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Abstract

We prove existence of a recursive competitive equilibrium (RCE) for an Aiyagari-

style economy with permanent income shocks and derive important economic im-

plications. We show that there exist equilibria where borrowing constraints are

never binding and establish a non-trivial lower bound on the equilibrium inter-

est rate. These results imply distinct consumption dynamics compared to existing

studies. We present a new approach to solve the agent’s problem that uses lattices

of consumption functions to deal with permanent income shocks and an unbounded

utility function. The approach provides a theoretical foundation for convergence of

the time iteration algorithm widely used in applied work.
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1 Introduction

Over the last two decades, a large literature has studied the effects of income uncertainty

on individual behavior in heterogeneous agents incomplete markets economies, a model

class that is widely known as Aiyagari-style models.2 Though the empirical literature

has often found that labor income risk has a non-negligible random walk component3

and some applied papers have worked with this type of income specification4, theoretical

work has often ruled out this case by assuming a compact state space5. Constantinides

and Duffie (1996) and Krebs (2007) consider models with permanent income shocks, but

these models are highly stylized in the sense that the structure of the endowment process

allows the construction of no-trade equilibria. Heathcote et al. (2009) also consider a

model with permanent income shocks, but to preserve tractability they have to assume

a very specific market structure. This paper makes three tightly connected contributions

on the existence, characterization, and computation of recursive equilibria in an Aiyagari-

type model with permanent income shocks. Firstly, we prove the existence of stationary

recursive equilibria under standard assumptions on preferences and technology. Secondly,

in doing so we prove that for a large class of consumption-saving problems, the widely ap-

plied computational algorithm that only uses first-order conditions of the agent’s problem

(time iteration) converges. Thirdly, we prove that in equilibrium borrowing constraints

never bind and derive a non-trivial lower bound on the equilibrium interest rate.

The equilibrium existence proof comprises three steps. The first step is to show the

existence of an optimal solution to the agents’ problem. The standard approach to this

kind of problem uses the value function, the contraction property of the Bellman equation,

and the principle of optimality to prove the existence of a solution.6 In this paper, we

2For example, Aiyagari (1994), Huggett (1993), Telmer (1993) or the textbook by Ljungqvist and

Sargent (2000)
3For example, Carroll and Samwick (1997), Meghir and Pistaferri (2004), and Blundell et al. (2008)
4For example, Deaton (1991) and Carroll (1997)
5See Duffie et al. (1994) and Miao (2006).
6The classical reference is Stokey and Lucas (1989).
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depart from this approach by relying only on first-order conditions of the agents’ problem

(Euler equations).7 Similar approaches have been taken in Deaton and Laroque (1992),

Coleman (1991), and Rabault (2002). However, all three papers deal with functions on

a metric space and, in the case of Deaton and Laroque (1992) and Coleman (1991),

apply only to problems with a compact state space and bounded utility. In contrast,

in this paper we use a lattice of consumption functions and apply Tarski’s fixed point

theorem to prove the existence of a recursive policy function, which allows us to deal

with permanent income shocks and an unbounded utility function.8 Since the proof is

constructive, it simultaneously establishes the convergence of the time iteration algorithm

for consumption-saving problems, and thereby, provides a theoretical justification for its

widespread use. To our knowledge, this proof has been missing from the literature.9

In the second step of the existence proof, we show that a unique stationary distribution

exists, and in step three, we derive the existence of a market clearing interest rate.

For this part of the existence proof, the presence of prudence (strictly convex marginal

utility) is crucial in order to have precautionary savings in an equilibrium with permanent

income shocks. As a corollary to the existence result, we show that borrowing constraints

never bind.10 This result is of interest because it shows that the non-existence result of

Krebs (2004) does not extend to the case of a non-compact state space. In other words,

7Although the present paper focuses on the case of permanent income shocks, this step of the proof

is presented for a general class of consumption-saving problems with Markovian income processes.
8The only other paper we are aware of that deals with a non-compact state space is Morand and Reffett

(2003). They apply lattice theory to prove equilibrium existence for a representative agent stochastic

growth economy but assume bounded utility and uncertainty that evolves according to a finite-state

Markov process.
9The approach in Deaton and Laroque (1992) and Coleman (1991) covers only the case of a compact

state space. Furthermore, the operator in Coleman (1991) and Morand and Reffett (2003) applies only

to a representative agent economy. The approach by Rendahl (2006) assumes bounded utility and still

relies on the convergence of the value function iteration.
10In contrast, Huggett and Ospina (2001) show that in models with mean-reverting shocks, prudence

of agents is not needed to get precautionary savings because borrowing constraints are always binding

for some agents.
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in contrast to the model set-up usually analyzed by the theoretical literature, in the

current model the two market imperfections ”missing insurance markets” and ”borrowing

constraints in credit markets” can be disentangled.

Turning to our last result, we show that non-binding borrowing constraints imply a non-

trivial lower bound on the equilibrium interest rate. This lower bound coincides with the

equilibrium interest rate in no-trade economies as in Constantinides and Duffie (1996)

and Krebs (2007). The reason for the higher interest rate in our model stems from the fact

that in a production economy agents must hold on average assets in positive net supply.11

The lower bound allows us to relate our results to existing partial equilibrium studies that

examine consumption-saving decisions with permanent income shocks, like Deaton (1991)

and Carroll (2004). In these studies, the authors restrict the interest rates to values that

are below the lower bound we establish. This provides an explanation for why they find

borrowing constraints to be always binding.12 These models predict, therefore, long-run

consumption dynamics that are similar to those of models with autarkic equilibria like

in Constantinides and Duffie (1996) and Krebs (2007), where consumption tracks income

one-to-one.13 In contrast, the model in this paper features asset trade in equilibrium,

so that income shocks will not affect consumption one-to-one, and as a consequence, the

consumption dynamics will be quite distinct.

Recently, empirical researchers have studied the correlation between permanent income

shocks and consumption (Blundell et al. (2008), Jappelli et al. (2008)). The predictions

from the quantitative models could only poorly be reconciled with the empirical findings

(Kaplan and Violante (2010)). However, the relaxation of the parameter restrictions that

are possible based on our results, and the consequences for the implied saving dynamics

11In Krebs (2007), the bond is in zero net supply.
12Carroll (2004) allows for zero income and transitory shocks. These additional shocks induce assets in

positive net supply in his model. If one drops these additional shocks, the model reduces to the Deaton

(1991) case, and one finds again that borrowing constraints are always binding.
13However, the model by Carroll (2004) generates a reaction that is less than one-to-one if all sources

of income risk (transitory and zero income shocks) as specified in the model are employed.
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of the general equilibrium model might help to bring the model predictions closer to the

empirical data. We provide a short quantitative example of the theoretical results in the

last section of the paper.14

The rest of the paper is structured as follows: Section 2 presents the model. The existence

of an optimal solution to the individual’s problem is established in section 3. This section

is more general and applies to a large class of Markovian income processes. In section

4, we prove the existence of a stationary distribution, and in section 5, we prove that

a RCE exists. The discussion on borrowing constraints and the implications for the

consumption-saving decision follows in section 6. Section 7 provides a short quantitative

illustration of the theoretical results. Section 8 concludes. All proofs can be found in the

appendix.

2 The model

We take time to be discrete and periods are labeled by an index t ∈ N. The economy

is populated by a continuum of mass 1 of ex ante identical agents.15 Every agent has

an infinite planning horizon, but faces a constant probability of death in every period.

At the time of death, we normalize utility to zero. An agent who dies is replaced by

a newborn agent. The initial endowment in assets and labor productivity {a0, z0} of a

newborn agent is drawn from a possibly degenerate distribution φ(a, z).16

At the beginning of her life, every agent chooses a recursive policy function that de-

14Kuhn (2010) investigates the quantitative implications for the consumption-saving decision and wel-

fare in a model with permanent income shocks and finds significant self-insurance in equilibrium.
15We are aware of the technical issues regarding the measurability problem for models with a continuum

of agents and i.i.d. income shocks. But we refer the interested reader to Green (1994) for detailed

discussion of the appropriate construction of the set of agents to preserve measurability for all subset of

agents. From now on we apply the law of large numbers without further discussion.
16Below, we also allow for a transitory component to productivity. In this case, we draw from an

extended initial distribution with an independent transitory component that satisfies the assumptions

on the transitory component in assumption 2 below. This extension is straightforward.
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termines her behavior over time. We normalize the time endowment of every agent in

every period to unity and assume an inelastic labor supply of this unit of time. Like

in Aiyagari’s (1994) model the agent decides only about consumption and savings. For

preferences of agents we assume, as commonly done, that they can be represented by the

expected discounted sum of constant relative risk aversion (CRRA) utility functions.

Assumption 1. The period utility function is of the CRRA type

(1) u(c) =











log(c) γ = 1

c1−γ

1−γ
otherwise

We denote the productivity state in period t by zt.
17 As commonly assumed, labor

productivity is stochastic over time but shocks to labor productivity are permanent.

At the end of every period, every agent draws a survival shock ηt+1 from a binomial

distribution. We associate a draw of ηt+1 = 1 with survival from period t to t + 1. If an

agent survives, her labor productivity in t + 1 is determined by the following stochastic

law of motion

zt+1 = ztεt+1

where εt+1 denotes the shock to labor productivity for which we make some mild distri-

butional assumptions in assumption 2 below. If the agent dies, the labor productivity of

her successor is drawn from φ(a, z). The decision problem of agents remains unaffected

by all developments after death because utility in the case of death is zero. However,

at the aggregate level of the economy the draw of newborn agents enters the law of mo-

tion for productivity. We describe the productivity process at the aggregate level by an

augmented stochastic law of motion

(2) zt+1 =











ztεt+1 ηt+1 = 1

z0 otherwise

17Throughout, we do not use subscripts for individuals because they only increase the notational

burden and are not necessary for the proofs.
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A straightforward interpretation of this structure of the economy is as an economy with

different labor market cohorts. Every period a cohort enters the labor market with initial

endowments in assets and productivity and over time workers randomly drop out of the

labor market. Hence, death should not necessarily be associated with physical death.

