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Abstract

Consider a random permutation of a �nite number n of known ele-

ments representing rewards. These rewards will be made or not made

with certain known probabilities. At any stage a reward made can be ac-

cepted or rejected, there is no recall and only one reward can be accepted.

The problem is to maximize the expected reward accepted.

We propose a computationally feasible approximation to the solution

of the dynamic programming equation of the problem. Estimates of the

error of the approximation are given recursively as well as in explicit

form. Recursively the error of the approximation at any stage of the

game is obtained in terms of the approximation and its error estimate at

the following stage.

In numerical examples the goodness of the approximation and its error

estimates are found by comparison with the optimal solution.

Key words: optimal stopping, optimal policy approximations, dynamic pro-

gramming, uncertainty of selection.

Jel Code: C44, C61

1 Introduction and Statement of the Problem

For a given �nite set of positive, distinct, real numbers S = fx1; :::; ; xng we con-
sider a random permutation X1; :::;Xn and 0-1-valued variables I(X1); :::; I(Xn)

satisfying

PfI(Xi) = 1 j Xi = x(i) ; I(Xi�1);Xi�1; :::; I(X1);X1g =

PfI(Xi) = 1 j Xi = x(i)g = p(x(i)) = pi

for x(i) 2 S, where p1; :::; pn are known. This model arises in problems of optimal

choice from a �nite, partially known population. As an example we consider an

individual who sends out applications to each of n institutions for a priori known

rewards. Responses come back in random order. If the ith response is from the

jth institution, it contains reward x(j) with probability pj or 0 otherwise. Upon

receiving this response the applicant can accept it and stop or reject it and

continue. Only one o�er can be accepted, there is no recall and it is desired to

obtain the maximal amount that can be achieved.

We are interested in approximating well known solutions to the optimal stop-

ping problem of �nding a stopping time �0 such that

EX�0I(X�0) � EX�I(X�)
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for all stopping times � , where E denotes the expected value.

This problem is only super�cially similar to the secretary problem with un-

certain employment as treated by Smith (1975) (see Freeman (1983) for a review

of the secretary problem). The secretaries are presented in random order and

their ranks are unknown to the observer. In the above problem the ranks, or

more generally their utilities, are known but the choices can be made only with

certain probabilities depending on the observations. Another related type of

problem is the asset selling problem (see Bertsekas (1988)). This however is

usually posed as an in�nite problem: o�ers of any size will be made eventually

(but losses are incurred while waiting for the occurrence of an o�er).

For the secretary problem as presented here, i.e. with known rankings in

unknown random order and uncertain employment acceptance, much more in-

formation on the future is available to the player at any stage of the game and

needs to be processed. This makes the present problem more complex than the

others mentioned above. An explicit solution is not known and the numeri-

cal solution of the corresponding dynamic programming equation, given next,

becomes computationally impossible for moderately large n.

De�ne a sequence of functions V (n�1)(yn); V
(n�2)(yn�1; yn); :::; V

(0)(y1; :::; yn)

where y1; :::; yn are any permutation of x(1); :::; x(n) :

V (n�1)(yn) = ynp(yn)

V (n�2)(yn�1; yn) = E(maxfXn�1I(Xn�1); V
(n�1)(Xn)g j Xn�2 = yn�2; :::;X1 = y1)

=
1

2

X
y2fyn�1;yng

f(y � V (n�1)(y))+p(y) + V (n�1)(y)(1� p(y))g

...

where z+ denotes the positive part of z. Then it is well known that

�0 = inffi : XiI(Xi) � V (i)(yi+1; :::; yn)g

is the optimal rule. From this it is clear that in order to compute V (0), the value

of the game, we need to �nd 
n

n� 1

!
+

 
n

n� 2

!
+ :::+

 
n

1

!
= 2n � 2

values for V (1); :::; V (n�1) : It is therefore important, from a practical point of

view, to �nd approximate rules that are computationally feasible for large n and

to estimate the error of the approximation involved.
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In the following section we construct an approximation to V (0) and to the

optimal policy which at di�erent degrees of precision can be implemented on

computers of any size whereas the former cannot be implemented. We further

obtain sharp upper bounds on the approximation. Moreover an estimate on the

error of the approximation at any given stage of the game is obtained recursively

in terms of the approximation and its error estimate at the following stage. In

Section 3 it is numerically illustrated that the approximation can be surprisingly

close, which is also reected in the estimated error.

2 Approximation

The idea is to replace in the game fx1; p(x1); :::; xn; p(xn)g certain groups of nk

states xn1; :::; xnk by any one representative of them or by their mean and similary

for their acceptance probabilities p(xn1); :::; p(xnk) : These newly created states

can recur nk times. This way we obtain a computationally feasible approximation

to the original problem, and to the error of the approximation.

