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Abstract

In this paper we propose a concept of stability for intertemporal equi-

libria with rational expectations: current period prices move proportion-

ally to current period excess demand while future prices are formed ac-

cording to the perfect foresight hypothesis. It is shown that this pro-

cess is locally asymptotically stable if all goods are gross substitutes, or

if the equilibrium has no trade. In general this process di�ers from a

tâtonnement process in contingent contracts prices and from a tâtonnement

in asset and spot market prices. It also di�ers from Hicks' and exceptional

stability. In an intertemporal variant of Scarf's example on the instability

of the Walrasian tâtonnement process it will be seen that the stability

notion we propose is more stable than any other process investigated so

far.

Keywords: Stability, rational expectations, general equilibrium

JEL: D52, D54, D84

1 Introduction

Studying the stability of intertemporal general equilibria can de done by staying
within the Arrow-Debreu model. For this it is necessary to assume that there is

a complete set of contingent contracts available at the outset of all times; spot
markets do not reopen and agents do not need to form price expectations (cf.
Debreu (1959) chapter 7). This version of an intertemporal general equilibrium
model is formally equivalent to the static Arrow-Debreu model and one could
therefore derive conditions for the stability of the intertemporal model from the

extensive literature on the stability of the Arrow-Debreu model (cf. Hahn (1982)

for a survey).

In a more realistic setting the system of contingent contracts is seriously

incomplete; agents trade sequentially on reopening spot markets and they will

have to form price expectations. Ever since Arrow (1953) (and more generally
Magill and Shafer (1990)) it is known that if there are su�ciently many �nancial

markets; then the equilibrium allocations of the incomplete markets model will

coincide with those of the complete contingent contracts model, provided agents
have correct price expectations. Thus under the perfect foresight hypothesis,

from a static allocational point of view these two variants of an intertemporal
general equilibrium model are equivalent. It is interesting to analyze whether

these two models are dynamically equivalent as well, i.e. equivalent with respect
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to some adjustment process. This will, of course, depend on the concept of

stability that is chosen in the comparison of the two.

We propose a new concept of stability that has some theoretical bearing on

perfect foresight models: current period prices move proportionally to current

period excess demand, while future price expectations are formed according to

the perfect foresight hypothesis. This de�nes a tâtonnement process of short

period equilibria with rational expectations. It can be seen as a consistent con-

tinuation of the study concerning the stability of short period equilibria with

exogeneous expectations (cf. Enthoven and Arrow (1956), Arrow and Nerlove

(1958), Arrow and Hahn (1971)). In the listed literature one assumes that "The

auctioneer operates in the present on the basis of the excess demands observable

to him in the present" (Arrow and Hahn (1971), page 310). Agents' present

excess demand depends on price expectations that are modelled by some exoge-

neous continous functions of current period prices. Arrow and Hahn (1971) prove

the stability of this short period tâtonnement assuming that there are no `cross
e�ects' on expectations, i.e. the price expectations of each commodity only de-
pend on the present period price of that commodity. Stability then follows if all
goods are gross substitutes and the Hicksian elasticity condition 1 is met, which

it is e.g. with adaptive expectations (cf. Enthoven and Arrow (1956)). Follow-
ing this line of research for analyzing the stability of intertemporal equilibria
we suggest to take the same theoretical step as has been done in the transition
from temporary equilibria towards rational expectations equilibria, i.e. to evoke
the perfect foresight hypothesis in order to endogeneize the ad hoc expectation
functions. We will then analyze the local asymptotic stability of this process.

Strictly speaking the perfect foresight hypothesis only requires that all agents
know the future market clearing prices in equilibrium on current markets. Our

concept thus extends the perfect foresight hypothesis locally to the surrounding

neighbourhood of current period equilibrium prices. It is clear that evoking
the perfect foresight hypothesis cannot possibly be justi�ed by any reference to
becoming more realistic than with exogeneous expectations. It should, however,

be interesting to a theorist to examine what are the consequences for the stability

of short period equilibria, once the arbitrariness of exogeneous expectations is

resolved.

Given the Sonnenschein-Debreu-Mantel results we would, obviously, not ex-

pect the new process to be universally stable . However, as a �rst test it will

be shown that the process is locally asymptotically stable if at equilibrium the
normalized Jacobian of market excess demand (of the corresponding contingent

1The elasticity of price expectations with respect to current period prices is not greater

than one.

2



contracts' model) is negative quasi-de�nite or negative diagonal dominant. The

�rst case occurs e.g. at a no trade equilibrium or in a Hicksian economy, the sec-

ond case occurs e.g. when all goods are gross substitutes. Thus for endogeneous

expectations in the case of gross substitutes we achieve stability of the short

period tâtonnement irrespectively of the Hicksian elasticity condition. Further-

more it follows that we achieve stability in the case of a Hicksian economy. This

latter case is remarkable since Arrow and Hahn (1971) were not able to �nd

conditions for the exogeneous expectation functions that would give stability in

a Hicksian economy. Thus endogeneizing expectations can be seen as a way to

solve this puzzle.

Having suggested a new notion of stability it is interesting to study how it

compares with alternative stability concepts applicable in this setting. The al-

ternative notions we consider are a tâtonnement process in asset-spot markets,

a tâtonnement process in contingent contracts markets, Hicks' stability and ex-

pectational stability 2. We will show that if at equilibrium the Jacobian of the
contingent contracts' market model is symmetric, then, with respect to local
asymptotic stability, all concepts are equivalent to our stability notion. How-
ever, as we will show, in general, each of the concepts will be di�erent to any

other. Furthermore in the comparison we will analyze for which processes the
contingent-contracts, and the asset spot-markets model are dynamically equiv-
alent. The analysis shows that this equivalence does not hold for tâtonnement
stability, i.e. a tâtonnement in asset-spot market prices has di�erent stability
properties than a tâtonnement in contingent contracts' prices. The equivalence
holds for Hicks' stability, expectational stability and for the adjustment process

we propose.

Finally it is shown that in an intertemporal variant of Scarf's (1960) seminal

example on the instability of the Walrasian tâtonnement process our new process

is more stable than any of the other processes investigated because there are no
parameter values of our example that make any of the other processes stable
while our process is unstable. Yet on the other hand there are parameter values

for which our process is stable whereas all other processes remain unstable.