Additionally to permanent shocks, we allow for transitory i.i.d. shocks ζt. Labor produc-

tivity in period t is then the product of a permanent and a transitory component. The

initial endowments in this case include a transitory component ζ0. Again, we only need

some mild assumptions on the distribution of ζ . All assumptions on random variables

can be summarized as follows

Assumption 2. The shocks ε, ζ and η are i.i.d. and the distributions satisfy

(i) @e ∈ supp(ε) : Prob(e) = 1 (vi) E [ζ ] = 1

(ii) Prob(ε > 0) = 1 (vii) Prob(ζ > 0) = 1

(iii) Prob(η = 0) = θ > 0 (viii) E [ζtεs] = E [ζt]E [εs] ∀s, t ≥ 0

(iv) E [ε] = 1 (ix) E [ζ1−γ] =M <∞

(v) β̃(1− θ)E [ε1−γ] < 1

where β̃ in (v) denotes the time discount factor of agents. These assumptions are little

restrictive and have a straightforward interpretation. Assumption (i) rules out situations

without permanent income shocks, (ii) and (vii) rule out zero income shocks, (iii) requires

a positive probability of death, (iv), (vi) and (viii) fix means of income risk and require

independence. Finally, (v) and (ix) limit income uncertainty for cases γ 6= 1. Assumption

(v) is equivalent to the assumption made in Krebs (2007) to satisfy the transversality

condition.

At the aggregate level, we use µ0(a, z, ζ) to denote the initial distribution over assets

and productivity levels of all agents. In a stationary equilibrium µ0 coincides with the

stationary equilibrium distribution. In equilibrium the distribution over all agents µ will

be distinct from the distribution over newborn agents φ.
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2.1 Agent’s problem

The agent’s objective is to maximize her discounted life-time utility from consumption.

Consumption choices are made in every period contingent on the current state of the

world. When making their consumption decision, agents take the interest rate and wage

rate as given and constant over time.18 To form expectations about future states, agents

condition on their initial productivity and asset endowment. Once we condition on sur-

vival and use the information about initial endowments, the probability measure over

future states can be constructed recursively in the usual way.19 The probability of an

agent to reach period t without dying is (1 − θ)t and utility in the case of death is

normalized to zero.20 The agent’s objective function is

(3) E0

[

∞
∑

t=0

β̃t(1− θ)tu(ct)

]

where the subscript to the expectation operator indicates the information set available

to the agent. The time discount factor is denoted by β̃ and 1− θ is the period-to-period

survival probability. From this formulation it is easy to see that the agent’s problem with

probability of death is equivalent to a problem with a higher time discount factor. We

exploit this for notational convenience from now on and define β := β̃(1− θ).

The agent’s choices are furthermore constraint by the fact that asset holdings have to

satisfy the intertemporal budget constraint

(4) ct + at+1 = (1 + r)at + wztζt

where at denotes asset holdings at the beginning of period t and r and w denote the

interest rate respectively wage rate. To rule out Ponzi schemes, we impose a no debt

constraint at+1 ≥ 0 for all periods t > 0. We discuss this constraint extensively in section

6.

18We assume constant prices at this stage already because we focus on stationary equilibria below.
19In footnote 21 we restate the construction.
20From the individual’s point of view, when forming expectations, death is an absorbing state. Con-

stant utility can capture all situations where agent’s utility is independent of the previous history.
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When we collect all ingredients to the agent’s decision problem, we get an optimal control

problem under uncertainty

max
{ct,at+1}

E0

[

∞
∑

t=0

βt u(ct)

]

(5)

s.t. ct + at+1 = (1 + r)at + wztζt ∀t

zt+1 = ztεt+1 ∀t

{at+1, ct} ∈ [0,∞)× R+ ∀t

{a0, z0, ζ0} given

We make the following standard assumption on the discount factor

Assumption 3. θ and β̃ are such that β < 1.

2.2 Firm’s problem

Production in the model takes place in a perfectly competitive production sector. We

model the production side of the economy as a representative firm producing at marginal

costs. We assume that production takes place using a standard neoclassical production

function.

Assumption 4. The production function Yt = F (Kt, Lt) satisfies F (Kt, Lt) = Ltf(kt),

F (0, Lt) = F (Kt, 0) = 0, and f ′(kt) > 0,f ′′(kt) < 0.

Kt denotes the aggregate capital stock, Lt labor in productivity units, i.e. labor supply

times productivity aggregated over all individuals, and kt denotes the capital to labor

ratio Kt

Lt
. The lower case letters for the production function denote the labor intensive

form, i.e. f(k) = F (K/L, 1). We construct the productivity process below such that

aggregate effective labor supply is Lt ≡ 1 in all periods, so that it always holds that

kt = Kt.

We make the following assumption for the depreciation rate and the discount factor.

Assumption 5. At k̄ defined by δk̄ = f(k̄) it holds that
(

β(1 + f ′(k̄)− δ)1−γ
)

1

γ < 1.
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The assumption imposes joint restrictions on the preferences of individuals and the pro-

duction technology. This is a sufficient condition only needed to make sure that for every

possible aggregate capital stock there exists a strictly positive lower bound to the con-

sumption function. It can be easily verified that for a risk aversion parameter γ ≤ 1,

which includes the important case of log utility, the assumption does not impose any

additional restrictions on the choice of model parameters. In applications this condition

should not impose any restriction on parameter choices.

2.3 Initial endowments and the probability of death

In line with the empirical evidence, we have incorporated a random walk component

in the agent’s income process. The random walk has the well-known property that the

cross-sectional variance increases over time. However, introducing a constant probability

of death allows us to have permanent income shocks in the model but nevertheless keep

the equilibrium of the model stationary. This approach is not new and we take it from

Constantinides and Duffie (1996). We prove below that the constant probability of death

together with the fixed initial distribution for newborn agents guarantees the existence of

a stationary equilibrium distribution. To make endowments from the initial distribution

resource feasible, we require that in equilibrium initial asset endowments must be equal

to asset holdings of agents who die.

Assumption 6. For each given interest rate r ∈ (f ′(k̄)−δ, β−1−1) the initial endowments

{a0, z0, ζ0} of agents are drawn from initial distribution φ(a, z, ζ) that satisfies

∫

zζφ(da, dz, dζ) = 1

∫

aφ(da, dz, dζ) = f ′−1(r + δ)

where f ′−1(r + δ) denotes the inverse of marginal productivity, so that it maps interest

rates to capital stocks. The assumptions on the means ensure that the average labor

productivity in the population is always one and that the assets allocated to the entering

cohort equal on average the asset holdings of the exiting agents in equilibrium. Transitory
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shocks are independent of the permanent component (assumption 2), so that means

remain unaffected.

Remark 1. It is important to notice that the initial endowments of agents are only

resource feasible in equilibrium. If goods markets do not clear, then also the mean over

assets of the exogenously fixed distribution does not coincide with the mean asset holdings

of the agents that died.

2.4 Equilibrium

We define a recursive competitive equilibrium (RCE) for this economy as a policy function

ct = c(at, zt, ζt), a capital and labor demand Kd and Ld of the firm together with equilib-

rium prices r∗ and w∗ and a stationary equilibrium distribution µ(a, z, ζ) over asset and

productivity levels of agents such that

1. For every agent the policy function c(a, z, ζ) solves the agent’s optimization problem

in (5) given equilibrium prices w∗ and r∗.

2. The firm’s demand for capital Kd and labor Ld maximizes firm’s profits given

equilibrium prices w∗ and r∗

{Kd, Ld} = argmax
K,L

F (K,L)− w∗L− (r∗ + δ)K

3. The agent’s policy function implies a supply of capital Ks and labor Ls and the

firm’s optimization imply capital and labor demand such that

Ks =

∫

aµ(da, dz, dζ) = K∗ = Kd Ls =

∫

zζµ(da, dz, dζ) = L∗ = Ld ∀t

4. The stationary distribution µ(= µ0) satisfies

µ = (1− θ)Pµ+ θφ
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where the operator P uses the policy function c(a, z, ζ) and the distribution of the

productivity shocks21 to map a distribution over current states to a distribution

over next period’s states conditional on survival.

Below, in a slight abuse of notation we will use Ks and Kd as asset supply and demand

at non-equilibrium prices, too.

3 Individual problem

In this section, we consider a more general consumption-saving problem where we al-

low for a larger class of Markovian labor productivity processes and looser ad hoc debt

constraints. However, we still require that

Prob(wztζt − rD > 0) = 1

where D ≥ 0 denotes the ad-hoc debt constraint, i.e. we require at+1 ≥ −D for all

periods. We reformulate the problem using cash-at-hand. We define

xt := (1 + r)at + wztζt +D

such that the generalized consumption-saving problem becomes

max
ct

E0

[

∞
∑

t=0

βt c
1−γ
t

1− γ

]

(6)

s.t. xt+1 = (1 + r)(xt − ct) + wzt+1ζt+1 − rD

zt+1 = g(zt, εt+1)

xt ≥ ct ≥ 0

{x0, z0} given

where g(zt, εt+1) is the (Markovian) law of motion for {zt}∞t=0.

21The operator P can be constructed as follows

Pr(at+1, zt+1, ζt+1) =

∫

1(at+1 = (1+r)at+wztζt−c(at, zt, ζt))Pr(zt+1 = ztεt+1)Pr(ζt+1)Pr(dat, dzt, dζt)

where 1(·) denotes the indicator function.
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3.1 Characterization of the optimal solution

We know that every optimal solution to (6) must satisfy the first order conditions.

c−γ
t − κt = β(1 + r)Et

[

c−γ
t+1

]

∀t(7)

κt(xt − ct) = 0 ∀t(8)

where κt denotes the Lagrange multiplier on the debt constraint. In a RCE the op-

timal consumption plan must obey a recursive structure. In case of the generalized

consumption-saving problem stated in (6), the state variables are the productivity state

z ∈ Z ⊂ R++ and cash-at-hand x ∈ X ⊂ R. We restrict attention to optimal solutions

that have a recursive structure of the form

ct = c(xt, zt)

where the dependence on zt is necessary if the conditional distribution of income next

period depends on the current state.22

Once we have restricted the optimal solution to obey a recursive structure, we drop time

subscripts and use primes to indicate next period’s values. The problem of finding a

solution to the first-order conditions can now be formulated as finding a fixed point to

the following equation

(9) c(x, z) = min
{

x, (β(1 + r))−
1

γ (E
[

(c(x′, z′))−γ
]

)−
1

γ

}

where the min-operator captures the complementary slackness condition in (8). This

approach has been proposed by Deaton and Laroque (1992) and has been applied to

consumption-saving problems in Deaton (1991) and Rabault (2002).23 In the following,

we establish the existence of a fixed point c(x, z) to the modified Euler equation in

(9). To establish the existence of a fixed point, we restrict the interest rate to a set

22It has been shown in Deaton (1991) that this dependence can be removed in the case when income

shocks are permanent.
23Both authors iterate on the optimal marginal utility function whereas we iterate on the optimal

consumption policy directly.
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[

f ′(k̄)− δ, β−1 − 1
]

. As we show below, this is sufficient to establish the existence of a

RCE.

