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Abstract. We generalize the paper of Hofmann, Platen and Schweizer [HPS92] to

jump-di�usion models. First we introduce securities which are replicable in a self-

�nancing way. Then we characterize market risks which are in a special way 'orthogonal'

to these securities. Moreover we prove, that every general arbitrage-free security has a

unique decomposition into a self-�nancing replicable security and such a market risk.

Then we discuss the martingale measures for our jump-di�usion model. In particular

we examine the minimal equivalent martingale measure and show that in our model the

minimal martingale measure is characterized by preserving the market risk processes

under a change of measure. But we state also that unlike in the continuous case it does

not preserve the orthogonality to the martingale part of the underlyings.

1. Introduction

In 1973 Black and Scholes [BS73] and Merton [Mer73] were the �rst to give a formula

for pricing options and corporate liabilities by arbitrage arguments alone. Since then,

this formula is used in practice to approximate the prices of �nancial products. But only

for approximation, because the assumptions underlying the model of Black, Scholes and

Merton are very restrictive. In the last decade, the assumption of constant volatility has

been relaxed by several authors, for example Hull andWhite [HW87],Wiggins [Wig87] and

others. Also some authors have studied models with market imperfections like transaction

costs, di�erent interest rates for borrowing and lending or the impact of taxes and other

market constraints. Merton [Mer76] �rst generalized the Black-Scholes-Merton-formula to

models allowing the stock prices to jump. This generalization is motivated in the literature

by the arrival of new information outside the usual trading-information. These models

are also used to explain fat-tails and kurtosis in asset-price distributions. After Merton

[Mer76] only few authors have dealed with so called jump- or jump-di�usion-models. Some

of these are Aase [Aas88], who examined the completeness of such markets, or Bardhan

and Chao [BC93, BC95], who studied those models with respect to portfolio optimization

problems.

Stochastic volatility models as well as jump-di�usion-models in most cases lead to in-

complete markets. In such models it is no longer possible to price a contingent claim, like

an option, by arbitrage arguments only. This results in the problem of �nding on the one

hand a replicating strategy with minimal 'risk' (leaving open the question of what 'risk' is)

and on the other hand among the in�nitely many pricing measures (called the martingale

measures) we have to �nd an 'optimal' one, where again the term 'optimal' needs to be

de�ned. The question of strategies with minimal 'risk' was answered in a very intuitive

way by F�ollmer and Sondermann [FS86] and Schweizer [Sch91]. Corresponding with their

approach of so called '(locally) risk-minimizing strategies' F�ollmer and Schweizer [FS91]

introduced the 'minimal martingale measure'. This is characterized by the condition of
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preserving the martingale property of martingales orthogonal to the underlyings. This

rather technical concept can be interpreted in �nance as leaving the risks which cannot

be hedged by trading strategies in the underlying securities unpriced under the pricing

measure. It can be proved that the minimal martingale measure does not only preserve the

martingale property of orthogonal martingales but also the orthogonality if - and that is

the decisive restriction - the underlying securities have continuous paths. In such models,

it is possible to calculate the locally risk-minimizing strategy by changing the measure

to the minimal martingale measure, then calculating the unique and always existing risk-

minimizing strategy. This strategy equals the locally risk-minimizing strategy since it is

characterized by a cost process which is an orthogonal martingale (see Schweizer [Sch91]).

Motivated by this characterization, Hofmann, Platen and Schweizer [HPS92] general-

ized this concept in a multidimensional di�usion-risk-setting. They characterize general

market risks which are not tradable, as so called 'totally untradable assets'. These assets

or securities are in a special way orthogonal to the underlying securities. Furthermore,

they characterize all securities which are replicable by a self-�nancing strategy, as 'purely

tradable assets'. Then they proved that the minimal martingale measure is characterized

by the condition of leaving the processes of totally untradable assets invariant under a

change of measure.

By a simple counterexample Schweizer [Sch89] pointed out that the orthogonality-

preserving property no longer holds if the underlying processes are discontinuous. We will

show that it is still possible to generalize the notation of Hofmann, Platen and Schweizer

[HPS92] to jump-di�usion-models. We characterize the minimal martingale measure as

the only martingale measure leaving the processes of totally untradable assets unchanged

after the change of measure. Nevertheless these securities are no longer orthogonal in the

usual martingale-sense. To get our characterization of the minimal martingale measure

in a jump-di�usion setting, we show that the Radon-Nikodym-density of every martin-

gale measure can be decomposed into the sum of the density of the minimal equivalent

martingale measure and a density orthogonal (in the martingale sense) to the minimal

martingale density. A similar result was already proved in a very general setting by

Christopeit, Musiela [CM92], Schweizer [Sch92a, Sch94a], Ansel, Stricker [AS92] or by

Bardhan, Chao [BC96] for marked point processes.