2 The Model

There are two periods, t = 0; 1. Uncertainty arises because one of S possible
states of the world occurs in the second period. In the �rst period there are L1

2Expectational Stability goes back to Lucas(1978) and DeCanio(1979). For an application

to general equilibria see Guesnerie (19??) and Balasko (1994).

3



commodities and in each state s = 1; :::; S there are L2 commodities. A con-

sumption plan of agent i = 1; :::; I is a non-negative vector describing the amount

of the commodities available to the agent for consumption at the various dates

and states of the world; the consumption set is then IRL1

+
�IRSL2

+
. Agents' endow-

ments are denoted by !i; i = 1; :::; I . Each agent i evaluates consumption plans

x 2 IRL1
+ � IRSL2

+ according to his utility function U i . We make the standard as-

sumptions on utility functions and endowments which guarantee di�erentiability

of excess demand:

A:1: !i � 0 and U i is smooth 3, i = 1; :::; I.

In order to transfer income across future states of the world, agents can buy

and sell (without any short sale restrictions) j = 1; :::; J nominal assets. Asset

j pays o� Aj
s units of account if state s occurs. Let A 2 IRS�J denote the asset

returns matrix with generic elementAj
s. Let p1 2 IRL1 and p2 2 IRSL2 denote spot

prices and let q 2 IRJ denote asset prices. To abbreviate notation, for two vectors
x and y that are partitioned across future states of the world, x = (x1; :::; xS) ,
y = (y1; :::; yS) introduce x2y to denote the S-vector of scalar products (xs � ys)

s = 1; :::; S. Finally, let � 2 IRJ denote the portfolio of assets. The following
maximization problem ( M i ) summarizes agent i0s decision problem:

(M i) max
x12IR

L1

+

x22IR
SL2

+

�2IRJ

U i(x)

s:t: p1 � x1 + q � � � p1 � !
i
1

p22(x2 � !i
2
) � A�

In order to ensure that asset demand is well de�ned we assume that there
are no redundant assets, i.e.

A.2. rank A = J .

Note that the decision problem (M i) has a solution if, and only if spot prices

are strictly positive and asset prices are arbitrage free. Let Q denote the inte-

rior of the convex cone spanned by the rows of the pay-o� matrix A, i.e. Q :=

fq 2 IRJjq = AT� for some � 2 IRS

++
g. Then for (q; p1; p2) 2 Q � IRL1

++ � IRSL2

++

let gi(q; p1; p2); z
i
1
(q; p1; p2); z

i
2
(q; p1; p2) denote agent i

0s excess demand of assets,

the �rst period's and the second period's consumption goods, respectively. Given

3See e.g. Debreu (1972) for a precise de�nition of smooth preferences.
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the assumptions A.1 and A.2 excess demand is di�erentiable. Let G(q; p1; p2) :=P
i

gi(q; p1; p2); Z1(q; p1; p2) :=
P
i

zi
1
(q; p1; p2); Z2(q; p1; p2) :=

P
i

zi
2
(q; p1; p2) de-

note market excess demand.

An asset-spot market equilibrium is an equilibrium of prices and price expec-

tations (cf. Radner (1972)), i.e. a price vector (
�
q;

�
p
1;

�
p
2), so that market excess

demand is zero, i.e.

G(
�
q;

�
p
1;

�
p
2) = 0

Z1(
�
q;

�
p
1;

�
p
2) = 0

Z2(
�
q;

�
p
1;

�
p
2) = 0 :

(EQ)

The stability concept we propound requires regularity of @p2Z2(
�
q;

�
p
1;

�
p
2). Be-

cause assets are `nominal', for this end we will assume that there are su�ciently

many �nancial markets , i.e.

A.3. rank A = S .

Remark

Alternatively, for the purpose of regularity we could have chosen assets' pay-
o�s to be denominated in consumption goods and could have kept the generality

of insu�cient asset markets. Since the comparison between the new stability
concept and various other stability concepts including tâtonnement stability in
the Arrow-Debreu contingent contracts' model constitutes an important point of
our paper, we have to make assumption A.3 anyway in order to guarantee that
the equilibrium points whose stability we compare coincide in the two models.

In a model with a complete set of contingent contracts an agent i faces the
following decision problem 4:

(M i) max
�x
1
2IR

L1

+

�x22IR
L
2

+

U i(�x1; �x2)

s:t: �p1 � �x1 + �p2 � �x2 � �p1 � !
i
1
+ �p2 � !

i
2

In this decision problem �pt; t = 1; 2 denotes the vector of contingent con-
tracts prices and �xt; t = 1; 2 denotes the demand for contingent contracts.

Let �zit(�p1; �p2); t = 1; 2 denote agent i0s excess demand and let �Zt(�p1; �p2) :=P
i
�zit(�p1; �p2) denote market excess demand. A contingent contracts' equilibrium

is a price vector
�

�p
1
;
�

�p
2
so that

4Whenever we refer to the contingent contracts' model variables will carry an upper bar.
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�Z1(
�

�p
1
;
�

�p
2
) = 0

�Z2(
�

�p
1
;
�

�p
2
) = 0 :

(EQ)

To abbreviate notations, let Z(q; p1; p2) = (Z1(q; p1; p2); Z2(q; p1; p2)) and
�Z(�p1; �p2) = ( �Z1(�p1; �p2); �Z2(�p1; �p2).

As Arrow (1953) has pointed out, for strictly positive spot prices and arbitrage-

free asset prices, we have the identity 5

(AE) Z(AT�; p1; p2) = �Z(p1; �2p2) for all (�; p1; p2) 2 IRS

++
� IRL1�SL2

++ .

Consequently, equilibrium allocations in the asset-spot market model will

coincide with those of the contingent contracts' model.