2.1 Notation

More generally we introduce the alternative game fx�
1
; p(x�

1
); :::; x�n; p(x

�

n)g where
x�k = xk + �k and p(x�k) = p(xk) + �k for k = 1; :::; n and the value of the optimal

policy equal to V
(0)

�� . In here �k = �(xk) and �k = �(xk) are arbitrary such that

x�k; p(x
�

k) > 0 :

We also introduce the following notation: any state at stage n�j of the game

is characterized by a j-dimensional vector x, respectively x� with components

xn1 ; :::; xnj respectively x�n1 ; :::; x
�

nj
de�ning the future lying ahead of the stage.

Consequently we denote the corresponding values by V (n�j)[x] and V
(n�j)

�� [x�] :

Also write x 2 fxg instead of x 2 fxn1; :::; xnjg and with x�x we denote the

vector of dimension j � 1 obtained by deleting the component x from x and

similary for x�
�x� . Moreover �p = 1 � p and x _ y = maxfx; yg.

With the above notation the optimal value V (0) can be written as the solution

of the equation:

(j+1)V (n�j�1)[x] =
X

x>V (n�j)[x
�x]

(x_V (n�j)[x�x])p(x)+
X

x2fxg

V (n�j)[x�x]�p(x) (2:1)

with initial conditions V (n�1)(xk) = xkp(xk) for k = 1; :::; n and similary for

V
(n�j+1)

�� [x�] :
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2.2 Global a Priori Error Estimates

Our �rst result gives a priori bounds on the approximation to the value V (0).

Theorem 2.1 For all j = 1; :::; n and all x of dimension n� j

j V (n�j)[x]� V
(n�j)

�� [x�] j�
X

x2fxg

fj �(x) j x�+ j �(x) j p(x�)g :

For the proof of Theorem 2.1 we need the following lemma.

Lemma 2.1 If c > 0 then a _ (b+ c)� a _ b � c .

Proof of Lemma 2.2:

a _ (b+ c)� a _ b =

8><
>:

0 if a > b+ c

c if b > a

b+ c� a if b+ c > a > b

Proof of Theorem 2.1: We �rst consider the case p(xk) = p(x�k) for all 1 � k � n.

We proceed by induction. Obviously

V (n�1)
� [x�] = V (n�1)[x]+ j � j p

where we have omitted the argument in p(x) : Likewise we omit the argument

in �(x) and �(x) below. Now suppose that

V (n�j)
� [x�] � V (n�j)[x] +

X
x2fxg

j � j p

holds for any given j, where j < n. Then from (2.1) we have

(j + 1)V (n�j�1)
� [x�] =

X
x�2fx�g

�
(x� _ V (n�j)

� [x�
�x�])p+ V (n�j)

� [x�
�x� ]�p

�

�
X

x�2fx�g

0
B@ (x� _ fV (n�j)[x�x] +

X
fx
�xg

j � j pg ) p + fV (n�j)[x�x] +
X
fx
�xg

j � j pg�p

1
CA

�
X

x2fxg

�
(x _ V (n�j)[x�x])p+ V (n�j)[x�x]�p

�
+

X
x2fxg

0
@ X

x2fxg

j � j p

1
A ;
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where the �rst inequality holds by induction hypothesis and the second follows

from a twofold application of Lemma 2.1. Hence, dividing by j + 1; we have

shown that V (n�j)
� [x�] � V (n�j)[x] �

P
x2fxg

(j � j x�+ j � j p�) : By symmetry this

implies j V (n�j)[x]� V (n�j)[x�] j�
P

x2fxg

(j � j x�+ j � j p�) :

Secondly we consider the case xk = x�k for all 1 � k � n : We proceed by

induction. Obviously

V
(n�1)

� [x] = V (n�1)[x]+ j � j x :

Now suppose that

V
(n�j)

� [x] � V (n�j)[x] +
X

x2fxg

j � j x

holds for any given j, where j < n. Then

(j + 1)V
(n�j�1)

� [x] =
X

x2fxg

�
(x _ V

(n�j)

� [x�x])p
� + V

(n�j)

� [x�x]�p
�

�

�
X

x2fxg

0
B@ (x _ fV (n�j)[x�x] +

X
y2fx

�xg

j � j yg ) p� + fV (n�j)[x�x] +
X

y2fx
�xg

j � j yg�p�

1
CA

�
X

x2fxg

�
(x _ V (n�j)[x�x] ) p + V (n�j)[x�x]�p

�

+
X

x2fxg

0
B@ X

y2fx
�xg

(j � j y) + (x _ V (n�j)[x�x] ) � � V (n�j)[x�x]�

1
CA

� (j + 1)V (n�j)[x] +
X

x2fxg

(
X

x2fxg

j � j x);

where the �rst inequality holds by induction hypothesis and the second follows

from an application of Lemma 2.1. This implies by symmetry that j V (n�j)[x]�

V
(n�j)