In section 2 we will de�ne the market model and (for clari�cation) discuss the jump

parameters in more detail. Section 3 introduces the notion of strategies and the equivalent

concept of a portfolio-process. So we can de�ne securities which are replicable in a self-

�nancing manner. In section 4 we discuss the equivalent martingale measures of our model

and study more general securities than those mentioned above. Section 5 will contain

the proof of our main result, after we study the minimal equivalent martingale measure.

Section 6 concludes and in the appendix we give a detailed description of some formulas.

2. The Model

Like an example in Schweizer [Sch93a, Sch94a], we consider a multi-dimensional jump-

di�usion-model. Let S be a d-dimensional stochastic process, describing the price-processes

of d nonredundant securities, called the stocks of our market model. These processes are

described by the stochastic di�erential equations

dS
(i)
t = S

(i)
t�

�
�
(i)
t dt+

Xm

j=1
�
(i;j)
t dW

(j)
t +

Xn

k=1
�
(i;k)
t d �N

(k)
t

�
;

for t 2 [0; T ] and i = 1; :::; d; (2.1)

with S
(i)

0 > 0, i = 1; :::; d, P -a.s. Here W is a m-dimensional Brownian motion and �N the

compensated process of a k-variate point process with (deterministic) intensity �, i. e.
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�N
(k)
t = N

(k)
t �

Z t

0

�(k)u du; for t 2 [0; T ] and k = 1; :::; n: (2.2)

All processes are de�ned on a probability space (
;F; P ) equipped with the augmented

�ltration (Ft)t2[0;T ] generated by W and N . It is known that W and N are independent

(Ikeda, Watanabe [IW81], Theorem II.6.3). The market coe�cients �, � and � are as-

sumed to be (Ft)-predictable and (for simplicity) P -a.s. bounded uniformly in t and !.

Furthermore we need a money market account (also called a bond) B as numeraire which

we de�ne by

dBt = Btrtdt; for t 2 [0; T ]; (2.3)

where r is the deterministic interest rate. Since we only want to consider discounted

securities, we set

Bt = 1; for t 2 [0; T ]: (2.4)

Before we study the model in detail, let us briey examine the jump part of the under-

lying securities:

Like the the instantaneous standard deviation of the continuous part of the return of S

is � (called the volatility), � describes the instantaneous standard deviation of the jump

part of the return. But it is also natural to interpret � as the jump size of the stock, if a

jump event occurs.

For simplicity take � = 0, m = 0 and n = 1. Then we can write S as

dSt = St��td �Nt; for t 2 [0; T ]: (2.5)

We know that the jump size of N is 1, if a jump event occurs. Otherwise N is constant.

Let �0t be the relative jump size of S, if a jump event occurs, i. e. if t = Tn. Here

fTn jn 2 IN g is the sequence of jump times. Then the price of S in t can be written as

St = St��
0
t; for t 2 fTn jn 2 IN g : (2.6)

The jump size of S at a jump-time t is given by

�St = (St � St�)�Nt = St�
�
�0t � 1

�
�Nt; for t 2 [0; T ]: (2.7)

If we compare (2.5) and (2.7), we obtain

�t = �0t � 1; for t 2 [0; T ]: (2.8)

To avoid negative prices in our model (2.1), we must assume that �0 is always positive (see

(2.6)). So we make the additional (and usual) assumption

�
(i;k)
t > �1; P -a.s. for t 2 [0; T ] and i = 1; :::; d; k = 1; :::; n: (2.9)

We also need � to be strictly positive, i. e.

�
(i;j)
t > 0; P -a.s. for t 2 [0; T ] and i = 1; :::; d; j = 1; :::;m: (2.10)

Furthermore we assume the components of the (P;Ft)-intensity � of N to be strictly

positive and uniformly bounded in t.

To guarantee the absence of arbitrage in our model, we de�ne the d �m + n-valued

matrix-process � by
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�t :=
��

�t �t
� ��� �t �t

��
; for t 2 [0; T ]; (2.11)

where the product (� j�) will be explained and motivated in section 3 (see (3.19)). Then,

P -a.s. there exists the inverse ��1 and the process ��1� is P -a.s. uniformly bounded in t

and !. As we will see in section 4, this condition guarantees the existence of an equivalent

martingale measure in our setting.

We de�ne x � y as the coordinatewise product of vectors (respectively matrices) x and

y, i. e.

