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1. Introduction

A large empirical literature has documented that returns to human capital investment are

high on average.1 In other words, human capital is an asset with high expected returns.

Human capital is also a risky asset in the sense that ex-post investment returns vary greatly

across ex-ante identical individuals. This suggests substantial gains from insurance, but

there is abundant evidence that many households are not well insured against human capital

risk. For example, a large empirical literature has found that consumption insurance against

individual labor income risk is far from perfect.2 This begs the question why households are

not better insured against human capital risk, even though human capital risk is large and

has important economic consequences.3

In this paper, we argue that limited contract enforcement explains the under-insurance

of many young and middle-aged households in the US.4 Intuitively, young households have

access to a risky investment opportunity with high expected returns, but have little financial

wealth to buy insurance or invest in human capital. In a world with a complete set of

competitive markets and full enforcement of contracts, these households would borrow money

1See Blundell et al. (1999) for a survey of the literature estimating returns to on-the-job training and
Card (1999) for a survey of the literature on schooling (education) returns.

2Meghir and Pistaferri (2011) summarize the voluminous empirical literature on individual labor income
risk and the consumption response to labor income shocks. See, for example, Blundell, Pistaferri, and Preston
(2008) for a recent empirical contribution regarding the consumption response to labor income shocks.

3Krebs (2003) shows that human capital risk has important consequences for economic growth, Huggett,
Ventura, and Yaron (2011) argue that human capital risk is an important determinant of inequality in
(lifetime) earnings, and Guvenen, Kuruscu, and Ozkan (2014) explain cross-country differences in earnings
inequality through the interaction of human capital risk and taxation.

4The literature on limited enforcement/commitment is large. See, for example, Alvarez and Jermann
(2000), Kehoe and Levine (1993), Kocherlakota (1996), and Thomas and Worrall (1988) for seminal theo-
retical contributions and Krueger and Perri (2006) and Ligon, Thomas, and Worrall (2002) for influential
quantitative work. This literature has commonly used an exogenous process of labor income. Andolfatto
and Gervais (2006) and Lochner and Monge (2011) provide an insightful analysis of models with human cap-
ital accumulation and endogenous borrowing constraints due to enforcement problems, but do not consider
human capital risk.
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to buy full insurance and invest more in human capital. In contrast, in a world with limited

enforcement of credit contracts due to the possibility of default, these households cannot

borrow enough money to achieve the full-insurance outcome even if insurance is available

and priced in an actuarially fair manner. Thus, limited contract enforcement leads to under-

insurance against human capital risk and under-investment in human capital.

In a recent paper (Krebs, Kuhn, and Wright, 2015), we use a calibrated macroeconomic

model with human capital to show that limited contract enforcement explains a substantial

amount of under-insurance against labor income risk for young and middle-aged households

in the US.5 This finding stands in stark contrast to Krueger and Perri (2006), who find a

high level of insurance in the equilibrium of a calibrated macroeconomic model with limited

contract enforcement.6 In this paper, we discuss the reasons for these apparently conflicting

results, and argue that the model used in Krueger and Perri (2006) misses two dimensions

of the data that are important drivers of under-insurance. In addition, we argue that our

finding of substantial under-insurance for young households in the US is robust to realistic

variations in parameter values. Finally, we generalize a number of theoretical results shown

in Krebs, Kuhn, and Wright (2015).

The model analyzed in this paper is a production economy with an aggregate constant-

returns-to-scale production function using physical and human capital as input factors.

There are a large number (a continuum) of individual households with CRRA-preferences

who can invest in risk-free physical capital and risky human capital. Human capital invest-

ment is risky due to shocks to the stock of human capital that follow a stationary Markov

5Krebs, Kuhn, and Wright (2015) also provide empirical evidence drawn from life insurance data in
support of the model’s main economic channel generating under-insurance.

6Krueger and Perri (2006) match the cross-sectional distribution of consumption fairly well, but the
implied volatility of individual consumption is small in their model. See also Cordoba (2008) for a discussion
of this point.

2



process with finite support (a Markov chain). In the main part of the paper, we assume

that all shocks are idiosyncratic, but we also discuss how our theoretical characterization

result can be extended to the case in which idiosyncratic and aggregate shocks co-exists.

Households have access to a complete set of credit and insurance contracts, but their ability

to use the available financial instruments is limited by the possibility of default, which pro-

duces endogenous borrowing, or short-sale, constraints. Defaulting households continue to

participate in the labor market, but part of their labor income might be garnished and they

are excluded from financial markets until a stochastically determined future date.

The tractability of the model derives from two equilibrium characterization results. First,

the consumption-investment choice of households is linear in total wealth (financial wealth

plus human capital) and the portfolio choice of households is independent of wealth. Further,

the solution to the household decision problem can be obtained solving a static maximiza-

tion problem, and this maximization problem is convex so that a simple FOC-approach

is applicable. Second, recursive equilibria can be found by solving a fixed-point problem

that is independent of the wealth distribution. Thus, a rather complex, infinite-dimensional

fixed-point problem has been transformed into a much simpler, finite-dimensional fixed-point

problem.

For the quantitative analysis we consider a version of the model with i.i.d. human capital

shocks and stochastically aging households divided into 9 age groups. Household age affects

expected human capital returns and younger households have higher returns than older

households. The model is calibrated to be consistent with the U.S. evidence on labor market

risk and life-cycle earnings. Specifically, we choose the model parameters determining the

life-cycle profile of expected human capital returns so that the implied life-cycle profile of

median earnings the data. Further, in our model, i.i.d. shocks to the stock of human capital

translate into a labor income process that follows a logarithmic random walk; that is, labor
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income shocks are permanent. The random-walk specification has often been used in the

empirical literature to model the permanent component of labor income risk, and we use

the estimates obtained by this literature to calibrate our model economy. Finally, for the

baseline calibration we use a degree of relative risk aversion of 1 (log-utility) and a level of

contract enforcement (exclusion from financial markets in case of default) in line with the

US bankruptcy code.

The quantitative analysis shows that young households are borrowing constrained and

substantially under-insured, where we measure the degree of consumption insurance by the

insurance coefficient defined as one minus the ratio of the volatility of consumption growth

to the volatility of income growth. For example, this insurance coefficient is only 0.40 for

households of age group 26 − 30 even though insurance markets exist and are perfectly

competitive. Further, the welfare consequences of the lack of consumption insurance are

severe. For households of age group 26 − 30, welfare would increase by 6 percent of lifetime

consumption if they had unlimited access to financial markets.7 The quantitative results

are robust to realistic variations in the model parameters describing human capital risk, risk

aversion, and contract enforcement.8

In contrast to our under-insurance result, Krueger and Perri (2006) find that households

are well insured against labor income risk in the equilibrium of their calibrated model econ-

omy. In this paper, we show that this difference is largely driven by two assumptions. First,

Krueger and Perri (2006) disregard the life-cycle component of earnings and the correspond-

ing heterogeneity in financial wealth. In other words, in the data most young households

7We further show that the calibrated model is in line with the observed life-cycle pattern of household
portfolio choices (mix between financial capital and human capital) even though the model is not calibrated
to match this dimension of the data. This finding provides additional evidence supporting the model.

8However, such parameter variations have non-negligible effects on the extent of equilibrium insurance,
which suggest that the model presented here has the potential to account for substantial differences in
consumption insurance over time and across countries.
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have high earnings growth and hold little financial wealth, but the calibrated model econ-

omy of Krueger and Perri (2006) misses this feature of the data. Second, Krueger and Perri

(2006) assume permanent exclusion from credit markets for defaulting households, whereas

in the US the bankruptcy code is considerably more lenient. To show the importance of

these two assumptions, we consider a version of our human capital model without a life-

cycle component and permanent exclusion of defaulting households. In this case, we find

an insurance coefficient close to one, which is much higher than the insurance coefficient of

young households in our baseline model and in line with the finding in Krueger and Perri

(2006).

In sum, in this paper we make two contributions to the literature. First, we develop a

framework with human capital risk and limited contract enforcement that is more general

than the one discussed in Krebs, Kuhn, and Wright (2015) and show that the tractability

of the model is still preserved. Second, we provide an extensive quantitative analysis that

illuminates why, contrary to the results obtained by the previous literature, the work by

Krebs, Kuhn, and Wright (2015) finds that a large group of US households is under-insured

due to limited contract enforcement.

2. Model

In this section, we develop the model and define the relevant equilibrium concept. The model

is a generalization of Krebs, Kuhn, and Wright (2015), which in turn is based on a combi-

nation of the human capital model developed in Krebs (2003) and the limited commitment

model with linear technology presented in Wright (2001).9

9Angeletos (2007) and Moll (2014) develop tractable models of entrepreneurial activity in which individual
consumption/saving policies are linear in wealth. In all these approaches, tractability is achieved through
the assumption that individual investment returns are independent of household wealth (financial and/or
human).
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2.1 Human Capital Production

Time is discrete, open ended, and indexed by t = 0, 1, . . .. There is a continuum of households

who live for a stochastic length of time. A household who dies is replaced by a new-born

household so that the mass of all households alive is normalized to one. We denote the cohort

of a household (the period of birth) by n, but will suppress the cohort-index for notational

ease until we discuss the aggregate market clearing conditions. The exogenous state of an

individual household is denoted by st and has several components st = (s1t, . . . , smt). In

our quantitative application, st has two components, one denoting the age of the household

and a second representing human capital risk. Depending on the application, additional

components can be used to model either ex-ante heterogeneity or ex-post heterogeneity

(risk). For example, Krebs, Kuhn, and Wright (2015) use additional components to model

the family structure of households in detail. For simplicity, we assume that st can only

take on a finite number of values. We assume that for each household of cohort n, the

process {st}∞t=n is Markov with a stationary transition function and denote the transition

probabilities by π(st+1|st). Note that household variables should in principle have a cohort

index n in addition to the time index t, but to ease the notation we suppress the cohort

index whenever possible.

There is one good that can be consumed or used as physical capital in production (see

below). Each household can transform one unit of the good into φ(st) units of human capital.

The accumulation equation for human capital, h, of an individual household is given by

ht+1 = (1 + ε(st−1, st))ht + φ(st)xht , (1)

where xht is human capital investment of the individual household in period t and ε is an

idiosyncratic human capital shock.

Equation (1) assumes that human capital production is linear in goods investment, xh,

and this assumption is essential for our tractability result. Formulation (1) further assumes
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that human capital production only uses market goods, but this assumption is not essential

for our result. Indeed, in Section 3.6 we present an extension of the model to the case in

which individual households buy market goods and use their own time to produce human

capital, and show that our tractability result still holds if human capital production exhibits

constant returns to scale with respect to the quantity of goods and time invested.10

The term ε in (1) captures deterministic and random changes in human capital that

are due to depreciation, learning-by-doing, and various shocks to human capital (skills) of

households. For example, a negative human capital shock could can occur when a household

member loses firm- or sector-specific human capital subsequent to job termination (worker

displacement). A decline in health (disability) or death of a household member provide

further examples of negative human capital shocks. In this case, both general and specific

human capital are lost. Internal promotions and upward movement in the labor market

provide two examples of positive human capital shocks.

We impose the restriction that the stock of human capital must be non-negative, or h ≥ 0.

This creates no technical difficulty and our general characterization of the household decision

rule (proposition 1) holds with this constraint imposed, regardless of whether or not it binds.

In our quantitative analysis, this constraint never binds (does not bind for all households

types and uncertainty states). We do not impose the requirement that gross human capital

investment be non-negative, or xh ≥ 0. This is necessary for tractability which, in turn,

is essential for the theoretical and quantitative analysis conducted in this paper. In the

calibrated model economy used for our quantitative analysis, human capital investment is

10In line with equation (1), Jones and Manuelli (1990) and Rebelo (1991) focus on the goods cost of human
capital production and constant human capital returns. Heckman, Lochner, and Taber (1998) and Huggett
et al. (2011) consider models of post-school human capital formation (on-the-job training) with only time
cost of human capital investment and diminishing returns. Lochner and Monge (2011) consider education
choices with only goods cost of investment and diminishing education returns. As suggested by Ben-Porath
(1967) and Trostel (1993), in many applications both goods cost and time cost are non-negligible components
of the total cost of human capital production.
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non-negative in equilibrium for working-age households. Thus, imposing these restrictions

would not change the conclusions drawn in the quantitative analysis.