3.2 Existence of an optimal solution

To prove the existence of a fixed point to this equation, we construct a lattice of con-

sumption functions and an operator that is a self-map on this set of functions. We then

apply a version of Tarski’s fixed point theorem to establish the existence of a fixed point

to this operator in a constructive way. In the first step, we construct a set of candidate

consumption functions for the optimal solution to the consumption-saving problem. A

consumption function is a map c : X × Z → R+. We restrict attention to the following

set of consumption functions

C0 := {c : X × Z → R+|

∀x1, x2 ∈ X : x1 > x2 ⇒ c(x1, z) ≥ c(x2, z) ∧ x1 − x2 ≥ c(x1, z)− c(x2, z)}

Hence, we only consider consumption functions that are increasing and Lipschitz continu-

ous (with Lipschitz constant L = 1) in their first argument. This is a very weak condition

because it only rules out that an increase in cash-at-hand leads to a more than one-for-

one increase in consumption. For this class of functions, we apply the usual pointwise

ordering

c1(x, z) ≥ c2(x, z) ∀(x, z) ∈ X × Z ⇒ c1 ≥ c2

In the appendix, we show (lemma 6) that we can restrict the set of candidate solutions

further by imposing an upper and a lower bound (cu and cl) on the set of consumption

functions. The reason is that the operator we construct below is inward pointing24 at the

bounds. The restricted set of candidate solutions is the set C

C := {c ∈ C0 : c
l ≤ c ≤ cu}

24We call the operator T inward pointing if for the upper bound x̄ it holds that T x̄ ≤ x̄ and respectively

for the lower bound x it holds that Tx ≥ x.
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The next step is to show that this set C together with the ordering just defined forms a

complete lattice. To this end, we show that the supremum and the infimum for arbitrary

sets always exist. In the appendix, we prove that we get the supremum (infimum) of two

consumption functions as the upper (lower) envelope. Hence, we obtain the supremum

c̄ (infimum c) by taking the pointwise maximum (minimum). Equivalently, we get the

supremum c̄∞ (infimum c∞) of a possibly infinite subset of consumption functions C ′ ⊂ C

as the upper (lower) envelope. Since the set C has an upper bound cu and a lower bound

cl the supremum and the infimum always exist, and it holds that c̄∞ ≤ cu and c∞ ≥ cl.

It follows that (C,≤) is a complete lattice. In the next step, we construct an operator on

this set of functions. The operator T maps an element ci ∈ C to an element ci+1 by the

following operation

∀(x, z) : ci+1(x, z) = λ where λ solves

λ = min

{

x, (β(1 + r))−
1

γ

(

E
[

(ci ((1 + r)(x− λ) + wz′ζ ′ − rD, z′))
−γ
])− 1

γ

}

(10)

and we define the following function

(11)

Gi(x, z, λ) := min

{

x,
(

β(1 + r)E
[

(ci ((1 + r)(x− λ) + wz′ζ ′ − rD, z′))
−γ
])− 1

γ

}

− λ

such that we can represent the operator as ci+1 = Tci with ci+1(x, z) = λ iff G(x, z, λ) = 0

for all (x, z).

In appendix A.2, we prove that the function G(x, z, λ) is (i) increasing and continuous in

x, (ii) strictly decreasing and continuous in λ, and (iii) for fixed (x, z) there is a unique

solution λ∗ that solves G(x, z, λ∗) = 0. It follows that the operator T maps every element

ci ∈ C to a unique element ci+1. In appendix A.3, we prove that the operator T has

the properties of being (i) monotone increasing and (ii) a self-map, i.e. T : C → C.

Furthermore, we prove that imposing an upper bound and a lower bound on the possible

set of consumption functions is valid because the operator is inward pointing at these

bounds. Thus, we have constructed a monotone increasing operator that is a self-map

on a complete lattice. This is already sufficient to prove the existence of a fixed point to
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the modified Euler equation in (9) using the fixed point theorem by Tarski (1955).

Tarski 1. Every monotone increasing mapping T : X → X on a complete lattice X has

a smallest and a greatest fixed point.

As the theorem does not require a contraction property of the operator it also lacks the

uniqueness result of a contracting operator. The proof is not constructive and establishes

only the existence of a fixed point. However, constructiveness is certainly a desirable

property. A constructive version of Tarski’s theorem exists for continuous operators. The

continuity of the operator T is established in the appendix so that a constructive version

of Tarski’s fixed point theorem applies.25

Tarski 2. For xu := sup(X), xl := inf(X) and a continuous increasing mapping T :

X → X on a complete lattice X we get that lim
n→∞

T nxu and lim
n→∞

T nxl converge to the

largest respectively lowest fixed point x̄ respectively x of T : X → X.

This constructive version of the iteration procedure proves the convergence of the stan-

dard numerical approach of time iteration. The time iteration algorithm starts with an

initial guess for the policy function and applies the operator T repeatedly to this guess.

If cu is taken as initial guess, then iterating on the operator T will attain a fixed point

to the modified Euler equation.26

First-order conditions are only necessary for an optimal solution. In the appendix, we

show that under the maintained assumptions the transversality condition for the case of

permanent income shocks is satisfied. We also state additional conditions for the case of

general Markovian income processes and borrowing constraints with D > 0. Theorem 1

summarizes the results of this section.

Theorem 1. Under the maintained assumptions there exists for every r ∈
[

f ′(k̄)− δ, β−1 − 1
]

an optimal recursive policy function to the agents’ problem. It can be found as lim
n→∞

T ncu.

25The constructive version of the theorem results from Kleene (1952) first recursion theorem. See

Cousot and Cousot (1979) for discussion and further references.
26c0 = cu is a common initial guess for this procedure.
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4 Stationary distribution

For the existence of a stationary distribution, we again restrict attention to the case of

permanent income shocks with a constant probability of death.27 The joint stochastic

process for asset holdings and productivity is







at+1

zt+1






=







ηt+1((1 + r)at + wzt − c∗(xt, zt)) + (1− ηt+1)a0

ηt+1ztεt+1 + (1− ηt+1)z0







where c∗(xt, zt) denotes the optimal policy given r and w, and a0 and z0 are draws from

φ(a, z). In the appendix, we prove that a unique stationary probability distribution for

the process always exists. The idea of the proof is to exploit the renewal structure induced

by the constant probability of death. With a positive probability of death the expected

life-time of an agent is finite. Every time an agent dies there is a draw from a fixed

distribution φ and the process starts from the support of φ. This implies that all sets

with positive φ-mass must also have positive µ-mass. These two features of the stochastic

process imply that the process is recurrent and irreducible such that a unique stationary

distribution exists.28 We also establish the continuity in the interest rate of the stationary

distribution on the interval
[

f ′(k̄)− δ, β−1 − 1
]

. The proof relies on a result by Le Van

and Stachurski (2007). Theorem 2 summarizes the results of the current section.

Theorem 2. Under the maintained assumptions there exists for every r ∈
[

f ′(k̄)− δ, β−1 − 1
]

and φ a unique stationary distribution µr that is continuous in r on
[

f ′(k̄)− δ, β−1 − 1
]

.

It is important to notice that the initial endowments of agents are only resource feasible

in equilibrium. If goods markets do not clear, then also the mean over assets of the

27Since transitory shocks are an independent dimension of the stationary distribution, they do not

affect stationary. The proofs also apply to the more general case of a Markovian process, if there is a

positive probability of death, and an optimal recursive consumption policy exists.
28Further details and an extensive study of stability of Markovian processes can be found in the

textbook by Meyn and Tweedie (1993).
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exogenously fixed distribution does not coincide with the mean asset holdings of the

agents’ that died.

5 Equilibrium

To satisfy the equilibrium conditions of a RCE in section 2.4, we have to find a stationary

distribution µ(a, z) such that all markets clear. The labor market is cleared by construc-

tion, and in the appendix, we show that the goods market clears for at least one interest

rate in the set of interest rates for which an optimal solution to the agents’ problem and a

stationary distribution exist. The idea of the proof is to show that there is an interest rate

low enough such that asset demand exceeds asset supply and an interest rate high enough

such that the converse is true. Since asset demand and asset supply are continuous in

the interest rate, it follows from the Intermediate Value Theorem that there must be at

least one interest rate in between where asset markets clear. This proves the existence of

a RCE for this model.29 We now state the main theorem of this paper.

Theorem 3. Under the maintained assumptions a recursive competitive equilibrium al-

ways exists.

When we establish the existence of an interest rate for which there is aggregate excess

supply of capital, we find that for sufficiently high interest rates and only permanent in-

come shocks borrowing constraints are not binding. For this case, we need that consumers

are prudent, i.e. have a positive third derivative of the utility function, to rule out equi-

libria without positive precautionary savings. This case provides an example where the

argument by Huggett and Ospina (2001) for the existence of precautionary savings does

29Since a proof for the monotonicity of asset supply in the interest rate is lacking, we can not establish

uniqueness of the equilibrium. The potential non-monotonicity of asset supply in the interest rate is also

discussed in Aiyagari (1993, footnotes 25 and 26). In the appendix, we provide a numerical example

for a non-monotone asset supply and discuss in a simple two period model under which condition a

non-monotonicity in asset supply can arise.
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not apply. Their result of the irrelevance of prudence relies on the fact that borrowing

constraints must be binding in equilibrium. However, as we show below, there are equi-

libria with incomplete markets and idiosyncratic income risk where borrowing constraints

are non-binding and precautionary savings arise only due to prudence of consumers.30

6 Borrowing constraints and consumption dynamics

We have established the existence of a RCE in a model with permanent and transitory

income shocks. In this section, we remove transitory income risk. This allows us to prove

some interesting properties of the equilibrium in this model. Especially, we prove that

borrowing constraints must be non-binding. Theorem 4 states this result.