(x � y)(k) = x(k)y(k); for k = 1; :::; n: (2.12)

Furthermore we let � denote transposition of a transposed vector or matrix. We assume

� to be nondegenerate. Later we also need the notation 1n, denoting the n-dimensional

vector with components 1. Now we can write (2.1) in a simplifying vector-style(1) :

dSt = St� �
�
�tdt+ �tdWt + �td �Nt

�
; for t 2 [0; T ]: (2.13)

Next we need S to be a square-integrable special P -semimartingale. To avoid arbitrage,

it is necessary for S to be a semimartingale (see Delbaen, Schachermayer [DS94], Theorem

7.2, p.504). Obviously the �nite variation part A of S, de�ned by

dA
(i)
t = S

(i)
t��

(i)
t dt; for t 2 [0; T ] and i = 1; :::; d; (2.14)

is a predictable (in particular continuous) square-integrable process of �nite variation, if

we assume S
(i)
� �(i) to be Lebesgue-integrable with

E

 �Z t

0

S
(i)
u��

(i)
u du

�2!
<1; for t 2 [0; T ] and i = 1; :::; d: (2.15)

Furthermore we de�ne the (local) martingale part M of S by its continuous part M c

and its purely discontinuous part Md :

M
(i)
t =

�
M

(i)
t

�c
+
�
M

(i)
t

�d
=

Z t

0

S
(i)
u�

Xm

j=1
�(i;j)u dW (j)

u +

Z t

0

S
(i)
u�

Xn

k=1
�(i;k)u d �N (k)

u ;

for t 2 [0; T ] and i = 1; :::; d: (2.16)

Therefore we assume � and � to satisfy

E

�Z t

0

Xm

j=1

�
S
(i)
u��

(i;j)
u

�2
du

�
<1 (2.17)

and

E

�Z t

0

Xn

k=1

�
S
(i)
u��

(i;k)
u

�2
�(k)u du

�
<1;

(1)Note that we only consider componentwise de�ned vector-valued Itô-Integrals in the sense of Chate-

lain, Stricker [CS94].
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for t 2 [0; T ] and i = 1; :::; d(2) : (2.18)

Then because of Protter [Pro90], Chapter IV, Lemma, p. 142, M c andMd are (locally)

square-integrable (local) martingales. In section 5 we need A to be absolutely continuous

with respect to hM;Mi , i. e. there exists a predictable process � with

dA
(i)
t = �

(i)
t d

D
M (i);M (i)

E
t
; for t 2 [0; T ] and i = 1; :::; d: (2.19)

In our model � is easily determined:

dA
(i)
t = �

(i)
t d

D
M (i);M (i)

E
t

= S
(i)
t��

(i)
t

�
S
(i)
t�

�Xm

j=1

�
�
(i;j)
t

�2
+
Xn

k=1

�
�
(i;k)
t

�2
�
(k)
t

��
dt

= S
(i)
t��

(i)
t dt; for t 2 [0; T ] and i = 1; :::; d: (2.20)

Thus � must satisfy the equations

�
(i)
t

�
S
(i)
t�

�Xm

j=1

�
�
(i;j)
t

�2
+
Xn

k=1

�
�
(i;k)
t

�2
�
(k)
t

��
= �

(i)
t ;

for t 2 [0; T ] and i = 1; :::; d; (2.21)

and so it is determined by

�
(i)
t = �

(i)
t

�
S
(i)
t�

�Xm

j=1

�
�
(i;j)
t

�2
+
Xn

k=1

�
�
(i;k)
t

�2
�
(k)
t

���1

;

for t 2 [0; T ] and i = 1; :::; d; (2.22)

where we use the nondegeneracy of the matrix � and the positivity (of every component)

of S and � for every t 2 [0; T ].

Next we determine a solution to (2.1) (or equivalently (2.13)). Therefore let X be the

vector valued process de�ned by

dX
(i)
t = �

(i)
t dt+

Xm

j=1
�
(i;j)
t dW

(j)
t +

Xn

k=1
�
(i;k)
t d �N

(k
t ;

for t 2 [0; T ] and i = 1; :::; d; (2.23)

with X
(i)

0� = 0 for i = 1; :::; d. From Elliott [Ell82], Theorem 13.5, p. 156 a solution of

(2.1) is given by

S
(i)
t =S

(i)

0� exp

�
X
(i)
t �

1

2

D
Xc(i);Xc(i)

E
t

�Y
0�u�t

�
1 +�X(i)

u

�
exp

�
��X(i)

u

�
=S

(i)

0� exp

�Z t

0

�(i)u du+
Xm

j=1

Z t

0

�(i;j)u dW (j)
u �

1

2

Xm

j=1

Z t

0

�
�(i;j)u

�2
du

�

Xn

k=1

Z t

0

�(i;k)u �(k)u du

�Y
0�u�t

�Xn

k=1
�0(i;k)u �N (k)

u

�
;

(2)Note that an Itô-Integral
R
�dM with respect to a square-integrable martingale M is also a square-

integrable martingale, if � is predictable and satis�es E
�R

T

0
�2ud hM;Mi

u

�
<1.