Note that due to (AE) the Jacobians of market excess demand of the two

models are intimately related to each other. It follows that for q = AT�

@p1Z(q; p1; p2) = @�p1 �Z(p1; �2p2)

@p2Z(q; p1; p2) = @�p2 �Z(p1; �2p2)�(�)
(AE)

where � is a SL2 diagonal matrix with �s being on the diagonal of the s-
th block. Thus at equilibrium the Jacobian of the asset-spot market model,

@p2Z2(
�
q;

�
p
1;

�
p
2) is regular if and only if @�p2 �Z2(

�
p
1;

�
� 2

�
p
2) is regular. In order to

establish regularity one has to attempt to normalize prices. We choose the last
commodity in the last state of period two as numeraire, i.e. we assume

(N.1) pSL2 � 1.

Without causing confusion, we will add an ^ on top of a vector to denote
that it has been truncated by its last component. Accordingly ^ on a matrix

means we have cancelled the last row, and column. Proposition 11 of Balasko

(1994) establishes that for generic endowments the reduced Jacobian @ �̂p
2

�̂Z2 has

maximal rank. Thus, because of (AE) @p̂2Ẑ2 inherits generic regularity from

@ �̂p2 �̂Z2. Furthermore we will normalize all asset prices to be one, i.e.

(N.2) qj = 1 j = 1; :::; J .

To abbreviate expressions let 1I 2 IRJ denote the vector with every entry
being one. Thus (N.2) can be rewritten as q = 1I.

5(�2p2) 2 IRSL2
++ is obtained from p2 by multiplication of its components psl with �s; l =

1; :::; L2; s = 1; :::; S:
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Remark

As a result of this normalization the reduced Jacobians of the two models

are most similar compared to any other normalization. In Guesnerie and Hens

(1994) it is shown that in a model without uncertainty (N.2) can equivalently

be replaced by chosing any other �rst period consumption good as numeraire.

Now we are in a position to de�ne the stability concept we would like to

propose. Consider the equilibrium equations (EQ). Because of the regularity of

@p̂2Ẑ2(1I;
�
p1; (p̂2; 1)) around

�
p
1, a neighbourhood N(

�
p
1) and a continously di�er-

entiable function 	2 : N(
�
p
1)! IRSL1�1

++
exists so that

Ẑ2(1I; p1;	2(p1); 1) = 0 for all p1 2 N(
�
p
1).

The mapping 	2 corresponds to Balasko's (1994) \expectations foreward cor-

respondence" which he de�nes analogously for the contingent contracts model.

So our stability concept is given by the dynamical system

(t)
:
p
1 (t) = Z1(1I; p1(t);	2(p1(t); 1) t 2 IR.

In (t) current period prices are changed proportionally to current period
excess demand while future prices are formed according to the perfect foresight
hypothesis.

3 Gross Substitution and No-trade

As a �rst test we will show that the dynamical system (t) is locally asymptoti-
cally stable if in the contingent contracts model all goods are gross substitutes,
or if there is no trade. To this end compute the Jacobian of the asset-spot

market model at an equilibrium. Given the normalizations (N:1) and (N:2), we

use Walras Law to cancel all asset markets as well as the market for the last
commodity in the last state. This leads to a reduced Jacobian, Ĵ, which will
be partitioned across time periods. It is important to note how the Jacobian

Ĵ is related to the Jacobian of the contingent contracts market model. This

relationship is given in

Lemma 1

Let J1 = @p1Z1; Ĵ2 = @p̂2Z1; Ĵ3 = @p1Ẑ2; Ĵ4 = @p̂2Ẑ2 and

let �J1 = @�p1
�Z1; �̂J2 = @ �̂p

2

�Z1; �̂J3 = @�p1
�̂Z2; �̂J4 = @ �̂p

2

�̂Z2

then the normalized Jacobian of the asset-spot market model Ĵ =

�
J1 Ĵ2

Ĵ3 Ĵ4

�
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and the normalized Jacobian of the contingent contracts model �̂J =

"
�J1 �̂J2
�̂J3 �̂J4

#

are related by the formula Ĵ = �̂J

�
IL1

�(�)

�

where IL1 denotes the identity matrix of dimension L1 and �(�) 2 IRL2S�1 is

a diagonal matrix with �S being the diagonal entry in the s-th state, s = 1; :::; S.

The proof of Lemma 1 follows immediately from allocational equivalence,

(AE).

The following convention is quite useful:

De�nition

A matrix is said to be stable if every eigenvalue of the matrix has a negative

real part.

Given this de�nition, from the theory of dynamical systems we notice that the
adjustment process (t) is locally asymptotically stable if the following criterion

is met

(s.c.t.)

The dynamical system (t) is locally asymptotically stable if the ma-

trix H = J1 � Ĵ2Ĵ
�1
4
Ĵ3 is stable. It is unstable if at least one eigen-

value of H has a positive real part.

Remark

Note that when using allocational equivalence the matrixH can be expressed

via the contingent contracts Jacobian �̂J . We then obtain H = �J1 � �̂J2 �̂J4
�1

�̂J3:
Furthermore note that applying (t)-stability to the contingent contracts model,

i.e. to the matrix �̂J would lead to exactly the same expression. Thus, with

respect to (t)-stability the asset-spot and the contingent contracts model are

equivalent.

The following proposition shows that the matrixH inherits negative diagonal

dominance6 and negative quasi-de�niteness7 from the matrix �̂J .

6A matrix A = (aij)i;j=1;...;n is negative diagonal dominant if aii < 0 and for some w 2

IRn
+ j aii j wi >

nP

j=1
j6=i

j aij j wj ; i = 1; . . . ; n .

7A matrix A is negative quasi-de�nite if the symmetric matrix A+AT is negative de�nite.
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Proposition 1

If at equilibrium the normalized Jacobian of the market excess demand in the

contingent contracts model �̂J ,is negative diagonal dominant or negative quasi-

de�nite, then the matrix H is negative diagonal dominant respectively negative

quasi-de�nite.

Proof

negative diagonal dominance:

Since a matrix A is negative diagonal dominant i� �A is positive diagonal

dominant, we will show that �H is positive diagonal dominant if � �̂J is positive

diagonal dominant.