Theorem 4. Assume only permanent income shocks are present. If a recursive compet-

itive equilibrium exists, then borrowing constraints must be non-binding.

To establish this result, it is important to recognize that the state space can be reduced

to a single ratio variable31: cash-at-hand to permanent labor income. This variable is

defined as

x̃t :=
xt
wzt

= (1 + r)
at
wzt

+ 1

The reduction of the state space implies that the decision whether to save or not becomes

independent of the current income level. However, the amount saved will still depend

on the current level. This characteristic property32 allows us to develop an intuitive

understanding why borrowing constraints are non-binding.

Consider the case where asset holdings are zero (x̃t = 1). At this point, the decision

whether to save or not is the same for all agents. To understand this, recall that with

30The same bound for the interest rate at which borrowing constraints would be non-binding has

been established in Rabault (2002) who studies the consumption-saving decision in a partial equilibrium

framework. However, he puts it as an open question whether non-binding borrowing constraints can be

sustained indefinitely if marginal utility at the optimal solution is bounded.
31This result is well-known and can be found in Deaton (1991).
32The state space reduction requires both permanent income shocks and CRRA utility.
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permanent income shocks agents at every income level do neither expect future income

growth nor income decline as it would be the case with mean-reverting shocks. With

mean-reverting shocks the desire to borrow against expected future income growth leads

to binding constraints. This motive does not exist with permanent income shocks. Now

suppose that in the case with permanent shocks agents with no assets decided not to save.

To sustain a positive aggregate capital stock in equilibrium, some agents with already

higher cash-at-hand to permanent labor income ratios must save. However, as we prove in

the appendix and as economic intuition suggests, this behavior is not optimal in equilib-

rium. Hence, an optimal policy that is compatible with an equilibrium must be a policy

where agents with zero assets do save, and borrowing constraints are non-binding. This

intuitive explanation leads us to associate the result of non-binding borrowing constraints

rather with the existence of permanent income shocks than with the non-compactness of

the state space although the two properties are inherently related.

It follows from the same line of reasoning and directly from the proof of theorem 4 that

a unique target insurance ratio must exist.

Corollary 1. Assume only permanent income shocks are present. If a recursive com-

petitive equilibrium exists, then there is a unique ¯̃x (target insurance ratio) such that the

optimal policy implies at = at+1.

The corollary formally defines the target insurance ratio as the state in the reduced state

space at which the optimal decision of the agent is to keep assets constant between peri-

ods.33 The uniqueness of the target insurance ratio implies that the dynamics induced by

33It is important to notice, that this does not coincide with the target insurance rate as defined in

Carroll (2004) which is

Et[x̃t+1] = x̃t

To see this, plug c̃t =
r

1+r
x̃t +

1
1+r

(⇔ ct = rat +wzt) into the law of motion for the ratio variable, this

yields

Et[x̃t+1] = Et[ε
−1
t+1](x̃t − 1) + 1 6= x̃t
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the optimal consumption saving decision drive —apart from stochastic fluctuations— the

agents’ cash-at-hand ratio towards a target insurance ratio with positive asset holdings.

As a further corollary to the result of non-binding borrowing constraints, we establish a

non-trivial interval for the equilibrium interest rate.

Corollary 2. If a RCE with non-binding borrowing constraints exists, then the equilib-

rium interest rate r lies in the interval [r, r̄] :=
(

(βE[ε−γ])
−1 − 1; β−1 − 1

)

The lower bound interest rate r separates three ranges for the interest rate that have

all been independently studied in different strands of the literature with quite different

implications for the consumption-saving decision. The corollary demonstrates nicely the

contribution of this paper with respect to existing studies on consumption dynamics.

One strand of the literature has studied economies where the interest rate is exactly at

the lower bound r. These are the endowment economies as studied for example in Krebs

(2007). In this model, assets are in zero net supply and the interest rate is chosen to

balance the desire to accumulate and decumulate assets for all agents and there will be

no trade in equilibrium. In this situation, the target insurance ratio is exactly at one

(¯̃x = 1). This situation is not compatible with an equilibrium in a production economy

when capital is an essential input in the production technology. Intuitively, the higher

interest rate in the production economy is due to the fact that agents need an additional

incentive to accumulate assets.

The interest rates below the lower bound, i.e. r < r, have been extensively studied in

partial equilibrium models developed by Deaton (1991) and Carroll (1997, 2004). Deaton

(1991) conjectures that agents always run down assets to zero, become borrowing con-

strained, and stay borrowing constrained forever. We prove that his interest rate is never

an equilibrium interest rate, once we impose equilibrium restrictions on prices. The bound

on the interest rate in the models by Deaton and Carroll naturally arises in the proof

for the existence of an optimal policy function. It can be shown that this condition can

be relaxed without loosing existence of the optimal solution if the lower bound on the

optimal consumption function c (lemma 6) is taken into account.
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7 Quantitative example

To shed additional light on the relevance of the theoretical results, we provide in this

section a short quantitative investigation of the model.34 To make the model accessible

to a quantitative analysis, we choose γ = 1 (log utility), β̃ = 0.9867, and θ = 0.02857

so that β = 0.9585. These parameters are taken from Kuhn (2010) and yield an equilib-

rium capital-to-output ratio of 3 and an average time in the labor market of 35 years if

a period is one year. Firms use a Cobb-Douglas production function with capital share

α = 0.33 and a total factor productivity (TFP) so that equilibrium wages are normalized

to 1. The depreciation rate is δ = 0.07. We assume that innovations to the produc-

tivity process are log normally distributed with log(ε) ∼ N
(

−σ2

2
, σ

)

and abstract from

transitory shocks as in the last section of the theoretical analysis. We set σ = 0.1 for

our analysis in line with the empirical evidence cited in the introduction. We specify

the initial distribution φ(a, z) as a log-normal over assets and productivity levels with

(log(a0), log(z0)) ∼ N (µa0, µz0, σa0, σz0, ρ). We set σa0 = 0.5999, σz0 = 0.3873, ρ = 0.6457

and choose the means appropriately.35 The value for σz0 is set to match the same income

inequality as in Kaplan and Violante (2010). The parameters for ρ and σa0 are set to

match mean equilibrium assets holdings36 and the empirical counterpart of the standard

deviation of the asset to labor income ratio for newborn agents. As empirical counterpart,

we use the net worth to labor income ratio from the 1992 Survey of Consumer Finances

in the group of households with household heads age 23− 27.

To highlight the effect of the interest rate on optimal policies and allocations, we do not

impose general equilibrium restrictions so that we can abstract from the production side

34Kuhn (2010) provides a fully calibrated version of the general equilibrium model together with a

quantitative analysis and discusses the welfare effects of incomplete markets.
35In the simulation of the model the mean of initial productivity is chosen to keep average productivity

at 1 and for the initial asset distribution to be consistent with the mean of the asset distribution of the

agents who died.
36Note that given the targets for the capital to output ratio and the wage rate the equilibrium capital

stock is determined.
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of the model. This abstraction allows us to study interest rates below the theoretical

lower bound r = (βE[ε−γ])
−1 − 1 (corollary 2) and to reproduce results from partial

equilibrium studies like in Deaton (1991) and Carroll (2004). Figure 1 shows aggregate

asset supply and asset demand given an exogenously chosen interest rate.37 The figure

shows two things: First, for all interest rates below the theoretically established lower

bound (vertical black line) aggregate asset supply is zero. In this case the borrowing

constraint is always binding, while for interest rates above the lower bound the borrowing

constraint is never binding (lemma 14). Second, asset supply is monotone increasing in

the interest rate so that the equilibrium of the economy is unique.38

Figure 1: Asset demand and supply
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Notes: Asset demand (red solid line) derived from first-order conditions for profit maximization
of firms. Asset supply (blue dashed line) derived numerically from the stationary distribution.
The vertical black solid line shows the equilibrium lower bound for the interest rate. The interest
rate in percentage points is given on the horizontal axis. The vertical axis gives capital in units
of the numeraire.

Obviously, these results have strong implications for cross-sectional inequality. While

income inequality is exogenously given to the model, the asset distribution is endogenous.

In the case of interest rates below the lower bound r, we have already seen that the

distribution collapses to a single point and all agents hold zero assets. In case of interest

rates above the lower bound, the model is able to generate a substantial amount of cross-

37The asset supply is derived as the mean of asset holdings of the stationary distribution. We also

show asset demand derived analytically from the firm’s problem.
38In the appendix, we provide an example where asset supply is non-monotone.
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sectional inequality. For this step, we include production in the model and compare

in table 1 the equilibria of a model with permanent income shocks to the model with

fully transitory i.i.d. income shocks.39 We use different specifications for the standard

deviation of the income process in the transitory i.i.d. case and for the initial distribution.

Table 1: asset inequality

Model 1 Model 2 Model 3 Model 4

transitory shocks 0.399 0.360 0.506 0.539

permanent shocks 0.307 0.307 0.507 0.593

Notes: Asset inequality as measured by the Gini coefficient for the model with permanent in-
come shocks and transitory i.i.d. shocks. Model 1: Standard deviation of transitory shocks
σiid = 0.7296 and initial distribution σa0 = 0.5999. Model 2: Standard deviation of transitory
shocks σiid = 0.2 and initial distribution σa0 = 0.5999. Model 3: Standard deviation of tran-
sitory shocks σiid = 0.7296 and initial distribution σa0 = 1.2. Model 4: Standard deviation
of transitory shocks σiid = 0.7296 and initial distribution σa0 = 1.5. Standard deviation for
permanent shocks is σ = 0.1 for all models.