Let M be a local martingale, then it is su�cient to assume that � is predictable and locally bounded

for
R
�dM to be a local martingale.

For
R
�dM to be a locally square-integrable local martingale, where M is a locally square-integrable

local martingale, it is su�cient to assume that � is predictable and satis�es P
�R

T

0
�2ud hM;Mi

u
<1

�
= 1.
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for t 2 [0; T ] and i = 1; :::; d: (2.24)

In the last equation we use the fact that the N (k) have no common jumps P -a.s.

As we see, this is a generalization of what is known to be a geometric Brownian motion

like in the Black-Scholes model or a geometric Poisson process (see for instance M�uller

[M�ul85], p.28 and p.72�).

At the end of this section, we briey denote some special cases of our model.

For n = 0 we get the model of Hofmann, Platen and Schweizer [HPS92]. If n = 0,

d = m = 1, and the market coe�cients � and � are constant we get the Black-Scholes

model. For d = n = m = 1 and constant market coe�cients, our model coincides with

the model of Merton [Mer76]. Furthermore see Schweizer [Sch93a, Sch94a], where other

special cases are discussed.

As a rule, pure di�usion models are complete, if the number of sources of uncertainty

coincide with the number of nonredundant securities, i. e. d = m + n. In the case of

jump-di�usion-models this is only true if the jump sizes are predictable (see Bardhan, Chao

[BC96]). Otherwise, for nonlinear payo� structures, there is no possibility to replicate a

contingent claim in a self-�nancing way. But our model assumes predictable jump sizes,

and so we have a complete market model if d = m+ n.

If d > m+n then, because of the nondegeneracy of �, the market model has to contain

redundant securities which can be omitted without losing information about the market

structure. Otherwise, because of the informal equivalence of the existence of an equivalent

martingale measure and the no-arbitrage condition (see Delbaen, Schachermayer [DS94]

[DS97]), there would be arbitrage opportunities in our model.

If we have more sources of uncertainty than nonredundant securities (d < m + n),

our market is incomplete. One way to prove this is via the existence of in�nitely many

equivalent martingale measures, as we will see in section 4. In such a model, we have the

problem to choose an intuitive and/or 'e�cient' equivalent martingale measure. We solve

this problem in section 5, where we discuss the minimal equivalent martingale measure as

one intuitive solution to this problem.

3. Strategies and self-financing replicable securities

This section introduces the notation necessary to describe the trading of agents in our

market model. First we introduce hedging strategies as usually done in the literature of

option pricing. Then we de�ne portfolio strategies which are used in the literature of

portfolio-optimization-problems.

De�nition 3.1.

A trading (or hedging) strategy is a pair (�; �) of processes with

1. � is IRd-valued and (Ft)-predictable,

2. � is IR-valued and (Ft)-adapted,

3. E

�R T
0

�
�
(i)
u

�2
d


M (i);M (i)

�
u

�
<1, for i = 1; :::; d,

4. E

��R T
0

����(i)u �
(i)
u

��� du�2� <1, for i = 1; :::; d,

5. The value process V ('), de�ned by

Vt (') :=
Xd

i=1
�
(i)
t S

(i)
t + �t = ��t St + �t; for t 2 [0; T ]; (3.1)

has c�adl�ag-paths and is in L2 (P ), i. e. Vt (') 2 L
2 (P ) for all t 2 [0; T ].

The above de�nition of a hedging strategy was �rst introduced by Schweizer [Sch91] for

semimartingales S. We take this special case from Colwell, Elliott [CE93], who examine

the case of a jump-di�usion model, where the jumps are described by a general marked
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point process. Here �t is the amount of stocks the agent holds at t, whereas �t is the

amount of money in the money market accounts. The agent's gains and losses from using

a strategy are described by the so-called gains process G ('),

Gt (') :=

Z t

0

��udSu; for t 2 [0; T ]: (3.2)

In general, the value process and the gains process of a strategy are di�erent, i. e.

Vt (') = Gt (') +Ct (') ; for t 2 [0; T ]: (3.3)

Here C (') is the cost process of the strategy ', i. e. the money the agent needs to invest or

to consume, such that the strategy has a certain value which can be speci�ed by the value

of a contingent claim. A contingent claim is a (positive) random variable H 2 L2 (P ),

describing the payo� of a contingent security. Usually we consider a European call option

H, i. e. the payo� (ST �K)+ at time T , but it is also possible to consider other types of

derivative securities.

