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1 Introduction

Uncertainty aversion is a puzzling phenomenon. Why are people especially averse to uncertainty

that they can’t quantify? Why don’t they simply assign a prior probability distribution over

the possible probabilities, perhaps in accordance with the principle of insufficient reason, and

thereby assimilate the uncertainty to risk? In this paper, we offer an explanation of uncertainty

aversion grounded in the familiar psychological phenomenon of regret.

Regret is the negative emotion that arises from an agent’s perception that he should have

chosen otherwise. Uncertainty aversion refers to an agent’s distaste for making choices under

conditions of uncertainty in which some relevant probabilities are unknown ex ante as opposed

to conditions of risk in which all relevant probabilities are known in advance. Crucial for our

argument is the observation that the resolution of an uncertain lottery reveals information

about the unknown probabilities of the events associated with that lottery. Thus, when an

agent chooses such a lottery its resolution may alter his ex post assessment of what he optimally

should have done at the moment of choice, possibly leading him to regret his past choice. By

contrast, the resolution of a risky prospect reveals no such information and so leaves the agent’s

original assessment of the wisdom of his past choices in tact.

To illustrate, consider the two-urn example presented by Ellsberg (1961). One of the urns,

the “risky urn”, contains 50 black and 50 white balls. The other, the “uncertain urn”, contains

100 balls that are either black or white in unknown proportions. The agent has to select the urn

from which a ball is to be drawn, knowing that he will receive $100 if a black ball is drawn from

it and $0 if a white ball is drawn. Suppose the agent represents the uncertain urn as a two-stage

compound lottery in which the composition of the urn–the state–is first selected, and then a

ball is drawn, conditional on the state. Suppose further that the agent adheres to the principle

of insufficient reason, assigning equal probability to each of the 101 possible configurations of

the uncertain urn. Thus, he perceives that the two urns yield the same probability distribution

over monetary outcomes. The agent is uncertainty averse if he strictly prefers the risky urn.1

We model regret by assuming that the agent evaluates his past decisions in light of his ex

post information. More precisely, after the ball has been drawn, the agent compares his actual

payoff with the posterior expected payoff that would have been generated by the choice that

is best, conditional on his ex post knowledge. This posterior expected payoff is the agent’s

reference point. We assume that in addition to his material payoff, the agent obtains an

emotional payoff, which is given by the difference between his actual payoff and this reference

point.

1In this case, due to symmetry, he also strictly prefers the known urn if he is offered a bet that wins $100 if

a white ball is drawn and $0 otherwise, which is inconsistent with expected utility maximisation.
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When the agent chooses the uncertain urn, the outcome reveals information about its true

composition. Accordingly, he revises his assessment of the urn’s expected payoff. If he wins

the bet, he infers that his actual choice was the best choice since his posterior assigns greater

probability to states in which there are more black balls than white balls. Thus, in this case,

his reference point is the uncertain urn, and he rejoices as he compares his payoff of $100 to

the posterior mean of the uncertain urn, which, given his posterior, is strictly greater than $50

and less than $100. If instead he loses the bet, his posterior puts greater probability weight

on states in which there are more white balls than black balls. Accordingly, he infers that the

risky urn would have been the best choice. Thus, in this case, his reference point is the risky

urn, and he experiences regret as he compares his actual payoff of $0 to the expected payoff

of the risky urn of $50. When the agent chooses the risky urn instead, no outcome leads the

agent to revise his assessment of either urn’s expected payoff. Thus, whether he wins or loses,

his choice is optimal from an ex post perspective: in either event, his reference point is the risky

urn, and he compares his actual payoff to the posterior mean of the risky urn, which is $50.

Notice that when the agent chooses the risky urn, his possible regrets equal his possible

rejoicing–they exactly offset each other. By contrast, when he chooses the uncertain urn, his

regret in the event of a bad outcome more than offsets his rejoicing in the event of a good

outcome because in the latter event he changes his assessment of what the optimal choice is in

the light of his ex post information, pushing up his reference point and diminishing his rejoicing.

Accordingly, the choice of the uncertain urn leads to higher expected regret.

In this paper, we generalise the example outlined above. In the spirit of Segal (1987), we

model uncertainty by compound lotteries. A compound lottery can be thought of as an urn

of unknown composition. We refer to the composition of an urn as its first order distribution.

Playing out a compound lottery means that in the first stage, the true first order distribution

of the urn is determined, and in the second stage, an outcome is drawn according to this first

order distribution. A mixture of two compound lotteries corresponds to the compound lottery

where in the second stage the outcome is drawn according to the mixture of the first order

distributions of the two urns. Schmeidler (1989) defines uncertainty aversion as a preference

for mixtures of compound lotteries over at least one of the compound lotteries that make up

the mixture.

Our two main propositions provide sufficient conditions under which regret leads to uncer-

tainty aversion. Intuitively, regret and uncertainty aversion are linked because observing an

outcome of a mixture of compound lottery provides less information than observing an outcome

of one of the lotteries that make up the mixture. The reason is that the possible first order

distributions of a mixture are less dispersed and therefore more similar to one another. This

suggests that observing an outcome of the mixture will be less conclusive about its true first
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order distribution.

We identify two classes of compound lotteries for which this intuition holds. The lotteries in

the first class have first order distributions that satisfy certain monotonicity conditions. These

conditions hold automatically if there are only two outcomes such as “winning” or “losing”

the bet as is the case in typical Ellsberg experiments. Thus, our notion of regret generates

uncertainty aversion in all environments with two outcomes. The lotteries in the second class

satisfy certain symmetry conditions. These conditions can capture a situation in which the

agent is completely ignorant about the composition of an urn so that the principle of insufficient

reason requires the agent to regard all possible urn compositions as equally likely.

Seeking psychological foundations of uncertainty aversion is worthwhile insofar as it gen-

erates new testable predictions. Our theory has implications that do not follow from other

theories of uncertainty aversion and so point to ways in which our model could be empirically

distinguished from its rivals. Uniquely among existing theories, our agent’s behavior depends

on the nature of the feedback that he expects to receive on his actual as well as his forgone

choices. In particular, our model predicts that his uncertainty aversion will be mitigated when

he is exposed to the same feedback about the options in his choice set regardless of the option

that he chooses. Our formal analysis focuses on the case in which the agent only learns the

outcome of the urn he has chosen. But our model also predicts that if the agent observes draws

from both urns irrespective of his choice, he will no longer display uncertainty aversion. This

is because under these conditions the effect on his hindsight knowledge is the same whether he

chooses the risky or uncertain urn. Thus, our model predicts that the tendency of experimental

subjects to select the unambiguous urn will be mitigated when they are told in advance that

they will receive feedback on the composition of both urns regardless of the choice that they

make.2

Insofar as we seek a psychological explanation of uncertainty aversion, our theory resembles

those of Halevy and Feltkamp (2005) and Morris (1997). Halevy and Feltkamp argue that

uncertainty aversion can be explained by risk aversion if agents employ a rule of thumb according

to which any given gamble is evaluated as if it were bundled with another identical gamble.

Halevy and Feltkamp’s work is of particular relevance as they obtain uncertainty aversion under

a condition similar to our monotonicity condition. We discuss the formal relation between their

and our approach and how the two theories can be experimentally tested against each other

in more detail in section 6 after we have presented our results. Morris explains uncertainty

2Curley et al. (1986) conduct an experiment in which they indeed manipulate subjects’ expected feedback

by revealing the contents of the uncertain urn ex post. The data reject their hypothesis that this feedback

manipulation increases uncertainty aversion. This is actually consistent with our model, which predicts that

such forced feedback will reduce uncertainty avoiding behaviour.
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aversion as arising from the application of a different rule of thumb that instructs agents to

choose as if they were making a bet against a better informed experimenter. Avoidance of

uncertain urns arises from adverse selection in the style of no-trade results.