In model 1, we set the standard deviation for the transitory i.i.d. income shocks to

reproduce income inequality of the model with permanent shocks. This results in a

standard deviation σiid = 0.7296 compared to σ = 0.1 for the permanent shock case.

All other parameters are set to the same values as in the case of permanent shocks. In

model 2, we reduce the standard deviation to σiid = 0.2 so that income inequality reduces

substantially.40 We see that asset inequality compared to model 1 changes only little and

that for models 1 and 2 asset inequality is larger in the case of transitory i.i.d. shocks

than in the case of permanent shocks. In model 3, we increase asset inequality among

newborn agents by setting σa0 = 1.2 and set σiid = 0.7296 as in model 1. We see that

asset inequality for the case of permanent and transitory shocks increases substantially.

While asset inequality in the case of permanent shocks has been lower in models 1 and

2, it reaches the same level in model 3. Finally, in model 4 we increase σa0 to 1.5. Asset

inequality increases further and is now in the case of permanent shocks larger than in

39In this case the income process is zt = εt with log(εt) ∼ N (−σ2

iid

2 , σiid).
40This is one of the cases studied in Aiyagari (1994).
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the case of transitory i.i.d. shocks. In the calibration described above, we do not target

asset inequality directly but only the dispersion of the asset to labor income ratio. The

value of σa0 = 1.5 implies a Gini coefficient for assets of newborn agents in the model

of 0.71. This number is in line with the Gini coefficient of 0.69 for networth from the

1992 Survey of Consumer Finances in the group of households with household heads age

23− 27. When we set σa0 = 0.5999 as in models 1 and 2, the Gini coefficient of newborn

agents is 0.33. This shows that the model with permanent income shocks features unlike

the model with transitory shocks a high persistence of initial asset inequality.

Finally, when we look at the effect of borrowing constraints, we find in line with the

theoretical results that borrowing constraints are never binding in the case of permanent

income shocks. In the case of transitory i.i.d. shocks in model 1, we find that in equilib-

rium 0.4 percent of agents face binding borrowing constraints. For model 2, the number

decrease to less than 0.1 percent. For model 3 and model 4, we get a share of borrowing

constrained agents in equilibrium of 0.9 percent respectively 1.2 percent. Although the

results regarding borrowing constraints are qualitatively quite distinct, the quantitative

results show that in the case of transitory i.i.d. shocks only a very small fraction of agents

face binding borrowing constraints in equilibrium.

8 Conclusions

In this paper, we prove the existence of a recursive competitive equilibrium (RCE) for an

Aiyagari-style economy with permanent income shocks and a perpetual youth structure.

The proofs presented in the literature for the existence of an equilibrium do not apply to

this economy because they require a compact state space. To prove that there exists an

optimal recursive solution to the agent’s problem in our economy, we present an approach

based only on first-order conditions (Euler equation) and use lattices of consumption

functions together with Tarski’s fixed point theorem. This allows us to deal with the

non-compact state space and an unbounded utility function. We present the approach
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for a general setting of Markovian income processes and show that it can be applied for

a large class of consumption-saving problems. The fact that the proof is constructive

serves as a theoretical foundation for the convergence of the time iteration algorithm

that is popular in the quantitative literature.

In the second part of the paper, we prove that if an equilibrium exists where only perma-

nent income shocks are present, then borrowing constraints must always be non-binding.

This shows that the non-existence result of equilibria with non-binding borrowing con-

straints on compact state spaces by Krebs (2004) does not extend to the case of a non-

compact state space. Importantly, this result is driven by the fact that income shocks

are permanent rather than by the fact that the state space is non-compact.

From this result, we can establish the existence of a unique target insurance ratio and a

non-trivial lower bound on the equilibrium interest rate. If we compare this lower bound

to the interest rates in existing studies, we find that the interest rates in these studies

are not compatible with the equilibrium interest rates. We show in a small quantitative

example that the results in this paper have important implications for the quantitative

predictions of the model and empirical tests of the theory.

Author: Moritz Kuhn, Department of Economics, University of Bonn, Adenauerallee 24-

42, 53113 Bonn, Germany, email: mokuhn@uni-bonn.de, http://www.wiwi.uni-bonn.de/kuhn.
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A Existence of an optimal consumption policy

Proof of theorem 1. For r ∈ [f ′(k̄)− δ, β−1− 1] it follows from assumption 5 together

with lemma 6 that a supersolution cu and a subsolution cl to the operator T , defined in

(10), exist that form the infimum respectively supremum of the set C. Lemma 3 proves

that (C,≥) is a complete lattice. Lemma 7 and lemma 10 prove that the operator T is

a monotone increasing self-map on C. It follows from Tarski 1 that a recursive policy

function that satisfies the first-order conditions exists and together with assumption 2

satisfies the transversality condition (section A.4). Hence, the solution is optimal. Finally,

it follows from lemma 11 that T is continuous. Applying Tarski 2 shows that lim
n→∞

T ncu

converges to the optimal solution.

A.1 Set of consumption functions as complete lattice

Define for all (x, z) ∈ X × Z

c̄(x, z) := max{c1(x, z), c2(x, z)} c(x, z) := min{c1(x, z), c2(x, z)}

c̄∞(x, z) := sup
c∈C′

{c(x, z)} c∞(x, z) := inf
c∈C′

{c(x, z)}

where c1 and c2 are two consumption functions from the set C defined in section 3.2 and

C ′ denotes an arbitrary subset of C.

Lemma 1. For every two consumption functions c1, c2 ∈ C, it holds that c = inf{c1, c2}

and c̄ = sup{c1, c2}. Furthermore, it holds that c, c̄ ∈ C.

Proof. Suppose not. Suppose there is a ĉ such that ĉ ≥ c1 and ĉ ≥ c2 but ĉ < c̄. This

yields immediately a contradiction because c̄(x, z) = max{c1(x, z), c2(x, z)} and it holds

that either ĉ � c1 or ĉ � c2 or ĉ ≤ c1 or ĉ ≤ c2. The argument for c is equivalent.

We have c1, c2 ∈ C, and therefore, it holds that c̄ ∈ C because c̄ is the piecewise continuous

composition of parts of c1 and c2.

Lemma 2. For every subset of consumption functions C ′ ⊂ C, it holds that c∞ = inf(C ′)

and c̄∞ = sup(C ′). Furthermore, it holds that c∞, c̄∞ ∈ C.
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Proof. Suppose not. Suppose there exists a ĉ < c̄∞ such that c ≤ ĉ for all c ∈ C ′. This

implies that there exist (x, z) ∈ X×Z such that ĉ(x, z) < c̄∞(x, z). By definition, it holds

that c̄∞(x, z) = sup
c∈C′

{c(x, z)}, hence, ĉ(x, z) ≥ c(x, s) implies that ĉ(x, z) ≥ sup
c∈C′

{c(x, z)}

which yields a contradiction because

sup
c∈C′

{c(x, z)} = c̄∞(x, z) > ĉ(x, z) ≥ sup
c∈C′

{c(x, z)}

It follows immediately from the fact that all c ∈ C ′ are Lipschitz continuous that c̄∞(x, z)

is also Lipschitz continuous so that c̄∞ ∈ C holds. An equivalent argument applies for

the infimum.

Remark 2. The fact that c̄∞ ∈ C holds follows directly from the Lipschitz property

because for all (x1, z) and (x2, z) in X × Z with x1 ≤ x2 it holds that

c̄∞(x2, z) ≤ sup
c∈C′

{c(x1, z) + x2 − x1} = c̄∞(x1, z) + x2 − x1

and the same argument applies to the infimum.

Lemma 3. (C,≥) is a complete lattice.

Proof. From lemma 1 it follows that (C,≥) is a lattice, and from lemma 2 follows that

it is complete.

A.2 Properties of Gi(x, z, λ)

Lemma 4. Gi(x, z, λ) is

(a) increasing and continuous in x

(b) strictly decreasing and continuous in λ

Proof. We consider the two arguments of the min-operator separately

1. Suppose Gi(x, z, λ) = x− λ, (a) and (b) are obviously satisfied.
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2. Suppose

(12) Gi(x, z, λ) =
(

β(1 + r)E
[

(ci ((1 + r)(x− λ) + wz′ζ ′ − rD, z′))
−γ
])− 1

γ

− λ

Since u′(·) is a strictly decreasing function, its inverse is strictly decreasing. By

assumption, ci(x, z) is increasing and continuous in x. It follows that (12) must be

increasing in x. The continuity of ci(x, z) together with the continuity of u′(·) and

its inverse imply that (12) satisfies (a) because ci ≥ cl > 0. We apply the same

arguments for (b) and λ ≤ x, and we get that (12) satisfies (b).

The min-operator forms the lower envelope of two continuous and increasing respectively

strictly decreasing functions in x and λ. It preserves, therefore, the monotonicity and

continuity of these functions. Hence, Gi(x, z, λ) satisfies (a) and (b).

Lemma 5. For every (x, z), G(x, z, λ) = 0 has a unique solution λ.

Proof. It follows from the properties of u′(·) that for λ = 0, G(x, z, λ) ≥ 0 and for λ→ x,

it follows from lemma 4 that G(x, z, λ) is strictly decreasing with G(x, z, λ) ≤ 0 if λ = x.

Hence, the solution G(x, z, λ) = 0 must be unique.

A.3 Properties of T

Definition 1. An operator T is called monotone increasing if for x ≥ y it holds that

Tx ≥ Ty.

Definition 2. An operator T is called continuous iff for every chain S sup T (S) =

T (sup(S)).

Other definitions and background reading can be found in Zeidler (1986).

Lemma 6. For every r such that β(1 + r) ≤ 1 and 1− (β(1 + r)1−γ)
1

γ > 0 there exists a

supersolution cu and a subsolution cl to the operator T .

1. For cu(x, z) = x, it holds that Tcu ≤ cu.
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2. For cl(x, z) = ιx with ι := 1− (β(1 + r)1−γ)
1

γ , it holds that Tcl > cl.