Let � �̂J be diagonal dominant then its inverse � �̂J�1 is diagonal dominant

(cf. Horn and Johnson (1991) Theorem 2.5.12). The formula for the inverse of

a partitioned matrix (cf. Horn and Johnson (1985) 0.7.3) speci�es that �H�1 is

the Shur complement of � �̂J , i.e. the upper left block in the inverse of � �̂J. Since
diagonal dominance is inherited by principal submatrices, �H�1 is diagonal

dominant and then so is �H itself. Thus it remains to argue that �H has a

positive main diagonal. If � �̂J is positive diagonal dominant, then � �̂J is a P-
matrix (cf. Murata (1977), Theorem 21 in chapter 1). From the formula of the

inverse (cf. Horn and Johnson (1985), 0.8.2) we achieve that � �̂J
�1

has a positive
diagonal, which is then inherited by �H�1 and again by inversion this carries

over to �H.

negative quasi-de�niteness:

The reasoning for the case of negative quasi-de�niteness is completely anal-
ogous, because the inverse of a positive quasi-de�nite matrix is positive quasi-
de�nite (cf. Theorem 37, chapter 2 in Murata (1977)) and because positive

quasi-de�niteness is inherited by principal submatrices.

2

Note that negative quasi-de�nite and negative diagonal dominant matrices

are stable8. Thus Proposition 1 gives two su�cient conditions for the stability

of (t) . Furthermore note that, as we will show in section 4, stability of �̂J itself

does not guarantee stability of (t). Thus in this sense Proposition 1 gives the

weakest conditions for the stability of (t).

We get the following two corollaries:

8Theorem 22, chapter 1 in Murata (1977); Theorem 39, chapter 2 in Murata (1977).
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Corollary 1

At a no trade equilibrium the process (t) is stable.

Proof

At a no trade equilibrium the matrix �̂J is symmetric negative de�nite (cf.

Balasko (1988), proposition 3.5.2). Thus, Propositon 1 applies.

2

Corollary 2

At a gross substitutes equilibrium9 the process (t) is stable.

Proof

As Negishi (1958) has shown, gross substitutes combined with homogeneity,

i.e. �J �p = 0 implies that �̂J is negative diagonal dominant. Thus Proposition 1

applies.

2

Part of the relevance of Proposition 1 can be seen from a comparison to
Arrow and Hahn's (1971) analysis of short period equilibria with exogeneous
expectations. Using our notation Arrow and Hahn (1971) consider the excess

demand of the current period, �Z1, as a function of current period prices �p1
and future expected prices �p2 which are resulting from expectations functions
	l : IR++ ! IR++; l = 1; . . . ;L � 1. These functions have no `cross e�ects', i.e.
�p2l = 	2l(�p2l); l = 1; . . . ; L.10 �Z1 is assumed to be homogenous with degree zero
in prices and satis�es Walras' Law, i.e. for all �p1; �p2 2 IRL

++
(H) �Z1(��p1; ��p2) =

�Z1(�p1; �p2) for all � > 0 and (W ) �p1 �Z1(�p1; �p2) = 0. Arrow and Hahn (1971) show
that the dynamical system

(t0) _�p(t) = �Z1(�p1(t);	(�p1(t)))

is globally stable if all goods are gross substitutions and for all prices �p1 2

IRL

++
the Hicks elasticity condition

"l :=
d log �p2l

d log �p1l
� 1; l = 1; . . . ; L

is met for all commodities.

Note that with perfect foresight and L = 1 the elasticity of expectations

is one because of the Homogenity property 	(�p1) = �	(p1) for all � > 0

9A gross substitutes equilibrium is an equilibrium at which every o� diagonal element of

the Jacobian �J is positive.
10In Arrow and Hahn (1971) there are the same number of commodities in both periods.
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and all p1 > 0. Thus for this case our result coincides with that of Arrow

and Hahn (1971). With multiple commodities, however, the assumption of no

cross derivatives on expectations is, in general, not compatible with the perfect

foresight hypothesis and consequently there is no reason why Hicks' elasticity

condition should be ful�lled with rational expectations.

Finally note that Enthoven and Arrow (1956) achieve global stability under

the adaptive expectations' hypothesis

(a) _�p1l(t) = �j(�p1l(t)� �p2l(t)); �j > 0

if all goods are gross substitutes. But again this is not compatible with rational

expectations.

Our result in the case of a symmetric negative de�nite Jacobian is of some

interest since Arrow and Hahn (1971) were not able to extend their results based
on exogeneous expectations to the case of a Hicksian economy. In a Hicksian
economy consumers have identical and homothetic preferences. Recall that in
this case the Jacobian at equilibria is symmetric negative de�nite. Arrow and

Hahn (1971) state on page 312 "Curiously enough, it does not seem possible to

extend all these results to the Hicksian cases" and in the same paragraph "There
may be a way of showing stability for the Hicksian case also, but we have not

been able to �nd it." Thus endogeneizing expectations could be seen as an answer
to this curious phenomenon.

4 Comparison of the stability concepts

In this subsection we will compare the new stability concept (t) with the stabil-

ity of a tâtonnement in contingent contracts prices (c), Hicks' notion of perfect

stability (h) and with expectational stability (e). We will show that if at equi-
librium the Jacobian matrix of the contingent contracts model is symmetric,

then the stability concepts (t); (c); (h) and (e) are all equivalent. By means of

examples we will then demonstrate that in general however these concepts are
all di�erent.

Before doing so, consider a tâtonnement process in spot prices, p1, and price

expectations, p2. Given the normalization rules (N:1) and (N:2) suppose �rst
(second) period prices move proportionally to �rst (second) period excess de-

mand, i.e. consider the dynamical system

11



(r) _p1(t) = Z1(1I; p1(t); p̂2(t); 1)

_̂p
2
(t) = Ẑ2(1I; p1(t); p̂2(t); 1) for all t 2 IR:

The dynamical system (r) is locally asymptotically stable if and only if the

corresponding Jacobian matrix is a stable matrix. Thus we have the stability

criterion

(s.c.r.)

the dynamical system (r) is locally asymptotically stable if the matrix

Ĵ is a stable matrix. It is unstable if at least one of the eigenvalues

of Ĵ has positive real part.

As the following argument shows, stability of (r) might depend on the choice
of the asset structure A or alternatively (recall q = AT�) on the choice of asset
price normalization. This is a particular property of tâtonnement stability that
does not arise for any of the other stability concepts (h); (c); (e); and (t).