2.1 Household Budget Constraint

An individual household born in period n of type sn begins life with an initial endowment

of human capital, hn and an initial endowment of financial assets, an. The initial state of an

individual household is therefore a vector (an, hn, sn). In each period t ≥ n, households can

buy and sell a (sequentially) complete set of financial contracts (assets) with state-contingent

payoffs, and we assume that for each state s there is one contract or Arrow security. We

denote by at+1(st+1) the quantity bought (or sold, if negative) in period t of the contract

that pays off one unit of the good in period t + 1 if st+1 occurs, and denote the price of this

contract by qt(st+1). A budget-feasible plan has to satisfy the sequential budget constraint

r̃htz(st)ht + at(st) = ct + xht +
∑

st+1

at+1(st+1)qt(st+1)

∑

st+1

at+1(st+1)qt(st+1) +
ht+1

φ(st)
≥ 0 (2)

at+1(st+1) ≥ −D̄


∑

st+1

at+1(st+1)qt(st+1) +
ht+1

φ(st)




ct ≥ 0 , ht+1 ≥ 0.

The variable z denotes an idiosyncratic shock to the productivity of human capital while

r̃ht denotes the (common) rental rate per efficiency unit of human capital. Note that

ht+1/φ(st) is the value of human capital in units of the consumption good and the expression
∑

st+1
at+1(st+1)qt(st+1) + ht+1

φ(st)
is the value of total wealth at the beginning of period t + 1,

which is chosen in period t (before the realization of st+1 is known). Thus, the second inequal-

ity in (2) states that total wealth is non-negative. In combination with the non-negativity of

human capital this constraint rules out Ponzi-schemes. The third inequality in (2) bounds

the share of financial wealth in total wealth for all possible states st+1 and ensures that the
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household decision problem has a solution.11 In our quantitative application, we choose the

bound, D̄, large enough so that the third inequality in (2) does not bind in equilibrium.

Given the initial state (an, hn, sn), a household of cohort n chooses a plan {ct, at, ht}∞t=n,

where each plan is a sequence of functions mapping histories, sn,t, into actions, ct(s
n,t),

at+1(s
n,t, .), and ht+1(s

n,t), where for given sn,t the variable at+1(s
n,t, .) is a vector with

components st+1. Here sn,t = (sn, . . . , st) denotes the history of individual states st from

period n up to period t. Note that the household level equations (1) and (2) have to hold in

realizations; that is, they have to hold for all histories, sn,t.

2.3 Preferences

Households have identical preferences over consumption plans. Households are risk-averse

and their preferences allow for a time-additive expected utility representation:

U ({ct}∞t=n|sn)
.
=

∞∑

t=n

βt−nE[νn,tu(ct)|sn] , (3)

where νn,t is the probability that a household born in period n is alive in period t and the

expectations is taken over all individual histories

E[νn,tu(ct)|sn]
.
=

∑

sn,t |sn

νn,t(s
n,t−1)u(ct(s

n,t))π(sn,t|sn) .

Here π(sn,t|sn) stands for the history that sn,t occurs given sn, which is given by π(sn,t|sn) =

π(sn+1|sn) × . . . (st|st−1). We assume that νn,t(s
n,t−1) =

∏t−1
k=n ρ(sk), where ρ(sk) is the

survival probability in period k + 1 of a household who in period k is in state sk. Note that

survival probabilities may depend on age, as encoded in st, but do not depend on cohort. We

assume that the one-period utility function exhibits constant relative risk aversion: u(c) =

11We thank our discussant, Andrew Glover, for pointing out that the second inequality in (2) is not
sufficient to ensure existence of a solution. Note that we cannot simply impose a lower bound on asset
holdings, at+1 ≥ −D̄, since in equilibrium the extensive variables are generally unbounded (endogenous
growth) so that this type of constraint would necessarily bind at some point in time.
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c1−γ

1−γ
for γ 6= 1 and u(c) = ln c otherwise. In other words, preferences are homothetic in

consumption.

2.4 Enforcement/Participation Constraint

We confine attention to equilibria in which households have no incentive to default. Thus,

household choices are required to satisfy the sequential enforcement (or participation) con-

straints. That is, for all t ≥ n and all sn,t we have:
∞∑

m=t

βm−tE[νn,mu(cm)|sn,t] ≥ Vd(ht(s
n,t−1), st) (4)

where Vd is the continuation value of a household who decides to default in period t. Alvarez

and Jermann (2000) provide a general argument how to re-write (4) as a system of short-sale

(debt) constraints in exchange economies. For the class of tractable production models con-

sidered here, we can derive an explicit formula for the short-sale (debt) constraints implicitly

defined by (4) – see Proposition 2.

The default value function, Vd, is determined as follows. We assume that upon default

all debts of the household are canceled and all financial assets seized so that at(st) = 0.

While in the default state, households are excluded from purchasing insurance contracts

and borrowing (going short). Further, households in default retain their human capital,

can invest in human capital, and earn a wage rate (1 − τ )r̃h per efficiency unit of human

capital, where 0 ≤ τ ≤ 1 is a parameter that measures the fraction of labor income that is

garnished. Thus, the punishment for default is exclusion from financial markets and possible

garnishment of labor income. We assume that households remain in the default state until

a stochastically determined future date that occurs with probability (1 − p) in each period;

that is, the probability of remaining in default is p. After moving out of the default state,

the household’s expected continuation value is V e, which depends on h and s at the time of

exiting default (a = 0 at that point in time). For the individual household the function V e is

taken as given, but we close the model and determine this function endogenously by requiring
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that V e = V , where V is the equilibrium value function associated with the maximization

problem of a household who participates in financial markets.12

In sum, Vd is the value function associated with the following household maximization

problem

Vd(ht(s
n,t−1), st)

.
= max

{cm,hm}∞m=t

∞∑

m=t

(pβ)m−t E[νn,mu(cm)|sn,t]

+ (1 − p)
∞∑

m=t+1

βm−tpm−t−1E[νn,mV e
m(hm(sn,m−1), sm)|sn,t]

where the continuation plan {cm, hm}∞m=t has to satisfy the sequential budget constraint

(1 − τ )r̃h,mz(sm)hm = cm + xh,m

hm+1 = (1 + ε(sm−1, sm)) hm + φ(sm)xh,m (5)

cm ≥ 0 , hm+1 ≥ 0

2.5 Household Decision Problem

For given initial state (an, hn, sn), a household of cohort n chooses a plan {ct, at+1, ht+1}∞t=n.

The set of budget feasible household plans is defined as

B(an, hn, sn)
.
= { {ct, at+1, ht+1}∞t=n | {ct, at+1, ht+1}∞t=n satisfies (1), (2), and (4)}

The decision problem of a household of initial type (an, hn, sn) is

max
{ct,at+1,ht+1}∞t=n

U ({ct}∞t=n|sn) (6)

s.t. {ct, at+1, ht+1}∞t=n ∈ B(an, hn, sn)

12The previous literature has usually assumed p = 1 (permanent autarky). See, however, Krueger and
Uhlig (2006) for a model with p = 0 following a similar approach to ours. Note also that the credit (default)
history of an individual household is not a state variable affecting the expected value function, V e; we assume
that the credit (default) history of households is information that cannot be used for contracting purposes.
This is in line with the U.S. bankruptcy code, which limits the history of past behavior that can be retained
in credit reports.
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where the lifetime utility function, U , is defined in (3).

2.6 Goods Production and Physical Capital Accumulation

There is one good that can be consumed or used as physical capital in production. Production

of this good is undertaken by a representative firm that rents capital and labor in competitive

markets and uses these input factors to produce output, Yt, according to the aggregate

production function Yt = F (Kt,Ht). Here Kt is the aggregate stock of physical capital and

Ht is the aggregate level of efficiency-weighted human capital employed by the firm.

The aggregate production function, F , is a standard neoclassical production function,

that is, it has constant-returns-to-scale, satisfies a Inada condition, and is continuous, con-

cave, and strictly increasing in each argument. Given these assumptions on F , the im-

plied intensive-form production function, f(K̃) = F (K̃, 1), is continuous, strictly increasing,

strictly concave, and satisfies a corresponding Inada condition, where we introduced the

”capital-to-labor ratio” K̃ = K/H. Given the assumption of perfectly competitive labor

and capital markets, profit maximization implies

r̃kt = f ′(K̃t) (7)

r̃ht = f(K̃t) − f ′(K̃t)K̃t ,

where r̃k is the rental rate of physical capital and r̃h is the rental rate of human capital.

Note that r̃h is simply the wage rate per unit of human capital. Clearly, (7) defines rental

rates as functions of the capital-to-labor ratio: r̃k = r̃k(K̃) and r̃h = r̃h(K̃).

The accumulation equation for the aggregate stock of physical capital is

Kt+1 = (1 − δk)Kt + Xkt , (8)

where δk is the depreciation rate of physical capital and Xkt is investment in physical capital.
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2.6 Equilibrium

We confine attention to equilibria in which financial contracts are priced in a risk-neutral

manner,

qt(st+1) =
π(st+1|st)

1 + rft
, (9)

where rf is the interest rate on financial transactions, which is equal to the return on physical

capital investment, rft = r̃kt−δk. The pricing equation (9) can be interpreted as a zero-profit

condition. More precisely, consider financial intermediaries that sell insurance contracts to

individual households and invest the proceeds in the risk-free asset that can be created from

the complete set of financial contracts and yields a certain return rf . Given that financial

intermediaries face linear investment opportunities and assuming no quantity restrictions

on the trading of financial contracts for financial intermediaries, equilibrium requires that

financial intermediaries make zero profit, namely condition (9).

Capital market clearing requires that the aggregate stock of physical capital employed by

the representative firm is equal to the value of financial wealth held by households. Similarly,

labor market clearing requires that the firm’s demand for labor equals the aggregate amount

of efficiency-weighted human capital supplied by households. More precisely, in equilibrium

we have

Kt+1 =
∑

st+1

t∑

n=0

E[νn,t+1qt(st+1)an,t+1(st+1)|st+1] +
∫

at+1

at+1dµnew,t+1(at+1) (10)

Ht+1 =
t∑

n=0

E[νn,t+1z(st+1)hn,t+1] +
∫

ht+1 ,st+1

z(st+1)ht+1dµnew,t+1(ht+1, st+1) ,

where µnew,t+1 is the distribution of new-born households in period t + 1 over initial states,

which is an exogenous object. Note that the expectations in (10) is taken over all individual

histories and all possible initial states. That is, we define

E[νn,t+1qt(st+1)an,t+1(st+1)|st+1]
.
=

13



∫

an,hn,sn

∑

sn,t+1 |sn

νn,t+1(s
n,t)qt(st+1; st)an,t+1(st+1; s

n,t, an, hn, sn)π(sn,t|sn)dµnew,n(an, hn, sn)

and

E[νn,t+1z(st+1)hn,t+1]
.
=

∫

an,hn,sn

∑

sn,t+1 |sn

νn,t+1(s
n,t)z(st+1)hn,t+1(s

n,t, an, hn, sn)π(sn,t+1|sn)dµnew,n(an, hn, sn)

Note that we allow the distributions of new-born households, µnew,n, to depend on the cohort

n in order to be permit an endogenous growth path.

