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1 Introduction

In recent years, stochastic volatility models have been a major issue in the econo-
metrics of �nancial markets. The purpose of all these models is to account for
empirical �ndings such as fat tailed distributions and volatility clustering.

The most prominent class of such models is provided by the ARCH-type models
(cf. Engle(1995), Bollerslev et al.(1992)). In these models, the conditional variance
of a �nancial time series is speci�ed as a function of past observations of the series
as well as of its own past. At least in the parametric case, this amounts to specifying
a certain class of parametric functions (e. g. linear or logarithmic).

In this paper, we propose a completely di�erent approach which is based on
probabilistic assumptions instead of functional speci�cations. In particular, we pick
up a simple model used in Du�e and Gray[1995] for the prediction of oil price
returns. In this model, the conditional variance is driven by a two-state homogeneous
Markov process. As a compensation for the lack of a functional speci�cation, which is
essential for the calculation of the likelihood function, a certain type of noncausality
requirement for the return process in relation to the conditional variance has to
made.

The main purposes of this paper are to investigate the probabilistic properties of
the resulting return process, to present and to analyze an easy-to-handle estimation
procedure for the parameters of interest, and, �nally, to construct forecasts for future
squared volatilities.

The paper is organized as follows. In section 2, we present the model and derive
some basic properties of the resulting return process. Section 3 introduces the
moment estimator the asymptotics of which are analyzed in section 4. The forecasts
are constructed in section 5. In the �nal section, we illustrate the �nite-sample
properties of the estimators and the predictors by applying them to arti�cial data
in Monte-Carlo experiments as well as to some historical exchange rate data.

2 The model and some asymptotic properties

We assume that the returns are generated by a model of the form

Rt = �+ �t�t; (1)

where the random shocks �t to the returns Rt are normalized white noise. Under
the assumptions to be made below, it will make no di�erence whether we work
on a double sided time horizon (t 2 Z) or on a one sided horizon (t 2 N) with
an appropriate initial condition. In either case, however, we shall assume that
observations are available at times t = 1; 2; : : : ; T . In applications, we may take
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either the relative price changes

Rt =
Pt � Pt�1

Pt�1

or the logarithmic price changes

Rt = logPt � logPt�1

as returns. The �t may be interpreted as random shocks to the variance, since

E
n
(Rt � �)2jFt�1

o
= Ef�2

t jFt�1g (2)

if Ft denotes the ���eld containing the information available at time t and the �t
satisfy the following assumption.

Assumption 1.

(i) The �t are i. i. d. , symmetric, normalized to variance one and possess an every-

where positive density w. r. to Lebesgue measure.

(ii) The �t possess moments up to order 12.
(iii) For each t, �t is independent of Ft�1 _ �f�tg.

Let us remark right here that, for the estimation procedure used below, the �rst
three even moments of �t are assumed to be known. Hence, as is common practice
in ARCH-related models, the standard normal distribution would be the canonical
choice.

Assumption 1 leaves open a wide range of speci�cations for �t. In the majority
of models treated in the literature, a functonal speci�cation is made, which, in its
most general form, may be written as

�t = Ft(Rt�1; Rt�2; : : : ; �t�1; �t�2; : : : ; �t�1; �t�2; : : : ;�t;�t�1; : : :); (3)

i. e. �t is a function of the past returns, its own history, as well as the past of some
additional observable exogenous variables (e. g. prices of other assets), gathered in a
random vector �t plus unobservable random in
uences �t. The information ���eld
Ft would then be given by either Ft = FR;�;�

t = �(Rt; Rt�1; : : : ; �t; �t�1; : : : ; �t; �t�1;

: : :) if �t is itself observable or Ft = FR;�
t in case �t cannot be directly observed

(which should be the more realistic case). Note that, if the �t;�t�1; : : : ; are lacking in
(3), �t may be obtained as a function of the (in�nite) past of the observed processes
(Rt) and (�t) under certain technical assumptions about the functions Ft which
ensure that in�nite substitution for �t�1; : : : ; is possible (cf. Cron(1997)). In this

case, �t is Ft�1 = FR;�
t�1 �measurable and (2) becomes

E
n
(Rt � �)2jFt�1

o
= �2

t ;
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i. e. �t is the conditional standard deviation of the return given the information up
to time t � 1. This approach is in the spirit of the (parametric or nonparametric)
(G)ARCH-models (cf. Engle(1995)).

Instead of specifying a class of functions Ft, we shall assume the following simple
regime-switching model considered in Du�e and Gray(1995).

Assumption 2.

�t may take two di�erent levels va and vb, and evolves as a homogeneous Markov

process w. r. to its own history with transition probabilities given by the matrix

P =

 
paa pab
pba pbb

!
:

Here, e. g. , pab is the conditional probability for �t = vb, given that �t�1 = va. Note
that pab = 1� paa, pba = 1� pbb.

This approach of modelling regime switches by means of homogeneous Markov
chains has been made popular by Hamilton (e.g. Hamilton (1989) and Hamilton
(1994)). There, however, it is used to describe changes in the regime of a trend
component or of parameters of an autoregression, whereas the noise is not subject
to regime changes.