� [x�] j�
P

x2fxg j � j x. The statement of the theorem now follows since

j V�� � V j�j V�� � V� j + j V� � V j :

Remark: It is easily seen that the above bounds are sharp in certain trivial

cases. Consider for example the space fxi = i for i = 1; : : : ; ng with probabilities
p(xi) = 0 except for one i.
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We obtain the following reduction in dimensionality by grouping. In the full

space V (0) = V (0)(x1; : : : ; xn) is an average over
�

n

n�1

�
values of V (1)(x2; : : : ; xn),

each of which in turn is an average of
�

n

n�2

�
values of V (2)(x3; : : : ; xn) etc.

Accordingly d =
�

n

n�1

�
+
�

n

n�2

�
+ : : : +

�
n

1

�
= 2n � 2 possible sequences of

V (1); : : : ; V (n�1) have to be computed. In the space reduced by forming j sub-

groups of size n1; : : : ; nj the total number of sequences of length � j is reduced

to
Qj

i=1(ni + 1) � 2 (We have n1 + 1 choices for the number of elements for the

�rst subgroup, n2 + 1 choices for the number of elements for the second sub-

group etc.). In the case when every subgroup consists of only one element, this,

of course, yields the number of computations for the full space.

2.3 Local Iterative Error Estimates

The following theorem leads to another estimate of the error of the approxima-

tion.

Theorem 2.2 For any 1 � j � n the following inequalities hold.

X
x�>V

(n�j)

��
[x�
�x�

]

(V (n�j)[x�x]� V
(n�j)

�� [x�
�x�])�p

� +
X

x��V
(n�j)

��
[x�
�x�

]

(V (n�j)[x�x]� V
(n�j)

�� [x�
�x�])

�
X

x�>V
(n�j)

��
[x�
�x�

]

�p� �
X

x>V (n�j)[x
�x]

(x� V (n�j)[x�x])�

� (j + 1)(V (n�j�1)[x]� V
(n�j�1)

�� [x�]) �

X
x>V (n�j)[x

�x]

(V (n�j)[x�x]� V (n�j)[x�
�x�])�p

� +
X

x�V (n�j)[x
�x]

(V (n�j)[x�x]� V
(n�j)

�� [x�
�x�])

�
X

x>V (n�j)[x
�x]

�p� �
X

x>V (n�j)[x
�x]

(x� V (n�j)[x�x])�:

Proof of Theorem 2.2: Using (2.1) we obtain

(j + 1)(V (n�j�1)[x]� V
(n�j�1)

�� [x�]) =
X

x>V (n�j)[x
�x]

(x� V (n�j)[x�x])p
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�
X

x�>V
(n�j)

��
[x�
�x�

]

(x� � V
(n�j)

�� [x�
�x�])p

� +
X

x2fxg

(V (n�j)[x�x]� V
(n�j)

�� [x�
�x�])

Dropping all superscripts from now on, the above sum can be shown to be equal

to
P

5

i=1 Ii, where

I1 = �
X

x(�)>V��[x
�

�x�
]

(V [x�x]� V��[x
�

�x� ])p
�

I2 =
X

x2fxg

V [x�x]� V��[x
�

�x�]

I3 =

0
B@ X

V [x
�x

]+�<x��V��[x
�

�x�
]

�
X

V��[x
�

�x�
]<x��V [x

�x
]+�

1
CA (x� V [x�x])p

�

I4 = �
X

x>V [x
�x]

(x� V [x�x])�

I5 = �
X

x�>V��[x
�

�x�
]

�p�:

An upper bound to this expression is given as follows. First note that

I3 �

0
B@ X

V [x
�x]+�<x��V��[x

�

�x�
]

�
X

V��[x
�

�x�
]<x��V [x

�x]+�

1
CA (V��[x

�

�x�]� V [x�x]� �)p�

This is absorbed into I1 and I5 and after combining I1 with I2 we obtain the

upper bound described in the theorem. To obtain the lower bound we observe

that I3 � 0; hence it can be omitted.