Our model of the agent’s preferences is motivated by two psychological observations. The

first is the observation that a person’s evaluation of an outcome is often determined by its

comparison with salient reference points as well as by its intrinsic characteristics.3 Specifically,

people appear to care directly about the comparison of outcomes of their choices to pertinent

counterfactuals such as what could, should, or might have happened.4 Second, psychological

evidence indicates that reference points are often constructed not only ex ante but also ex

post, once the outcomes of the events to which they pertain have been realised. According to

Kahneman and Miller (1986), “events in the stream of experience ... are interpreted in a rich

context of remembered and constructed representations of what it could have been, might have

been or should have been” (p.136).

Our modeling of regret using a choice-dependent reference point is similar to the modeling of

disappointment aversion in Koszegi and Rabin (2006). But whereas Koszegi and Rabin posit a

reference point depending on an agent’s ex ante expectations about what he will do, our agent’s

reference point depends on the agent’s ex post beliefs about what he should have done ex ante

if blessed with the wisdom of hindsight. In addition, Koszegi and Rabin assume loss-aversion,

whereas loss-aversion in our model arises endogenously: Since the reference point depends on

the agent’s ex post assessment of what he should have done, the agent’s expected regret looms

larger than his expected rejoicing.

The assumption that the agent’s evaluation is informed by knowledge gained in hindsight, is

consistent with psychological evidence that indicates that when judging past decisions in hind-

sight, people consistently exaggerate what could have been anticipated in foresight, a tendency

known as the hindsight bias (Fischhoff 1975). The classic regret theory that was developed by

Loomes and Sugden (1982) and Bell (1982, 1983) also shares this assumption to some extent.

In regret theory, an agent’s utility depends on the ex post comparison of the outcome of his

chosen option with those of unchosen alternatives. By contrast, in our model, the identity of

the option whose payoff will serve as the reference point is itself determined in the light of the

agent’s ex post information and, thus, may actually be the agent’s chosen option.

A large number of papers provide axiomatic foundations for uncertainty aversion. Several of

3Reference dependence is a feature of Kahneman and Tversky’s (1979) Prospect Theory. For a review of

some of the evidence on reference dependence see, for example, Rabin (1998).
4For experimental evidence that indicates that counterfactual emotions such as disappointment and regret

influence choice behaviour see, for example, Mellers et al. (1999), Mellers (2000) and Mellers and McGraw

(2001).
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these represent uncertainty aversion as the product of vague priors.5 For example, in an exten-

sion of Savage’s (1954) minimax approach, Hayashi’s (2008) considers an agent who entertains

a set of subjective priors and chooses the option which minimises over this set of priors the

highest possible expected “regret” defined as the difference between his actual outcome and the

best possible outcome in the state (assuming the state is revealed ex post).6 ,7. In contrast to

Hayashi, our model is driven by information aversion rather than vague priors. Accordingly, our

approach can be experimentally discriminated from Hayashi’s by manipulating the amount of

feedback and/or the precision of priors that are given to subjects. However, if the prior is unique

in Hayashi’s setup and the state is perfectly revealed ex post in ours, Hayashi’s representation

and our utility function are identical. (In fact both boil down to expected utility.)

Recursive expected utility formulations of uncertainty aversion relax the reduction of com-

pound lotteries axiom and derive preference representations whereby agents act as if they eval-

uate uncertainty in terms of second-order probabilities. For example, Klibanoff et al.’s (2005)

agent first computes (ordinary) expected utility with respect to each possible first-order distri-

bution and then takes the (second-order) expected utility of these first-order exptected utilities

with respect to his second-order beliefs.8 Our work complements this literature by identifying

a psychological reason (regret) why an agent may directly care about the second-order risk

he faces and, in turn, display uncertainty aversion. While a standard interpretation of these

recursive utility models assumes that second-order risk is always subjective, our agent also fails

to reduce compound lotteries even if the second-order probabilities are objective. This is in

line with the experimental results of Halevy (2007), which demonstrate that there is a negative

correlation between the tendency to reduce objective compound lotteries and uncertainty aver-

sion: subjects who reduce such lotteries tend to be uncertainty neutral, while subjects who fail

to reduce such lotteries tend to be uncertainty averse. This suggests that uncertainty aversion

is associated with a more general tendency to fail to reduce compound lotteries rather than the

more specific tendency to fail to perform such a reduction only when one set of probabilities is

subjective.9

5This group includes the Choquet expected utility approach by Schmeidler (1989) and the maximin expected

utility approach by Gilboa and Schmeidler (1988). For a generalisation of the Choquet and maximin approach

see Ghirardato et al. (2004).
6See Milnor (1954) for an axiomatic characterisation of the minimax approach.
7Interestingly, Savage (1954, p. 163) himself referred to loss and was reluctant to use the term regret: “...

some have proposed to call loss “regret,” but that term seems to me charged with emotion and liable to lead to

such misinterpretation as that the loss necessarily becomes known to the person.”
8Ergin and Gul (2008), Ahn (2008) and Nau (2006) provide alternative axiomatic foundations of similar

recursive expected utility formulations.
9But see Halevy (2007) who argues that recursive expected utility models can be viewed as consistent with

his results.
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This paper is organized as follows. Sections 2 presents the model. Section 3 adapts the

notion of uncertainty to our context. In section 4, we give an example. Section 5 contains the

formal analysis. Section 6 discusses testable implications and presents empirical support for our

model from the psychological literature. Section 7 concludes. All proofs are in the appendix.

2 The model

2.1 Independent urns

We consider an agent who faces a choice problem under uncertainty. We model the choice

problem as one of selecting an urn of unknown composition. Urns are represented by compound

lotteries in which the composition of the urn is realized at the first stage and the payoff is

determined by a draw from this urn at the second. That is, urns are represented by horse bets

over roulette lotteries (Anscombe and Aumann, 1963).

There is a finite number of urns (or actions) d ∈ D. A draw form urn d delivers one of N

possible payoffs x1 < ... < xN . The probabilities of these payoffs depend on the composition of

urn d which is described by its state ωd ∈ Ω = {1, ..., ω}.10 Thus, there are ω possible states

per urn. Let hd
nωd

be the probability with which urn d yields payoff xn in state ωd. Let

hdωd =




hd
1ωd

...

hd
Nωd




represent the (first order) payoff distribution of urn d when the urn’s true state is ωd. The

following N × ω Markov matrix describes the set of possible payoff distributions, one for each

state, of urn d:

hd =
(
hd1, ..., h

d
ω

)
.

We assume that the agent does not know an urn’s state but holds a prior belief over the possible

states. Let πd
(
ωd
)
be the marginal probability with which the agent believes that the state of

urn d is ωd.

We will consider an agent, who as a result of his regret cares about the information that

his choice reveals about the composition of an urn. In general, this includes information that

a draw from one urn might reveal about a different urn. In Ellsberg-type problems, however,

urns are typically independent. Therefore, we abstract from cross informational effects and

10The assumption that each urn has the same number of possible states is to simplify notation and is not

substantial.
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model urns as independent. This means that the joint probability that the agent assigns to the

profile of urn states
(
ωd
)
d∈D

is the product of the prior marginal probabilities: Πd∈Dπ
d
(
ωd
)
.

We denote by Xd the random variable with values in {x1, ..., xN} that describes the payoff

from a draw from urn d. Let pd be the (ex ante) distribution of Xd:

pd (xn) =
∑

ω∈Ω

hdnωπ
d (ω) .

Finally, we remark that it is without loss of generality to assume that for all d, d′ ∈ D: πd = πd
′

.