The distribution µnew,n has to satisfy an aggregate resource restriction. Specifically, we

assume that the aggregate stock of total capital (physical plus human capital) of new-born

households is proportional to the aggregate stock of total capital of households who have

died:
∫

an′+1

an′+1dµnew,n′+1(an′+1) +
∫

hn′+1

hn′+1

φ(sn′)
dµnew,n′+1(hn′+1, sn′) = (11)

λ
n′∑

n=0

∫

an,hn,sn

∑

sn,n′
(1 − ρ(sn′))νn,n′(sn,n′−1)an,n′+1(s

n,n′
, an, hn, sn)π(sn,n′ |sn)dµnew,n(an, hn, sn)

+ λ
n′∑

n=0

∫

an,hn,sn

∑

sn,n′
(1−ρ(sn′))νn,n′(sn,n′−1)

hn′+1(s
n,n′

, an, hn, sn)

φ(sn′)
π(sn,n′|sn)dµnew,n(an, hn, sn)

where λ is a parameter that measures the relationship between the aggregate stock of total

capital of households born in period n′ + 1 relative to the aggregate stock of total capital

of households who leave the model in period n′ + 1. This parameter summarizes to what

extent capital is passed on to the next generation and to what extent new-born generation

start with additional capital.13

The aggregate resource constraint states that total output produced is equal to aggregate

13The specification (11) implies that the model exhibits endogenous growth in equilibrium. In contrast, if
we assume that the human capital of new-born households is independent of the aggregate stock of existing
capital, then the model admits for a steady state equilibrium with zero growth.
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consumption plus aggregate investment

Yt = Ct + Xkt + Xht (12)

where Xkt is aggregate investment in physical capital and Xht is aggregate investment in hu-

man capital. As in (10), we compute aggregate variables from the respective household-level

variables by summing over cohorts and averaging over individual histories and possible initial

states. It is straightforward to show that the capital and labor market clearing conditions

(10) in conjunction with the household budget constraint (2) and the capital accumulation

equations (1) and (8) imply the goods market clearing condition (12) using the asset pric-

ing formula (9). In our equilibrium analysis we will use focus on the two market clearing

conditions in (10), which can be subsumed to one market clearing condition because of the

constant-returns-to-scale assumption (see below).

Our definition of a sequential equilibrium is standard:

Definition 1 A sequential equilibrium is a sequence of aggregate stocks of physical capital

and (productivity weighted) human capital, {Kt,Ht}, rental rates, {r̃kt, r̃ht}, and a family of

household plans, {ct, at, ht}∞t=n, one for each cohort n and initial household type (an, hn, sn),

so that

i) Utilitymaximization of households: for each initial state, (an, hn, sn), the plan {ct, at, ht}∞t=n

solves the household problem (6).

ii) Profit maximization of firms: (Kt,Ht) maximizes profit for all t, that is, the aggregate

capital-to-labor ratio, K̃t, and rental rates, r̃kt and r̃ht satisfy the first-order conditions (7)

for all t.

iii) Profit maximization of financial intermediaries: financial contracts are priced accord-

ing to (9).
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iv) Market clearing in capital and labor markets: equation (10) holds.

v) Rational expectations: expected continuation value functions are equal to actual con-

tinuation value functions: V e = V .

Before we turn to the characterization of equilibria in the next section, we briefly discuss

the basic properties that define human capital in this paper.

2.7 Nature of Human Capital

In this paper, we define human capital as an asset with two properties, risk and non-

pledgeability, and argue that the non-pledgeability of human capital (limited contract en-

forcement) leads to under-insurance against human capital risk through endogenous borrow-

ing constraints. To make this point as sharply as possible, we introduce human capital as

an asset that differs from the risk-free asset (physical capital) only along the two dimensions

“risk” and “pledgeability”. In other words, we assume that human capital production ex-

hibits constant-returns-to-scale at the household level. Note, however, that both physical

capital and human capital display diminishing returns at the aggregate level, which is in line

with Jones and Manuelli (1990) and Rebelo (1991). In contrast, papers by Heckman et al.

(1998), Huggett et al. (2011), and Lochner and Monge (2011) assume that human capital

production faces diminishing returns to scale at the household level.

Given that there are two modeling approaches to human capital production (i.e. constant

returns versus diminishing returns), it is natural to ask which one should be used? We

argue that the answer depends on the question at hand. In this paper, the focus of the

analysis is on two, and only two, properties of human capital, namely riskiness and non-

pledgeability. Thus, in this case our approach to modeling human capital production seems

appropriate from a theoretical point of view. The tractability of the model provides an

additional argument in favor of the approach taken here. From an empirical point of view,
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the two approaches produce observationally equivalent implications for the dimensions of

the data that we emphasize as long as human capital returns are type-dependent (age-

dependent), as they are in this paper.

3. Theoretical Results

In this section, we state the two main theoretical results. First, the solution to the individual

household maximization problem is linear in total individual wealth (financial and human).

This partial equilibrium result is stated in proposition 2 and the proof is based on a monotone

operator argument (proposition 1). Second, the distribution of total wealth (financial plus

human), Ω, over household types, s, is a sufficient aggregate state variable. This general

equilibrium result is stated in proposition 3. We begin this section with a discussion of a

convenient change of variables and a definition of recursive equilibria with aggregate state

Ω.14

3.1 Change of Variables

For the characterization of equilibria, it is convenient to introduce new variables that em-

phasize the fact that individual households solve a standard inter-temporal portfolio choice

problem (with additional participation constraints). To this end, introduce the following

variables:

w̃t
.
=

ht

φ(st−1)
+
∑

st

qt−1(st)at(st)

θht
.
=

ht

φ(st−1)wt
, θat(st) =

at(st)

wt

14In this paper, we do not analyze the efficiency properties of equilibria. Gottardi, Kajii, and Nakajima
(2015) and Toda (2015) study the (constrained) efficiency properties of equilibria of an incomplete-market
version of the human capital model used in this paper. Alvarez and Jermann (2000) and Kehoe and Levine
(1993) show the constrained efficiency of competitive equilibria of exchange models with limited enforce-
ment. In production models, including the current human capital model, the default value often depends
on endogenous prices (rental rates), which renders competitive equilibria in general constrained inefficient
(Abraham and Carceles-Poveda, 2006).
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1 + r(θt, st−1, st)
.
=

{
(1 + rht(st−1, st))θht + θat(st) if no default
(1 + rhd,t(st−1, st))θht if default

(13)

where rht(st−1, st)
.
= z(st)φ(st)r̃ht + ε(st−1, st) is the return on human capital investment

if the household does not default and rhd,t(st−1, st)
.
= (1 − τ )z(st)φ(st)r̃ht + ε(st−1, st) is

the return on human capital investment in case of default. In (13) the expression ht

φ(st−1)
is

the value of human capital measured in units of the consumption good and the variable w̃t

stands for beginning-of-period total wealth, which is equal to the value of financial wealth,
∑

st
qt−1(st)at(st), plus the value of human wealth, ht

φ(st−1)
. The variable θt = (θht, θat) denotes

the vector of portfolio shares and (1 + r) is the total return to investment. Recall that for

given history of shocks, θht is a number, but θat is a vector with components θat(st). Using

the new notation and substituting out the investment variables, xkt and xht, the budget

constraint (2) and human capital accumulation equation (1) read

w̃t+1 = (1 + r(θt, st−1, st)) w̃t − ct

1 = θh,t+1 +
∑

st+1

qt(st+1)θa,t+1(st+1) (14)

ct ≥ 0 , w̃t+1 ≥ 0 , θh,t+1 ≥ 0 , θa,t+1(st+1) ≥ −D̄ .

Clearly, (14) is the budget constraint corresponding to an inter-temporal portfolio choice

problem with linear investment opportunities and no exogenous source of income.

It is convenient to use as individual state variable wealth including current asset payoffs

(“cash at hand”) defined as wt
.
= (1+ rt)w̃t. Using this concept of total wealth, the budget

constraint (14) can be written as

wt+1 = (1 + r(θt+1, st, st+1)) (wt − ct)

1 = θh,t+1 +
∑

st+1

qt(st+1)θa,t+1(st+1) (15)

ct ≥ 0 , wt+1 ≥ 0 , θh,t+1 ≥ 0 , θa,t+1(st+1) ≥ −D̄ .

Further, the default value function, Vd, can be written as a function of w, and (w, s) is there-

fore a sufficient state for the enforcement constraint (4). Thus, the household maximization
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problem (6) is equivalent to the household maximization problem

max
{ct,wt+1,θt+1}∞t=n

U ({ct}∞t=n|sn) (16)

s.t. {ct, wt+1, θt+1}∞t=n ∈ B(wn, sn)

where the budget set is now defined as

B(wn, sn)
.
= { {ct, wt+1, θt+1}∞t=n | {ct, wt+1, θt+1}∞t=n satisfies (4) and (15)}

3.2 Recursive Equilibrium: Definition

We next define a recursive equilibrium. To this end, we first note that the market clearing

condition (10) can be reduced to the condition

K̃t+1 =

∑
st+1

∑t
n=0 E[νn,t+1qt(st+1)an,t+1(st+1)|st+1] +

∫
at+1

at+1dµnew,t+1(at+1)
∑t

n=0 E[νn,t+1z(st+1)hn,t+1] +
∫
ht+1 ,st+1

z(st+1)ht+1dµnew,t+1(ht+1, st+1)
(17)

because of the constant-returns-to-scale assumption. In a sequential equilibrium, the ex-

pectations in (17) is taken over all individual histories and all initial states, and it depends

in general explicitly on time t. In a recursive equilibrium, the expectations is taken over

individual states conditional on the aggregate state, and it is time-independent. Note we

can replace the plans {at, ht} in (17) by plans {wt, θt} using the definition of portfolio choices

and total wealth (13).

The household maximization problem (16) suggests that we can use (w, s) as the indi-

vidual state variable. For the aggregate state, in general the distribution, µ, over individual

states, (w, s), is the minimal state variable. However, for the current model, the type-

dependent wealth distribution, Ω ∈ IRn, defined as

Ωt(st)
.
=

E
[∑t

n=0 νn,twn,t|st

]

E
[∑t

n=0 νn,twn,t

] .

turns out to be sufficient (see below). Here Ωt(st) is the share of aggregate total wealth owned

by all households of type st. Note that Ω is a distribution since E[Ωt] =
∑

st
Ωt(st) = 1. Note
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further that the distribution µ is an infinite-dimensional object, whereas the distribution Ω

is finite-dimensional.

Below we construct a recursive equilibrium with aggregate state variable Ω that evolves

according to an endogenous law of motion Ω′ = Φ(Ω), where the prime denotes next period’s

variable. We further show that next period’s optimal portfolio choice is independent of w,

which implies that the market clearing condition (17) becomes a condition that defines a

function K̃ ′ = K̃ ′(Ω). Together with the first-order conditions (7) this defines rental rate

functions r̃′k = r̃′k(Ω) and r̃′h = r̃′h(Ω). Note that in this case total investment returns, r,

become a function r = (θ, s, s′,Ω), where the dependence on Ω represents general-equilibrium

effects. Given our definition of sequential equilibrium and the variables defined so far, our

definition of recursive equilibrium is standard:

Definition 2 A recursive equilibrium is a law of motion, Φ, for the aggregate state variable,

Ω, a function K̃ ′ = K̃ ′(Ω), rental rate functions r̃′k = r̃′k(Ω) and r̃′h = r̃′h(Ω), a value function,

V , an expected value function, V e, and a household policy function, g,15 such that

i) Utility maximization of households: for all household cohorts, n, and household types,

(wn, sn), the household policy function, g, in conjunction with the law of motion, Φ, gener-

ates a plan, {ct, wt+1, θt+1}∞t=n, that solves the household maximization problem (16). Fur-

ther, V is the associated value function.

ii) Profit maximization of firms: for any sequence {K̃}∞t=0, the rental rate sequences {r̃kt}∞t=0

and {r̃ht}∞t=0 are defined by the first-order conditions (7).

iii) Profit maximization of financial intermediaries: financial contracts are priced according

to (9)

iv) Market clearing: for any initial state Ω, the law of motion Φ in conjunction with the

15The function g defines next period’s endogenous state as a function of this period’s endogenous state
and this period’s exogenous shock, wt+1 = g(wt, st), as well as current consumption as a function of the
state: ct = c(wt, st).
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function K̃ ′ generate a sequence {K̃}∞t=0 that satisfies the market clearing condition (17)

v) Rational expectations: V e = V and Φ is the law of motion induced by g.