In the following context a strategy is always used to hedge a contingent claim H. We

say a hedging strategy replicates (or duplicates) the contingent claim H, if H = VT ('),

P -a.s. So it is always possible to �nd a replicating strategy for every contingent claim H:

take any strategy up to time T� and then pay the di�erence between the contingent claim

H and VT (') (or take the money, if the di�erence is negative).

If an agent, investor or a company (like a bank) use strategies to hedge against the risk

of selling or buying a contingent claim H, a strategy as described above is clearly not very

useful. It is well known that in a complete market model it is possible to replicate every

contingent claim H with a so called self-�nancing strategy. For such a strategy the cost

process C (') is constant, i. e.

Ct (') = C0 (') ; for t 2 [0; T ]: (3.4)

In this case

Vt (') = C0 (') +Gt (') = V0 (') +

Z t

0

��udSu; for t 2 [0; T ]; (3.5)

and

H = VT (') = C0 (') +GT (') = V0 (') +

Z T

0

��udSu: (3.6)

If we discount this and take the expectation under a certain martingale measure, the value

of H at t = 0 is V0 (') (see section 4). As noted, such a strategy is called self-�nancing,

because it has neither inows not outows before the trading horizont.

In incomplete market models it is not possible to �nd a self-�nancing replicating strategy

for every contingent claim H. In these models the cost process is generally nonconstant.

Therefore F�ollmer and Sondermann [FS86] introduce a broader class of strategies useful

for hedging. These strategies are called mean-self-�nancing, because their cost process is

a P -martingale, implying

E (Ct (')) = C0 (') ; for t 2 [0; T ]: (3.7)

Since there are many (mean-self-�nancing) strategies replicating a contingent claim, one

is interested in �nding an 'optimal' strategy. Therefore F�ollmer and Sondermann [FS86]

de�ne the optimization problem:
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Minimize E
�
(CT (')� Ct ('))

2
jFt

�
for all t 2 [0; T ] over all replicating strategies

for H.

They show that in the case of S being a P -martingale, such a strategy always exists and is

uniquely determined. Such a strategy is called a risk-minimizing strategy and the process

R (') de�ned by

Rt (') := E
�
(CT (')� Ct ('))

2
jFt

�
; for t 2 [0; T ]; (3.8)

is denoted the risk process of the strategy '. In general, when S is only a P -semimartingale,

such a strategy does not need to exist. In this case Schweizer [Sch91] introduces the

notion of a locally risk-minimizing strategy. The exact de�nition is rather technical, but

Schweizer [Sch91] proves that such strategies can be characterized by a cost process which

is orthogonal (in the Hilbert space sense of the space of square-integrable P -martingales)

to the martingale part M of S.

Another optimization problem also �rst noted by F�ollmer and Sondermann [FS86]

(see also Schweizer and others [Sch92b, Sch93a, Sch93b, Sch94a, Sch94c, Sch94b, Sch95,

PRS97, DMS+97], Du�e and Richardson [DR91], Monat and Stricker [MC95]), is the so

called mean-variance-hedging approach. Here the problem is:

Minimize E
�
(H � V0 (')�GT ('))

2
�
over all self-�nancing trading strategies '.

Another variation of this approach is the problem:

Minimize E
�
(H � c�GT ('))

2
�
over all self-�nancing trading strategies ' with

�xed initial value c.

Such strategies are called variance-minimizing.

As proved by Schweizer [Sch91] [Sch93a], a strategy solving one of these problems is

necessarily mean-self-�nancing. In the last two problems mentioned above this means

E (H � V0 (')�GT (')) = 0 (resp. E (H � c�GT (')) = 0). One should also note that

a variance-minimizing strategy cannot be risk-minimizing.

Now we introduce another notion of hedging strategies, usually used in the literature of

portfolio optimization problems. Here one is not interested in hedging against a contingent

claim but to maximize the consumption and the payo� of a strategy.

De�nition 3.2.

A portfolio process � is a IRd-valued (Ft)-predictable process with

1. E

�R T
0

�
�
(i)
u

�2Pm
j=1

�
�
(i;j)
u

�2
du

�
<1, for i = 1; :::; d,

2. E

�R T
0

�
�
(i
u

�2Pn
k=1

�
�
(i;k)
u

�2
�
(k)
u du

�
<1 , for i = 1; :::; d,

3. E

��R T
0

����(i)u �
(i)
u

��� du�2� <1, for i = 1; :::; d.

By V (�) we denote the value process of a portfolio process �. This shall be a right-

continuous square-integrable adapted process. As above, this is the value of the portfolio

of an agent following �, where �
(i)
t is the money invested in the i-th stock at time t. Then

the value invested in the money account B at time t is Vt (�)�
Pd

i=1 �
(i)
t .