In order to analyze the asymptotic behavior of this Markov chain, denote � =
paa + pbb � 1 and assume that 0 < paa < 1; 0 < pbb < 1, � 6= 1. Then it is easily
calculated (by induction) that the t�step transition matrix is given by

P t =
1

1� �

 
1� pbb + (1� paa)�

t (1� paa)(1� �t)
(1� pbb)(1� �t) 1� paa + (1� pbb)�

t

!
:

Consequently, as t!1,

P t �! 1

1� �

 
1� pbb 1� paa
1� pbb 1� paa

!
;

and

pa =
1� pbb

1� �
; pb =

1� paa

1� �

is the (unique) invariant distribution. In particular, the Markov chain (�t) is ergodic.
Henceforth, we shall assume that the initial distribution of �t at t = 0 is given
by the invariant distribution (pa; pb), i. e. that the process has been running long
enough to attain stationarity. Then (�t) is a (strictly) stationary ergodic process.
Unfortunately, with respect to the observable process (Rt), which is of main concern
for our estimation procedure, assumptions 1 and 2 do not imply very much, except
that it is a martingale di�erence sequence w. r. to the observation ���eld. In order
to get a tractable form of the �rst order autocorrelation of the squared returns or of
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the likelihood function (cf. section 3), we impose the following strengthened version
of assumption 2 , which captures the notion that dependence of �t on the whole
past should only be through �t�1.

Assumption 3.

�t is conditionally independent of Ft�1, given �t�1.

As pointed out in the introduction, assumptions 2 and 3 are meant as an alter-
native to popular functional speci�cations of the conditional variance. It is therefore
not surprising that the relationship between both kinds of models is rather intricate.
While assumption 2 in itself is rather harmless (apart form the binary structure of
�t) and is satis�ed by a large class of speci�cations (3), assumption 3 is compatible
with (3) only under some rather restrictive additional conditions on the functional
speci�cation, ruling out in particular the case of completely predictible �t. There-
fore, the functional and the probabilistic models should be considered as basically
di�erent approaches, and it seems to make little sense to start out with a functional
model and try to �t it into the above framework.

Assumption 3 | or rather the somewhat stronger version in which conditional in-
dependence of �t of Ft�1, given �t�1 = (�t; �t�1; : : :) is required | may be thought of
as a nonlinear version of Granger-noncausality of (Rt) for (�t). Actually, assumption
3 implies that (Rt) and (�t) are uncorrelated and hence (Rt) is Granger-noncausal
for (�t) in the linear sense.

Assumptions 1-3 allow us to calculate the following moments of xt = Rt � �.

mk = E(xkt ) = E(�kt �
k
t ) = (pav

k
a + pbv

k
b )�k; (4)

mkl = E
n
xkt�1x

l
t

o
= E(xkt�1�

l
t�
l
t) (5)

=
h
pav

k
a(paav

l
a + pabv

l
b) + pbv

k
b (pbav

l
a + pbbv

l
b)
i
�k�l;

with �k = E(�kt ).

Lemma 1.

Under assumptions 1-3, the (unconditional) likelihood function of the (xt)�
process is given by

L(�jx1; : : : ; xT ) = f(x1; : : : ; xT j�) = tr

(
�

TY
t=1

P�(xt)

)
(6)

with

�(x) :=

 
�(x; va) 0

0 �(x; vb)

!
; � = (pa�; (1� pa)�); �0 = (1; 1);

�(x; v) = v�1g(x=v), g being the density of �t and � = (�; v2a; v
2
b ; paa; pbb) the vector

of parameters to be determined.
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Proof.

Let g1; : : : ; gT be bounded Borel functions, and put Ia = 1fvag; Ib = 1fvbg (indicator
functions on V = fva; vbg). Then, since the conditional distribution of xT given
FT�1 _ �(�T ) is �(�T ; �T ),

Efg1(x1) � � � gT (xT )Ia(�T )g
= Efg1(x1) � � � gT�1(xT�1)Ia(�T )EfgT (xT )jFT�1; �Tgg
= Efg1(x1) � � � gT�1(xT�1)Ia(�T )

Z
gT (�T )�(�T ; va)d�Tg

=
Z
gT (�T )Efg1(x1) � � � gT�1(xT�1)P (�T = vajFT�1; �T�1)g�(�T ; va)d�T

=
Z
gT (�T )Efg1(x1) � � � gT�1(xT�1)[paaIa(�T�1) + pbaIb(�T�1)]g�(�T ; va)d�T :

In the fourth equality we have made use of assumption 3. Similarly,

Efg1(x1) � � � gT (xT )Ib(�T )g
=

Z
gT (�T )Efg1(x1) � � �gT�1(xT�1)[pabIa(�T�1) + pbbIb(�T�1)]g�(�T ; vb)d�T :

Hence

Efg1(x1) � � �gT (xT )(Ia(�T ); Ib(�T ))g
=

Z
gT (�T )Efg1(x1) � � �gT�1(xT�1)(Ia(�T�1); Ib(�T�1))gP�(�T )d�T :

Proceeding inductively, we �nd that

Efg1(x1) � � �gT (xT )g
=

Z
gT (�T )

Z
gT�1(�T�1)

Z
� � �

Z
g2(�2))Efg1(x1)(Ia(�1; Ib(�1))g

TY
t=2

P�(�t)�d�2 � � �d�T : (7)

But

Efg1(x1)Ia(�1)g =
Z
g1(�1)pa�(�1; va)d�1;

Efg1(x1)Ib(�1)g =
Z
g1(�1)pb�(�1; vb)d�1;

hence
Efg1(x1)(Ia(�1); Ib(�1))g =

Z
g1(�1)(pa; pb)�(�1)d�1:

In view of (7), the unconditional density of (xT ; : : : ; x1) is therefore given by

(pa; pb)�(�1)
TY
t=2

P�(�t)� = tr

(
��(�1)

TY
t=2

P�(�t)

)
;
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which coincides with (6) since �P = �.

From (6) it is easily calculated that the (unconditional) distribution of xt is a
mixture with density

f(xtj�) = pa�(xt; va) + pb�(xt; vb):

Proposition 1.

(xt) is stationary and ��mixing.

Proof.