This is because states can always be appropriately “split”.11 Thus, we drop action indices from

π.

2.2 Preferences

The agent cares about both his material payoff and his ex post evaluation of the performance

of his action relative to the performance of a reference action. In the spirit of norm theory

(Kahnemann and Miller, 1986), we suppose that the reference action is constructed ex post,

that is, after the agent has observed the outcome of his choice. Specifically, we assume that the

reference action is the ideal action that the agent believes that he should have chosen had he

known with foresight what he knows with hindsight. The ex post comparison between what the

agent actually got and what he perceives he should have gotten induces an emotional reaction:

if the actual payoff falls short of his reference action’s payoff, he experiences regret and his

utility falls; otherwise, he rejoices and his utility rises.

Formally, the agent perceives that in period 0 Nature determines the profile of urn states
(
ωd
)
d∈D

once and for all according to the prior probabilities in a move that the agent cannot

observe. In period 1, the agent selects an urn d, and the agent’s material instantaneous utility

xn is realized with probability pd (xn).
12

We define the reference action as the action that would maximise the agent’s material

payoff in a hypothetical (counterfactual) period 2 choice problem, in which the agent could

select among the same urns in the light of his ex post knowledge. To fix terminology, we refer

to the hypothetical agent who makes this period 2 choice as the agent’s hindsight self. For any

d ∈ D, let

Y d

11To illustrate the argument, suppose D contains two actions a, b with πa �= πb. Then define the new state

space for urn d as Ω̂ = Ω×Ω and for ω̂d =
(
ωa, ωb

)
∈ Ω̂, let π̂

(
ω̂d
)
= πa (ωa)πb

(
ωb
)
.

12Identifying the agent’s material utility with payoff is without loss of generality. If the agent has “material

risk preferences” v (xn), then we can replace xn by x′n = v (xn).
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be the random variable that describes the hypothetical payoff from selecting urn d in period

2–the payoff of the hindsight self. We assume that the agent perceives that in his hindsight

self’s choice problem the composition (the state) of the urn is the same as in his actual choice

problem, but that a new, conditionally independent outcome is drawn from the urn. If the agent

chose urn d and observedXd = xn in period 1, then his hindsight self’s expected material payoff

from choice e ∈ D is given by the posterior mean13

E
[
Y e|Xd = xn

]
=
∑

ω∈Ω

N∑

m=1

xmh
d
mω

hdnωπ (ω)

pd (xn)
.

The agent’s reference action is the hindsight self’s best period 2 action, and the payoff from

this action is the agent’s reference point rd (xn):

rd (xn) = max
e∈D

E
[
Y e|Xd = xn

]
.

The emotional component of the agent’s instantaneous utility–his regret–is given by the

difference between his actual material payoff and his reference point. His overall instantaneous

utility from action d and outcome xn, u
d (xn), is a linear combination of his material utility

and his regret:

ud (xn) = xn + ρ (xn − rd (xn)) ,

where ρ ≥ 0 measures the agent’s regret concerns.14

2.3 Behaviour

We assume that the agent anticipates his emotional response and maximises his expected utility

taking his regret concerns into account. Thus, the agent chooses d to maximise

Ud = E
[
ud
(
Xd
)]

= E
[
Xd
]
+ ρE

[
Xd −max

e∈D
E
[
Y e|Xd

]]
. (1)

Our independence assumptions imply that when the agent chooses d, he revises his beliefs

about the payoff distribution of urn d while maintaining his ex ante beliefs about the payoff

distribution of urn e, for all other e �= d. Thus,

E
[
Y e|Xd

]
=

{
E
[
Y d|Xd

]
if e = d

E [Xe] if e �= d
. (2)

13If pd (xn) = 0, we set E
[
Y e|Xd = xn

]
= E [Y e].

14Strictly speaking, reference point and utility depend all on the choice set D. Since we do not consider

variations across choice sets, we suppress this dependency.
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Our objective in this paper is to isolate the effects that are driven by the agent’s regret concerns.

Therefore, we focus on the case in which a standard expected utility maximiser (ρ = 0) is

indifferent between all actions:

E
[
Xd
]
= E

[
Xd′

]
∀ d, d′ ∈ D.

Equation (2) then implies that maxe∈D E
[
Y e|Xd

]
= max

{
E
[
Xd
]
, E
[
Y d|Xd

]}
, and thus, (1)

simplifies to

Ud = E
[
Xd
]
+ ρE

[
Xd −max

{
E
[
Xd
]
, E
[
Y d|Xd

]}]
. (3)

Remarks Since the agent’s utility depends directly on his beliefs about the actions of his

hindsight self, who moves in period 2 and seeks to maximise the reference payoff E
[
Y e|Xd

]
,

the agent’s behaviour can be formally viewed as the equilibrium outcome of an intra-personal

psychological game in the sense of Geanakoplos et al. (1989) where, in equilibrium, the agent

correctly predicts his hindsight self’s action. When the agent has chosen d, then the hindsight

self’s optimal strategy is to stick to d for all xn with E
[
Y d|Xd = xn

]
≥ E

[
Xd
]
and to switch

actions otherwise.

As in Halevy and Feldkamp (2005), we are agnostic about how the agent’s prior comes

about. In the classic Ellsberg problem, the “horse”-component of the lottery reflects the agent’s

subjective uncertainty about the composition of the uncertain urn. However, our theory is

also applicable if horse-bets represent objective risk as would be the case if, for example, the

experimenter told the agent the prior probabilities of the possible urn compositions. For our

purposes, it is important only that the agent distinguishes between his uncertainty about the

composition of an urn and the uncertainty about the ball that will be drawn from an urn of

a given composition. Crucially, the agent’s regret concerns imply that he does not reduce the

compound lottery to a simple probability distribution over final outcomes (even if the horse

bets represent objective risk).

3 Independent mixtures and uncertainty aversion

In the spirit of Schmeidler (1989), we define uncertainty aversion to be a general preference

for mixtures of urns over the worst of these urns. Schmeidler refers to a mixture as a statewise

mixture, that is, urn c is a mixture of urns a and b if, conditional on the state, the payoff of urn

c is determined by drawing from urn a with probability λ and from urn b with probability 1−λ

for some λ ∈ [0, 1]. When c is a mixture of a and b, then it is less uncertain than urn a and urn

b. Intuitively, this is so since, conditional on the state, the composition of urn c is an average

of the compositions of urn a and urn b. Therefore, the compositions of urn c across all possible
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states are more similar to one another than the compositions of urn a or urn b, and thus there

is less uncertainty about the true composition of urn c than about the true composition of urn

a or urn b.

If c is a statewise mixture of a and b, then the composition of urn c is correlated with those

of urn a and urn b. Thus, a draw from c is informative about the composition of a and b, and

the random variable Xc is not independent of Xa and Xb. Since we want to abstract from such

cross informational effects, we introduce the concept of an independent mixture.

Definition 1 Let λ ∈ [0, 1]. Action c is an independent λ-mixture of actions a and b if:

(i) hcnω = λhanω + (1− λ)hbnω for all n ∈ {1, ..., N} , ω ∈ Ω.

(ii) The family
(
Xa, Xb,Xc

)
is stochastically independent.

An independent mixture preserves the averaging feature of a statewise mixture, but avoids the

implication that urns are correlated. We define uncertainty aversion with respect to independent

mixtures.

Definition 2 Let c be an independent λ-mixture of actions a and b. An agent is uncertainty

averse with respect to actions a, b, and c if for all λ ∈ [0, 1] it holds that

U c ≥ min
{
Ua, U b

}
,

and if the inequality is strict for at least one λ ∈ (0, 1).