To corroborate the claim, consider the case where there are no cross e�ects
among the two time periods. Then applying Lemma 1 (s.c.r.) is satis�ed if,

and only if the matrix �̂J0 and the matrix �̂J4 are both stable. However, stability
of the latter matrix might depend on the choice of �. Recall that for L2 = 3,

i.e. �̂J4 2 IR2�2, the matrix �̂J4 is stable if and only if its trace is negative and

its determinant is positive (these are the Routh-Hurwicz conditions specialized
to a 2 � 2 matrix, cf. Murata (1977) p.93). The sign of the determinant is of

course not a�ected by the choice of �. Thus if the diagonal entries of �̂J4 di�er

in sign, then the choice of � can a�ect the stability of �̂J4. The problem here is

that a stable matrix might not be negative quasi-de�nite. Because if it were,

we would know from Arrow and McManus (1958) (cf. Theorem 39' chapter 2 in

Murata (1977)) that its stability is una�ected by postmultiplication by a positive
diagonal matrix.

A tâtonnement in contingent contracts prices, (c), given the choice of nu-

meraire (N.2) is the dynamical system

(c) _�p1(t) = �Z1(�p1(t); �̂p2(t); 1)

_̂�p2(t) = �̂Z2(�p1(t); �̂p2(t); 1) for all t 2 IR+:

And we have the stability criterion

12



(s.c.c.)

A tâtonnement in contingent contracts prices is locally asymptoti-

cally stable, if the matrix �̂J is a stable matrix. It is unstable if at

least one eigenvalue of �̂J has a positive real part.

The contingent contracts process (c) is quite similar to the asset-spot market

process (r). Note, however, that since the latter is a�ected by the choice of the

asset structure A in general neither (s.c.r.) implies (s.c.c.) nor the reverse needs

to hold. Again this can be demonstrated by the case where there are no cross

e�ects between periods and let L2 = 3. If the sign of the diagonal entries of Ĵ4
di�ers, we can have two cases:

Firstly, if the trace of �̂J4 is positive, (s.c.c.) is violated but (s.c.r.) might still

hold for some particular choice of A (respectively �).

Secondly, if the trace of �̂J4 is negative, (s.c.c.) is satis�ed but (s.c.r.) might
not hold for a particular choice of A.

Thus although the two equilibrium concepts are equivalent from a static
allocational point of view, they are di�erent with respect to their tâtonnement
dynamics.

According to Hicks (1939) an equilibrium in the markets for commodity j
is said to be imperfectly stable if the markets for all the other commodities are
held in equilibrium (with possible adjustment of the prices of these goods), and
there is stability in the j-th market. A system of markets is perfectly stable

if each market is imperfectly stable regardless of the number of other markets
adjusted to equilibrium. Since we propose to consider the stability of current
period markets given future markets remain in equilibrium, our stability concept

de�nitely has some similarity with that of Hicks. As Samuelson (1947) has noted,
Hicks stability (h) is void of any dynamical system. The well-known stability

criterion for Hicks stability is

(s.c.h.)

Given the normalization rules (N:1) and (N:2) the system of �rst
and second period spot markets is Hicks stable (h) if the matrix �Ĵ
is a P-matrix11. If at least one minor of �Ĵ is negative, then (h) is

unstable.

The sign of the minors are una�ected by the postmultiplication by positive

diagonal matrices. Thus by Lemma 1 (s.c.h.) occurs if, and only if � �̂J is a

11A P-matrix is a matrix with every principal minor being positive.

13



P-matrix. Consequently it does not matter for Hicks stability whether we con-

sider the original asset-spot market system Z, or rather the contingent contracts

market system �Z.

The last concept to be compared is that of expectational stability which was

�rst formulated in aggregate macroeconomic models as a tâtonnement process

in expectations (cf. Lucas (1978), DeCanio (1979)). As Guesnerie (1992) has

noticed and Evans and Guesnerie (1993) have shown rigorously, in an appropri-

ately formulated normal form game expectational stability is closely related to

the notion of rationalizability introduced by Bernheim and Pearce. An equilib-

rium is said to be expectational stable, (e), if, for any non-trivial restrictions on

expectations that are common knowledge, expectations converge to its equilib-

rium value. Every agent revises his expectations using the fact that all agents

optimize and thus he is able to constrain the set of possible values of the en-

dogeneous variables that rational agents can expect. Applied to our framework

this would require each agent to engage in the following mental process: starting
with a tentative set of price vectors for future period prices, the agent is able to
deduce the set of current price vectors being compatible with the equilibrium in
the �rst period given the tentative second period price vectors. For this tenta-

tive set of �rst period price vectors he can then deduce a new tentative set of
second period price vectors. The iteration of this procedure de�nes a dynamical
system and, as before, we are interested in its local asymptotic stability. Note
that the iteration of sets converges to a single point if and only if each point of
the initial set converges to that point. We will therefore only focus on iterating
point expectations. Since the models Z and �Z are srtictly equivalent, expecta-

tional stability can be de�ned for both of them.12 Usually this leads to di�erent
dynamical systems, but, as is shown in Guesnerie and Hens (1994), for the price
normalization used here they will coincide.

To de�ne expectational stability formally, let resources w be chosen so that Ĵ1
and Ĵ4 are regular, (Balasko (1994) proves that this holds as a generic property

in !.). Then locally there is a function  2 : N(
�
p
1) � IRL1

++ ! IRL2�1
++ so that

Ẑ2(p1;  2(p1); 1) = 0 for all p1 2 N(
�
p
1):

By analogy, there is a function  1 : N(
�
p
2) � IRL2�1

++ ! IRL1

++ so that

Z1( 1(p̂2); p̂2; 1) = 0 for all p̂2 2 N(
�
p
2):

The expectational dynamics are given by the recursion

(e) p̂2(t+ 1) =  2( 1(p2(t))) t 2 IIN

12Guesnerie (199 ) works with the asset-spot market model Z, whereas Balasko (1994) con-

siders expectational stability in the contingent contracts model �Z.
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Let �(A) denote the max norm of the eigenvalues of A

The stability criterion for (e) is

(s.c.e.)

expectational stability occurs if �(Ĵ�1
0
Ĵ1Ĵ

�1
4
Ĵ2) < 1. The process

(e) is unstable if at least one eigenvalue of (Ĵ�1
0
Ĵ1Ĵ

�1
4
Ĵ2) has norm

greater than one.