Stationarity is immediately clear from the time invariance of the likelihood function
(6). As for the the mixing property, note �rst that, for every bounded Borel function
g(v; x),

Efg(�t+1; xt+1)jFtg = EfEfg(�t+1; �t+1�t+1)jFt; �t+1gjFtg
= Efg(�t+1)jFtg
= Effg(�t+1)jFt; �tgjFtg
= Efg(�t)jFtg; (8)

where for the second equality we have used assumption 1(iii) and for the fourth
assumption 3. Note that the Borel functions g; g satisfy the same bound as g. By
induction it follows that, for every bounded Borel function g(x1; : : : ; xm),

Efg(xt+n+1; : : : ; xt+n+m)jFt+ng = Efg(�t+n)jFt+ng; (9)

with the function g satisfying the same bound as g. (Do it �rst for products of
indicator functions g = 1B1

: : : 1Bm , using (8), and extend to all measurable bounded
functions, using a monotone class argument.) We shall show that

jEfg(�t+n)jFtg � Efg(�t+n)gj � �(n) (10)

for all Borel functions g(x1; : : : ; xm) bounded by 1, from which, by virtue of (9),

jEfg(xt+n+1; : : : ; xt+n+m)jFtg � Efg(xt+n+1; : : : ; xt+n+m)gj � �(n);

implying the mixing property. As for (10), note that, by induction (using assumption
3)

Efg(�t+n)jFtg = p0tjtP
ng;

where we have put

g = (g(va); g(vb))
0;

ptjt = (ptjt(va); ptjt(vb))
0;

ptjt(v) = P (�t = vjFt);
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and
Efg(�t+ng = p0P ng;

with p = (pa; 1� pa)
0. Hence the left hand side of (10) can be estimated by

j(ptjt � p)0P ngj � 2�n =: �(n);

since, for every initial distribution ~p = (~pa; 1� ~pa)
0

(~p� p)0P n = (~pa � pa)�
n(1;�1):

As a consequence, the processes (xkt ) and (xkt�1x
k
t ) are ergodic and we have the

following asymptotics.

Proposition 2.

1

T

PT
t=1x

k
t ! mk a: s: ;

1

T

PT
t=1x

k
t�1x

l
t ! mkl a: s:

(whenever the theoretical moments exist).

De�ne

Xt(k) =

8><
>:

xt if k = 0
x2kt �m2k if k = 1; 2; 3;
x2t�1x

2
t �m22 if k = 4;

(11)

Xt = (Xt(0); : : : ; Xt(4))
0. Then (Xt) is ��mixing with the �(n)�sequence from

the proof of Proposition 1, and standard CLT's for ��mixing processes show (cf.
Billingsley(1968))

Proposition 3.

1p
T

PT
t=1Xt

D!N (0;�); (12)

where � is given by

� = E(X1X
0
1) +

P1
t=2[E(X1X

0
t) + E(X0

tX1)]:

Actual, a functional central limit theorem is true, but we shall not need it. The
matrix � is calculated in appendix B.
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3 The estimator

The model presented above contains �ve unknown parameters �; v2a; v
2
b ; paa;

pbb. For the estimation procedure to be chosen it turns out more convenient to work
with the equivalent parametrization � = (�; v2a; v

2
b ; pa; paa). Since (v2a; v

2
b ; paa; pbb)

and (v2b ; v
2
a; pbb; paa) lead to observationally equivalent structures, we impose the

restriction v2a > v2b . As estimator of �, we take the moment estimator based on
the �rst three even central moments and the mean of the observed process (Rt)
plus the �rst order autocorrelation of the squared deviations from the mean. I. e.
, �̂ = (�̂; v̂2a; v̂

2
b ; p̂a; p̂aa) is determined by solving the following system of nonlinear

equations
(pav

2k
a + pbv

2k
b )�2k =M2k; k = 1; 2; 3; (13)h

pav
2
a(paav

2
a + pabv

2
b ) + pbv

2
b (pbav

2
a + pbbv

2
b )
i
�2
2 =M2;2; (14)

with the empirical moments

�̂ = R =
1

T

PT
t=1Rt;

M2k =
1

T

PT
t=1(Rt � R)2k;

M2;2 =
1

T � 1

PT
t=2(Rt �R)2(Rt�1 � R)2:

The left hand sides of (13) and (14) are the theoretical moments m2k = E(Rt��)2k

and m2;2 = Ef(Rt � �)2(Rt�1 � �)2g, respectively. (13)-(14) has to be solved for
v2a; v

2
b ; pa; paa (under the restriction v2a > v2b ), using the de�nitorial equations of

section 2 to eliminate pb, etc. :

pb = 1� pa; pab = 1� paa; pba =
pa(1� paa)

1� pa
;

pbb =
1� (2� paa)pa

1� pa
: (15)

With these substitutions, (14) may be written

paapa(v
2
a � v2b )

2 + 2pav
2
av

2
b + (1� 2pa)v

4
b = M2;2:

As usual, the motivation behind this choice of estimation procedure is that, in view
Proposition 2, the empirical moments approach the theoretical ones as the sample
size increases and therefore the the solutions of (13) and (14) should be expected
to tend to the true parameter values. Indeed, if the system (13)-(14) possesses a
unique solution with probability one and if its Jacobian is nonzero for all admissible
parameter values, then strong consistency of the moment estimators can be shown.
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Actually, as is shown in appendix A, we may obtain explicit formulas for the solution
of (13)-(14), namely

v̂2a = �1 +

vuutp4 + C2 + Cp
4 + C2 � C

q
�2 � �2

1; (16)

v̂2b = �1 �
vuutp4 + C2 � Cp

4 + C2 + C

q
�2 � �2

1; (17)

p̂a =
1

2

"
1� Cp

4 + C2

#
; (18)

p̂aa =
�2;2 � 2p̂av̂

2
av̂

2
b � (1� 2p̂a)v̂

2
b

p̂a(v̂2b � v̂2b )
2

; (19)

with �k =M2k=�2k;�2;2 = M2;2=�
2
2; C = [�3 � �3

1 � 3�1(�2 � �2
1)]=(

q
�2 � �2

1)
3.