4 Example

We illustrate our model by a simple two-urn, two-state, two-outcome example. There are two

urns, a and c, which contain white and black balls. Drawing a white ball yields x1 = 0,

and drawing a black ball yields x2 = 100. There are two possible states of each urn, the first

corresponding to a “good” composition and the second to a “bad” composition. In the “good”

state ωd = 1, the fraction of black balls is 1

2
+ ηd, and in the “bad” state ωd = 2, the fraction

of black balls is 1

2
− ηd for ηd ∈ [0, 1/2]. Thus,

hd =

(
1

2
− ηd 1

2
+ ηd

1

2
+ ηd 1

2
− ηd

)
.
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Figure 1 illustrates the compound lottery that describes urn d.
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Figure 1: urn d

We assume that the states of each urn are equally likely: πd (1) = πd (2) = 1/2. Thus, by

independence, the joint probability of any profile (ωa, ωc) ∈ {1, 2}2 is always equal to 1

4
.

We now show that if ηa > ηc, then the agent strictly prefers urn c to a and that this

preference corresponds to uncertainty aversion. Note that ηa > ηc intuitively means that urn a

is the more uncertain urn since it implies that the possible compositions of a are more dissimilar

than those of urn c, which means that the outcome of urn a is less predictable ex ante. In the

extreme case in which ηc = 1/2, there is no uncertainty about the composition of urn c.

Suppose that the agent has chosen urn a. He uses the information contained in the outcome

to update his belief about the state of the urns and then constructs the hypothetical payoff

from the optimal period 2 choice. Since the outcome of urn a contains no information about the

state of urn c, his expected payoff from switching to c in period 2 is just the ex ante expectation

of c, irrespective of the outcome Xa = xn:

E [Y c|Xa = xn] = 1/2 · 100 + 1/2 · 0 = 50.

In contrast, his expected material payoff from sticking with a does depend on the outcome. If

the outcome is good (Xa = 100), his posterior assigns probability 1/2 + ηa to urn a being in

the “good” state and accordingly the expected material payoff from choosing urn a again is

E [Y a|Xa = 100] = (1/2 + ηa) · 100 + (1/2− ηa) · 0 > 50.

It follows that the hindsight self would stick with urn a and so the agent’s reference point is

given by ra (100) = E [Y a|Xa = 100]. Thus, his instantaneous utility is

ua (100) = 100 + ρ (100− E [Y a|Xa = 100]) .
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Conversely, if the outcome is bad (Xa = 0), his posterior assigns probability 1/2− ηa to urn a

being in the “good” state, and accordingly the expected material payoff from choosing urn a

again is

E [Y a|Xa = 0] = (1/2− ηa) · 100 + (1/2 + ηa) · 0 < 50.

It follows that the hindsight self would switch to urn c, and so the agent’s reference point is

given by rc (0) = E [Y c|Xa = 0] = 50. Thus, his instantaneous utility is

ua (0) = 0 + ρ (0− E [Y c|Xa = 0]) = −50ρ.

Therefore, the agent’s expected utility from choosing urn a is given by

Ua = 1/2 · ua (100) + 1/2 · ua (0)

= 50 + 1/2 · ρ (100− E [Y a|Xa = 100]) + 1/2 · (−50ρ)

= 50− ρ (1/2 + ηa) 50.

Analogously,

U c = 50− ρ (1/2 + ηc) 50.

Therefore, if ηc < ηa, then U c > Ua, which means that the agent strictly prefers urn c to urn a.

Now let action b be an urn with the same Markov matrix as a except with the columns

reversed. (This is, of course, exactly the same urn with a different labelling of states given our

independence assumption.) Thus,

hb =

(
1

2
+ ηa 1

2
− ηa

1

2
− ηa 1

2
+ ηa

)
.

Notice that c is an independent mixture of a and b since for λ = 1

2
(1 + ηc/ηa), we have

hc = λha + (1− λ) hb. Therefore, since the agent prefers c to a, we have shown that the agent

displays uncertainty aversion with respect to actions a, b, and c. We will generalise this example

in section 5.2.

5 Analysis and results

For the rest of the paper, we consider a fixed choice set D = {a, b, c} where c is an independent

λ-mixture of a and b. We study environments in which regret leads to uncertainty aversion.15

First, we show that the agent displays uncertainty aversion when the first-order distributions of

the urns are ranked by first-order stochastic dominance and a second condition which establishes

15A similar approach is adopted by Halevy and Feltkamp (2005).
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the uniformity of the hindsight self’s response to the draw from the urn. Second, we show that

when the agent’s uncertainty about the states of the urns can be characterized by a Markov

matrix that exhibits a certain symmetry property in a sense to be more precisely defined, then

the agent will display uncertainty aversion.

5.1 Uniform switching and statewise first order stochastic domi-

nance

In this section, we show that uncertainty aversion arises when two conditions hold. The first

requires that the hindsight self chooses the same urn as his actual self whenever his observation

exceeds a uniform threshold that is independent of the agent’s actual choice d. The second

requires that the first-order distributions of urn a and urn b are ranked in terms of first-order

stochastic dominance and at least one distribution strictly first-order stochastically dominates

another. The conditions are formally stated in Proposition 1.

Proposition 1 If the following conditions jointly hold, then the agent displays uncertainty

aversion:

(i) There is a threshold xn∗ ∈ {x1, ..., xN} such that for all d ∈ D : E
[
Y d|Xd = xn

]
> E

[
Xd
]

if and only if xn > xn∗.

(ii)(a) For all ω ∈ Ω, either haω first-order stochastically dominates h
b
ω or vice versa, and (b)

there is an ω ∈ Ω with π (ω) > 0 such that haω strictly first-order stochastically dominates h
b
ω

or vice versa.

Notice that conditions (i) and (ii) are automatically satisfied if the number of payoff outcomes

is N = 2. Thus, we can infere the following important corollary:

Corollary 1 If there are only two outcomes (N = 2), then the agent (typically16) displays

uncertainty aversion.

Accordingly, fear of regret can explain behaviour in a typical Ellsberg experiment, in which

the only outcomes are winning or losing the bet.

To understand the intuition behind Proposition 2, recall that the reference point represents

the expected payoff of the hindsight self who makes a hypothetical choice ex post. Upon

observing outcome xn from urn d, the hindsight self sticks to urn d if the posterior mean

E
[
Y d|Xd = xn

]
of urn d exceeds its prior mean E

[
Xd
]
. In this case, the agent’s reference

point is pushed up, exceeding his prior expectation. Otherwise, the hindsight self chooses some

16If N = 2, condition (ii) (b) is violated in degenerate cases only.
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other urn, and the agent’s reference point is the same as his prior expectation (E
[
Xd
]
). We

refer to an observation which pushes up the agent’s reference point as “critical”. Condition (i)

guarantees that all urns have the same critical observations.

Because urn c is a mixture, choosing urn c essentially amounts to choosing urn a with

probability λ and urn b with probability 1− λ. Therefore, if the agent selects urn c, then there

is a positive probability that the outcome is drawn from urn a, it is critical, and the hindsight

self selects the other urn b. Likewise, there is a positive probability that the outcome is drawn

from urn b, it is critical, and the hindsight self selects the other urn a. In other words, choosing

urn c amounts to mixing an observation from a with the selection of b by the hindsight self (and

vice versa) with positive probability. It is these possibilities that make the utility associated

with urn c different from the utilities of the “pure” urns a and b. If one of the pure urns is

chosen by contrast, urn a for example, then if a critical observation arises, the hindsight self

never selects urn b because the critical observation induces him to choose the same pure urn

again.