Lemma 3.1.

The de�nitions 3.1 and 3.2 are equivalent if one sets

�
(i)
t = S

(i)
t��

(i)
t ; for t 2 [0; T ]: (3.9)
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Proof.

Clearly � de�ned by (3.9) is predictable, if and only if � is predictable.

Next we show that (1) and (2) of de�nition 3.1 is equivalent to de�nition 3.2, (3):

E

�Z T

0

�
�(i)u

�2Xm

j=1

�
�(i;j)u

�2
du

�
=

�Z T

0

�
�(i)u S

(i)
u�

�2Xm

j=1

�
�(i;j)u

�2
du

�
= E

�Z T

0

�
�(i)u

�2Xm

j=1

�
S
(i)
u��

(i;j)
u

�2
du

�
= E

�Z T

0

�
�(i)u

�2
d
D�
M (i)

�c
;
�
M (i)

�cE�
; for i = 1; :::; d (3.10)

and

E

�Z T

0

�
�(i)u

�2Xn

k=1

�
�(i;k)u

�2
�(k)u du

�
= E

�Z T

0

�
�(i)u S

(i)
u�

�2Xn

k=1

�
�(i;k)u

�2
�(k)u du

�
= E

�Z T

0

�
�(i)u

�2Xn

k=1

�
S
(i)
u��

(i;k)
u

�2
�(k)u du

�
= E

�Z T

0

�
�(i)u

�2
d

��
M (i)

�d
;
�
M (i)

�d��
; for i = 1; :::; d: (3.11)

Then (3.10) and (3.11) are �nite, if and only if de�nition 3.1, (3) holds.

Next we compare de�nition 3.1, (4) and de�nition 3.2, (3):

E

 �Z T

0

����(i)u �(i)u

��� du�2! = E

 �Z T

0

����(i)u S
(i)
u��

(i)
u

��� du�2! <1; for i = 1; :::; d:

(3.12)

Since S is square-integrable and �nite on [0; T ], (3.12) holds if and only if

E

 �Z T

0

����(i)u �(i)u

��� du�2! <1; for i = 1; :::; d: (3.13)

By de�nition the value processes of both kinds are right-continuous, square-integrable and

adapted, in particular if we note that � is de�ned by

�t = Vt (�)�
Xd

i=1
�
(i)
t ; for i = 1; :::; d; (3.14)

and so it is adapted.

So we can use the terms portfolio process and hedging strategy synonymously. A port-

folio process is self-�nancing, if its value process ful�ls

Vt (') = V0 (�) +

Z t

0

��udSu

= V0 (�) +

Z t

0

��uSu� � �udu+

Z t

0

��uSu� � (�udWu) +

Z t

0

��uSu� �
�
�ud �Nu

�
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= V0 (�) +

Z t

0

��u�udu+

Z t

0

��u�udWu +

Z t

0

��u�ud
�Nu;

for t 2 [0; T ]: (3.15)

Motivated by the work of Hofmann, Platen and Schweizer [HPS92] and (3.15), we

de�ne securities which can be replicated by a self-�nancing portfolio process (or hedging

strategy). Hofmann, Platen and Schweizer [HPS92] called these securities 'purely tradable

assets'. One could also call them redundant in the market model or, as we will do, self-

�nancing replicable which is more precise in an economic sense.

De�nition 3.3.

A security F is self-�nancing replicable, if there exists a self-�nancing portfolio process �

with

Ft = V0 (�) +

Z t

0

��u�udu+

Z t

0

��u�udWu +

Z t

0

��u�ud
�Nu; for t 2 [0; T ]: (3.16)

It is well known that in complete markets every security (including the underlyings) is

self-�nancing replicable. But we are interested in considering incomplete markets, where

we also have securities which are not self-�nancing replicable. To characterize these, we

need the following discussion:

Let � be the space of IRm+n-valued predictable processes � with

E

�Z t

0

Xm

j=1

�
�(j)u

�2
d
D
W (j);W (j)

E
u

�
+E

�Z t

0

Xn

k=1

�
�(m+k)u

�2
d
D
�N (k); �N (k)

E
u

�
= E

�Z t

0

Xm

j=1

�
�(j)u

�2
du

�
+E

�Z t

0

Xn

k=1

�
�(m+k)u

�2
�(k)u du

�
<1;

for t 2 [0; T ]; (3.17)

and de�ne the following product on �:

^(�t j#t ) =

�Z �

0

Xm

j=1
�(j)u dW (j)

u ;

Z �

0

Xm

j=1
#(j)u dW (j)

u

�
t

+

�Z �

0

Xn

k=1
�(m+k)u d �N (k)

u ;

Z �

0

Xn

k=1
#(m+k)u d �N (k)

u

�
t

=

Z t

0

Xm

j=1
�(j)u #(j)u du+

Z t

0

Xn

k=1
�(m+k)u #(m+k)u �(k)u du;

for t 2 [0; T ] and �; # 2 �: (3.18)

Here we use explicitly the orthogonality ofW and �N , allowing us to drop terms involving

the covariation of W with �N .