Proof. 1. By construction, we get that c1 = Tcu ≤ x. Since c1(x, s) = λ ≤ x where λ

solves

λ = min

{

x,
(

β(1 + r)E
[

(cu ((1 + r)(x− λ) + wz′ζ ′, z′))
−γ

])− 1

γ

}

and it follows that Tcu ≤ cu

2. Take cl(x, z) = ιx and suppose that Gl(x, z, λ) = 0 for λ ≤ ιx for some x. This

implies that

ιx ≥ (β(1 + r))−
1

γ

(

E
[

(

cl ((1 + r)(x− ιx) + wz′ζ ′ − rD, z′)
)−γ

])− 1

γ

ιx ≥ (β(1 + r))−
1

γ

(

E
[

(ι ((1 + r)(1− ι)x+ wz′ζ ′ − rD, z′))
−γ
])− 1

γ

x > (β(1 + r))−
1

γ

(

E
[

((1 + r)(1− ι)x)−γ
])− 1

γ

1 > (β(1 + r))−
1

γ (1 + r)(1− ι)

(1− ι) > (1− ι)

which yields a contradiction. Hence, it must be true that λ > ιx for all (x, z), and

therefore, it holds that Tcl > cl.

Lemma 7. The operator T is monotone increasing.

Proof. Take c1i and c2i from C with c1i > c2i . It follows from the fact that u′(·) and its

inverse are strictly decreasing functions that

min

{

x,
(

β(1 + r)E
[

(

c1i ((1 + r)(x− λ) + wz′ζ ′ − rD, z′)
)−γ

])− 1

γ

}

≥

min

{

x,
(

β(1 + r)E
[

(

c2i ((1 + r)(x− λ) + wz′ζ ′ − rD, z′)
)−γ

])− 1

γ

}

From lemma 4, we know thatGi(x, z, λ) is decreasing in λ. Since it holds thatG
1
i (x, z, λ) ≥

G2
i (x, z, λ), it follows that for all (x, z) ∈ X × Z we get λ1 ≥ λ2.
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Lemma 8. The operator T maps elements of C to continuous and increasing functions.

Proof. Again, we proceed in two steps.

1. (increasing)

(a) If λ = x, this is obvious.

(b) If λ =
(

β(1 + r)E
[

(ci((1 + r)(x− λ) + wz′ζ ′ − rD, z′))−γ
])− 1

γ pick x1 > x2.

Lemma 4 implies that Gi(x1, z, λ) ≥ Gi(x2, z, λ) and it follows that λ1 ≥ λ2

because Gi(x, z, λ) is strictly decreasing in λ.

From steps (1a) and (1b) it follows that ci+1(x, z) must be an increasing function.

2. (continuous) The continuity of the optimal solution follows directly from the im-

plicit function theorem (Kumagai (1980))41. To see this, note that Gi(·, z, ·) is a

continuous map Gi : X × X ⊂ R × R+ → R. From lemma 5, we know that

for all (x, z) there exists a unique solution Gi(x, z, λ) = 0, and from Kumagai

(1980), it follows that ci+1(x, z) is continuous in a neighborhood of x if and only

if there are open neighborhoods B ⊂ X and A ⊂ R+ of x and λ, respectively,

and ∀x ∈ B : Gi(x, z, ·) : A → R is locally one-to-one (injective). From lemma

4, we know that G(x, z, λ) is strictly decreasing in λ, and therefore, it is locally

one-to-one. Hence, ci+1(x, z) will be continuous in x.

Lemma 9. If x1 > x2 and G(x2, z, λ2) = 0 with x2 > λ2, then for G(x1, z, λ1) = 0 it

holds that x1 > λ1.

41Kumagai proves a theorem for the case of non-differentiable function.
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Proof. Suppose not. It follows from lemma 4 that

λ1 = x1

≤
(

β(1 + r)E
[

(ci(wz
′ζ ′ − rD, z′))−γ

])− 1

γ

≤
(

β(1 + r)E
[

(ci((1 + r)(x2 − λ2) + wz′ζ ′ − rD, z′))−γ
])− 1

γ

= λ2

< x2

This yields a contradiction, and hence, it holds that if x1 > x2 and x2 > λ2, then also

x1 > λ1.

Lemma 10. The operator T is a self-map on C.

Proof. From lemma 8, we know that T maps continuous and increasing functions to

continuous and increasing functions. Consider the case where x1 > x2. We know from

lemma 8 that λ1 ≥ λ2. We consider now all possible combinations

I. λ1 = x1 and λ2 = x2 ⇒ x1 − x2 = λ1 − λ2.

II. λ1 < x1 and λ2 = x2 ⇒ x1 − x2 > λ1 − λ2.

III. λ1 = x1 and λ2 < x2. Not possible, see lemma 9.

IV. λ1 < x1 and λ2 < x2.

(a) λ1 = λ2 ⇒ x1 − x2 > λ1 − λ2

(b) λ1 > λ2 : (Proof by contradiction) Suppose that x1−x2 < λ1−λ2. This implies

x1 − λ1 < x2 − λ2.

λ1 =
(

β(1 + r)E
[

(ci((1 + r)(x1 − λ1) + wz′ζ ′ − rD, z′))
−γ

])− 1

γ

≤
(

β(1 + r)E
[

(ci((1 + r)(x2 − λ2) + wz′ζ ′ − rD, z′))
−γ

])− 1

γ

= λ2

but λ1 ≤ λ2 yields a contradiction, because we started with the assumption that

λ1 > λ2.
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Hence, it must be true that x1 − x2 ≥ λ1 − λ2 and the proof is complete.

Lemma 11. The operator T : C → C is continuous.

Proof. For finite chains the proof is obvious. For infinite chains, take a chain CS ⊂ C.

Define c̄∞ = sup(CS). Denote the image set of CS by CS′

=
{

c′ ∈ C : c′ = Tc ∀c ∈ CS
}

and c̄′ = sup(CS′

). For all (x, z) ∈ X × Z, we have c′i(x, z) = λ∗i where λ∗i solves

Gi(x, z, λ) = 0. Again, c̄′ is defined pointwise as c̄′(x, z) = sup λ∗ =: λ̄∗. Since T is

monotone increasing and CS is a chain, it holds that λ∗i ≥ λ∗j if ci ≥ cj. It follows

from the definition of a chain that for all ci, cj ∈ CS we either have ci ≥ cj or ci ≤ cj .

Now fix (x, z, λ̄∞) where λ̄∞ = T c̄∞(x, z). Put ci ∈ CS in increasing order and define

∆i := Gi(x, z, λ̄
∞). The {∆i} sequence is increasing and bounded because λ̄∞ solve

G(x, z, λ̄∞) = 0 for c̄∞. Since we have c̄∞ = sup(CS), it follows from the proof of lemma

2 that for every ci there exists a ci+1 ∈ CS such that c̄∞ ≥ ci+1 ≥ ci because otherwise c̄
∞

can not be the supremum of CS. It follows that sup(∆i) = 0. Hence, Gi(x, z, λ̄
∞) → 0

holds, and this implies that λ∗i → λ̄∞ because λ∗i solves Gi(x, z, λ) = 0 and Gi(x, z, ·) is

continuous in λ. Hence, we get λ̄∗ = λ̄∞ for all (x, z) such that T c̄∞ = sup (Tc) holds.

The equivalent argument applies to the infimum and the elements of the chain put in

decreasing order. It follows that T : C → C is a continuous operator.

A.4 Transversality condition

The transversality condition reads

(13) lim
t→∞

βtE0

[

c−γ
t (1 + r)at

]

= 0

We use the definition for cash-at-hand xt = (1 + r)at + wztζt + D and the result from

lemma 6 that c∗(xt, zt) > ιxt for all (xt, zt).

33



lim
t→∞

βtE0

[

c−γ
t (1 + r)at

]

= lim
t→∞

βtE0

[

(

ct
xt

)−γ

x−γ
t (xt − wztζt −D)

]

≤ lim
t→∞

βtE0

[

ι−γ(x1−γ
t − x−γ

t wztζt − x−γ
t D)

]

≤ lim
t→∞

βtE0

[

ι−γ(x1−γ
t )

]

Consider first the case of log utility (γ = 1)

lim
t→∞

βtE0

[

ι−1x0t
]

= lim
t→∞

βtι−1 = 0

For the γ > 1 case, we get

lim
t→∞

βtE0

[

ι−γx1−γ
t

]

≤ lim
t→∞

βtE0

[

ι−γ(wztζt − rD)1−γ
]

We make the following additional assumption for the general case

Assumption 7. If γ ≥ 1, then it holds that lim
t→∞

βtE0 [(wztζt − rD)1−γ] = 0.

From assumption 7, it follows that lim
t→∞

βtE0

[

c−γ
t (1 + r)at

]

≤ 0 and for the case D = 0,

the condition of assumption 7 simplifies to lim
t→∞

βtE0 [(wztζt)
1−γ ] = 0 and we get for the

case of permanent income shocks the sufficient conditions βE [ε1−γ] < 1 and E[ζ1−γ] < M .

These conditions are satisfied by assumption 2.

Finally, consider the γ < 1 case

lim
t→∞

βtE0

[

ι−γ(x1−γ
t )

]

≤ lim
t→∞

βtE0

[

ι−γ(1 + (1− γ)(xt − 1))
]

≤ lim
t→∞

(

βt(ι−γ − (1− γ)) + βtE0

[

ι−γxt
])

We can determine an upper bound on E0[xt]

E0[xt] = E0 [(1 + r)at + wztζt +D] ≤ E0 [(1 + r)āt] + E0 [wztζt] +D
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where āt is defined as follows

ā1 = (1 + r)a0 + wz0ζ0 − ι((1 + r)a0 + wz0ζ0)

ā2 = ((1− ι)(1 + r))2a0 + (1− ι)2(1 + r)wz0ζ0 + (1− ι)wz1ζ1

...