This raises the question when mixing an observation from a with the selection of b by the

hindsight self could give rise to more regrets than a draw from urn a that is followed by selection

of urn a. This can be the case only if there are some states in which a critical observation from

a is more likely than a critical observation from b and, at the same time, the payoff from b in

this state is larger than the payoff from a in this state (and vice versa). But the latter is ruled

out by condition (ii) which guarantees that in any state in which a is more likely to generate a

critical observation than b, the payoff from a in this state is also larger than the payoff from b

in this state (and vice versa).

Condition (i) in Proposition 1 depends on the unconditional distribution of payoffs. The

next lemma provides a sufficient condition for (i) in terms of the primitives haω and hbω. It

states monotonicity conditions, which guarantee that the posterior means E [Y a|Xa = xn] and

E
[
Y b
∣∣Xb = xn

]
are increasing in xn and “cut through” E

[
Xd
]
at the same threshold xn∗ .

Lemma 1 The following conditions are sufficient for condition (i) in Proposition 1. For d =

a, b:

(i) There is a threshold xn∗ ∈ {x1, ..., xN} such that h
d
nω is strictly increasing in ω if xn > xn∗

and decreasing in ω if xn ≤ xn∗.

(ii) For all ω > θ, the difference hdnω − hdnθ is increasing in n.

The following example illustrates the conditions in Lemma 1:

ha =
1

10




6 3 1

3 2 0

1 5 9


 , hb =

1

10




5 4 2

2 2 1

3 4 7


 .
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Condition (i) in Lemma 1 holds for n∗ = 2. It is easy to verify (ii). Observe also that the first-

order stochastic dominance ranking condition from Proposition 1 is satisfied: hb1 dominates ha1,

ha2 dominates hb2, and ha3 dominates hb3.

5.2 Strong Symmetry

In this subsection, we show that regret leads to uncertainty aversion when the urns in the agent’s

choice problem display symmetry properties. The conditions generalise the example discussed

in section 4. From a methodological point of view, under the conditions that we identify in this

subsection, the theory of Halevy and Feltkamp (2005) does not necessarily generate uncertainty

aversion (as is demonstrated by an example in the appendix). Thus, our theory can in principle

be tested against Halevy and Feltkamp’s by exposing subjects to the choice problems discussed

in this section.

We will use the basic insight that the integrand

Xd −max
{
E
[
Xd
]
, z
}

(4)

in the objective function (3) is concave in z. Since the agent chooses d so as to maximise

E
[
Xd −max

{
E
[
Xd
]
, E
[
Y d|Xd

]}]
, and since all urns have the same mean by assumption,

this implies that action c is preferred to action a if E [Y a|Xa] is a mean preserving spread of

E [Y c|Xc]. Intuitively, the more dispersed the distribution of the posterior means, the more

highly correlated they are with the true material payoff from the urn and, thus, the better the

decision the hindsight self will make. Since the agent’s utility is decreasing in the hindsight

self’s payoff, the agent therefore dislikes a more dispersed distribution of the posterior means.

We summarize this basic property in the following lemma.

Lemma 2 The agent prefers action c over action a if E [Y a|Xa] is a mean preserving spread

of E [Y c|Xc] .

We now identify conditions such that E [Y a|Xa] is a mean preserving spread of E [Y c|Xc].

We use the following definition of a mean preserving spread (see Rothschild and Stiglitz, 1970).

Definition 3 E [Y a|Xa] is a mean preserving spread (MPS) of E [Y c|Xc] if there is a N ×N

transition matrix (τnm)n,m with τnm ≥ 0,
∑

n τnm = 1 for all n,m such that

E [Y c|Xc = xm] =
∑

n

E [Y a|Xa = xn] τnm for all m ∈ {1, ..., N} , (5)

pa (xn) =
∑

m

pc (xm) τnm for all n ∈ {1, ..., N} .17 (6)
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We show that (5) and (6) hold if the urns a and b satisfy specific symmetry conditions. Recall

that the columns of the matrix hd represent all possible (first-order) payoff distributions of urn

d. We will look at urns that are strongly symmetric in the following sense: For any possible

state ω there is another state ω′ such that the highest payoff is as likely in state ω as is the

lowest payoff in state ω′, the second highest payoff is as likely in state ω as is the second to

lowest payoff in state ω′, etc.

If the agent has a uniform prior over states, then strong symmetry captures the intuitive

idea behind the principle of insufficient reason which prescribes that the agent consider any first

order distribution of an uncertain urn as a possible state and place equal probability weight on

each of them.

The urns in the example discussed in section 4 are strongly symmetric. For a further

illustration, we consider a specific numerical example:

ha =




.2 .1 .2 .5

.3 .7 .7 .3

.5 .2 .1 .2


 .

Notice that, e.g., the worst outcome x1 has the same probability .2 in state ω1 as the best

outcome x3 in state ω4. Observe that a matrix with this the property remains the same if one

first reverses the order of the columns and then the order of the rows. We now give the formal

definition. For an integer k, let

σk =




0 1

· · ·

1 0




be the k×k matrix with 1’s on the secondary diagonale and 0’s elsewhere. When the dimension

is clear from the context, we omit k. Multiplication of σ from the right reverses the order of

the columns of a matrix. Multiplication of σ from the left reverses the order of the rows of a

matrix. Thus, an urn d is strongly symmetric if its associated matrix hd is preserved under

these two operations.

Definition 4 A k × l matrix h is strongly symmetric if

h = σkhσl.

We now consider strongly symmetric matrices ha and ask under what assumptions on hb the

agent prefers the resulting mixture over ha, thus displaying uncertainty aversion. The assump-

tion we impose is that hb is the columnwise mirror image of ha, that is, hb = haσ. Of course,

ha and hb are utility equivalent, but if we mix ha and hb, we obtain another strongly symmetric
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matrix hc whose payoff distribution in state ω = 1 is a mixture of the payoff distributions of

urn a in the states ω = 1 and ω = ω, whose payoff distribution in state ω = 2 is a mixture of

the payoff distributions of urn a in the states ω = 2 and ω = ω− 1, etc. To see how this works,

return to the above example. The matrix hb is the columnwise mirror image of ha, and if hc is

a, say, .5-mixture of ha and hb, we have:

hb = haσ =




.5 .2 .1 .2

.3 .7 .7 .3

.2 .1 .2 .5


 , hc =




.35 .15 .15 .35

.3 .7 .7 .3

.35 .15 .15 .35


 .

Importantly note that if there are only two states or two payoffs, a .5-mixture of ha and hb

yields an urn c whose first order payoff distributions are the same in all states, which means

that choosing c involves no second-order risk.

We now prove the general claim that if urn c can be constructed from urn a in such a

manner, then the agent prefers urn c to urn a and therefore displays uncertainty aversion. To

do so, we also require that the prior π be strongly symmetric. To avoid rather uninteresting

case distinctions, we assume that pa (xn) > 0 for all n.18

Proposition 2 Let π and ha be strongly symmetric. Let hb = haσ. Then E [Y a|Xa] is an MPS

of E [Y c|Xc]. Thus, the agent displays uncertainty aversion.

Intuitively, since the first-order distributions of urn c are mixtures of the first-order distribu-

tions of urn a, observations from urn a enable the hindsight self to make sharper subsequent

predictions about the outcomes of a than he could make about the outcomes of urn c based

on observations from c. This implies that the posterior mean of urn a, E [Y a|Xa], is more

dispersed than the posterior mean of urn c, E [Y c|Xc]. Strong symmetry guarantees that the

degree of dispersion in the posterior means of the two urns can, in fact, be compared in the

mean preserving spread sense.