3.3 Characterization of Household Problem (Partial Equilibrium)

The principle of optimality in conjunction with our discussion in the previous section re-

garding the appropriate aggregate state suggest that the household maximization problem

(16) is equivalent to the Bellman equation

V (w, s,Ω) = max
c,w′ ,θ′

{
u (c) + βρ(s)

∑

s′
V (w′, s′,Ω′)π(s′|s)

}

s.t. w′ = (1 + r(θ′, s, s′,Ω))(w − c) (18)

1 = θ′h +
∑

s′

π(s′|s)θ′a(s′)
1 + rf (Ω)

w′ ≥ 0 , θ′h ≥ 0 , θ′a(s
′) ≥ −D̄

V (w′, s′,Ω′) ≥ Vd(w
′, s′,Ω′)

Ω′ = Φ(Ω)

where the default value function is given by

Vd(w, s,Ω) = max
c,w′

{
u (c) + βρ(s)p

∑

s′
ρ(s′)Vd (w′, s′,Ω′) π(s′|s)

+βρ(s)(1− p)
∑

s′
V e (w′, s′,Ω′) π(s′|s)

}

w′ = (1 + rhd(s, s
′,Ω))(w − c)

Ω′ = Φ(Ω)

and the dependence of the returns rf , r, and rd on Ω represents general-equilibrium effects.

Let T be the operator associated with the Bellman equation (18). In contrast to the stan-

dard case without a participation constraint, the Bellman operator, T , defined by equation

(18) is in general not a contraction. However, it is still a monotone operator. Monotone
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operators might have multiple fixed points, but under certain conditions we can construct

a sequence that converges to the maximal element of the set of fixed points. This maximal

solution is also the value function (principle of optimality). More precisely, if the condition

that for all s

∀θ′ : βρ(s)
∑

s′
(1 + r(θ′, s, s′,Ω′))

1−γ
π(s′|s) < 1 if 0 < γ < 1 (19)

∃θ′ : β ρ(s)
∑

s′
(1 + r(θ′, s, s′,Ω′))

1−γ
π(s′|s) < 1 if γ > 1

holds,16 then we have the following results:

Proposition 1. Suppose that condition (19) is satisfied and that the law of motion, Φ, and

the value function of a household in financial autarky, Vd, are continuous. Let T stand for

the operator associated with the Bellman equation (18). Then

i) There is a unique continuous solution, V0, to the Bellman equation (18) without par-

ticipation constraint.

ii) limk→∞ T kV0 = V∞ exists and is the maximal solution to the Bellman equation (18)

iii) V∞ is the value function, V , of the sequential household maximization problem.

Proof . See Appendix.

Consider the case V e = V . Using proposition 2 and an induction argument, we can then

show that the value function, V , has the functional form

V (w, s,Ω) =

{
Ṽ (s,Ω)w1−γ if γ 6= 1

Ṽ0(s,Ω) + Ṽ1(s) lnw otherwise
(20)

and that the corresponding optimal policy function, g, is

c(w, s) = c̃(s,Ω)w

16Note that for the log-utility case, no condition of the type (19) is required.
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w′(w, s, s′,Ω) = (1 + r(θ′, s, s′,Ω))(1 − c̃(s,Ω))w

θ′(w, s,Ω) = θ′(s,Ω) .

In other words, the value function has the functional form of the underlying utility function,

consumption and next-period wealth are linear functions of current period wealth, and next-

period portfolio choices are independent of wealth. Moreover, we also show that the intensive-

form value function, Ṽ , together with the optimal consumption and portfolio choices, c̃ and

θ, can be found by solving an intensive-form Bellman equation that reads

Ṽ (s,Ω) = max
c̃,θ′

{
c̃1−γ

1 − γ
+ βρ(s)(1− c̃)1−γ

∑

s′
(1 + r(θ′, s, s′,Ω))

1−γ
Ṽ (s′,Ω′)π(s′|s)

}

s.t. 1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf(Ω)
(21)

θ′h ≥ 0 , θ′a(s
′) ≥ −D̄ , 0 ≤ c̃ ≤ 1

(
Ṽ (s′,Ω′)

Ṽd(s′,Ω′)

) 1
1−γ

(1 + r(θ′, s, s′,Ω)) ≥ (1 + rhd(s, s
′,Ω))θ′h

Ω′ = Φ(Ω)

and

Ṽd(s,Ω) = max
c̃d

{
c̃1−γ
d

1 − γ
+ pβρ(s)(1 − c̃d)

1−γ
∑

s′
(1 + rhd(s, s

′,Ω))
1−γ

Ṽd(s
′,Ω′)π(s′|s)

(1 − p)βρ(s)(1 − c̃d)
1−γ

∑

s′
(1 + rhd(s, s

′,Ω))
1−γ

Ṽ (s′,Ω′)π(s′|s)
}

for γ 6= 1. In the case of log-utility, the intensive-form Bellman equation reads

Ṽ0(s,Ω) = max
c̃,θ′

{
ln c̃ + βρ(s)

∑

s′
Ṽ0(s

′)π(s′|s) + βρ(s) [ln(1 − c̃)]
∑

s′
Ṽ1(s

′)π(s′|s)
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+ βρ(s)
∑

s′
Ṽ1(s

′) ln(1 + r(θ′, s, s′,Ω))π(s′|s)
}

s.t. 1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf(Ω)

θ′h ≥ 0 , θ′a(s
′) ≥ −D̄

e(1−β)(Ṽ0(s′,Ω′)−Ṽd0(s
′,Ω′)) (1 + r(θ′, s, s′,Ω)) ≥ (1 + rhd(s, s

′,Ω))θ′h

Ω′ = Φ(Ω)

and

Ṽ0d(s,Ω) = max
c̃d

{
ln c̃d + β [ln(1 − c̃d)]

∑

s′
Ṽ1(s

′)ρ(s′)π(s′|s)

+ βρ(s)
∑

s′
Ṽ1(s

′) ln(1 + rhd(s, s
′,Ω))π(s′|s)

+ pβρ(s)
∑

s′
Ṽ0d(s

′)π(s′|s) + (1 − p)βρ(s)
∑

s′
Ṽ0(s

′)π(s′|s)
}

where the coefficients Ṽ1 are the solution to

Ṽ1(s) = 1 + βρ(s)
∑

s′
Ṽ1(s

′)π(s′|s)

Proposition 2. Suppose that condition (19) is satisfied, the law of motion, Φ, is continuous,

and V e = V . Then value function, V , and optimal policy function, g, have the functional

form (20). Moreover, the intensive-form value function, Ṽ , and the corresponding optimal

consumption and portfolio choices, c̃ and θ′, are the maximal solution to the intensive-form

Bellman equation (21). This maximal solution is obtained by iteratively applying T̃ , the

operator associated with the intensive-form Bellman equation (21), starting from Ṽ0, the

solution of the intensive-form Bellman equation (22) without participation constraint:

Ṽ = lim
k→∞

T̃ kṼ0 .
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Proof . See Appendix.

Note that proposition 2 cannot simply be proved by the guess-and-verify method since

multiple solutions to the Bellman equation (21) may exist. Specifically, the operator asso-

ciated with the Bellman equation is monotone, but not a contraction, and hence multiple

fixed points may exist. However, proposition 2 ensures that we have indeed found the value

function associated with the original utility maximization problem, and also provides us with

a iterative method to compute this solution. Note further that the constraint set in (21)

is defined by an equation system involving only linear functions (the return functions are

linear in θ). Thus, the constraint set is convex and we have transformed the original utility

maximization problem into a convex problem. In other words, the non-convexity problem

alluded to in the introduction has been resolved.

3.4 Characterization of Recursive Equilibria

Proposition 2 shows how to rewrite the maximization problem of individual households

as a recursive problem that is wealth-independent. One implication of the intensive-form

representation of the individual maximization problem is that optimal portfolio choices are

independent of wealth, w. This result in turn implies that the market clearing condition

(17) can be re-written as

K̃ ′ =

∑
s [ρ(s) + λ(1 − ρ(s))

∑
s′(1 − θh(s

′))µnew(s′)] (1 − θh(s,Ω)) (1 − c̃(s,Ω))Ω(s)

z̄
∑

s [ρ(s) + λ(1 − ρ(s))
∑

s′ φ(s′)θh(s′)µnew(s′)]φ(s)θh(s,Ω)(1 − c̃
∑

(s,Ω))Ω(s)
(22)

where we have already incorporated restriction (11) and z̄ stands for the mean of z. In

addition, in (22) we assume that new-born households begin life with portfolio shares iden-

tical to the portfolio chosen by households alive in the previous period. Note that µnew(s′)

stands for the share of aggregate total capital of new-born households that is received by

new-born households of type s′, where we interpret µnew(s′) = 0 as the case that no new-born

household is of type s′.

25



Equation (22) defines a function K̃ ′ = K̃ ′(Ω), which in turn defines rental rate functions

r̃′k = r̃′k(Ω) and r̃′h = r̃′h(Ω) using the first-order conditions (7). A second implication of

proposition 2 is that the equilibrium law of motion, Φ, can be explicitly derived:

Ω′(s′) =

∑
s [ρ(s) + λ(1 − ρ(s))µnew(s′)] (1 − c̃(s,Ω))(1 + r(θ′(s,Ω), s′,Ω))π(s′|s)Ω(s)

∑
s,s′ [ρ(s) + λ(1 − ρ(s))µnew(s′)] (1 − c̃(s,Ω))(1 + r(θ′(s,Ω), s′,Ω))π(s′|s)Ω(s)

.

(23)

Note that the expression in the denominator of (23) ensures that
∑

s′ Ω
′(s′) = 1.

In sum, a recursive equilibrium can be found by solving (21) using (22) and (23) as

equilibrium function and equilibrium law of motion:

Proposition 3. Suppose that (θ, c̃, Ṽ ) is an intensive-form equilibrium, that is, (θ, c̃, Ṽ )

solves the intensive-form household decision problem (21) using the function K̃ ′ = K̃ ′(Ω)

defined by (22) and a law of motion Ω′ = Φ(Ω) defined by (θ, c̃) and (23). Then (g, V, K̃ ′,Φ)

is a recursive equilibrium, where g is the individual policy function associated with (θ, c̃) and

V is the value function associated with (θ, c̃, Ṽ ).

Proof . See Appendix.

Proposition 3 simplifies the computation of recursive equilibria. In our framework, the

infinite-dimensional wealth distribution is not a relevant state variable. Instead, the distribu-

tion of wealth shares over household types, Ω, becomes a relevant state variable. Note that Ω

is in many applications a low-dimensional object. For example, suppose that st = (s1t, s2t),

where {s1t} and {s2t} are two independent processes and {s2t} is an i.i.d process. In this

case neither c̃ nor θ depend on s2 and the relevant aggregate state is Ω(s1) only.

3.5 Extension: Aggregate Shocks

So far, we have considered economies with only idiosyncratic risk, but it is straightforward

to introduce aggregate risk into the framework. To this end, suppose that there are idiosyn-
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cratic shocks, s, and aggregate shocks, S, and that uncertainty is described by a stationary

joint Markov process {st, St} with transition probabilities denoted by π(st+1, St+1|st, St).

The relevant aggregate state then becomes (Ωt, St), where Ωt is defined as before. In a

recursive equilibrium, the evolution of the endogenous aggregate state variable is given by

an endogenous law of motion Ωt+1 = Φ(Ωt, St, St+1). Further, the aggregate capital-to-labor

ratio is a function K̃t+1(Ωt, St) and the rentals rates are function r̃k,t+1 = r̃k(Ωt, St) and

r̃h,t+1 = r̃h(Ωt, St). The definition of a recursive equilibrium is, mutatis mutandis, as before.

A straightforward (though lengthy) extension of the subsequent theoretical analysis shows

that a modified version of our general characterization results still hold. In particular,

recursive equilibria can be computed by solving a convex problem that is independent of the

wealth distribution, though clearly the finite-dimensional distribution of relative wealth, Ω,

still enters into the equilibrium conditions.