A particular case of this theorem arises when for all j � j0 for some j0 we

have x � V (n�j)[x�x] and x� � V (n�j)[x�
�x�] at least for those x; x� for which

x 6= x� or p(x) 6= p(x�): This condition might well be satis�ed at early stages

of the game i.e. when future expectations exceed the returns from any of the

states which are lumped into subgroups by the approximation. For this case the

inequalities take a particularly simple form such that an alternative upper bound

in j V (0) � V
(0)

�� j can be computed. This bound is sharper than that given by

Theorem 2.1 and is obtained by simply solving the iterated relations explicitly

from stage j0 onwards. This is the content of the following Corollary.
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Corollary 2.2 Suppose that x > V (n�j0)[x�x] for some j0 and for all x, and

similarly x(�) > V
(n�j0)

�� [x�
�x�]. Then

j V (0) � V
(0)

�� j�
1�
n

j0

� X j V (n�j0) � V
(n�j0)

�� j

where the sum is taken over all
�
n

j0

�
combinations of j0 terms out of fx1; : : : ; xng.

Notes:

1. j V (n�j0) � V
(n�j0)

�� j can be estimated using Theorem 2.1. This way we

obtain an improved, explicit estimate of the error of approximation.

2. If x�k = xk and p(x�k) = p(xk) for all k except when k = k1; : : : ; kn0 for

�xed n0 and if the number of choices n is increased by successively adding

elements of the game, such that

max
1�i�n0

fxkig < V (n�j)(x�xki
) for j � j0

for some j0 and similarly for x� and V
(n�j0)

�� : It follows from the above

corollary that in this case the error becomes negligible, i.e.

j V (0) � V
(0)

�� j! 0 as n!1 :

Proof of Corollary 2.2: It follows from Theorem 2.2 that under the assumptions

of the corollary for all j � j0 we have for the negative parts (: : :)
�

�(j + 1)(V (n�j�1)[x]� V
(n�j�1)

�� [x�])�

� �
X

x>V (n�j)[x
�x]

(V (n�j)[x�x]�V��[x
�

�x�])
��p��

X
x�V (n�j)[x

�x]

(V (n�j)[x�x]�V��[x
�

�x� ])
�

and a similar relation holds for the positive parts. This implies

(j + 1) j V (n�j�1)[x]� V
(n�j�1)

�� [x�] j�
X

x2fxg

j V (n�j)[x�x]� V
(n�j)

�� [x�
�x�] j :

It can be shown by induction that this implies the statement of the corollary.
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Motivated by Theorem 2.2 we propose the following recursive relation to

estimate the error between V (n�j)[x] and V
(n�j)

�� [x�] by

(j + 1) j V (n�j�1)[x]� V
(n�j�1)

�� [x�] j� (2:2)

X
x�>V

(n�j)

��
[x�
�x�

]

j V (n�j)[x�x]� V
(n�j)

�� [x�
�x�] j �p

�

+
X

x��V
(n�j)

��
[x�
�x�

]

j V (n�j)[x�x]� V��[x
�

�x�] j

+ j
X

x�>V
(n�j)

��
[x�
�x�

]

�p� j

+ j
X

x�>V
(n�j)

��
[x�
�x�

]

(x� � V
(n�j)

�� [x�
�x�])� j :

This estimate has been tested numerically in Section 3 and found to perform

satisfactorily.

3 Numerical Examples

We consider a game in which the \acceptance probabilities" are the reciprocals

of the rewards. This game is approximated by lumping the third and fourth

elements, x3; x4 into one state which can occur twice. This state is chosen in

the �rst approximation as x3 and in the second approximation as (1=2)(x3+x4).

Correspondingly, the acceptance probabilities p(x3) and p(x4) are replaced by

p(x3) and by (1=2)(p(x3) + p(x4)), (see Table I).

In Table II the values of the exact game and both the approximations are

shown at each possible state of the games and their error estimates (2.2) are

compared with the true approximation error. To save space this is only done

for a game of size 5, i.e. x1; : : : ; x5. As expected, the true error increases with

decreasing the stage and increasing the number of possible future outcomes,

and at every stage the true error depends on what future is open to the player.

Though the approximate error lies well below that speci�ed in Theorem 2.1

(=.67), the true error can still be considerably smaller at certain states.

In Table III we compare the goodness of di�erent approximations to the game

which is now increasing successively from the initial �ve elements up to size ten

9



with inverse acceptance probabilitiesi as shown in Table I. It can be seen that the

goodness of the approximation might depend on the way the elements are lumped

into repeated states and their acceptance probabilities. It is recommended that

a group of several states be replaced by their mean rather than by any of them

and similarly for the acceptance probabilites. Also it can be seen from Table

III that the approxmation gains in precision if the size of the game grows in the

sense of Corollary 2.2.