The proof of Proposition 2 actually reveals more. We can interpret a matrix hd as a random

variable whose realisations hdω are (first-order) distributions over {x1, ..., xN}. In this sense, we

can ask when ha is an MPS of hc. It turns out that under strong symmetry this is in fact

the case.19 This means that the first-order distributions of urn a are riskier than the first-order

distributions of urn c in the mean preserving spread sense. In other words, urn a exhibits

18This is actually without loss of generality. As apparent from the proof of Proposition 2, strong symmetry

implies that pa = pb = pc. Thus, we can delete zero-probability outcomes from the outcome space.
19To establish this, we have to verify the conditions of Definition 3 which can now be written: (i) hc = haτ ,

and (ii) πa = τπc. (i) is implied by strong symmetry of ha, and (ii) is implied since, by assumption, π = πa = πc

is strongly symmetric.
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more second-order risk than urn c. Therefore, the agent’s preference for urn c is, in effect, an

aversion to second-order risk. In other words, under strong symmetry, uncertainty aversion and

second-order risk aversion are equivalent in our setup.

In general, E [Y a|Xa] being an MPS of E [Y c|Xc] does not guarantee a strict preference of

c over a for some λ as is required in our definition of uncertainty aversion. Note first that the

mean of E
[
Y d|Xd

]
equals E

[
Xd
]
for d = a, b and that the function E

[
Xd
]
−max

{
E
[
Xd
]
, z
}

in (4) has a kink in z = E
[
Xd
]
. Thus, the preference of c over a is strict, if (a) E [Y a|Xa] is

non-degenerate and if (b) E [Y a|Xa] is not identical to E [Y c|Xc]. While both conditions are

generically true in the class of strongly symmetrc matrices20, the following lemma provides a

sufficient condition for (b).

Lemma 3 Under the conditions of Proposition 2, let E [Y a|Xa] be non-degenerate. Let the

number of states be larger than the number of outcomces: ω ≥ N , let ha have rank N , and let

π (ω) > 0 for all ω. Then the preference of c over a is strict for all λ ∈ (0, 1).

6 Discussion

In this section we clarify the relationship between our work and Halevy and Feltkamp (2005),

henceforth HF, and point out testable implications of our model. We also provide evidence

from the psychology literature that supports our model.

6.1 Testable Implications

Like us, HF assume that the agent represents an urn as a compound lottery with a given

(second-order) prior belief. HF assume that the agent mistakenly perceives that he faces a

series of draws with replacement from the urn instead of a single draw only. Therefore, the

successive realisations of the uncertain (compounded) urn are correlated with one another due

to their common dependence on the unknown state. This correlation increases the overall

risk to which the decision maker is exposed in comparison to the risky urn whose successive

realisations are independent.

HF obtain uncertainty aversion under the FOSD ranking condition (ii) of Proposition 1. In

fact, the driving force behind our result and HF’s result is similar. When HF’s agent prefers

urn a over urn b, then he does so because the first and the second draw from urn a are more

correlated than the first and the second draw from urn b. But this implies that the first draw

20If (a) or (b) are violated, then a slight perturbation of the entries of ha changes E [Y a|Xa] and turns the

equalities into inequalities. Similarly, (a) and (b) are true for generic payoff vector (x1, ..., xN).
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from urn a is a better predictor for the second draw from urn a than is the first draw from urn

b for the second draw from urn b. Thus, observing the first draw from urn a provides more

useful information for a second (hypothetical) decision than does observing the first draw from

urn b. This intuitively suggests that our information-averse agent would also prefer urn b over

urn a. Our results show that this intuition is formally true if in addition to (ii), condition (i)

of Proposition 1 is imposed.

Despite these apparent similarities between our and HF’s approach, the implications are

different in at least two respects. First, as indicated at the beginning of subsection 5.2, it is

possible to construct examples that satisfy our strong symmetry conditions of Proposition 2,

for which the HF framework is without bite. We present such an example in the appendix.

Therefore, by exposing subjects to such choice problems the two theories can be tested against

each other.

There is a second perhaps more important implication that permits our model to be exper-

imentally distinguished from that of HF. As explained in the Introduction, our agent directly

cares about the feedback he receives. The driving force of our theory is that an uncertain urn

generates more information about its composition than does a risky urn, and so selecting the

risky urn enables the agent to avoid feedback about his choice. Therefore, our theory, unlike

HF’s, predicts that experimental subjects’ tendency to select the risky urn will be mitigated

when they are told in advance that they will receive feedback on the composition of both urns

regardless of the choice that they make. Indeed, uniquely among theories of uncertainty aver-

sion, the behaviour of our agent depends on the nature of the feedback he expects to receive on

his actual as well as his forgone choice. Thus, by manipulating subjects’ anticipated feedback,

we can distinguish our model from other competing theories.

6.2 Empirical Evidence

Our theory requires that the agent decomposes the overall uncertainty to which he is exposed

into two components: the uncertainty about the first-order distribution and the risk about

the outcome, conditional on the first-order distribution. He blames himself only for his failure

to know what he now knows about the first-order distribution, but not for failing to predict

the actual outcome per se. Thus, he implicitly categorizes uncertainty into that which he

believes he could know, and so may be blamed for not knowing, and that which he regards

as inherently unknowable. The idea that people distinguish between uncertainty that arises

from ignorance and the uncertainty that arises from intrinsic randomness has received backing

in the psychology literature. Frisch and Baron (1988) conceive of uncertainty as precisely

“the subjective experience of missing information relevant for a prediction”, and, in support
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of this conception, Brun and Teigen (1990) find that subjects prefer guessing the outcome of

an uncertain event before it has occurred to guessing it after it has occured but before they

know it. Notice that while an event that has not yet occurred may be regarded as unknowable

in principle, an event that has already occurred may be regarded as in principle knowable, in

which case any failure to know the outcome is attributable to ignorance rather than inherent

randomness. Thus, our model would predict that subjects would experience greater regret

when engaging in postdiction than prediction, leading them to prefer the latter over the former.

Indeed, Brun and Teigen’s subjects commonly cite as a reason for their preference for prediction

that wrong postdictions are much more embarassing than wrong predictions.

In addition, psychologists have conducted experiments in which subjects’ behaviour is in-

fluenced by the amount of feedback they expect to obtain. Specifically, subjects become more

willing to choose a riskier gamble if they will learn the outcome of the gamble regardless of the

choice they make, while such feedback on the safer alternative is provided only in the event

that they choose it.21 This suggests that people make choices to minimise their exposure to in-

formation about the outcomes of unchosen alternatives, and supports a version of regret theory

that was first suggested by Bell (1983) according to which people are averse to such feedback.22

As previously discussed, our agent also displays information aversion. However, whereas Bell’s

agent is averse to feedback about outcomes, our agent is averse to feedback about the true

probability distributions associated with the options in his choice set.

Finally, Ritov and Baron (2000) provide some evidence which points to a link between

uncertainty aversion and regret. In their experiments, they find that the omission bias is

intensified when subjects choose under conditions of uncertainty rather than mere risk. An

omission bias is a tendency to prefer inaction to action even if the consequences of inaction are

worse than the consequences of action. Psychological evidence suggests that this may be due to

the tendency of commissions to elicit greater regret than omissions, at least in the short run.23

If, as our model suggests, regrets may be intensified under conditions of ambiguity, this would

help to explain why the omission bias is also amplified under these conditions.

7 Conclusion

This paper represents an attempt to gain a better understanding of the psychological forces

that drive uncertainty aversion. We have proposed a model of regret that can account for

21For a review of this evidence, see Zeelenberg (1999).
22For a detailed discussion of feedback effects in a Bell-type framework, see Krähmer and Stone (2008).
23According to Gilovich and Medvec (1994), commissions tend to elicit greater regret in the short run while

ommissions elicit greater regret in the long run.
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Ellsberg type behaviour in choice under uncertainty. We have argued that uncertainty aversion

arises from an agent’s aversion to discovering that his choices are suboptimal from an ex post

perspective.