3.6 Further Extensions

There a several further extensions of the model that can be incorporated without sacrificing

the tractability of the model. First, we can introduce a time cost in human capital production

if we replace the term φ(st)xht in (1) by φ̃(st)(htlht)
αx1−α

ht , where lht is the time spent in

human capital production. In the simplest extension, the household allocates time between

working and producing human capital (learning). However, we can also add a labor-leisure

choice as long as preferences remain homothetic in consumption. It is straightforward to

show that the human capital production function φ̃(st)(htlht)
αx1−α

ht gives rise to a human

capital accumulation equation (1) that is still linear in xht after the optimal choice of lht has

been substituted out.

A second extension is shocks to preferences (taste shocks, health shocks, change in family

structure). These can easily be incorporated by replacing the one-period utility function by
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one that depends on the state st. Third, the tractability is preserved in a model with taxes

and transfers as long as these payments are proportional to either financial capital (capital

income) or human capital (labor income). To see this, simply re-define the returns in (13) as

returns after taxes and transfers have been taken into account. Note that taxes and transfers

can be arbitrary non-linear functions of the state st.

4. Model Specification and Computation

In this section, we present the version of the model that is used for the quantitative analysis

and discuss our approach to computing equilibria.

4.1 Parametric Specification

We set the period length to one year. We assume that the economy is in stationary equi-

librium and drop the time index t. We further assume that the exogenous individual state

has two components, s = (s1, s2). The first component, s1, denotes the age of a household,

which can take on 9 values, s1 = 1, . . . , 9, corresponding to the following 9 age groups: 25

and younger, 26 - 30, 31 - 36, . . . , 56 - 60, and older than 60. We assume that households

stochastically age with the transitions from one age group to another age group governed

by transition probabilities π(s′1|s1). We assume that households cannot move up more than

one age group at a time, and choose π(s1 + 1|s1) so that so that households spend on av-

erage 5 years in the first 8 age groups. That is, for s1 ≤ 8 we have π(s1|s1) = 4/5 and

π(s1 +1|s1) = 1/5. Households in the oldest age group die stochastically and the probability

of death is chosen so that these households live on average a further 25 years. Old households

who leaves the model are replaced by households in the youngest age group.

The first component, s1, determines expected human capital returns and the second

component, s2, represents human capital risk. Specifically, s1 and s2 affect human capital

accumulation through the ε-function appearing in the human capital equation (1) as follows:
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ε(s1, s2) = ϕ(s1) − δh + η(s2). We interpret ϕ as a learning-by-doing parameter which

depends on age and which, in our calibration below, is stronger for younger households so

that ϕ(s1) > ϕ(s1 + 1). The parameter δh is the average depreciation rate of human capital

in the economy. We have set the labor productivity parameter z = 1 so that all labor

income risk is generated through the human capital shock η, which is assumed to be i.i.d.

over time and across households and independent of household age s1.
17 Assuming that the

cost of human capital in terms of consumption goods φ is constant, the return to human

capital is given by rh(s1, s2) = φr̃h +ϕ(s1)− δh + η(s2). Normalizing the mean of the human

capital shocks to zero, or
∑

s2
η(s2)π(s2) = 0, we find that the expected human capital

returns for a household of age s1 are r̄h(s1) =
∑

s2
rh(s1, s2)π(s2) = φr̃h + ϕ(s1) − δh. For

the oldest household group, s1 = 9, we assume that human capital returns are low enough

so that they only invest in financial capital yielding a portfolio return equal to the risk-free

rf (retirement).

With this specification in hand, we can verify that human capital accumulation decisions

satisfy various non-negativity constraints on human capital investment. For example, in

equilibrium the restriction holds that total human capital investment inclusive of learning-

by-doing is always non-negative for all working-age households: ϕ(s1)ht + φxht ≥ 0 for

s1 ≤ 8.

4.2 Deriving the Equilibrium Conditions

We begin with a discussion of the equilibrium conditions (21), (22), and (23) for the model

version specified in this section. Given the assumption made so far, the intensive-form

Bellman equation (21) for households of age s1 ≤ 8 becomes

Ṽ (s1) = max
c̃,θ′





c̃1−γ

1 − γ
+ β(1− c̃)1−γ

∑

s′1,s′2

(1 + r(θ′, s′1, s
′
2))

1−γ
Ṽ (s′1)π(s′2)π(s′1|s1)





17In Krebs, Kuhn, and Wright (2015) we consider the more general version with additional shocks to z.
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(24)

s.t. 1 = θ′h +
∑

s′1 ,s′2

θ′a(s
′
1, s

′
2)π(s′2)π(s′1|s1)

1 + rf

, 0 ≤ c̃ ≤ 1 , θ′h ≥ 0

(
Ṽ (s′1)

Ṽd(s
′
1)

) 1
1−γ

(1 + r(θ′, s′1, s
′
2)) ≥ (1 + rh(s

′
1, s

′
2))θ

′
h ∀ (s′1, s

′
2)

θ′a(s
′
1s

′
2) ≥ −D̄ ∀ (s′1, s

′
2)

with

Ṽd(s1) = max
c̃d





c̃1−γ
d

1 − γ
+ pβ(1 − c̃d)

1−γ
∑

s′1 ,s′2

(1 + rhd(s
′
1, s

′
2))

1−γ
Ṽd(s

′
1)π(s′2)π(s′1|s1)

(1 − p)β(1 − c̃d)
1−γ

∑

s′1 ,s′1

(1 + rhd(s
′
1, s

′
2))

1−γ
π(s′2)Ṽ (s1)π(s′1|s1)





for γ 6= 1. In the case of log-utility, the intensive-form Bellman equation (21) becomes

Ṽ (s1) = max
θ′



ln(1 − β) +

β

1 − β
lnβ +

β

1 − β

∑

s′1 ,s′2

ln(1 + r(θ′, s′1, s
′
2)π(s′2)π(s′1|s1)

+β
∑

s′1

Ṽ (s′1)π(s′1|s1)





s.t. 1 = θ′h +
∑

s′1,s′2

θ′a(s
′
1, s

′
2)π(s′2)π(s′1|s1)

1 + rf
, θ′h ≥ 0

e(1−β)(Ṽ (s′1)−Ṽd(s′1)) (1 + r(θ′, s′1, s
′
2) ≥ (1 + rhd(s

′
1, s

′
2))θ

′
h ∀ (s′1, s

′
2)

θ′a(s
′
1s

′
2) ≥ −D̄ ∀ (s′1, s

′
2)

with

Ṽd(s1) = ln(1 − β) +
β

1 − β
lnβ +

β

1 − β

∑

s′1,s′2

ln(1 + rhd(s
′
1, s

′
2)π(s′2)π(s′1|s1)
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+ p β
∑

s′1

Ṽd(s
′
1)π(s′1|s1) + (1 − p)β

∑

s′1

Ṽ (s′1)π(s′1|s1)

From (24) it immediately follows that the optimal portfolio choice, θ, and the optimal

consumption-saving choice, c̃, only depend on age s1 but not on human capital shocks s2. In

other words, household consumption and portfolio choices are independent of i.i.d. shocks.

This in turn implies that the relevant aggregate state, Ω, only depends on age, s1. The

stationary Ω is then determined by the following set of equations, defined first for s1 = 1:

Ω(1) = N


4

5

∑

s′2

(1 − c̃(1))(1 + r(θ′(1), 1, s′2))π(s′2)Ω(1) +
λ

25
(1 + rf )(1 − c̃(9))Ω(9)




and then ∀s1 with 2 ≤ s1 ≤ 8 :

Ω(s1) = N


4

5

∑

s′2

(1 − c̃(s1))(1 + r(θ′(s1), s1, s
′
2))π(s′2)Ω(s1) + (25)

1

5

∑

s′2

(1 − c̃(s1 − 1))(1 + r(θ′(s1 − 1), s′2))π(s′2)Ω(s1 − 1)




and then lastly:

Ω(9) = N
[
24

25
(1 − c̃(9))(1 + rf )Ω(9) +

1

5
(1 − c̃(8))(1 − θh(8))(1 + rf )Ω(8)

]

where λ measures the ratio of total capital (human plus financial) of newborn households

relative to the physical capital of retired households who die in a given period and N is a

normalization constant chosen to ensure
∑

s1
Ω(s1) = 1. Note that (25) is the stationary

version of (23) for the current model set-up, where we have already used the assumption

that new-born households begin life in age group (state) s1 = 1.

Taking into account that ρ(s1) = 1 for s1 = 1, . . . , 8 and θh(9) = 0, we find that the

market clearing condition (22) becomes

K̃ =
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∑
s1 6=9(1 − c̃(s1))(1 − θh(s1))Ω(s1) + 24

25
(1 − c̃(9))(1 − θh(9))Ω(9) + (1 − θh(1))

λ
25

(1 + rf)(1 − c̃(9))Ω(9)

φ
[∑

s1 6=9(1 − c̃(s1))θh(s1)Ω(s1) + 24
25

(1 − c̃(9))θh(9)Ω(9) + θh(1)
λ
25

(1 + rf )(1 − c̃(9))Ω(9)
]

(26)

Equations (24), (25), and (26) in conjunction with the corresponding rental rate functions

determine a stationary recursive equilibrium for this specification of the model.

4.3 Solving the Equilibrium Conditions

For the general equilibrium analysis, one needs to solve the three equations (24), (25), and

(26). The solution algorithm works as follows. First, pick an aggregate capital-to-labor

ratio, K̃, which determines the rental rates r̃k and r̃h and therefore also the investment

return function r. Second, given the values for the investment returns, solve the intensive-

form household decision problem (24) and recover the stationary state Ω. Third, use the

values for θ, c̃, and Ω, to determine a new value for K̃ using (26). Finally, iterate until

convergence. Note that in the log-utility case with ρ(s1) = 1 there is no need to solve for c̃

since we have c̃ = 1 − β.

We solve the partial equilibrium problem (24) by iteration. More precisely, consider the

case γ 6= 1 and define the values Ṽ k(s1) and Ṽ k
d (s1), recursively by

Ṽ k+1(s1) =





(
c̃k(s1)

)1−γ

1 − γ
+ (27)

β
(
1 − c̃k(s1)

)1−γ ∑

s′1 ,s′2

(
θk

h(s1)(1 + rh(s
′
1, s

′
2)) + θk

a(s1, s
′
1, s

′
2)
)1−γ

ṽk(s1)π(s′2)π(s′1|s1)





c̃k(s1) = 1 −


β

∑

s′1 ,s′2

(
θk

h(s1)(1 + rh(s
′
1, s

′
2)) + θk

a(s1, s
′
1, s

′
2)
)1−γ

π(s′2)π(s′1|s1)




1
γ

and

Ṽ k+1
d (s1) =

(c̃d(s1))
1−γ

1 − γ
+ β(1− c̃d(s1))

1−γp
∑

s′1 ,s′2

(1 + rhd(s
′
1, s

′
2))

1−γ
ṽk

d(s
′
1)π(s′2)π(s′1|s1)
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+β(1 − c̃d(s1))
1−γ(1 − p)

∑

s′1,s′2

(1 + rhd(s
′
1, s

′
2))

1−γ
π(s′2)Ṽ

k(s′1)π(s′1|s1)

c̃d(s1) = 1 −

β

∑

s′1 ,s′2

(1 + rhd(s
′
1, s

′
2))

1−γ
π(s′2)π(s′1|s′1)




1
γ

where the portfolio choices (θk
h(s1), θ

k
a(s1)) for each s1 are the solution to

max
θh,θa

∑

s′1 ,s′2

(θh(1 + rh(s
′
1, s

′
2)) + θa(s

′
1, s

′
2))

1−γ
π(s′)

s.t. θh +
∑

s′1,s′2

θa(s
′
1, s

′
2)π(s′2)π(s′1|s1)

1 + rf
= 1 (28)

θh(1 + rh(s
′
1, s

′
2)) + θa(s

′
1, s

′
2) ≥ θh(1 + rhd(s

′
1, s

′
2))

(
Ṽ k

d (s′1)

Ṽ k(s′1)

) 1
1−γ

θ′a(s
′
1s

′
2) ≥ −D̄

The intensive-form value function and the corresponding optimal portfolio choice are ob-

tained by taking the limit Ṽ = limk→∞ Ṽ k, Ṽd = limk→∞ Ṽ k, and θ = limk→∞ θk. The

solution procedure for the case γ = 1 works accordingly.