āt = ((1− ι)(1 + r))ta0 + (1− ι)
t−1
∑

s=0

((1− ι)(1 + r))swzt−1−sζt−1−s

We have β(1 + r) ≤ 1, and therefore, we get

āt ≤ a0 +
1

1 + r

t−1
∑

s=0

wzt−1−sζt−1−s

and

E0[xt] ≤ E0

[

t
∑

s=0

wzt−sζt−s

]

+D + a0(1 + r) = x0 + E0

[

t−1
∑

s=0

wzt−s

]

where the last equality holds because of assumption 2. For the general case we have to

make an additional assumption

Assumption 8. If γ < 1, then it holds that lim
t→∞

βtE0

[

t−1
∑

s=0

wzt−s

]

= 0.

For the case of permanent income shocks, the expression simplifies to

lim
t→∞

βtwz0

t−1
∑

s=0

(E[ε])t−s = 0

and is satisfied because of assumption 2. Hence, if for the general case assumption 7

respectively 8 holds, then there exists an upper bound for the transversality condition

lim
t→∞

βtE0

[

c−γ
t (1 + r)at

]

≤ 0

Assumption 2 is sufficient for the existence of the upper bound.

To establish a lower bound, note that if D = 0, then the lower bound is trivially at zero.

For the general case of D > 0 we need an additional assumption.

Assumption 9. If D > 0, then it holds that lim
t→∞

βtE0 [(wztζt − rD)−γ] = 0.

We have established an upper bound and an lower bound for the transversality condition

0 ≤ lim
t→∞

βtE0

[

c−γ
t (1 + r)at

]

≤ 0 =⇒ lim
t→∞

βtE0

[

c−γ
t (1 + r)at

]

= 0

and we can conclude that the transversality condition is satisfied.
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B Existence of a unique stationary distribution

Let the state space for the stochastic process of labor productivity and asset holdings be

S and the Borel σ-algebra on S be B(S). The stochastic process {at, zt}∞t=0 is denoted by

Φ and the state in period t by Φt = {at, zt}.

Definition 3. The return time probability from state Φ0 to a set A ∈ B(S) is defined as

L({a0, z0}, A) := Prob(Φt ever enters A|{a0, z0})

Definition 4. For any set A ∈ B(S), the occupation time ηA is the number of visits by

Φ to A after time zero, and is given by

ηA :=

∞
∑

t=1

1(Φt ∈ A).

Definition 5. We call a Markov chain ϕ-irreducible if there exists a measure ϕ on B(S)

such that, whenever ϕ(A) > 0, we have L({a, z}, A) > 0 for all {a, z} ∈ S.

Definition 6. The Markov chain is called ψ-irreducible if it is ϕ-irreducible for some ϕ

and the measure ψ is a maximal irreducibility measure (ψ � ϕ).

Definition 7. The Markov chain Φ is called recurrent if it is ψ-irreducible and E[ηA] = ∞

for every {a, z} ∈ S and every A ∈ B(S) with ψ(A) > 0.

Proof of theorem 2. From theorem 1 we know that an optimal policy function exists

so that the stochastic process for assets and productivity states is defined. Pick any

set A0 ∈ B(S) so that p := φ(A0) > 0. A newborn agent has a positive probability to

start from set A0 and the probability to see a newborn agent is θ > 0. It follows that

pθ constitutes a lower bound for the process Φ to enter the set A0, so that the return

time probability L({a, z}, A0) (definition 3) is strictly positive for each point {a, z} in the

support of φ. It follows that Φ is φ-irreducible (definition 5).

From proposition 4.2.2 in Meyn and Tweedie (1993) (MT) it follows that if Φ is φ-

irreducible, it is ψ-irreducible (definition 6). From theorem 8.3.6 it follows that Φ is
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recurrent because Φ is ψ-irreducible, L({a, z}, A0) = 1, and that A0 satisfies the condi-

tions of the theorem follows from proposition 5.5.3 and theorem 5.2.2.

Every recurrent chain has a unique stationary measure (MT theorem 10.0.1). Every set A

in the support of φ has a strictly positive lower bound for the return time probability, and

hence, a finite expected hitting time so that the stationary measure can be normalized

to be a probability measure (MT theorem 10.0.1).

The continuity follows from theorem 1 together with remark 1 in Le Van and Stachurski

(2007) (LS). The optimal consumption policy is continuous in the interest rate and inde-

pendent of the distribution of productivities and assets in the cross-section, assumptions

4 and 6 imply that the initial distribution φ varies continuously with the interest rate.

Hence, assumption 1 in LS holds. Using as Lyapunov function V (a, z) = a+(z−E[z])2 =

a+(z− 1)2 the positive probability of death (assumption 2) and the lower bound for the

optimal consumption policy (lemma 6) yield boundedness, and therefore, assumption 2 in

LS holds. That assumption 3 in LS holds follows from our assumption 4. This completes

the proof.

Remark 3. The proof for the existence and uniqueness of a stationary distribution does

not require that initial endowments {a0, z0} are uncorrelated with {at, zt}. It only requires

that the conditional distribution for {a0, z0} has the same support as φ(a, z) and that the

unconditional distribution over {a0, z0} is φ(a, z). Hence, we can allow for correlation in

assets and productivity levels of agents that leave and their successors.

Remark 4. Intuitively, the probability of death θ has at the level of the aggregate econ-

omy a stabilizing effect for the distribution as it induces some form of reversion to the

mean. We exploit this to establish that the boundedness and compactness assumptions

from Le Van and Stachurski (2007) are satisfied. For assets, the lower bound on the

consumption share ι induces an additional effect of reversion to the mean so that together

with the probability of death it keeps the asset process bounded in the sense of assumption

2. The highest sustainable capital stock keeps it compact in the sense of assumption 3.
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The mean of the productivity process is exogenously fixed, and again, the probability of

death induces the reversion to the mean that bounds the variance of the process.

C Existence of a RCE

Proof of theorem 3. An optimal solution to the agent’s problem exists (theorem 1).

A stationary distribution exists (theorem 2). At r = f ′(k̄) − δ lemma 12 proves that

Ks < Kd, for r = β−1 − 1 lemma 13 shows that Ks > Kd. From assumption 4 it follows

that capital demand is continuous in the interest rate and if follows from theorem 2 that

capital supply is continuous in the interest rate. It follows from the intermediate value

theorem that there exists a K∗ so that K∗ = Ks = Kd. The labor market clears by

construction. Hence, a recursive competitive equilibrium exists.

Lemma 12. At r = f ′(k̄)− δ it holds that Ks < Kd.

Proof. From assumption 5 it follows that capital supply k̄ can only be sustained if

c∗(x, z) = 0 for all (x, z) ∈ X × Z. From lemma 6 it follows that c∗(x, z) > 0. Hence, it

must be the case that Ks < Kd.

Lemma 13. At β(1 + r) = 1 it holds that Ks > Kd.

Proof. It follows from theorem 2 that a stationary distribution exists. Aggregate asset

supply Ks is the sum of asset supply of newborn agents Knew and the asset holdings of

agents that survived from the last period Kold, we get Ks = θKnew + (1 − θ)Kold. The

asset supply of the newborn generation Knew is determined by the initial distribution

φ(a, z). The asset supply of the surviving generation Kold has been determined by a

sequence of optimal consumption choices. We have to distinguish two cases.

(1) If borrowing constraints are binding for some agents, it follows from the first-order

conditions (see Huggett and Ospina (2001)) that for β(1 + r) = 1 there is expected

consumption growth in the cross-section conditional on survival

1 > Eµ

[

(

c∗t+1

c∗t

)−γ
]

⇒ Eµ [c
∗
t ] < Eµ

[

c∗t+1

]
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where the µ subscript denotes the fact that the expectations are taken with respect to

the stationary distribution µ.

(2) If β(1 + r)E [ε−γ] ≥ 1, then lemma 14 applies and borrowing constraints are non-

binding. The Euler equation holds as an equality, and the argument by Huggett and

Ospina (2001) does not apply.

1 = E

[

(

c∗t+1

c∗t

)−γ
]

There is only one risk-less asset. Hence, ct+1 = ct is not an optimal choice for all re-

alizations of εt+1. Hence, Jensen’s inequality for strictly convex functions42 applies, we

get

1 = E

[

(

c∗t+1

c∗t

)−γ
]

>

(

E
[

c∗t+1

c∗t

])−γ

⇒ 1 < E
[

c∗t+1

c∗t

]

⇒ Eµ [c
∗
t ] < Eµ

[

c∗t+1

]

and again, we get conditional on survival consumption growth in the cross-section.43

Since expected labor income is constant, consumption growth can only be financed by

accumulating assets on average. If assets grow for all surviving agents between periods, it

follows that Kold > Knew because the average capital of all generations at the beginning

of the life has been Knew. As a consequence, we get Ks > Knew = Kd.

Lemma 14. If only permanent shocks are present, D = 0, and r is such that β(1 +

r)E [ε−γ] ≥ 1, then borrowing constraints are non-binding.

Proof. The borrowing constraints are non-binding if for all (x, z) it holds that G(x, z, x) <

0. If only permanent income shocks are present, then the inequality always holds if

1 > β(1 + r)E [ε−γ].

42Note that marginal utility is strictly convex if and only if ∂3u(x)
∂x3 > 0.

43The same argument applies, if borrowing constraints were binding. The argument by Huggett and

Ospina (2001) could therefore be replaced by this argument but to highlight the importance of prudence

in the model with permanent shocks we decided to present the proof in two steps.
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D Non-binding borrowing constraints

We build on the result by Carroll and Kimball (1996) that the optimal consumption

function c(x̃) is concave.44 Using this result, we prove that for the case when only

permanent shocks are present borrowing constraints must be non-binding.

Proof of theorem 4. It follows from Lemma 6 that the optimal recursive policy c∗

satisfies c∗ > cl. Carroll (2004) based on Carroll and Kimball (1996) proves that c̃(x̃) is

concave. Together with c∗ > cl concavity implies that ι is a lower bound for the slope

of c∗. If an equilibrium exists, then K∗ is such that K∗ = Ks = Kd > 0. A positive

equilibrium capital stock Ks > 0 requires that there exist x so that c∗(x) < x. Current

income rat + wzt becomes in the reduced state space r
1+r

x̃t +
1

1+r
= 1 + rat

wzt
. Comparing

r
1+r

and ι using β(1 + r) ≤ 1 yields

ι = 1−
1

1 + r
(β(1 + r))

1

γ ≥ 1−
1

1 + r
=

r

1 + r

Since ι is a lower bound on the slope of c∗, it follows that the optimal solution has a

slope larger than r
1+r

. Suppose the optimal solution at x̃ = 1 were c̃ = 1, i.e. borrowing

constraints were binding, then it follows that c̃∗(x̃) ≥ x̃ for all x̃ > 1. In this case,

all agents run assets down to zero and stay there forever. This is not consistent with

an equilibrium, hence, it must hold that c̃∗(1) < 1 and borrowing constraints must be

non-binding in equilibrium.