We view our paper as forming part of a broader research agenda that seeks to find emotional

underpinnings of behavioural phenomena. In general, this is a worthwhile enterprise if the

resulting psychological models generate novel predictions about the phenomena they seek to

explain. Our model of regret meets this test by suggesting that a kind of information aversion

accounts for uncertainty aversion under specific conditions. Accordingly, it identifies situations

in which agents will be more or less likely to make uncertainty avoiding choices. According to our

model, agents will display greater uncertainty aversion when conditions are such that choosing

the more uncertain option reveals more information about the (first order) distribution of the

chosen option. In particular, as we have previously argued, uniquely among existing theories of

uncertainty aversion our model predicts that an agent’s uncertainty aversion will be mitigated

when he is exposed to the same feedback about the (first-order) distributions of options in his

choice set regardless of the option that he chooses.

Appendix

Proof of Proposition 1 Without loss of generality, suppose Ua ≥ U b. We have to show that

U c ≥ U b for all λ ∈ [0, 1] with strict inequality for one λ ∈ (0, 1). Note first that the material

term E
[
Xd
]
in (3) is the same for all actions. Thus, only differences in the regret term

V d = E
[
Xd −max

{
E
[
Xd
]
, E
[
Y d|Xd

]}]

matter. Thus, V a ≥ V b, and we need to show that V c ≥ V b for all λ ∈ [0, 1] with strict

inequality for one λ ∈ (0, 1). To this end, we first re-write V d for all d ∈ D by conditioning on

observations Xd = xn. Note that by (i), for all d ∈ D, we have E
[
Y d|Xd

]
> E

[
Xd
]
if and

only if Xd > xn∗. Thus,

V d =
n∗∑

n=1

P
[
Xd = xn

] (
E
[
Xd −E

[
Xd
]])

+
N∑

n=n∗+1

P
[
Xd = xn

] (
E
[
Xd
]
− E

[
Y d|Xd = xn

])
.

The first term on the right hand side disappears. The second term depends only on marginal

states ωd. Thus, since ωd is independent of ωd
′

for all d′ �= d, we can sum over the conditional
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expectation, conditional on ωd ∈ Ωd. Hence, we obtain (by dropping the index d from ωd)

V d =
ω∑

ω=1

π (ω)
N∑

n=n∗+1

P
[
Xd = xn|ω

] (
E
[
Xd
]
− E

[
Y d|Xd = xn, ω

])

=
ω∑

ω=1

π (ω)
N∑

n=n∗+1

hdnω
(
E
[
Xd
]
− E

[
Y d|ω

])
,

where, in the second line, we have used that P
[
Xd = xn|ω

]
= hdnω, and the fact that

E
[
Y d|Xd = xn, ω

]
= E

[
Y d|ω

]
. Now, define tdω = E

[
Xd
]
− E

[
Y d|ω

]
, and sdω =

∑N

n=n∗+1 h
d
nω.

Thus,

V d =
ω∑

ω=1

π (ω) sdωt
d
ω.

Note that tdω =
∑N

n=1 h
d
nω

(
E
[
Xd
]
− xn

)
. Therefore, since c is a λ-mixture of a and b:

scω = λsaω + (1− λ) sbω, and tcω = λtaω + (1− λ) tbω.

Using this in V c and multiplying out, we obtain:

V c =
ω∑

ω=1

π (ω)
(
λ2saωt

a
ω + (1− λ)2 sbωt

b
ω + λ (1− λ)

(
saωt

b
ω + sbωt

a
ω

))

= λ2V a + (1− λ)2 V b + λ (1− λ)
ω∑

ω=1

π (ω)
(
saωt

b
ω + sbωt

a
ω

)
. (7)

We can now show that V c ≥ V b. Indeed, since V a ≥ V b by assumption, we can estimate the

first two terms in (7) against
(
λ2 + (1− λ)2

)
V b, and it follows that V c ≥ V b if the last sum in

(7) is larger than 2V b. In fact, we show that it is larger than V a+ V b ≥ 2V b, that is, we show:

ω∑

ω=1

π (ω)
(
saωt

b
ω + sbωt

a
ω

)
≥

ω∑

ω=1

π (ω)
(
saωt

a
ω + sbωt

b
ω

)
.

Indeed, by the previous expression is equivalent to

ω∑

ω=1

π (ω)
(
saω − sbω

) (
tbω − taω

)
≥ 0. (8)

Now suppose that haω first order stochastically dominates hbω. Since xn is increasing in n, this im-

plies that taω ≤ tbω. Observe that we can write sdω =
∑N

n=1 h
d
nω · 1{n>n∗} (n), and since 1{n>n∗} (n)

is an increasing function in n, it is also true that saω ≥ sbω. If hbω first order stochastically

dominates haω, the argument is reversed. Thus, with (ii) (a), we have for all ω:

saω ≥ sbω ⇐⇒ taω ≤ tbω.
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But this implies (8).

To complete the proof, it remains to show that V c > V b for some λ ∈ (0, 1). But this follows

from (ii) (b), which ensures that at least one term under the sum in (8) is strictly positive.

This establishes the claim. �

Proof of Lemma 1We proceed in two steps. In Step 1, we show that (i) implies

E
[
Y d|Xd = xn

]
> E

[
Xd
]
⇐⇒ xn > xn∗ . (9)

In Step 2, we show that if (i) and (ii) hold for d = a, b, then they hold for d = c. Thus, steps 1

and 2 imply the first condition in Proposition 1.

As for Step 1. We suppress the action index d. Let

π̂ωn =
hnωπ (ω)

p (xn)

be the posterior probability of state ω conditional onX = xn. For p (xn) = 0, we set π̂ωn = πω.
24

We denote the posterior distribution on Ω conditional on X = xn by the ω × 1 vector π̂n.

We now proceed in two steps. In step (A), we show that if hnω is strictly increasing in ω,

then the posterior π̂n strictly first order stochastically dominates the prior π. In step (B), we

show that (c) implies that the function

E [Y |ω]

is increasing in ω. Thus, it follows by the strict dominance relation established in (A) that
∑

ω

E [Y |ω] π̂ωn >
∑

ω

E [Y |ω] π (ω)

if hnω is strictly increasing in ω. But note that by the law of iterated expectation, the left hand

side is equal to E [Y |X = xn], and the right hand side is equal to E [X]. If hnω is decreasing

in ω, an identical argument applies with all inequalities being weak and reversed. Thus, (i)

implies (9).

As for (A). The argument is the same as in Milgrom (1981), proof of Proposition 1.

As for (B). Let ω > θ, we have to show that

E [Y |ω]− E [Y |θ] =
N∑

n=1

xn (hnω − hnθ) ≥ 0.

To see this, observe first that since hnω − hnθ is increasing in n by assumption (ii), there is a

unique ñ such that hnω − hnθ ≤ 0 if and only if n ≤ ñ. Hence, since xn is increasing in n, it

follows for all n:

xn (hnω − hnθ) ≥ xñ (hnω − hnθ) .
24This is consistent with our convention that E

[
Y d|Xd = xn

]
= E

[
Xd
]
for p (xn) = 0.
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Observe second that
∑N

n=1 (hnω − hnθ) = 0. Together, the two observations imply that

N∑

n=1

xn (hnω − hnθ) ≥ xñ

N∑

n=1

(hnω − hnθ) = 0.

This completes Step 1.