Motivated by the last de�nition, we de�ne the following product,

(�t j#t ) =
Xm

j=1
�(j)u #(j)u +

Xn

k=1
�(m+k)u #(m+k)u �(k)u ; for t 2 [0; T ] and �; # 2 �:

(3.19)

This product is a modi�ed vector-multiplication - modi�ed in the sense that the product

of the the last k-components of � and #, are extended by the intensity �. Using this last

notation, we can prove the following

Lemma 3.2.

(�; (� j�)) is a Hilbert-space.

Proof.

First let us observe that � is a IR-vector-space. Since IRm+n is a IR-vector-space, and the
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sum of predictable processes is predictable, it is su�cient to check only the integrability-

condition.

Let �; # 2 � , then

E

�Z t

0

Xm

j=1

�
(� + #)(j)u

�2
du

�
+E

�Z t

0

Xn

k=1

�
(� + #)(m+k)u

�2
�(k)u du

�
= E

�Z t

0

Xm

j=1

�
�(j)u

�2
+ 2�(j)u #(j)u +

�
#(j)u

�2
du

�
+E

�Z t

0

Xn

k=1

��
�(m+k)u

�2
+ 2�(m+k)u #(m+k)u +

�
#(m+k)u

�2�
�(k)u du

�
= E

�Z t

0

Xm

j=1

�
�(j)u

�2
du

�
+E

�Z t

0

Xn

k=1

�
�(m+k)u

�2
�(k)u du

�
+E

�Z t

0

Xm

j=1

�
#(j)u

�2
du

�
+E

�Z t

0

Xn

k=1

�
#(m+k)u

�2
�(k)u du

�
+2E

�Z t

0

Xm

j=1
�(j)u #(j)u du

�
+ 2E

�Z t

0

Xn

k=1
�(m+k)u #(m+k)u �(k)u du

�
;

for t 2 [0; T ]: (3.20)

The �rst two lines in this sum are �nite, since �; # 2 �. The third line is also �nite,

because of the Kunita-Watanabe- inequality:

Z t

0

����(j)u #(j)u

��� du
=

Z t

0

����(j)u #(j)u

��� dDW (j);W (j)
E
u

�

�Z t

0

�
�(j)u

�2
d
D
W (j);W (j)

E
u

� 1
2
�Z t

0

�
#(j)u

�2
d
D
W (j);W (j)

E
u

� 1
2

=

�Z t

0

�
�(j)u

�2
du

� 1
2
�Z t

0

�
#(j)u

�2
du

� 1
2

;

for t 2 [0; T ] and j = 1; :::;m;P -a.s.; (3.21)

respectively

Z t

0

����(k)u #(k)u

��� �(k)u du

=

Z t

0

����(k)u #(k)u

��� dD �N (k); �N (k)
E
u

�

�Z t

0

�
�(k)u

�2
d
D
�N (k); �N (k)

E
u

� 1
2
�Z t

0

�
#(k)u

�2
d
D
�N (k); �N (k)

E
u

� 1
2

=

�Z t

0

�
�(k)u

�2
�(k)u du

� 1
2
�Z t

0

�
#(k)u

�2
�(k)u du

� 1
2

;

for t 2 [0; T ] and k = 1; :::; n;P -a.s. (3.22)

So we get � + # 2 �.

Clearly the 0-process is the 0-vector in � and the additive inverse of � 2 � is �� and is

also in �. Now let c 2 R and � 2 �, then
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E

�Z t

0

Xm

j=1

�
(c�)(j)u

�2
du

�
+E

�Z t

0

Xn

k=1

�
(c�)(m+k)u

�2
�(k)u du

�
= c2E

�Z t

0

Xm

j=1

�
�(j)u

�2
du

�
+ c2E

�Z t

0

Xn

k=1

�
�(m+k)u

�2
�(k)u du

�
<1;

for t 2 [0; T ]; (3.23)

so c� 2 �. The other conditions are easy to check, since we just need the conditions of

the vector-space IRm+n.