4 Asymptotics of the moment estimator

The asymptotic behavior of the (xt)�process transfers in a straightforward man-
ner to the empirical moments M2k and M2;2.

Proposition 4.

(i) With probability one, R! �; M2k ! m2k; k = 1; 2; 3; M2;2 ! m2;2.

(ii)
p
T (R��);

p
T (M2k�m2k); k = 1; 2; 3; and

p
T (M2;2�m2;2) are asymptotically

jointly normal with mean 0 and covariance matrix � (from Prop. 3).

This is an immediate consequence of the following (not surprising) lemma.

Lemma 2.

(i) M2k =
1

T

PT
t=1x

2k
t +RT (k) with RT (k)! 0 a. s. and

p
TRT (k)

P! 0.

(ii) M2;2 =
1

T

PT
t=2x

2
t�1x

2
t + ST with ST ! 0 a. s. and

p
TST

P! 0.

Proof.

(i) Since

M2k =
1

T

PT
t=1(xt + ��R)2k;

binomial expansion yields

RT (k) =
P2k

�=1

 
2k
�

!
(�� R)�

1

T

PT
t=1x

2k��
t

=
P2k

�=1

 
2k
�

!�
� 1

T

PT
t=1xt

�� 1

T

PT
t=1x

2k��
t :

9



Then the �rst assertion follows from the ergodic behavior of (xt) (cf. Prop. 2).
Moreover, for � > 1,

p
T

�
1

T

PT
t=1xt

��
= T�(��1)=2

 
1p
T

PT
t=1xt

!�
P! 0 (20)

by Prop. 3, while for � = 1

1p
T

PT
t=1xt �

1

T

PT
t=1x

2k�1
t

P! 0

(since E(x2k�1
t ) = 0). This shows the second part of (i).

(ii) Note that

M2;2 =
1

T

PT
t=1[xt�1 + (�� R)]2[xt + (�� R)]2

=
1

T

PT
t=1x

2
t�1x

2
t + ST

with

ST = (�� R)
2

T

PT
t=1(x

2
t�1xt + xt�1x

2
t )

+(�� R)2
1

T

PT
t=1(x

2
t�1 + 4xt�1xt + x2t )

+(�� R)3
2

T

PT
t=1(xt�1 + xt) + (�� R)4:

Ergodicity of (xt) yields ST ! 0 a. s.
p
TST

P! 0 follows from
p
T (R� �)�

P! 0 for
� > 1 (cf. (20)) and

lim
T!1

1

T

PT
t=1x

2
t�1xt = lim

T!1

1

T

PT
t=1xt�1x

2
t = 0 a: s:

The moment estimator �̂T has been determined as the (unique) solution of a
nonlinear equation of the form

f(�̂T ) = �; (21)

where � = �(T ) = (R;�1;�2;�3;�2;2)
0 with �k = M2k=�2k, �2;2 = M2;2 (cf. section

3) and f(�) = (f0(�); : : : ; f4(�)
0 with f0(�) = � and fk(�) given by the left hand

side of (13)-(14) for k = 1; 2; 3; 4; (without the ��factors) in conjunction with (15).
Since f has a continuous inverse on the whole parameter space (cf. (16)-(19)) and
the true parameter value � satis�es the same equation (21) with � replaced by its
theoretical counterpart


 = (�; 
1; 
2; 
3; 
2;2)
0;
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k = m2k=�2k, 
2;2 = m2;2 (cf. (4),(5)), it follows from Proposition 2 that

�̂T ! � a: s: (22)

Next, the �rst derivatives of f w. r. to � are easily calculated to be given by

@f0
@�

= 1; @f0
@�j

= 0 for j = 1; 2; 3; 4;
@fk
@�

= 0; @fk
@v2a

= kpav
2(k�1)
a ; @fk

@v2
b

= kpbv
2(k�1)

b ;
@fk
@pa

= v2ka � v2kb ; @fk
@paa

= 0 for k = 1; 2; 3;
@f4
@�

= 0; @f4
@v2a

= 2pa[paav
2
a + (1� paa)v

2
b ];

@f4
@v2

b

= 2[pa(1� paa)v
2
a + (1� (2� paa)pa)v

2
b ];

@f4
@pa

= paav
4
a + v2b [2(1� paa)v

2
a + (2� paa)v

2
b ];

@f4
@paa

= pa(v
2
a � v2b )

2:

Hence the matrix F (�) = Df(�) of �rst partial derivatives is of the form

F = F (�) =

0
BBBBBB@

1 0 0 0 0
0 0

0 ~F 0
0 0
0 � � � f44

1
CCCCCCA

with f44 > 0. The determinant of ~F is easily calculated as

j ~F j = 3papb(v
4
a + v4b )(v

2
a � v2b ) > 0

on the whole parameter space (note that we have imposed the constraint v2a > v2b ).
Hence F�1 exists and is continuous on the whole parameter space. By �rst order
Taylor expansion

f(�̂T )� f(�̂) = F (� + �T (�̂T � �))(�̂T � �)

= �(T )� 
; 0 < �T < 1:

This together with (22) and Prop. 3 implies that
p
T (�̂T � �)

d!N (0;��)

with

�� = F (�)�1���F (�)0�1; (23)

��1 = diag(1; 1; �4; �6; 1): (24)

Proposition 5.

(i) The moments estimator �̂T is strongly consistent.