Proof of corollary 1. In equilibrium the optimal policy of the agent must such that

optimal consumption is for some state smaller and for some states larger than current

income. It follows directly from the continuity and concavity of the optimal policy func-

tion together with the lower bound cl on the optimal policy that there must be a unique

44The result can also be used on the reduced state space as it is shown in Carroll (2004). The argument

by Carroll and Kimball (1996) involves iteration on the Bellman equation but applies here as well because

the sequences of consumption functions of the two approaches are equivalent. This can be easily verified

because Gi(x, z, λ) = 0 is the necessary condition for updating the value function using the Bellman

equation.
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intersection of the optimal policy with current income. This intersection characterizes

¯̃x.

Proof of corollary 2. The upper bound follows from lemma 13. The lower bound can

be derived from the fact that borrowing constraints are always non-binding. The Euler

equation for the reduced state space variables and zero assets implies that if borrowing

constraints are non-binding, then

1 < β(1 + r)E
[

ε−γ
]

⇐⇒ r >
(

βE[ε−γ]
)−1

− 1

E Uniqueness of the equilibrium

The equilibrium existence proof (theorem 3) does not establish uniqueness of the equi-

librium because monotonicity of asset supply in the interest rate is not established. In

section 7, we show that in a calibrated model asset supply is increasing in the interest rate

and the equilibrium is unique. We find that this monotonicity result holds for a large set

of parameter combinations. However, it is possible to construct counterexamples where

asset supply is no longer increasing in the interest rate. In this case, uniqueness of the

equilibrium is no longer guaranteed and becomes a quantitative question.

To construct an example where asset supply is non-monotone, we change the calibration

from section 7 and set the parameter α that governs the capital share in the Cobb-

Douglas production function to α = 0.98 and set the total factor productivity to match

a wage rate of 1 at an interest rate of 4 percent. Since wages and interest rates are

linked via the first-order condition of the firm, a high value for α yields a wage that

reacts very strongly to changes in the interest rate. Figure 2 shows that for this case we

get a non-monotone asset supply in interest rates over a relevant range, i.e. above the

lower bound for the equilibrium interest rate (vertical black line), so that theoretically

multiplicity of equilibria could arise. Quantitatively, however, asset demand exceeds asset
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supply by orders of magnitude so that no multiplicity of equilibria arises.45 The problem

that asset supply might be non-monotone in the interest rate and that multiplicity of

equilibria can not be ruled out in general is also discussed in Aiyagari (1993)46 and our

numerical example builds on the argument from his paper. Our example shows that

although a non-monotonicity in asset supply is possible, it seems to arise only under

extreme parametric assumptions and no parameter combinations have been found that

finally lead to multiplicity of equilibria.

Figure 2: Non-monotone asset supply
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Notes: Asset supply derived numerically from the stationary distribution of the model described
in the main part of the paper. The vertical black solid line shows the equilibrium lower bound
for the interest rate. The interest rate in percentage points is given on the horizontal axis. The
vertical axis gives capital in units of the numeraire.

To explore the mechanism that leads to the non-monotonicity, we use a simple two period

example and illustrate that the interaction of changes in the wage with the precautionary

savings motive can cause a non-monotonicity in asset supply. Consider the following

problem of choosing optimal savings s for given initial assets a0

max
s

log((1+r)a0+w−s)+β (p log((1 + r)s+ (1− z)w) + (1− p) log((1 + r)s+ (1 + z)w))

where p denotes the probability of the income event (1− z)w and 1− p is the probability

for income event (1 + z)w, and w and r denote the wage and the interest rate. As in

45We also tried a calibration with α = 0.995. The non-monotonicity in this case becomes even stronger,

but again no multiplicity of equilibria arises.
46We also construct examples with i.i.d. shocks and similar parameter combinations that yield a

non-monotone asset supply. Results are available upon request.
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section 7 and in the example above, we assume that the wage and the interest rates are

linked via the first-order condition of a firm operating a Cobb-Douglas technology.47

Figure 3: Non-monotone savings in two period model

(a) Non-monotone savings
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(b) Non-monotonicity condition
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Notes: Left panel: Optimal savings in the two period model. The red solid line shows the case
with a strong wage reaction to interest rate changes (α = 0.98) and the blue dashed line shows
the case of modest wage reactions to interest rate changes (α = 0.33). The interest rate in
percentage points is given on the horizontal axis. The vertical axis gives optimal savings in
units of the numeraire. Right panel: Non-monotonicity condition from (14). Positive values
indicate decreasing savings in the interest rate. The red solid line is the condition including
all terms, the blue dashed line is the case without the precautionary savings reaction, and the
green dashed-dotted line is the case without wage reactions. The interest rate in percentage
points is given on the horizontal axis.

In figure 3(a), we show optimal savings s as a function of the interest rate for two different

specifications of the production function.48 For a high capital share α = 0.98 that implies

a strong reaction of the wage to interest rate changes, we see that savings are a non-

monotone function of the interest rate (red solid line). If we set α = 0.33, so that wage

reactions are modest, the saving function is monotonically increasing in the interest rate

(blue dashed line). Intuitively, two effects counteract each other. On the one hand, the

increase in the interest rate leads to a lower price for consumption in the second period, so

that savings increase. On the other hand, the wage rate decreases and as a consequence

income fluctuations decrease because shocks are multiplicative to the income level.49 To

47For the Cobb-Doublas case Y = AKαL1−α, we get w(r) = (1− α)A
(

αA
r+δ

)
α

1−α

.
48The other parameters are p = 0.5, z = 0.15, β = 0.9553, a0 = 1, and δ = 0.07. In line with the

calibration for the model in section 7.
49The multiplicative shocks are the standard assumption in this class of models because the produc-

tivity process is usually formulated in logs.
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keep the analysis transparent, we restrict attention to the case p = 0.5, so that there is

no expected income growth or decline. In this case, the condition for increasing savings50

in the interest rate, i.e. ∂s
∂r
> 0, is

−

(

(2 + β)s

(1 + β)(1 + r)

w

1 + r
+

β

1 + β

w2

(1 + r)2

(

2
1− z2

β(1 + r)
− 1

))

< −
∂w

∂r

(

β

1 + β

2w

1 + r

(

1− z2

β(1 + r)
− 1

)

+
(2− βr)s− (1 + r)a0

(1 + r)(1 + β)

)

(14)

where s is the optimal amount of savings. Exploring the terms of this condition quanti-

tatively shows that the term that generates the non-monotonicity in savings is the term

on the right-hand side that can be associated with the precautionary savings reaction to

wage changes

(15)
β

1 + β

2w

1 + r

(

1− z2

β(1 + r)
− 1

)

If this term is negative and the wage reaction ∂w
∂r

is sufficiently strong, then a non-

monotonicity arises. To disentangle the different effects, we plot in figure 3(b) condition

(14) for 3 cases. For each case, we plot the difference of the left-hand side and the right-

hand side, so that the condition is satisfied if the value is negative. In the first case,

we plot the condition as given (red solid line). In the second case, we shut down wage

changes, i.e. we set ∂w
∂r

= 0 (green dashed-dotted line). In the third case, we shut down

the precautionary savings reaction, i.e. we set the term in (15) to zero (blue dashed

line). In the second and the third case, the condition is always satisfied, i.e. savings are

always increasing in the interest rate. In particular, it suffices to set the term in (15),

that we associate with the precautionary savings reaction, to zero (blue dashed line). In

the case when the precautionary savings reaction is taken into account (red solid line)

the condition is violated for some interest rates and a non-monotonicity in savings arises

(see figures 3(a) and 3(b)). However, to generate this result we need a sufficiently strong

50The optimal amount of savings in this case is

s = −
1

2
Q+

√

1

4
Q2 −R

with Q = 2w
β

− (1 + r)a0 − rw and R = β

(1+r)(1+β)

(

1−z2

β(1+r) − 1
)

w2 − β

1+β
a0w.
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reaction of the wage to interest rate changes and it remains a quantitative question how

strong the reaction of the wage has to be, especially, in a more sophisticated model like

the one considered in the main part of the paper.

Two remarks are in order. First, to get the non-monotonicity we need that the term

in (15) is negative. Rearranging terms shows that this is equivalent to the following

condition

β(1 + r)(1− z2) > 1 ⇐⇒ β(1 + r)E[ε−γ] > 1

with ε = {1−z, 1+z}, equal probabilities (p = 0.5), and γ = 1. This condition is the same

as the condition for the lower bound of the equilibrium interest rate from corollary 2. This

suggests that the effect that generates the non-monotonicity in the two period example

is also present over the relevant range of interest rates in the model in the main part of

the paper. Indeed, the quantitative example shows that we generate a non-monotonicity

for similar parameter choices in the two period model and in the model in the main part.

Second, equation (14) suggests that also the second term on the left-hand side that com-

prises z2 can generate a non-monotonicity in savings if z is sufficiently large. Although,

we can generate this effect in the simple two period model, we could not generate a

non-monotonicity from this effect, i.e. from a substantial increase in income risk, in the

model in the main part of the paper.

To summarize, a non-monotonicity in asset supply can arise in a model with endogenous

wage reactions to interest rate changes for certain parameter combinations and we argue

that it is the interaction of a sufficiently strong wage reaction with the precautionary

savings motive that is the likely cause for the non-monotonicity. Although such a non-

monotonicity theoretically opens the possibility for multiplicity of equilibria, we have not

found any parameter combination that finally lead to multiplicity of equilibria in the

model in the main part of the paper.
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