Note that we could also have de�ned expectational stability in terms of con-

tingent contracts excess demand. Due to Lemma 1 and the fact that �(�) is

cancelled out by �(�)�1 this would lead to exactly the same stability criterion!

Now we are in a position to compare the stability notions (h); (c); (e); and

(t). The �rst point to mention is that in the case of a symmetric Jacobian �J all

four concepts coincide.

Proposition 2

Suppose the Jacobian of the contingent contracts excess demand �J is sym-
metric then the four stability concepts (h); (c); (e); and (t) are all equivalent.

Proof

First note that a symmetric matrix is a P-matrix if and only if it is positive
de�nite (Theorem 35, chapter 2 in Murata (1977)). Furthermore a symmetric
matrix is negative de�nite only if it is stable (cf. Horn and Johnson (1985)). To
complete the equivalence recall from Horn and Johnson (1985) Theorem 7.7.6

that a symmetricmatrixM =

�
A B

BT C

�
, where A and C are square, is positive

de�nite if and only if C �BTA�1B is positive de�nite which by Theorem 7.7.6
in Horn and Johnson (1985) is equivalent to �(BTA�1BC�1) < 1.

2

In the general, asymmetric case all concepts are di�erent. Yet before showing
this, we observe that in the case where Ĵ is a 2�2 matrix (s.c.h.) implies (s.c.c.)

and (s.c.t.).

Proposition 3

If the normalized Jacobian of the contingent contracts market excess demand

Ĵ is of dimension 2 then Hicks stability (h) implies both, contingent contracts
stability (c) and the stability of (t).

Proof

Let L1 + (L2 � 1) = 2 then there are three possible cases:

1. L1 = 2,
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i.e. Ĵ reduces to the �rst period's Jacobian J1 =

�
J11 J12
J13 J14

�
where J1l; l = 1; 2; 3; 4 are scalars.

(s:c:h:) is obtained i� J11 < 0; J14 < 0 and j J1 j> 0.

(s:c:c:) = (s:c:t:) is obtained i� J11 + J14 < 0 and j J1 j> 0.

2. L1 = 1,

i.e. Ĵ =

�
J1 Ĵ2

Ĵ3 Ĵ4

�
where J1 and Ĵk; k = 2; 3; 4 are scalars.

(s:c:h:) is obtained i� J1 < 0; Ĵ4 < 0 and j Ĵ j> 0

(s:c:c:) is obtained i� J1 + Ĵ4 < 0 and j Ĵ j> 0

(s:c:t:) is obtained i� J1 �
J1Ĵ2

Ĵ4
< 0

3. L1 = 0,

i.e. Ĵ =

�
Ĵ41 Ĵ42

Ĵ43 Ĵ44

�
where Ĵ4l; l = 1; 2; 3; 4 are scalars.

Now (t) is not de�ned and (s:c:h:) implies (s:c:c:) by the same argument as
in case 1.

2

The following section deals with the fact that all stability concepts are gen-
erally di�erent from one another. This point will be illustrated by a number of
examples. Because of the Sonnenschein-Debreu-Mantel results it is not necessary
to construct economies whose Jacobians possess the features needed for our ex-
amples, so that we can start working directly in terms of the Jacobian matrices.

One can then construct the economies appropriately (Geanakoplos and Polemar-

chakis(1980)). Most of the examples can be given in the case L1 = L2 � 1 = 1,

so that J0; J1; J2andJ4 are scalars. For Ĵ =

�
J0 J1
J2 J4

�
the stability criteria then

specialize to

(s.c.h.) J0 < 0; J4 < 0; J0J4 � J1J2 > 0

(s.c.c.) J0 + J4 < 0; J0J4 � J1J2 > 0

(s.c.e.) j J1J2
J0J4

j< 1

(s.c.t.) J0 �
J1J2
J4

< 0.

The following table clari�es most of the relations between (h); (c); (e) and (t).
A `+' (- ) sign in the table indicates that the corresponding stability criterium is
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satis�ed (violated).

Ĵnconcept (h) (c) (e) (t) result

�
�2 7

�1 3

�
- - - + (s:c:t:) does not imply any of the others

�
�1 2

�1 �1

�
+ + - + (s:c:h:) does not imply (s:c:e:)

�
�2 �3

1 1

�
- + - - (s:c:c:) does not imply any of the others

�
1 �1

1 �2

�
- - + - (s:c:e:) does not imply any of the others

Thus it remains to show that (s:c:h:) neither implies (s:c:c:) 13 nor (s:c:t:).
For this let L1 + (L2 � 1) = 3 , since the partition of Ĵ is irrelevant for (h) and
(c) consider any matrix

A =

2
4 a11 a12 a13
a21 a22 a23
a31 a32 a33

3
5 :

Then we get

(s.c.h.)

a11 < 0; a22 < 0; a33 < 0

a11a22 > a12a21; a11a33 > a22a33; a22a33 > a23a32

j A j< 0

(s.c.c.)

a11 + a22 + a33 < 0

j 2A � I j< 0,

j A j< 0

13Samuelson (1947) gives a 4� 4 matrix which shows that (s.c.h.) does not imply (s.c.c.).
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where

2A � I =

0
@ a11 + a21 a23 �a13

a32 a11 + a33 a12
�a31 a21 a22 + a33

1
A

which is the bialternate product of A and I, cf. Murata(1977). Thus any matrix

A with a12 = a23 = a31 = 0; a11 < 0; a22 < 0; a33 < 0 will work provided

j A j= a11a22a33 + a13a21a32 < 0

and

j 2A � I j= (a11 + a22)(a11 + a33)(a22 + a33)� a13a32a21 > 0

e.g. choose

A =

0
@ �1 0 �3

�3 �1 0

0 �3 �1

1
A :

To show that (h) does not imply (t) let L1 = 2 and L2 � 1 = 1. Then

Ĵ =

0
@ Ĵ11 0 Ĵ21

Ĵ13 Ĵ14 0

0 Ĵ32 Ĵ4

1
A

where again all entries are scalars and we get

(s.c.h.) Ĵ11 < 0; Ĵ14 < 0; Ĵ4 < 0 and Ĵ11Ĵ14Ĵ4 + Ĵ11Ĵ13Ĵ32 < 0

(s.c.t.) Ĵ11 + Ĵ4 < 0 and Ĵ11Ĵ4 + Ĵ11Ĵ32Ĵ13 > 0.