(ii)
p
T (�̂T � �) is asymptotically normal with asymptotic covariance �� given by

(23)-(24).
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5 Forecasting

If the return process (Rt) (or the centered process (xt)) is observed up to time
T , we are interested in forecasting the behavior of R at some future time T + � or
over the time interval [T +1; : : : ; T + � ]. This requires knowledge of the conditional
probabilities

psjt(vjxt) = P (�s = vjxt); s � t;

with xt = (xt; xt�1; : : :). Maintaining our assumption of conditional independence
of �t and xt�1, given �t�1 and assuming in addition that Ft = Ft

x, i. e. (Rt) is
the only observable process (this is not essential, but makes the formulas look more
appealing), it is easy to see that

psjt(xt) = ptjt(xt)P
s�t for s > t;

where we have put

psjt(xt) = (psjt(vajxt); psjt(vbjxt))
= (psjt(vajxt); 1� psjt(vajxt)):

(For the sake of lean notation, we shall treat the psjt as row vectors in this section.)
So everything is reduced to the �lter problem of calculating ptjt(xt). As usual, this is
solved by deriving a recursive formula for ptjt. To this end, let ftjt�1(x; vjxt�1) and
ftjt�1(xjxt�1) denote the conditional densities of (xt; �t) and xt, resp. , given xt�1

(the �rst one with respect to �
 �). Then, by Bayes formula,

ftjt�1(x; vjxt�1) = �(x; v)ptjt�1(vjxt�1); (25)

ftjt�1(xjxt�1) =
Z
V
�(x; v)ptjt�1(vjxt�1)�(dv)

= �(x; va)ptjt�1(vajxt�1) + �(x; vb)ptjt�1(vbjxt�1)

= ptjt�1(xt�1)�(x)�

(with �(x) as in section 3). Since (again by Bayes formula)

ptjt(vjxt) =
ftjt�1(xt; vjxt�1)

ftjt�1(xtjxt�1)
;

some elementary calculations lead to the fundamental recursion

ptjt(xt) =
pt�1jt�1(xt�1)P�(xt)

pt�1jt�1(xt�1)P�(xt)�
:

Hence, by induction,

pT jT (xT ) =
ptjt(xt)P�(xt+1) : : : P�(xT )

ptjt(xt)P�(xt+1) : : : P�(xT )�
:

12



In particular, for t = 0 and with the stationary initial distribution p0j0 = (pa; 1 �
pa) = e01� (e01 = (1; 0)),

pT jT (xT ) =
e01�

QT
t=1 P�(xt)

tr
n
�
QT

t=1 P�(xt)
o :

(Note, however, that the latter expression tends to be numerically instable. For
actual calculations, it is therefore advisable to use the recursive formula, starting
at t = 0.) We are now in the position to calculate forecasts of future squared
volatilities.

v2tjT = E(x2t jxT ) = E(�2
t jxT ) = ptjT (xT )

 
v2a
v2b

!

= pT jT (xT )P
t�T

 
v2a
v2b

!
; t > T; (26)

or forecasts of average future squared volatilities

V 2
T+� jT =

1

�

T+�X
t=T+1

v2tjT :

Of course, in calculating the right hand side, the estimated parameter values v̂a;
etc. have to be substituted for va, etc., and Rt � �̂ for xt. Alternatively, one may
be interested in the most probable regime active in some period, i.e. in calculating
maxfptjT (vajxT ); ptjT (vbjxT )g. Also, in the same way as in the proof of Lemma 1,
one may obtain the joint conditional density

f(xt; : : : ; xT+1jxT ; �T ; �) = (Ia(�T )Ib(�T ))

2
4 tY
s=T+1

P�(xs)

3
5 �:

Integrating out �T ,

f(xt; : : : ; xT+1jxT ; �) = pT jT

2
4 tY
s=T+1

P�(xs)

3
5 �

is the joint conditional density of xt; : : : ; xT+1, given the observations up to time T .
In particular, since Z

P�(xs)dxs = P;

the marginal conditional distribution of xt is

f(xtjxT ; �) = pT jTP
t�T�(xt)�;

a mixture. This may be used to construct prediction intervals for xt.
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6 Finite-sample properties

In this section we demonstrate the �nite-sample performance of the moment
estimator and the predictor by applying them both to arti�cial data sets and to
some historical exchange rate data.

The arti�cial data sets of size T = 1000 (which corresponds with about the size
of daily observations available in �nancial markets) were generated (for di�erent
parameter values �) by the following recursion.

Rt = �t�t;

�t = Ia(�t�1)
h
va1[0;paa](ut) + vb1[paa;1](ut)

i
+Ib(�t�1)

h
va1[pbb;1](ut) + vb1[0;pbb](ut)

i
;

ut
i: i: d:� U [0; 1];

�t
i: i: d:� N (0; 1): (27)

In order to minimize the e�ect of initial values on the trajectories, we eliminated
the �rst 200 observations. Any solution of (27) evidently satis�es assumptions 1-
3 of section 2. The number of Monte-Carlo runs was 500. For each of the 500
data sets, we tried (see below) to (a) estimate the parameters �i using (16)-(19) (in
combination with (15)), (b) estimate the standard deviations �̂�̂i of the resulting

estimates �̂i using the estimated main diagonal elements of (23), and (c) predict
the squared volatility one period ahead applying (26) (replacing the true parameter
values by its non-updated estimates) to each of the 50 observations following the
sample. However, for some arti�cial data sets the estimation method proposed here
failed (either because the nonnegativity constraint on the variances was violated or
since the procedure was numerically instable). In order to determine parameter sets
where the method is not operational, we report the share of runs where the method
failed (denoted Sf). We report the mean of the estimates, their standard deviation,
the mean of their estimated standard deviation, the standard deviation of their
estimated standard deviation and the mean of the average (over 50 periods) squared
prediction error (ASPEc) | all determined from the succesfully operated runs |
for di�erent parameters in Tables 2-11. Additionally, we report the theoretical
kurtosis (�), the mean of the estimated kurtosis'(�̂), and, for sake of comparison
with the ASPEc, the mean of the average squared prediction errors (ASPEu) of the
unconditional predictions (i. e. the estimated stationary squared volatilities).