Exact game

x 1 2 3 4 5 6 7 8 9 10

p(x) 1.000 0.500 0.333 0.250 0.200 0.167 0.143 0.125 0.111 0.100

1. Approximation

x� 1 2 3 3 5 6 7 8 9 10

p(x�) 1.000 0.500 0.333 0.333 0.200 0.167 0.143 0.125 0.111 0.100

2. Approximation

x� 1 2 3.5 3.5 5 6 7 8 9 10

p(x�) 1.000 0.500 0.292 0.292 0.200 0.167 0.143 0.125 0.111 0.100

Table I: The full game and di�erent approximations.

As starting values for (2.2) we used j V (n�2)[x] � V
(n�2)

�� [x�] j. This led to

a considerable increase of precision over starting values choosen according to

Theorem 2.1. Using j V (n�j)[x] � V
(n�j)

�� [x�] j for j > 2 would lead to a further

improvement on the error estimate of j V (0) � V
(0)

�� j.

10



1. Approximation 2. Approximation

future V(exc) V(aprx) Er(exc) Er(aprx) V(aprx) Er(exc) Er(aprx)

12 1.25 1.25 0 0 1.25 0 0

13 1.333 1.333 0 0 1.376 0.043 0.043

14 1.375 1.333 0.042 0.042 1.376 0.001 0.001

15 1.4 1.4 0 0 1.4 0 0

23 1.583 1.583 0 0 1.62 0.037 0.038

24 1.625 1.583 0.042 0.042 1.62 0.005 0.004

25 1.65 1.65 0 0 1.65 0 0

34 1.708 1.665 0.043 0.042 1.746 0.038 0.038

35 1.733 1.733 0 0 1.774 0.041 0.041

45 1.775 1.733 0.042 0.042 1.774 0.001 0.001

123 1.694 1.694 0 0 1.738 0.044 0.092

124 1.75 1.694 0.056 0.208 1.738 0.012 0.088

125 1.783 1.783 0 0 1.783 0 0

134 1.874 1.814 0.06 0.208 1.913 0.039 0.037

135 1.911 1.911 0 0 1.963 0.052 0.096

145 1.975 1.911 0.064 0.209 1.963 0.012 0.085

234 2.041 1.981 0.06 0.195 2.07 0.029 0.03

235 2.077 2.077 0 0 2.124 0.047 0.084

245 2.142 2.077 0.065 0.195 2.124 0.018 0.082

345 2.283 2.214 0.069 0.195 2.317 0.034 0.034

1234 2.104 2.036 0.068 0.241 2.133 0.029 0.054

1235 2.144 2.144 0 0 2.195 0.051 0.1

1245 2.217 2.144 0.073 0.246 2.195 0.022 0.108

1345 2.383 2.303 0.08 0.252 2.418 0.035 0.058

2345 2.475 2.392 0.083 0.243 2.507 0.032 0.054

12345 2.525 2.436 0.089 0.268 2.557 0.032 0.069

Table II: Exact Error (Er(exc)) and Estimated Error (Er(aprx)) of First and

Second Approximation to the Game of Size 5 over all Stages.
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1. Approximation 2. Approximation

space V(exc) V(aprx) Er(exc) Er(aprx) V(aprx) Er(exc) Er(aprx)

5 2.5254 2.4364 0.0890 0.2679 2.5566 0.0313 0.0688

6 2.9472 2.8427 0.1046 0.2627 2.9778 0.0305 0.0755

7 3.3644 3.2434 0.1210 0.2629 3.3824 0.0180 0.1100

8 3.7868 3.6813 0.1055 0.2521 3.7787 0.0082 0.1155

9 4.2026 4.1268 0.0758 0.1990 4.1979 0.0047 0.0948

10 4.6249 4.5686 0.0563 0.1488 4.6225 0.0023 0.0748

Table III: Exact Error (Er(exc)) and Approximate Error (Er(aprx)) of the

Approximation to the Value of the Game for Sizes 5 to 10, Using the First and

Second Approximations.

Concluding Remarks

The program used for the above computations written in the C language

is available from the �rst author. We also note that the probabilities pi need

not be assumed to be known but can rather be estimated during the process of

receiving responses successively. For the case when pi < pj for xi > xj we may

assume that the model

p(xi) = 1� �

�
xi � �

�

�
or

p(xi) =

�
1 + exp

�
xi � �

�

���1
applies, where

�(x) =

Z x

�1

1
p
2�

exp

(
�
1

2

�
u� �

�

�2)
du

and �, � are unknown. These parameters can be estimated by the method of

maximum likelihood from at least two known responses and be updated succes-

sively as more observations become available. In this case the results obtained

above have to be interpreted conditionally given �, �.
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