Thus

Ĵ =

0
@ �1 0 �2
�1 �1 0

0 �1 �1

1
A

sati�es the requirements. Hence, by means of examples we have shown

Proposition 4

In general, the stability of the processes (t), (c), (h), (e) never implies the
stability of any of the others.

5 Scarf's example

In the preceeding section we have shown that, without posing any restrictions

on the set of economies, we are able to �nd examples which show that in general
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the four stability concepts are all di�erent. We now take the other extreme point

of view by comparing these concepts by means of a particular simple economy.

This will deepen the understanding concerning the di�erences between these

concepts.

The example we have chosen is an intertemporal variant of Scarf's (1960)

famous example on the instability of the Walrasian tâtonnement process. Scarf's

example was very important since it put an end to the search for general stability

results in the complete markets model (cf. Fisher (1987)).

Moreover, the Scarf example is of topical importance as many of the proposed

new stability concepts are usually �rst tested in Scarf's example (cf. Cartigny

(1990), Flaschel (1991) and Herings (1994)) .

Finally, the cause of instability in Scarf's example is generally well under-

stood. Since preferences are homothetic, the instability arises from wealth ef-

fects. In an exchange economy an individual's wealth is given by the evaluation

of his endowments. The crucial parameters of the model will then be the dis-
tribution of agents' endowments (cf. Hirota (1981), Hildenbrand and Kirman
(1988) and Hens and Hildenbrand (1994)).

We will consider an intertemporal variant of Scarf's example. To keep things
simple there will be no uncertainty. Agents' preferences for second period con-
sumption are adapted from Scarf (1960) and �rst period consumption is ag-
gregated into a single commodity. Across periods agents' utility functions are
additively separable with a common discount rate.

In the example there is a unique equilibrium. The Jacobian matrix at that
equilibrium is of dimension 3 and not always symmetric, so that in principle all
four stability concepts could be distinguished.

We get the following striking results:

Hicks stability is equivalent to contingent contracts stability, and these sta-

bility concepts are qualitatively equivalent to the stability in Scarf's original
example. Up to the e�ect of the discounting for (c) and (h) we get instability
for exactly the same distribution of endowments as in the atemporal Scarf ex-

ample. The set of endowment distributions leading to instability is decreasing

monotonically in the discount factor. Compared to (c) and (h) our new stability
concept resembles more that of expectational stability (e). Both concepts are
stable whenever (c) or (h) are stable; and there are parameter values for which

(e) and (t) are stable but (c) and (h) are not. The stability of (e) and (t) is

not monotone in the discount factor. We achieve stability for su�ciently high

or low discounting. (t) di�ers from (e) only with respect to the value of the

lower bound of the discount factor below which we achieve stability. This value
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is twice as large for (t) as it is for (e). Therefore we have managed to introduce

a new process which proves to be the most stable one. Finally it is important to

note that while (c) and (h) are una�ected by the choice of the numeraire in the

second period, this normalization is crucial for (e) and (t) and it can be used to

explain the instability of these two processes.

The details of the example are as follows:

There are three commodities tomorrow (L2 = 3) and a single commodity to-

day (L1 = 1). There are three agents with preferences about date 2 consumption

given by

U i(x2) := min
l2f1;2;3gni

fx2lg i = 1; 2; 3:

Thus agent i wants to consume the commodities f1; 2; 3gni in �xed proportion

and he is not interested in having commodity i. These preferences are those

chosen by Scarf (1960). With a denoting the discount factor common to all
agents, an agent's decision problem in the contingent contracts model is given
by

(M
i
) Max

�x1�0;�x2�0
a log�x1 + (1 � a)logU i(�x2)

s:t: �p1 � �x1 + �p2 � �x2 � �p1 � !
i
1
+ �p2 � !

i
2
:

From ( �M )i we derive the demand

�xi
1
=
a(�p1 � !

i
1
+ �p2!

i
1
)

�p1

�xi
2l =

8<
:

(1�a)(�p1�!
i
1
+�p2�!

i
2
)

P

j 6=i

�p2j
l 6= i

0 l = i

:

Thus for !i
1
= 1; i = 1; 2; 3 and

P
i

!i
l = 1 =

P
l

!i
l we get the equilibrium

prices
�
p = (a; 1� a; 1� a; 1� a) and the equilibrium allocation is

�

xi= 1;
�

xi2l=

�
1

2
l 6= i

0 l = i
i = 1; 2; 3.

Since the market clearing conditions can be transformed into a linear system

in prices which has maximal rank, this equilibrium is the unique equilibrium of

the model.
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Straightforward computations lead to the following expression for the Jaco-

bian matrix at equilibrium

�J =
1

12

8>><
>>:

2
664

12(a�1)

a
4 4 4

4 2a

a�1
1�2a
a�1

1�2a
a�1

4 1�2a
a�1

2a

a�1
1�2a
a�1

4 1�2a
a�1

1�2a
a�1

2a
a�1

3
775� 2

2
664

0 0 0 0

0 !1
1
!1
2
!1
3

0 !2
1
!2
2
!2
3

0 !3
1
!2
3
!3
3

3
775
9>>=
>>; :

Note that the �rst matrix in this expression is symmetric negative de�nite.

Thus stability is governed by the matrix of initial resources W = (!i
l)i;l=1;2;3:We

will follow Hirota (1981) and restrict attention to double stochastic matrices W.

