) yields now the expressions for α and β. ¤

Proof that H = (Ht)t with Ht = qLt−tβ0 is a martingale: For H to be a martingale,

we have to show:

(i) E [Ht] <∞ for all t.

(ii) E [Ht+1|Ht] = Ht for all t.

As for (i): Since (Lt)t is a random walk, Lt is bounded. Morover, tβ is bounded for all t. This

implies the claim.

As for (ii): Because (Lt)t is a random walk, Lt+1 = Lt+1 with probability 1/2, and Lt+1 = Lt−1

with probability 1/2. Thus,

E [Ht+1|Ht] =
1

q
(t+1)β
0

1

2

£
qLt+10 + qLt−10

¤
(119)

=
qLt0
qtβ0

1

qβ0

1

2

£
q10 + q

−1
0

¤
(120)

= Ht
1

qβ0

1

2

£
q10 + q

−1
0

¤
. (121)

Thus, we need to show that the expression followingHt in the last line equals 1. This is the case

if and only if
£
q10 + q

−1
0

¤
= 2qβ0 . Multiplying through with q0 (which is positive by definition)

gives q20 − 2qβ+10 + 1 = 0. But this is true by definition of q0. ¤

Proof that Tmin <∞ almost surely: Let α and ξ be integers. Define for k = 0, 1, ...the event

Ak =
©
ω|Xk(α+ξ)+1 = ... = X(k+1)(α+ξ) = −1

ª
(122)

that P1 loses α + ξ times in a row beginning in period t (k) = k (α+ ξ) + 1. Define by

A∞ = ∩∞m=0 ∪k≥m Ak the event that Ak occurs infinitely often. The Lemma of Borel-Cantelli

(see Chow/Teicher 1978, p. 60, Thm 1) implies that P [A∞] = 1. This is so because Ak is

stochastically indepent of Ak+1 and because
P
P [Ak] =

P
(1/2)α+ξ =∞.

Now notice that A∞ is included in the event {Tmin <∞}. To see this, let ω ∈ A∞. Then

there is a k such that ω ∈ Ak. There are two possibilities: first, Lt(k) − t (k)β ≥ α in which

case Tmin (ω) ≤ t (k) <∞. Second, Lt(k) − t (k)β < α in which case Lt(k+1) − t (k + 1)β < −ξ.

Hence, Tmin (ω) ≤ t (k + 1) < ∞. This shows that A∞ ⊆ {Tmin <∞}. Since, in addition,

P [A∞] = 1, it follows that Tmin <∞ almost surely.
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