To solve the portfolio problem (28) for given k and s1, we first fix θk
h(s1) = θ̄k

h(s1) and find

θk
a(s1) solving (28) for given θ̄k

h(s1). To this end, for each s′1, order the pairs (s′1, s
′
2) so that

rh(s1, 1) > rh(s1, 2) > . . . > rh(s1, S). Given s1 suppose that the participation constraint is

binding for the first J(s1) states. Then for the first J(s1) states θk
a(s1) is given by

θk
a(s1, s

′
1, s

′
2) = θ̄k

h(s1)


(1 + rhd(s

′
1, s

′
2))

(
Ṽ k

d (s′1)

Ṽ k(s′1)

) 1
1−γ

− (1 + rh(s
′
1, s

′
2))


 for (s′1, s

′
2) = 1, . . . , J(s1)

(29)

while for the remaining states, we have

θk
a(s1, s

′
1, s

′
2) = r̄k(s1) − θ̄k

h(s1)(1 + rh(s
′
1, s

′
2))

where r̄k(s1) is determined by the portfolio constraint in (28). Using the corresponding

first-order conditions it is easy to see that, for given θ̄k
h(s1), the solution θk

a(s1) to (28) is
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determined by (29), where J(s1) is the smallest number for which the portfolio choice satisfies

the participation constraint. Finally, we find optimal θk
h(s1) using a standard one-dimensional

optimization routine.

5. Model Calibration

In this section, we describe our approach to calibrating the model. We begin with a brief

discussion of the micro-level data used to calibrate the model. We then present the calibra-

tion of the model using the partial equilibrium restrictions (exogenous returns). Finally, we

discuss how to close the model using the general equilibrium restrictions.

5.1 Data

For the calibration and the results discussed below, we use data on earnings and financial

wealth drawn from the Survey of Consumer Finances (SCF). The SCF is a triennial survey

of U.S. households and we use data from 1989 to 2013. For most steps, we follow Krebs,

Kuhn, and Wright (2015) with our construction and treatment of the data. Our measure

of earnings (labor income) is wages and salaries plus two-thirds of the farm and business

income (if applicable). Our measure of financial wealth is net worth, defined as the sum of

the consolidated household balance sheet (including net housing wealth). All data has been

deflated using the BLS consumer price index for urban consumers (CPI-U-RS)

We follow Heathcote et al. (2010) for the sample selection and confine attention to

households with household head age 23 years and older. Specifically, we drop the wealthiest

1.47 % of households in each calender year, which makes the sample more comparable to

that of the Panel Study of Income Dynamics (PSID) and the Consumer Expenditure Survey

(CEX). Further, we drop all households that report negative labor income or that report

positive hours worked but have missing labor income or that report positive labor income

but zero or negative hours worked. We also drop in each year households with a wage rate
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that is below half the minimum wage of the respective year, where we compute the wage

rate by dividing labor income by total hours worked.

We construct separately for each survey year life-cycle profiles of median log earnings and

financial wealth to earnings ratios. We smooth life-cycle profiles separately for each survey

year using linear least squares on a cubic polynomial in age and average the smoothed profiles

across survey years to remove time effects.18 We compute earnings growth rates from age

differences in earnings of the smoothed, cross-sectional earnings profiles.

5.2 Calibration: Partial Equilibrium

In this section, we calibrate the partial equilibrium version of the economy, that is, we find

values for the expected investment returns rf and r̄h(s1) = φr̃h+ϕ(s1)−δh without specifying

the production function that generates these returns. We calibrate an annual risk-free rate

of rf = 3%, in line with Kaplan and Violante (2010) and roughly in line with Huggett et al.

(2011) and Krueger and Perri (2006) who use a 4% annual risk-free rate, but also deduct

capital income taxes.

We choose the age-dependent expected human capital returns, r̄h(s1), to match life-cycle

profile of earnings growth of the median household in the data for the first 8 age groups.

Specifically, we first construct a life-cycle profile of annual median household earnings and

earnings growth as described in the previous section, and then construct a corresponding

life-cycle profile of earnings growth for the relevant age groups. The result is depicted in

Figure 1 and shows the expected life-cycle pattern. Earnings growth rate are very high for

young households, monotonically decreasing in age, and turn negative for households older

than 50.

FIGURE 1 HERE

18We only use observations until age 60 for the regression.
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We assume that human capital shocks, η, are approximately normally distributed, that

is, we choose the probabilities π(s2) and the realizations η(s2) to approximate a normal

distribution with mean 0 and standard deviation ση = 0.15. The parameter ση measures

human capital risk and our choice of ση = 0.15 is motivated by the following considerations.

In the model economy, labor income of an individual household in period t is given by

yht = r̃hht, so that the growth rate of labor income is equal to the growth rate of human

capital: yh,t+1/yht = hh,t+1/ht. We can use the equilibrium solution to compute the human

capital growth between year t and year t + 1. Neglecting transitions across age groups s1,

this yields:

ht+1

ht
= (1 − c̃) (θh(s1,t−1)(1 + φr̃h + ϕ(s1,t) − δh + η(s2t)) + θa(s1,t−1, s1t, s2t)) (30)

Equation (30) can be written as

ln yh,t+1 = ln yht + d(s1) + η̃t, (31)

where d(s1) is a constant and {η̃t} is a sequence of i.i.d. random variables with

σ2
η̃(s1) = θ2

h(s1)σ
2
η + var[θa|s1] (32)

Hence, the logarithm of labor income follows a random walk with drift d and innovation

term η̃t.
19 The random walk specification is often used by the empirical literature to model

the permanent component of labor income risk (Carroll and Samwick (1997), Meghir and

Pistaferri (2004), and Storesletten et al. (2004)). Thus, their estimate of the standard

deviation of the error term for the random walk component of annual labor income can be

used to find a value for σ2
η̃ for given portfolio choices θh and θa. For young households, we

19We have η̃t instead of η̃t+1 in equation (31), and the latter is the common specification for a random
walk. However, this is not a problem if the econometrician observes the idiosyncratic depreciation shocks
with a one-period lag. In this case, (31) is the correct equation from the household’s point of view, but a
modified version of (31) with η̃t+1 replacing η̃t is the specification estimated by the econometrician.
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will see below that θh is close to one and insurance payments, θa(s2), are small, so that we

have σ2
η̃ ≈ σ2

η. In our baseline calibration, we use ση = .15, which lies on the lower end of the

spectrum of estimates found by the empirical literature. For example, Carroll and Samwick

(1997) find .15, Meghir and Pistaferri (2004) estimate .19, and Storesletten et al. (2004)

have .25 (averaged over age-groups and, if applicable, over business cycle conditions). All

these studies use labor income before transfer payments, which is the relevant variable from

our point of view.

For the baseline calibration, we assume that households who default regain access to

financial markets after 7 years: (1 − p) = 1/7. We further assume no garnishment of labor

income, τ = 0, in the baseline calibration. Finally, we assume a degree of relative risk

aversion of γ = 1 (log-utility) and set the annual discount factor to β = 0.95.20 We choose

the human capital rental rate, φr̃h, to match the average value of the financial wealth to

earnings ratio for households age 23-60 (see Figure 2 below).

5.3 Calibration: General Equilibrium

We now close the model by specifying a production function. We use a Cobb-Douglas

production function f(K̃) = AK̃α, where 0 < α < 1 is capital’s share in output and A is a

productivity parameter. In this case, the rental rates of physical capital and human capital

are given by

r̃k = αAK̃α−1 (33)

r̃h = (1 − α)AK̃α

As in Krebs, Kuhn, and Wright (2015), we target an aggregate share of capital income,

r̃kK/Y , of 0.32 so that α = 0.32. We also follow Krebs, Kuhn, and Wright (2015) and target

20An alternative calibration approach is to require the model to match a given expected human capital
return for the young and then use β to match the observed earnings growth rate of the young.
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an aggregate capital-to-output ratio of 2.94. This target in conjunction with the target

rf = r̃k − δk = 0.03 yields r̃k = 0.1085 and δk = 0.0785.

Recall that in the partial equilibrium calibration we have chosen the value of φr̃h to match

the average financial-wealth-to-earnings ratio from the SCF for households age 23-60. Given

that the values for capital’s share in output/income and r̃k and δk are also pinned down, the

only way to have the general equilibrium model match a particular target for the aggregate

capital-to-output ratio, K/Y , is to vary the parameter λ measuring the human capital of

newborn households relative to the financial capital of retired household who die in a given

period. This is also the approach taken in Krebs, Kuhn, and Wright (2015). Following this

approach, we find that we need a value of λ = 0.811 to match the aggregate capital-to-output

ratio of 2.94. This means that aggregate total capital of new-born households (physical plus

human) is equal to 81 percent of the physical capital of retired households who die in a

given period, which in our setting means that the total capital (physical plus human ) of

a new-born household is equal to 81 percent of the physical capital of a retired household

(recall that retired households do not hold human capital).

The calibration approach discussed so far determines φr̃h, the rental rate of human capital

in consumption units, but does not determine separately φ and r̃h. To resolve this indeter-

minacy, Krebs, Kuhn, and Wright (2015) impose the (somewhat arbitrary) condition that

K̃ = 0.4, where the value 0.4 for the capital-to-labor ratio is in line with the results obtained

in Krebs (2003) using a model with φ = 1 (one unit of the consumption/capital good can

be transformed into one unit of human capital).

Finally, we note that the life-cycle profile of human capital returns, r̄h(s1), which is

pinned down by the partial equilibrium calibration, and the human capital rental rate, φr̃h

(see above), imply a life-cycle profile for the difference ϕ(s1) − δh. However, the values

for the learning-by-doing parameters and the human capital depreciation rate are still not
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separately identified. Krebs, Kuhn, and Wright (2015) choose δh = 0.04, which then pins

down the life-cycle profile of learning-by-doing parameters.

6. Quantitative Results

In this section, we discuss the main quantitative results, that is, we present the implications of

the baseline model with respect to the life-cycle profiles of portfolio choices, under-insurance,

and welfare losses associated with under-insurance.

6.1 Portfolio Choice and Human Capital Returns

We begin with an examination of household’s portfolio allocation between financial assets

and human capital. To this end, we first use current earnings as a proxy for human capital

and construct the life-cycle profile of the ratio of financial wealth to earnings in the model

and in the data.21 Figure 2 depicts the result and shows that the model does an excellent

job of matching this life-cycle profile, though it somewhat over-predicts the financial wealth

holdings of the oldest households. Note that the model matches the life-cycle average of the

financial wealth to earnings ratio by construction since we choose the human capital rental

rate, φr̃h, accordingly. However, we have no additional parameter to match the shape of the

life-cycle profile depicted in Figure 2.

FIGURE 2 HERE

The advantage of using the financial wealth to earnings ratio as a measure of portfolio

choice, as we have done in Figure 2, is the ease with which this variable can constructed

from the data without imposing additional assumptions. The disadvantage is that current

earnings is a very crude proxy of human capital. We therefore construct an alternative

measure of portfolio choice from the data that uses the present value of future lifetime

21In the model, this ratio is computed as 1−θh(s1)
φr̃hθh(s1)

.
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earnings as a proxy for human capital, where future earnings are discounted at the risk-free

rate implied by the calibrated model. Figure 3 depicts the result and shows that the model

lines up reasonably well with the data. However, the model over-predicts the human capital

share, and this over-prediction becomes more severe with age. The explanation for this is

that in the model older households are almost fully insured against the human capital loss

upon retirement, which means that the model tends to overstate the value of human capital

at older age.22

FIGURE 3 HERE

In order to help understand the portfolio allocation decisions of households, Figure 4

presents the excess return to investing in human capital as a function of age. As shown in

the figure, young households face an excess return of almost ten percent, explaining why the

young hold very little financial wealth. Moreover, excess human capital returns in the vicinity

of 10 percent are in line with estimated rates of return to on-the-job-training (Blundell et al.

1999 and Mincer 1994). The excess return available to the oldest working households is less

than one-half of one percent, which explains why they hold so much more financial wealth

than the young.