A �rst glance at the time series plots of the real data used here (see below)
indicated that regimes of high volatility are characterized by relatively short clus-
ters of de
ections of either sign that are some times higher than the de
ections in
\normal times". On the other hand, Du�e and Gray(1995) found high transition
probabilities for returns on oil prices. In order to reproduce both �ndings, we chose
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the parameters as exhibited in Table 1 in our experiments (ordered according to
increasing relative persistence, see below).

Nr. Exp. va vb paa pbb
1 2 .5 .5 .5
2 2 .5 .8 .95
3 2 .5 .5 .95
4 2 .5 .2 .9
5 2 .5 .1 .95
6 3 .5 .5 .5
7 3 .5 .8 .95
8 3 .5 .5 .95
9 3 .5 .2 .9
10 3 .5 .1 .95

Table 1: List of Experiments.

The main �ndings of the Monte-Carlo experiments can be summarized as follows.

� The operationality of the estimation method proposed here seems to (be par-
tially) positively correlated with the ratio pbb=paa (which may be interpreted
as relative persistence of the lower volatility).

� The relative biases are reasonably small (clearly below 10% apart from few
exceptions), but ambiguous in sign.

� With the exception of the estimates for paa (and, less de�nite, the estimates
of �), the means of the estimated (assuming limiting distribution) standard
deviations are higher than means of the actual (provided that the Monte-Carlo
approximation of the latter is su�ciently accurate) standard deviations. The
problem with the estimates for paa is presumably caused by the small number
of observed regime transitions (with paa = :5, the problem did not arise) and
by numerical instability (see (19)).

� The relative improvement of using conditional predictions over the use of un-
conditional ones is (with one exception) is recognizable, but small in either
case (the maximal relative improvement amounts roughly 13% in Experiment
9). However, in �nancial market applications, these seemingly insigni�cant
improvements might mean considerable gains (or losses).

Eventually, in order to examplify the performance of the moment estimator in
practice, we applied it to daily compound returns (scaled to variance one by dividing
the original time series through their empirical standard deviations �D) of four
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foreign exchange rates (FRF,GBP,ITL,USD). For each currency, we estimated the
parameters from samples of size 1200,1250 and 1300 and predicted the future squared
volatility from one day to another as before (again without updating the estimates,
however) for the 50 days following the respective samples. The samples start on
the second of January 1990 in either case and end, depending on their lenght, on
17.10.1994, 28.12.1994 or 8.3.1995. The results are reported in Tables 11-14. For
two selected cases, we additionally provide plots of the actual squared returns and
their conditional predictions in Figures 1 and 2. Some �ndings are

� The estimates indicate a high relative persistence (see above) for FRF,GBP
and ITL. Apart from the instability of the estimates �̂p̂aa, the estimation pro-
cedure performed stable for all currencies.

� Due to the high estimated standard deviations �̂v̂a, the estimates va are highly
insigni�cant(ly di�erent form zero) for FRF,GBP and ITL, whereas this in-
signi�cance is less pronounced for USD. Though it did not come out in the
experiments, we suppose that the high relative persistence (which implies very
small stationary probabilities pa and consequently very few observations of the
high volatility regime) of FRF,GBP and ITL is to be made responsible for the
insigni�cance.

� The improvement in forecasting is more ambiguous than in the experiments,
but again small.

The economic interpretation of the results is left to the willing reader.
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Appendix A

Here we show how to obtain explicit formulas for the solution of (13), (14).
Denote �k = M2k=�2k;�2;2 = M2;2; v

2
a = x; v2b = y; pa = p; paa = r. We then have to

solve the four equations

px + (1� p)y = �1; (A-1)

px2 + (1� p)y2 = �2; (A-2)

px3 + (1� p)y3 = �3; (A-3)

rp(x� y)2 + 2pxy + (1� 2p)y2 = �2;2: (A-4)

The �rst step consists in solving (A-1),(A-2) for x; y, given p.

y =
�1 � px

q
(with p = q) (A-5)

px2 +
1

q
(�1 � px)2 = �2: (A-6)

The last equation has the two roots

x1=2 = �1 �
s
q

p

q
�2 � �2

1;

with corresponding y values given by

y1=2 = �1 �
s
p

q

q
�2 � �2

1:

Note that there is no guarantee that the roots are real, since the discriminant may be-
come negative. If, however, the theoretical momentsm2k = E(Rt��)2k = �2kE(�

2k
t )

are substituted for the empirical momentsM2k, then, with 
k = m2k=�2k = E(�t)
2k,

it is trivially true that 
2 � 
21 > 0 so that two real roots do exist. Since, in view
of Proposition 2, the empirical moments approach the theoretical ones and hence
�k ! 
k for increasing sample size, it can be expected that in most cases �2��2

1 > 0
for large sample size. The correct choice (satisfying the restriction x > y) is then

x = �1 +

s
q

p

q
�2 � �2

1; y = �1 �
s
p

q

q
�2 � �2

1:

These values are now inserted in (A-3).

p

 
�1 +

s
q

p
d

!3

+ q

 
�1 �

s
p

q
d

!3

= �3

17



with d =
q
�2 � �2

1, leading to

p

 s
q

p

!3

� q

 s
p

q

!3

=
�3 � �3

1 � 3�1d
2

d3
= C

and, after some straightforward algebraic manipulations, to

1� 2p =
q
p(1� p)C:

The solution is

p =
1

2

"
1� Cp

4 + C2

#
:

Since q
p
=

p
4+C2+Cp
4+C2�C

, the formulas for x and y take the form

x = �1 +

vuutp4 + C2 + Cp
4 + C2 � C

q
�2 � �2

1;

y = �1 �
vuutp4 + C2 � Cp

4 + C2 + C

q
�2 � �2

1:

Finally, r is calculated from (A-4) in a straightforward way.