As for Step 2. Note that since hcnω is the convex combination of hanω and hbnω, monotonicity

properties carry over to hcnω. This completes the proof. �

Proof of Proposition 2We begin by writing the conditions (i) and (ii) Definition 3 in matrix

notation. For xn with pd (xn) > 0, Bayes’ rule yields that

π̂dωn =
hdnωπ (ω)

pd (xn)
(10)

is the posterior probability that the agent assigns to state ω conditional on having observed

Xd = xn. Define the vectors

x =




x1
...

xN


 , pd =




pd (x1)
...

pd (xN )


 , π =




π (1)
...

π (ω)


 , π̂dn =




π̂d1n
...

π̂dωn


 .

We can thus write

pd = hdπd, E
[
Xd
]
= xTpd,

where xT is the transposed of x. We summarise all possible posterior beliefs in the ω×xMarkov

matrix

π̂d =
(
π̂dωn
)
ω,n

. (11)

Thus, the (posterior) probability with which Y d = xm, conditional on Xd = xn, is given by

p̂dmn =
∑

ω∈Ω

hdmωπ̂
d
ωn.

We denote the conditional distribution of Y d, conditional on Xd = xn, by the N × 1 vector p̂dn.

Thus, we can write the posterior mean as

E
[
Y d|Xd = xn

]
= xT p̂dn.

By defining the N ×N matrix

p̂d =
(
p̂d1, ..., p̂

d
N

)
= hdπ̂d,

we can express the N × 1 vector of posterior means as

(
E
[
Y d|Xd = xn

])
n
= xT p̂d.
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We can now write the conditions (i) and (ii) from Definition 3 in matrix form:

xT p̂c = xT p̂aτ, (i’)

pa = τpc. (ii’)

We now prove (i’). Evidently, (i’) is implied by the condition p̂c = p̂aτ , or equivalently,

hcπ̂c = haπ̂aτ. (i”)

To establish (i”), we first compute π̂d. Since the prior is strongly symmetric, i.e. σπ = π, and

since hb = haσ by assumption, we have

pb = hbπ = haσπ = haπ = pa.

Moreover, pc = hcπ = λhaπ + (1− λ)hbπ = pa. Hence, we have shown that pa = pb = pc. Let

p = pa. By (10), it holds for all d ∈ D that π̂dωn =
(
hdxnπ (ω)

)
/p (xn) if p (xn) > 0. Since by

assumption p (xn) > 0 for all n, we can write

π̂d = δπ
(
hd
)T

δ−1p ,

where δv is the k×k matrix with diagonale elements vi for i = 1, ..., k and off-diagonale elements

0 for an arbitrary v ∈ Rk. Thus, with hc = λha + (1− λ) hb, we obtain

π̂c = δπ
(
λha + (1− λ) hb

)T
δ−1p = λπ̂a + (1− λ) π̂b.

Because hb = haσ, we have

π̂b = δπ
(
hb
)T

δ−1p = δπ (h
aσ)T δ−1p = δπσ

T (ha)T δ−1p = σδπ (h
a)T δ−1p = σπ̂a.

Therefore, we can write the left hand side of (ii’) as

hcπ̂c =
[
λha + (1− λ)hb

] [
λπ̂a + (1− λ) π̂b

]

= [λha + (1− λ) haσ] [λπ̂a + (1− λ) σπ̂a]

= λ2haπ̂a + 2λ (1− λ) haσπ̂a + (1− λ)2 haσσπ̂a.

Since σσ is the identity matrix, and since haσ = σha by strong symmetry, this implies

hcπ̂c = haπ̂a
([
λ2 + (1− λ)2

]
δ + 2λ (1− λ) σ

)

= haπ̂aτ,

where δ is the identity matrix, and τ =
[
λ2 + (1− λ)2

]
δ + 2λ (1− λ)σ is a transition matrix

satisfying
∑

n τnm = 1, τnm ≥ 0 for all m,n, and this establishes (i”).
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As for (ii’). We first show that σpa = pa. Indeed, since pa = haπa,

σpa = σhaπa = haσπa = haπa = pa,

where the third and fourth equality follows since ha and π are strongly symmetrc by assumption.

Thus,

τpa =
([
λ2 + (1− λ)2

]
δ + 2λ (1− λ) σ

)
pa =

(
λ2 + (1− λ)2 + 2λ (1− λ)

)
pa = pa.

Because pc = pa, this proves (ii’). � .

Proof of Lemma 3 We have to show that E [Y a|Xa = xn] �= E [Y c|Xc = xn] for some n.

Recall that we can write
(
E
[
Y d|Xd = xn

])
n
= xT p̂d, and that we have xT p̂c = xT p̂aτ by

assumption. Thus, we have to show that xT p̂a �= xT p̂aτ .

We drop the action index. With τ =
[
λ2 + (1− λ)2

]
δ + 2λ (1− λ) σ, it follows that xT p̂ =

xT p̂τ if and only if xT p̂−xT p̂σ = 0 and λ ∈ (0, 1). Hence, we have to show that xT p̂−xT p̂σ �= 0.

Recall that xT p̂ = xThπ̂. A tedious but straightforward computation yields that π̂σ = σπ̂. This

together with hσ = σh delivers:

xT p̂− xT p̂σ = xThπ̂ − xTσhπ̂ =
(
xT − xTσ

)
hπ̂.

Recall that π̂ = δπh
T δ−1p . Since π (ω) > 0 for all ω by assumption, δπ has rank ω. Like-

wise, δ−1p has rank N . Hence, since h has rank N by assumption, it follows that π̂ has

rank min {N,ω} = N , and consequently, the N × N matrix hπ̂ has rank N . Therefore,
(
xT − xTσ

)
hπ̂ = 0 if and only if xT − xTσ = 0. But since x = (xn)n is increasing in n

by assumption, the latter cannot be true. This establishes the claim. �

Example distinguishing our model from HF’s model The following example illustrates

that there are settings, in which our model generates uncertainty aversion while HF’s model

does not. There are two equally likely (marginal) states and five outcomes. We set

ha =
1

10




1.0 1.5

3.0 0.5

4.0 4.0

0.5 3.0

1.5 1.0




, hb =
1

10




1.5 1.0

0.5 3.0

4.0 4.0

3.0 0.5

1.0 1.5




, hc =
1

10




1.25 1.25

1.75 1.75

4.00 4.00

1.75 1.75

1.25 1.25




.

Actions a and b clearly satisfy the strong symmetry conditions of Proposition 2 and c is a

.5-mixture of a and b. Thus, in a pairwise choice between c and either a or b our agent will
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certainly prefer urn c to either a or b. However, actions a and b do not satisfy HF’s requirement

that corresponding states of a and b be ranked by first order stochastic dominance.

Denote by Zd the sum of outcomes when d is chosen twice and played out conditionally

independently. (In the notation of our model: Zd = Xd + Y d.) According to HF’s model, in a

choice between action a and action c, any agent with a concave utility function will prefer the

mixture c to a if and only if Zc second order stochastically dominates Za, which is equivalent

to
z̃∑

z=2

P [Za ≤ z] ≤
z̃∑

z=2

P [Zc ≤ z] for all z̃ ∈ {2, ..., 10} .

Now notice that P [Za = 2] = (1/2)× (1/10)2 + (1/2)× (15/100)2 = 0.01625 and P [Zc = 2] =

(125/100)2 = 0.015625. Thus,

2∑

z=2

P [Za ≤ z] = 0.01625 > 0.015625 =
z∑

z=2

P [Y c ≤ z] .

Similarly, we obtain that

3∑

z=2

P [Za ≤ z] = 0.07000 < 0.075000 =
3∑

z=2

P [Zc ≤ z] .

Thus, Zc and Za are not ranked by second order stochastic dominance, so it is not true that

any risk-averse agent will necessarily prefer c to a. �
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