FIGURE 4 HERE

Our assumption that expected human capital returns are constant but age-dependent

means that our approach matches by construction the observed life-cycle profile of earnings

growth depicted in Figure 1. Thus, the fact that the calibrated model economy matches the

22Note that the value of human capital in the model is always equal to the expected present discounted
value of lifetime earnings if future earnings are discounted using the relevant intertemporal marginal rate of
substitution and the model earnings process is used to computed expected lifetime earnings. The difference
between the model implication and the data depicted in Figure 3 arises because i) different discount rates
are used and ii) the model earnings process (in conjunction with the almost full-insurance result for older
households) does not capture the data well after age 50.
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observed life-cycle profile earnings growth should not be interpreted as evidence in favor of

the theory. In contrast, the model generates endogenously the life-cycle profile of portfolio

choices depicted in Figures 2 and 3. The fact that the theoretical life-cycle profile of portfolio

choices lines up reasonably well with the empirical profile is therefore evidence in support of

the theory.

6.2 Consumption Insurance and Welfare

The youngest households not only hold little financial wealth, but they are also dramatically

under-insured. Figure 5 plots a measure of consumption insurance, the insurance coefficient,

defined as one minus the ratio of the standard deviation of household consumption growth

to the standard deviation of household income growth. As shown in the figure, households

of the youngest age group are insured against only one third of their income risk, whereas

older households are insured against roughly 90 percent of their income risk.

FIGURE 5 HERE

Figure 6 examines the welfare consequences of this underinsurance, depicting the equiv-

alent variation of moving to full insurance measured in units of lifetime consumption.23 As

shown in the figure, the youngest households would require an increase of almost 7.5 percent

in their annual consumption to be as well off as if they had access to full insurance. Thus, for

young households the welfare loss due to lack of insurance against labor market risk are quite

substantial. Further, even for households age 40 these welfare losses amount to 3 percent of

lifetime consumption. For the older working households, however, this equivalent variations

has fallen to less than one-half of one percent.

FIGURE 6 HERE

23We determine the equivalent variation by removing all enforcement problems for fixed human capital
choice, that is, we compute the welfare gain from achieving full insurance given the earnings process.
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7. Robustness

In this final section, we analyze the robustness of our main results with respect to changes in

the bankruptcy regime, human capital risk, and risk aversion. Clearly, in all these examples

borrowing constraints adjust endogenously to changes in the economic environment, which

differentiates the approach taken here from an analysis based on incomplete-market models

with human capital as in Krebs (2003) and Guvenen et al. (2014). We also compare our

under-insurance result to the “almost full-insurance result” of Krueger and Perri (2006)

and argue that the finding of Krueger and Perri (2006) is driven by two (counter-factual)

assumptions.

7.1 The Effect of Changing Personal Bankruptcy Regimes

Figures 7 through 10 explore the consequences of changing the details of the personal

bankruptcy regime either by increasing the time for which a household is considered bankrupt,

or by allowing for wage garnishment during bankruptcy. Figures 7 and 8 focus on the effects

of changing the duration of financial market exclusion of defaulting households from an av-

erage of 7 years to an average of 10 years. As shown in Figure 7, the human capital portfolio

share of the youngest households rises from almost one, denoting no financial wealth, to

a value greater than one, denoting negative net financial assets. This increase is reflected

throughout the age distribution, although the increases are quite modest in size and decline

with age. Figure 8 shows that, although human capital investment increases, insurance

against human capital risk is almost unchanged, with the blue and red lines almost atop one

another. The reason is that households prefer, on the margin, to borrow more in order to

invest in human capital and not buy any further insurance. This is also confirmed by the

green line in Figure 8 which shows the effect on risk sharing if the household is constrained

from increasing their human capital portfolio. In this case, risk sharing is increased across all

age groups, with the largest effect on the young, who are most likely to be constrained, and
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whose consumption insurance rises from about a third of income risk to roughly 40 percent

of income risk.

FIGURES 7 AND 8 HERE

Figures 9 and 10 repeat the above analysis, this time by introducing garnishment of 20

percent of wages while bankrupt. Figure 9 shows that this results in a qualitatively simi-

lar increase in human capital portfolio shares with the portfolio share of the very youngest

working households exceeding one by roughly 7 percent. Borrowing levels are also positive

(the human capital share remains larger then one) for households throughout their 30’s and

into their 40’s. Figure 10 also shows that there is no significant increase in risk sharing. If

households are constrained from investing more in human capital (the green line), consump-

tion insurance increases dramatically with the young now insured against almost 60 percent

of their income risk.

FIGURES 9 AND 10 HERE

7.2 The Effect of Changing Human Capital Risk

We now consider an increase in the standard deviation of labor income shocks from ση = 0.15

to ση = 0.20. Figure 11 shows that the effect of this increase on human capital investment is

not monotone: young households increase, while older households decrease, their investments

in human capital. This is the result of two offsetting forces. On the one hand, an increase in

labor income risk makes investments in human capital less attractive for a given mean return.

On the other hand, increases in labor income risk make the prospect of declaring bankruptcy

less attractive as the household must bear the full cost of this risk while bankrupt. This

effect improves enforcement of debt contracts and leads to better insurance. For young

households, who desire to hold more human capital, the latter effect dominates, while for

older households the former effect dominates.
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FIGURE 11 HERE

Figure 12 shows the implications of these choices for consumption insurance. Whereas

the blue line shows that consumption insurance is increased for all household ages, the green

line depicts what would have happened to consumption insurance if the households had

been unable to adjust their human capital holdings. As shown in the figure, the youngest

households would have increased their consumption insurance even further, while the oldest

households would have had less consumption insurance.

FIGURE 12 HERE

7.3 The Effect of Changing Risk Aversion

Lastly, Figures 13 and 14 illustrate the effects of changing the coefficient of relative risk

aversion from γ = 1 to γ = 2 keeping all factor returns constant at the levels calibrated

in the baseline. Figure 13 shows that greater risk aversion, everything else equal, results

in greater investments in human capital. This result stems from the fact that declaring

bankruptcy is now more expensive, and hence households are able to borrow more for the

purpose of investing in human capital. This offsets the fact that more risk averse individuals

are otherwise less inclined to invest in risky assets.

FIGURE 13 HERE

Figure 14 shows that consumption insurance is also improved for households with higher

risk aversion reflecting both a greater demand for insurance and greater possibilities for

insurance resulting from the fact that default is less desirable for such households. The

figure also shows, as depicted by the green line, that consumption insurance would have

increased still further if households had been unable to increase their investments in risky

human capital (fixed portfolio choice).
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FIGURE 14 HERE

7.4 Comparison to Krueger and Perri (2006)

Finally, we turn to a comparison of our under-insurance result depicted in Figure 5 and

the result reported in Krueger and Perri (2006) that households are well insured against

idiosyncratic labor income shocks in the equilibrium of a calibrated macro model with limited

enforcement and physical capital. Clearly, one difference between the two approaches is

that Krueger and Perri (2006) consider a model with an exogenous labor income process,

whereas in the current paper the labor income process is endogenous since human capital is

endogenous. However, for fixed human capital choice, the household’s optimality conditions

derived in this paper are comparable to the optimality conditions used by Krueger and Perri

(2006) and the two solutions should therefore be similar if the two earnings processes are

similar.24 This is indeed the case: in this paper earnings follow a random walk, see equation

(31), and Krueger and Perri (2006) use an earnings process that has an AR(1) component

with a persistence parameter of ρ = 0.9898. This suggests that the model analyzed in this

paper should replicate the almost-full-insurance result of Krueger and Perri (2006) once

parameter values are chosen in line with the Krueger and Perri (2006) model.

Figure 15 shows that the human capital model analyzed here generates insurance results

comparable to Krueger and Perri (2006) once we change the model calibration, counter-

factually, along two dimensions that make it comparable to Krueger and Perri (2006). Specif-

ically, the red line with circles in Figure 15 depicts our baseline calibration and blue line

24Clearly, even for fixed human capital choice the budget constraint (2) differs from the budget constraint
of the model analyzed in Krueger and Perri (2006) because the resource cost of producing human capital,
xh, enters into (2). The human capital channel is also essential for our result that earnings and financial
capital are proportional to each other, a property that does not hold for the model with exogenous earnings
process considered by Krueger and Perri (2006). However, the results shown in Figures 15 and 16 suggest
that this model feature is not an important driver of the difference in equilibrium insurance.

45



with squares shows the model without a life-cycle (no age-dependence of earnings growth).25

In the case without a life-cycle, the insurance coefficient is 0.70, which is roughly the in-

surance coefficient of households age 50 in the corresponding life-cycle economy and much

larger than the insurance coefficient of young households in the life-cycle economy. If we

further follow Krueger and Perri (2006) and assume that, contrary to the US bankruptcy

code, defaulting households are permanently excluded from access to credit markets, then

the insurance coefficient increases to a value of 0.95 (i.e. 95 percent of labor income risk is

insured). Thus, by introducing two realistic features into a model similar to Krueger and

Perri (2006), we move from a situation in which all households insure 95 percent of their

labor income risk to a situation in which many households insure only 40 percent of their

labor income risk.

FIGURE 15 HERE

In Figure 15 we do not re-calibrate the model to match a target value of the capital-to-

output ratio, K/Y . The capital-to-output ratio of the calibrated model corresponding to

Figure 15 is K/Y = 1.74. This is substantially lower than our baseline value of 2.94 and the

target value chosen in Krueger and Perri (2006), which is 2.6. In Figure 16 we show the effect

of removing the life-cycle on equilibrium insurance if we also adjust the interest rate so that

the model generates a capital-to-output ratio of 2.6. In this case, the insurance coefficient

drops to 0.85. If we further assume that defaulting households are permanently excluded

from access to credit markets, then the insurance coefficient becomes 1 – households are fully

insured against labor income risk. Thus, endogenous borrowing constraints never bind in

this version of the model without a life-cycle and permanent exclusion. Figure 16 provides a

25In the model without a life-cycle, the learning-by-doing parameter ϕ, which determines expected human
capital returns, is set so that the model generates zero earnings growth. When we change the enforcement
parameter, p, in Figures 15 and 16 we keep the human capital choice, and therefore the earnings process,
fixed.
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stark demonstration that the almost-full-insurance result of Krueger and Perri (2006) heavily

dependence on two counter-factual assumptions, namely the absence of a life-cycle profile of

earnings (growth) and the permanent exclusion of defaulting households.

FIGURE 16 HERE

8. Conclusion

We develop a tractable macroeconomic model with human capital risk and limited contract

enforcement, and provide an equilibrium characterization result that is useful for theoretical

and quantitative analysis. We use a calibrated version of the model to show that, contrary

to previous results in the literature, limited contract enforcement leads to substantial under-

insurance against human capital risk.

In this paper, we show that private insurance markets lead to the inefficient provision of

insurance if the enforcement of credit contracts is limited by the possibility of default. We also

show that the under-insurance against human capital risk causes under-investment in human

capital, but we do not explore the macroeconomic consequences of this under-investment in

human capital. The analysis in Krebs (2003) suggests that the lack of insurance against

human capital risk and the corresponding under-investment in human capital can severely

harm economic growth. Consequently, government policy improving the provision of private

insurance can lead to substantial gains in economic growth. The analysis of this issue is an

important topic for future research.
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Appendix

Proof of Proposition 1

To simplify the notation, suppress the dependence on the aggregate state, Ω, and consider a

household of cohort n = 0. Further, define an action variable xt = (ct, θt+1) and a feasibility

correspondence, Γ, that for every (wt, st) restricts the choice of (wt+1, xt) according to (16).

Using this notation, the household maximization problem reads

max E

[ ∞∑

t=0

βtνtu(xt|w0

]
(A1)

s.t. (wt+1, xt) ∈ Γ(wt, st)

E

[ ∞∑

m=0

βmνmu(xt+m)|w0, s
t

]
≥ Vd(wt, st)

The corresponding Bellman equation reads:

V (w, s) = max
x,w′

{
u(x) + βρ(s)

∑

s′
V (w′, s′)π(s′|s)

}
(A2)

s.t. (x,w′) ∈ Γ(w, s)

V (w′, s′) ≥ Vd(w
′, s′)

Define an operator, T , that maps semi-continuous functions into semi-continuous func-

tions as

TV (w, s) = max
x,w′

{u(x) + βE[V (w′, s′)|s]} (A3)

s.t. (x,w′) ∈ Γ(w, s)

V (w′, s′) ≥ Vd(w
′, s′) .