Note that in the space of these matrices there are the following six "corners":

n1 n2 n30
@ 1 0 0

0 1 0

0 0 1

1
A

0
@ 0 1 0

0 0 1

1 0 0

1
A

0
@ 0 0 1

1 0 0

0 1 0

1
A

n4 n5 n60
@ 1 0 0

0 0 1
0 1 0

1
A

0
@ 0 1 0

1 0 0
0 0 1

1
A

0
@ 0 0 1

0 1 0
1 0 0

1
A

In Scarf's (1960) original example the chosen endowments were situated in
the second corner i.e. n2. For this choice each trajectory of the Walrasian

tâtonnement process follows a closed orbit around the equilibrium. This is clearly
not a robust choice of parameters, since in this case all eigenvalues have real part

zero. The same is true for n3. Thus with respect to the Walrasian tâtonnement

process the equilibrium is neither stable nor unstable for n2 and n3. Whereas the
equlibrium is stable for n1 it is unstable for n4; n5; n6 (cf. Hens and Hildenbrand

(1994)). Our results on the stability of the various concepts are summarized in
the following tables: table (c) table (h) table (e) table (t). In these tables the

sign `+' (- ) indicates that for the corresponding parameter values the process is

stable (unstable). A `0' denotes that neither of the two is true.
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(h)

a/n 1 2 3 4 5 6

0 + + + - - -

.780415 + + + - - -

.1 + + + - - -

.13397415 + + + - - -

.25 + + + - - -

.5 + + + 0 0 0

.7 + + + + + +

.75 + + + + + +

.8 + + + + + +

1 + + + + + +

(c)

a/n 1 2 3 4 5 6

0 + + + - - -

.780415 + + + - - -

.1 + + + - - -

.13397415 + + + - - -

.25 + + + - - -

.5 + + + 0 0 0

.7 + + + + + +

.75 + + + + + +

.8 + + + + + +

1 + + + + + +
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(e)

a/n 1 2 3 4 5 6

0 + + + + + +

.780415 + + + 0 + 0

.1 + + + - + -

.13397415 + + + - + -

.25 + + + - + -

.5 + + + 0 0 0

.7 + + + + + +

.75 + + + + + +

.8 + + + + + +

1 + + + + + +

(t)

a/n 1 2 3 4 5 6

0 + + + + + +

.780415 + + + + + +

.1 + + + + + +

.13397415 + + + 0 + 0

.25 + + + - + -

.5 + + + 0 + 0

.7 + + + + + +

.75 + + + + + +

.8 + + + + + +

1 + + + + + +
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Thus as long as a > 0:5 all concepts are stable. Smaller values of the discount

factor a result in the instability of (c) and (h) for exactly the same endowment

distributions as in Scarf's original example14. Restricting attention to the corners

of the endowment space, (e) and (t) di�er from these processess only with respect

to the �fth corner for which they are stable as well. Furthermore, for a < 0:134

(t) becomes stable again and for a < 0:078 (e) becomes stable again. Note

that tables (c)-(t) display the stability of the various concepts for endowment

distributions being corners as described above. To display the behaviour for

intermediate endowment distributions we produced some triangular plots (see

the appendix). In the triangular plots each corner corresponds to one of the 6

corners in the parameter space and intermediate endowment distributions are

convex combinations of the 3 corners chosen. A bright (dark) spot denotes a

stable (unstable) con�guration of parameters.

Combining stable with unstable corners will result in areas in these triangles

of stability and instability respectively. It is interesting to point out that even
combining stable corners can lead to instability for some convex combination
of parameters and vice versa for instable corners. An instance of the latter
occurs with the corners n4; n5; n6. Here a convex combination of the corners

means to distribute endowments more equally among consumers and as it was
�rst pointed out by Hildenbrand and Kirman (1988) this leads to stability in
the original Scarf example. The same is true for (c) and (h) in our extended
version of Scarf's example. An instance for the opposite phenomenon occured
again with combining corners n4; n5; n6 in the case of (e) and (t). Although for
a su�ciently small discount rate each corner is a stable endowment distribution,

every convex combination does not necessarily lead to stability. In the middle of
the triangle we obviously achieve stability again; this follows since the Jacobian
is symmetrically negative de�nite orthogonal to aggregate endowments in this
case ( cf. Hildenbrand and Kirman (1988)). But in contrast to (c) and (h) there
is no monotone increase of stability when endowments become more equally

distributed.

By way of explanation of these complex results we would like to suggest the

following:

(c) and (h) are similar in the sense that in contrast to (e) and (t) they do

not use the intertemporal structure of the model explicitly. In this sense they

are closer to the tâtonnement process in Scarf's original example. Instability

therefore occurs if, and only if, the agents' marginal propensity to consume and

the agents' endowments are too closely positively associated with each other

14Note that introducing the �rst period consumption stabilizes the equilibrium for the en-

dowment corners n2 and n3.
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(cf. Hens and Hildenbrand (1994)). In this sense instability is necessary for

the instability of the processes (e) and (t). To get some explanation for the

remaining di�erence to (c) and (h) consider the role of the numeraire in our

example:

So far the third commodity was chosen as numeraire. If we were to choose

the �rst commodity instead, then we would have to drop the second row and

column of �J. Since the �rst matrix is not a�ected by this, we can focus on W.

We observe that the new results can be obtained from the previous results by a

shift of index of the endowment corners:

n1 ! n1; n2 ! n2; n3 ! n3; n4 ! n5; n5 ! n6; n6 ! n4:

Similarily, if we were to choose the second commodity as numeraire, the shift

of indices would have to be

n1 ! n1; n2 ! n3; n3 ! n2; n4 ! n4; n5 ! n6; n6 ! n6:

Note that this does not change the stability of either (c) nor (h), because

stable corners have been exchanged for stable corners and unstable corners have
been exchanged for unstable corners. However the stability of (e) and (t) is
a�ected by the choice of the numeraire. Note that going back to the asset-spot
market model, changing the numeraire means changing the commodity in which
the asset pay-o�s are denominated. Thus a change in the stability properties

of the equilibrium can be interpreted by changing the assets' pay-o� pattern.15

If commodity one were chosen, then the endowment corner n4 would become
unstable whereas n5 would become stable. Similarily, for the second good as
numeraire, n5 would become stable whereas n6 would become unstable. From
this we can deduce the following `rules for stability' concerning this intertemporal
variant of Scarf's example:

(1) If a consumer who does not want to consume the numeraire owns all of it,
the equilibrium is stable.

(2) If exactly one consumer owns all of what he does not want to consume and
this is not the numeraire, the equilibrium is unstable.

15The importance of the choice of second period's numeraire for (e) has as well be noticed

by Guesnerie and Hens (1994).
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