Appendix B

The entries of the asymptotic covariance matrix � are as follows.

�00 = m2;

�0k = �k0 = 0; k = 1; 2; 3; 4;

�kl = �lk = v(k)0
h
�2(k+l)P0 � �2k�2lpp

0
i
v(l)

+2�2k�2lpapb
�

1� �
v(k)0

 
1 �1
�1 1

!
v(l); k; l = 1; 2; 3;

�k4 = �4k = 2v(1)0P 0V1[�2(k+l)P0 � �2k�2lpp
0

+�2kpapb
�

1� �

 
1 �1
�1 1

!
]v(l); k = 1; 2; 3;

�44 = v(1)0
h
�2
4V1P0PV1 � P 0V1pp

0V1P
i
v(1)

+2v(1)0P 0V1

"
�4P0 � pp0 + 2papb

�

1� �

 
1 �1
�1 1

!#
V1Pv(1):
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Here
p = (pa; pb)

0; P0 = diag(pa; pb);

v(k) = (v2ka ; v2kb )0; Vk = diag(v2ka ; v2kb ):

The calculations are somewhat tedious, but straightforward, making repeated use
of the following formulas.
(i) If �t is symmetric,

Efg(xt�1)x
2k+1
t g = 0:

(ii) Efx1g(xt)g = 0 (for t � 2):
(iii) Efx2r0 x2s1 x2mt�1x

2n
t g

=

(
�2r�2s�2m�2nv(r)

0P0PVsP
t�2VmPv(n) for t � 3;

�2r�2(s+m)�2nv(r)
0P0PVsVmPv(n) for t = 2:

(iv) m2n = E(x2nt ) = �2np
0v(n):

(i)-(iv) can be shown by some cumbersome calculations making repeated use of as-
sumptions 1-3 as well as the telescoping property of conditional expectations.

(v) P0P
t�1 � pp0 = papb�

t�1

 
1 �1
�1 1

!
:

(vi)

 
1 �1
�1 1

!
P = �

 
1 �1
�1 1

!
:
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�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 0.000 (0.045) 0.046 (0.002)
va 2.000 2.043 (0.157) 0.880 (0.367)
vb 0.500 0.499 (0.229) 0.471 (0.052)
paa 0.500 0.472 (0.136) 0.147 (0.023)
pbb 0.500 0.523 (0.127) 0.953 (0.205)
pa 0.500 0.475 (0.094) 0.155 (0.011)
pb 0.500 0.525 (0.094) 0.155 (0.011)

Sf 38.6% � 5.336 �̂ 5.435
ASPEc 0.163 ASPEu 0.163

Table 2: Experiment 1.

�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 -0.000 (0.031) 0.032 (0.002)
va 2.000 2.048 (0.000) 1.243 (0.726)
vb 0.500 0.451 (0.103) 0.192 (0.029)
paa 0.800 0.789 (0.036) 0.052 (0.018)
pbb 0.950 0.972 (0.000) 0.492 (0.286)
pa 0.200 0.232 (0.058) 0.109 (0.021)
pb 0.800 0.805 (0.000) 0.109 (0.021)

Sf 20.0% � 9.750 �̂ 11.723
ASPEc 0.016 ASPEu 0.017

Table 3: Experiment 2.
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�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 0.000 (0.024) 0.024 (0.002)
va 2.000 1.894 (0.288) 1.591 (1.003)
vb 0.500 0.449 (0.060) 0.115 (0.018)
paa 0.500 0.523 (0.199) 0.082 (0.025)
pbb 0.950 0.939 (0.000) 0.160 (0.062)
pa 0.091 0.123 (0.047) 0.079 (0.017)
pb 0.909 0.879 (0.026) 0.079 (0.017)

Sf 2.2% � 12.985 �̂ 12.952
ASPEc 0.009 ASPEu 0.008

Table 4: Experiment 3.

�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 -0.000 (0.025) 0.026 (0.001)
va 2.000 1.920 (0.295) 1.522 (0.967)
vb 0.500 0.449 (0.072) 0.129 (0.017)
paa 0.200 0.221 (0.129) 0.091 (0.016)
pbb 0.900 0.873 (0.048) 0.145 (0.041)
pa 0.111 0.140 (0.049) 0.082 (0.015)
pb 0.889 0.860 (0.049) 0.082 (0.015)

Sf 0.0% � 12.375 �̂ 12.221
ASPEc 0.005 ASPEu 0.005

Table 5: Experiment 4.
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�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 -0.001 (0.021) 0.021 (0.001)
va 2.000 1.829 (0.333) 1.866 (1.138)
vb 0.500 0.462 (0.039) 0.085 (0.015)
paa 0.100 0.135 (0.151) 0.113 (0.035)
pbb 0.950 0.923 (0.034) 0.085 (0.027)
pa 0.053 0.082 (0.034) 0.065 (0.016)
pb 0.947 0.918 (0.034) 0.065 (0.016)

Sf 0.0% � 13.520 �̂ 12.936
ASPEc 0.000 ASPEu 0.000

Table 6: Experiment 5.

�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 0.005 (0.069) 0.068 (0.003)
va 3.000 3.126 (0.208) 2.055 (0.650)
vb 0.500 0.704 (0.311) 0.988 (0.103)
paa 0.500 0.438 (0.118) 0.136 (0.019)
pbb 0.500 0.552 (0.102) 3.859 (0.907)
pa 0.500 0.445 (0.077) 0.147 (0.009)
pb 0.500 0.555 (0.077) 0.147 (0.009)

Sf 53.0% � 5.684 �̂ 5.863
ASPEc 0.135 ASPEu 0.135

Table 7: Experiment 6.
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�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 0.003 (0.046) 0.044 (0.004)
va 3.000 3.083 (0.000) 2.916 (1.323)
vb 0.500 0.465 (0.176) 0.401 (0.063)
paa 0.800 0.765 (0.116) 0.033 (0.014)
pbb 0.950 0.956 (0.000) 2.431 (1.886)
pa 0.200 0.198 (0.045) 0.098 (0.024)
pb 0.800 0.814 (0.000) 0.098 (0.024)

Sf 35.6% � 12.187 �̂ 14.138
ASPEc 0.124 ASPEu 0.130

Table 8: Experiment 7.

�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 0.000 (0.031) 0.032 (0.003)
va 3.000 2.840 (0.431) 3.490 (2.143)
vb 0.500 0.394 (0.124) 0.234 (0.044)
paa 0.500 0.504 (0.179) 0.045 (0.015)
pbb 0.950 0.940 (0.000) 0.678 (0.307)
pa 0.091 0.115 (0.036) 0.070 (0.012)
pb 0.909 0.887 (0.000) 0.070 (0.012)

Sf 7.2% � 20.368 �̂ 20.279
ASPEc 0.081 ASPEu 0.089

Table 9: Experiment 8.
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�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 -0.001 (0.035) 0.035 (0.002)
va 3.000 2.922 (0.429) 3.445 (2.213)
vb 0.500 0.405 (0.148) 0.270 (0.041)
paa 0.200 0.208 (0.121) 0.065 (0.013)
pbb 0.900 0.883 (0.038) 0.506 (0.227)
pa 0.111 0.130 (0.039) 0.072 (0.010)
pb 0.889 0.870 (0.039) 0.072 (0.010)

Sf 9.2% � 18.186 �̂ 18.185
ASPEc 0.006 ASPEu 0.008

Table 10: Experiment 9.

�i �̂i �̂�̂i
Name True Mean SD Mean SD
� 0.000 -0.002 (0.028) 0.027 (0.002)
va 3.000 2.775 (0.515) 4.236 (3.019)
vb 0.500 0.417 (0.084) 0.176 (0.038)
paa 0.100 0.118 (0.118) 0.057 (0.012)
pbb 0.950 0.927 (0.028) 0.220 (0.160)
pa 0.053 0.077 (0.027) 0.056 (0.011)
pb 0.947 0.923 (0.027) 0.056 (0.011)

Sf 1.2% � 25.685 �̂ 24.510
ASPEc 0.006 ASPEu 0.006

Table 11: Experiment 10.
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A T = 1200 T = 1250 T = 1300

�i �̂i �̂�̂i �̂i �̂�̂i �̂i �̂�̂i
� -0.002 0.029 -0.006 0.027 -0.018 0.024
va 5.988 36.708 5.873 35.284 5.229 27.039
vb 0.728 0.297 0.706 0.275 0.658 0.217
paa 0.406 NA 0.406 NA 0.405 NA
pbb 0.992 2.915 0.992 2.591 0.992 1.631
pa 0.013 0.021 0.013 0.020 0.013 0.020
pb 0.987 0.021 0.987 0.020 0.987 0.020

�D 0.000002 - 0.000002 - 0.000003 -
�̂ 52.149 - 53.151 - 48.522 -
ASPEc 0.431 - 31.846 - 79.466 -
ASPEu 0.645 - 30.031 - 85.019 -

Table 12: Results A.
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B T = 1200 T = 1250 T = 1300

�i �̂i �̂�̂i �̂i �̂�̂i �̂i �̂�̂i
� -0.021 0.029 -0.020 0.028 -0.030 0.026
va 3.688 10.188 3.670 10.067 3.544 9.216
vb 0.803 0.173 0.792 0.164 0.779 0.151
paa 0.589 NA 0.590 NA 0.589 NA
pbb 0.989 0.691 0.989 0.650 0.989 0.557
pa 0.026 0.033 0.025 0.032 0.025 0.031
pb 0.974 0.033 0.975 0.032 0.975 0.031

�D 0.000023 - 0.000024 - 0.000025 -
�̂ 16.265 - 16.461 - 15.790 -
ASPEc 0.466 - 8.884 - 17.405 -
ASPEu 0.647 - 6.449 - 13.999 -

Table 13: Results B.

C T = 1200 T = 1250 T = 1300

�i �̂i �̂�̂i �̂i �̂�̂i �̂i �̂�̂i
� -0.047 0.028 -0.047 0.026 -0.056 0.025
va 3.210 5.919 3.019 5.215 2.714 3.541
vb 0.721 0.175 0.688 0.149 0.645 0.142
paa 0.323 NA 0.327 NA 0.366 NA
pbb 0.968 0.485 0.969 0.375 0.960 0.310
pa 0.045 0.043 0.044 0.041 0.060 0.048
pb 0.955 0.043 0.956 0.041 0.940 0.048

�D 0.000030 - 0.000033 - 0.000038 -
�̂ 16.381 - 15.906 - 14.781 -
ASPEc 2.324 - 57.273 - 50.147 -
ASPEu 2.484 - 62.058 - 53.310 -

Table 14: Results C.
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D T = 1200 T = 1250 T = 1300

�i �̂i �̂�̂i �̂i �̂�̂i �̂i �̂�̂i
� -0.012 0.029 -0.008 0.028 -0.018 0.027
va 1.495 0.858 1.490 0.837 1.521 0.842
vb 0.811 0.163 0.801 0.154 0.789 0.145
paa 0.386 0.222 0.395 0.215 0.340 0.196
pbb 0.840 0.140 0.848 0.131 0.842 0.135
pa 0.206 0.188 0.201 0.178 0.193 0.159
pb 0.794 0.188 0.799 0.178 0.807 0.159

�D 0.000065 - 0.000065 - 0.000066 -
�̂ 4.265 - 4.305 - 4.487 -
ASPEc 0.594 - 7.700 - 5.146 -
ASPEu 0.618 - 7.688 - 5.160 -

Table 15: Results D.
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