A standard contraction mapping argument shows that there is a unique continuous solution,

V0, to the Bellman equation (A2) without participation constraint if i) u is continuous, ii)

Γ is compact-valued and continuous, and (19) holds. Extending the argument of Rustichini
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(1998),26 it can be shown that V∞ = limk→∞ T kV0 exists, is equal to the maximal solution of

the Bellman equation (A2), and is the value function of the sequential maximization problem

(A1) if the following four conditions hold: i) u is continuous, ii) Γ is compact-valued and

continuous, iii) for all states, (w, s), there exists a feasible plan for the sequential problem

(A1) so that the corresponding expected lifetime utility (payoff) is greater than −∞, and

iv) for any given state, (w, s), the value function of the max-problem without participation

constraints satisfies V ∗
0 (w, s) < +∞. Thus, to prove proposition 1 it suffices to show that

conditions i)-iv) hold.

The continuity of the payoff function, u, is obvious. The correspondence, Γ, is compact-

valued since portfolio-choices, θ′, are elements of a closed and bounded subset of IRm. Closed-

ness follows from the fact that the set is defined by equalities and weak inequalities. Restrict-

ing attention to a bounded set can be shown to be without loss of generality. Continuity

of the correspondence Γ is also straightforward to show. A standard argument shows that

conditions iii) and iv) hold if condition (19) is satisfied. This proves proposition 1.

Proof of Proposition 2

As before, let V0 be the solution of the Bellman equation (A2) without the participation con-

straint. To save space, we only conduct the prove for the case γ 6= 1. Simple guess-and-verify

shows that V0 has the following functional form:

V0(w, s) = Ṽ0(s)w1−γ (A4)

where Ṽ0 is the solution to the intensive-form Bellman equation (21) without participation

constraint. Let the operator T be defined as in (A3). We show by induction that if Vk = T kV0

26Rustichini (1998) consider a class of dynamic programming problems with participation constraint (in-
centive compatability constraint) and possibly unbounded utility. However, he requires bi-convergence,
which is always satisfied if lifetime-utility is bounded for all feasible paths (Streufert, 1990). Unfortunately,
in our problem with γ ≥ 1 the requirement of lower convergence is not satisfied, so that Rustichini (1998) is
not directly applicable.
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has the functional form, then Vk+1 = T k+1V0 has the functional form. For k = 0 the claim is

true because V0 has the functional form. Suppose now Vk has the functional form. We then

have

Vk+1(w, s) = T Vk(w, s)

= max
w′,c,θ′

{
c1−γ

1 − γ
+ ρ(s)

∑

s′
Ṽk(s

′)(1 + r(θ′, s, s′))1−γ(w′)1−γπ(s′|s)
}

s.t. w′ = (1 + r(θ′, s, s′))(w − c)

1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf
(A5)

θ′a(s
′) ≥ −D̄ , θ′h ≥ 0 , w′ ≥ 0

Ṽk(s
′) (1 + r(θ′h, θa(s

′), s, s′))
1−γ

(w′)1−γ

≥ Ṽd(s
′)(1 + rhd(s, s

′))θ′h .

Clearly, the solution to the maximization problem defined by the right-hand-side of (A5) has

the form

w′
k+1 = (1 − c̃k+1(s))w (A6)

θ′k+1 = θ′k+1(s) ,

where the subscript k + 1 indicates step k + 1 in the iteration. Thus, we have Vk+1(w, s) =

Ṽk+1(s)w
1−γ where Ṽk+1 is defined accordingly.

From proposition 1 we know that V∞ = limk→∞ T kV0 exists and that it is the maximal

solution to the Bellman equation (A2) as well as the value function of the corresponding

sequential maximization problem (A1). Since the set of functions with this functional form

is a closed subset of the set of semi-continuous functions, we know that V∞ has the functional

form. This prove proposition 2.
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Proof of Proposition 3

From proposition 2 we know that individual households maximize utility subject to the

budget constraint and participation constraint if condition (19) is satisfied. Thus, it remains

to show that the market clearing condition can be written as (22) and that the law of motion

(23) describes the equilibrium evolution of the relative wealth distribution.

For simplicity, we only consider the case of infinitely-live households (one cohort n = 0).

For the aggregate value of financial asset holdings we find:

Kt+1 = E

[
θa,t+1wt+1

1 + rt+1

]
(A7)

= E[θa,t+1(1 − c̃t)wt]

= E[E[θa,t+1(1 − c̃t)wt|st]]

= E[θa,t+1(1 − c̃t)E[wt|st]]

= E [wt]
E[θa,t+1(1 − c̃t)E[wt|st]]

E [wt]

= E [wt] E [θa,t+1(1 − c̃t)Ω(st)] .

where the first line follows from the budget constraint, the second line from the law of iterated

expectations, the third line from the fact that θa,t+1 and c̃t are independent of wealth and

st−1, and the last line from the definition of Ω. A similar argument shows that

Ht+1 = E [wt] z̄E [θh,t+1(1 − c̃t)Ω(st)] . (A8)

Dividing the two expressions shows that K̃ ′ is given by (22).

Finally, the law of motion for Ω can be found as:

Ωt+1(st+1) =
E [wt+1|st+1]

E [wt+1]
(A9)

=
E [(1 + rt+1)(1 − c̃t)wt|st+1]

E [(1 + rt+1)(1 − c̃t)wt]

=
E [E [(1 + rt+1)(1 − c̃t)wt|st] |st+1]

E [E [(1 + rt+1)(1 − c̃t)wt|st]]
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=
E [(1 + rt+1)(1 − c̃t)E [wt|st] |st+1]

E [(1 + rt+1)(1 − c̃t)E [wt|st]]

=
E [(1 + rt+1)(1 − c̃t)E [wt|st] |st+1]

E [(1 + rt+1)(1 − c̃t)E [wt|st]]
× E [wt]

E [wt]

=
E [(1 + rt+1)(1 − c̃t)Ωt(st)|st+1]

E [(1 + rt+1)(1 − c̃t)Ωt(st)]
,

where the second line follows from the budget constraint, the third line from the law of

iterated expectations, the fourth line from the fact that θt+1 and c̃t are independent of

wealth and st−1, and the last line from the definition of Ω. This completes the proof of

proposition 3.
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Figure 1: Earnings growth rates
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Notes: Earnings growth rates from the model and the data. The red line with circles shows the model,
the blue line with squares the data. Horizontal axis shows average age within each age group and vertical
axis shows annual earnings growth in percent.

Figure 2: Financial wealth to earnings ratio
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Notes: Wealth-to-income from the model and the data. The red line with circles shows the model, the
blue line with squares the data. Horizontal axis shows average age within each age group.
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Figure 3: Human capital portfolio share
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Notes: Human capital portfolio share in total wealth from the model and the data. The red line with
circles shows the model, the blue line with squares the data. Horizontal axis shows average age within
each age group.

Figure 4: Excess human capital returns
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Notes: Excess human capital returns over the life-cycle. Horizontal axis shows average age within each
age group.
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Figure 5: Consumption insurance
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Notes: Consumption insurance of households over the life-cycle. Consumption insurance is measured by
the insurance coefficient. The insurance coefficient is constructed as one minus the ratio of the standard
deviation of consumption growth over the standard deviation of income growth. Full insurance yields an
insurance coefficient of 1 and no insurance (autarky) an insurance coefficient of 0. Horizontal axis shows
average age within each age group.

Figure 6: Welfare cost of underinsurance

25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

8

Notes: Welfare costs of limited contract enforcement over the life-cycle. Welfare costs are shown as
consumption equivalent variation in percentage points. Horizontal axis shows average age within each
age group.
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Figure 7: Human capital portfolio share and exclusion after default
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Notes: Human capital portfolio share in total wealth. The red line with circles shows the baseline model
with p = 1 − 1

7
and the blue line with squares shows the model with p = 1 − 1

10
. Horizontal axis shows

average age within each age group.

Figure 8: Consumption insurance and exclusion after default
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Notes: Consumption insurance of households over the life-cycle measured by the insurance coefficient.
The red line with circles shows the baseline model with p = 1− 1

7
, the blue line with squares shows the

model with p = 1− 1

10
, and the green line with diamonds shows the model with p = 1− 1

10
and human

capital allocation fixed to the baseline. Horizontal axis shows average age within each age group.
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Figure 9: Human capital portfolio share and wage garnishment in default
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Notes: Human capital portfolio share in total wealth. The red line with circles shows the baseline model
and the blue line with squares shows the model with 20% wage garnishment during default. Horizontal
axis shows average age within each age group.

Figure 10: Consumption insurance and wage garnishment in default
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Notes: Consumption insurance of households over the life-cycle measured by the insurance coefficient.
The red line with circles shows the baseline model, the blue line with squares shows the model with 20%
wage garnishment during default, and the green line with diamonds shows the model with 20% wage
garnishment during default and human capital allocation fixed to the baseline. Horizontal axis shows
average age within each age group.
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Figure 11: Human capital portfolio share and human capital risk
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Notes: Human capital portfolio share in total wealth. The red line with circles shows the baseline model
with a standard deviation of human capital risk of 0.15 and the blue line with squares shows the model
with a standard deviation of human capital risk of 0.2. Horizontal axis shows average age within each
age group.

Figure 12: Consumption insurance and human capital risk
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Notes: Consumption insurance of households over the life-cycle measured by the insurance coefficient.
The red line with circles shows the baseline model with a standard deviation of human capital risk of
0.15, the blue line with squares shows the model with a standard deviation of human capital risk of 0.20,
and the green line with diamonds shows the model with a standard deviation of human capital risk of
0.20 and human capital allocation fixed to the baseline. Horizontal axis shows average age within each
age group.
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Figure 13: Human capital portfolio share and risk aversion
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Notes: Human capital portfolio share in total wealth. The red line with circles shows the baseline model
with the degree of relative risk aversion γ = 1 and the blue line with squares shows the model with the
degree of relative risk aversion γ = 2. Horizontal axis shows average age within each age group.

Figure 14: Consumption insurance and risk aversion
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Notes: Consumption insurance of households over the life-cycle measured by the insurance coefficient.
The red line with circles shows the baseline model with the degree of relative risk aversion γ = 1, the
blue line with squares shows the model with the degree of relative risk aversion γ = 2, and the green
line with diamonds shows the model with the degree of relative risk aversion γ = 2 and human capital
allocation fixed to the baseline. Horizontal axis shows average age within each age group.
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Figure 15: Comparison to Krueger and Perri (2006) I
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Notes: Consumption insurance of households measured by the insurance coefficient. The red line with
circles shows the baseline model with life-cycle variation in earnings growth and enforcement parameter
p = 1− 1

7
. The blue line with squares depicts the model without life-cycle variation in earnings growth.

The green line with diamonds shows the model without life-cycle variation in earnings growth and en-
forcement parameter p = 1 (infinite exclusion of defaulting households). Horizontal axis shows average
age within each age group. The baseline model implies a capital-to-output ratio of 2.94 and the two
models without a life-cycle generate a capital-to-output ratio of 1.74.

Figure 16: Comparison to Krueger and Perri (2006) II
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Notes: Consumption insurance of households measured by the insurance coefficient. The red line with
circles shows the baseline model with life-cycle variation in earnings growth and enforcement parameter
p = 1− 1

7
. The blue line with squares depicts the model without life-cycle variation in earnings growth.

The green line with diamonds shows the model without life-cycle variation in earnings growth and en-
forcement parameter p = 1 (infinite exclusion of defaulting households). Horizontal axis shows average
age within each age group. The baseline model implies a capital-to-output ratio of 2.94 and the two
models without a life-cycle generate a capital-to-output ratio of 2.6 (the value used in Krueger and Perri,
2006)
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