Since (� j�) is just a modi�ed vector-multiplication in IRm+n, it is easy to check that (� j�)

is a scalar-product on �. For example consider

(�t + #t j�t )

=
Xm

j=1

�
�(j)u + #(j)u

�
�(j)u +

Xn

k=1

�
�(m+k)u + #(m+k)u

�
�(m+k)u �(k)u

=
Xm

j=1
�(j)u �(j)u +

Xm

j=1
#(j)u �(j)u

+
Xn

k=1
�(m+k)u �(m+k)u �(k)u +

Xn

k=1
#(m+k)u �(m+k)u �(k)u

= (�t j�t ) + (#t j�t ) ; for t 2 [0; T ] and �; #; � 2 �: (3.24)

If � is a matrix-valued process with rows in �, we de�ne in analogy to (3.19):

(�t j#t ) =

0BBB@
�
�
(1)

t j#t

�
...�

�
(d)
t j#t

�
1CCCA (3.25)

Let � and # be matrices with rows in �, then we de�ne

(�t j#t ) =

0BBB@
�
�
(1)

t

���#(1)t

�
� � �

�
�
(1)

t

���#(d)t

�
...

. . .
...�

�
(d)
t

���#(1)t

�
� � �

�
�
(d)
t

���#(d)t

�
1CCCA (3.26)

Next we de�ne the 'kernel' and the 'range' of the matrix
�
� �

�
resp.

�
� �

��
:

K
�
� �

�
:=
�
#
��# 2 �;

�
�t �t j#t

�
= 0, t 2 [0; T ], P � a.s.

	
(3.27)

R
��

� �
���

:=
�
�
��� 2 �, 9� portfolio process,

�
�t �t

��
�t = �t; t 2 [0; T ], P � a.s.

	
(3.28)

Then K
�
� �

�
and R

��
� �

���
yield an orthogonal decomposition of � with re-

spect to (� j�). Let # 2 K
�
� �

�
and � 2 R

��
� �

���
. Since � is a Hilbert-space,

every element has a orthogonal decomposition and it holds

(#t j�t ) =
Xm

j=1
#(j)u �(j)u +

Xn

k=1
#(m+k)u �(m+k)u �kt

=
Xm

j=1
#(j)u

�Xd

i=1
�(i;j)u �(i)u

�
+
Xn

k=1
#(m+k)u �(k)u

�Xd

i=1
�(i;k)u �(i)u

�
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=
Xd

i=1
�(i)u

Xm

j=1
�(i;j)u #(j)u +

Xd

i=1
�(i)u

Xn

k=1
�(i;k)u #(m+k)u �(k)u

=
Xd

i=1
�(i)u

�Xm

j=1
�(i;j)u #(j)u +

Xn

k=1
�(i;k)u #(m+k)u �(k)u

�
| {z }

=0

= 0;

for t 2 [0; T ]; (3.29)

where � is a IRd-valued predictable process, such that
�
�t �t

��
�t = �t , t 2 [0; T ].

As Karatzas et. al. [KLSX91] note (in a continuous setting), it is possible to complete a

market model, by adding su�ciently many nonredundant 'securities' to the market model.

This means we extend the model such that the volatility follows a (m+n)�(m+n)-matrix-

valued process, invertible for every t 2 [0; T ]. These nonredundant additional 'securities'

have volatility processes in K
�
� �

�
, while all self-�nancing replicable securities have

volatility processes in R
��

� �
���

. So we know how to de�ne the volatility of 'securities'

orthogonal to the self-�nancing replicable securities. But it is not clear, how to de�ne the

drift of theses processes. To get an idea of this, we need the notation of a martingale

measure for S.

4. Martingale measures, arbitrage-free securities, and nonhedgable

market risks

By now the equivalence between the existence of a martingale measure and the ab-

sence of arbitrage opportunities is well studied, see for instance Delbaen, Schachermayer

[DS94, DS97] and the references therein. An equivalent martingale measure is a probabil-

ity measure ~P equivalent to P , such that S (i. e. every component of S) is a ~P -martingale

(remember that we only consider discounted securities). We distinguish between an equiv-

alent martingale measure and an equivalent local martingale measure, under which S is

only a local ~P -martingale. Schweizer [Sch92a] generalizes these terms and considers only

the densities of such measures, and calls them martingale densities. In general these are no

longer strictly positive, i. e. they de�ne signed measures (see also Bardhan, Chao [BC96],

Schweizer [Sch93a, Sch94d, Sch94a, Sch94b, Sch95]).

Before we continue in characterizing securities like in section 3, we study the existence

of equivalent martingale measures. Therefore we need a Girsanov -type theorem suited for

our context:

Theorem 4.1.

Let ~� be a IRm-valued predictable process satisfying

E

�Z T

0

Xm

j=1

�
~�(j)u

�2
du

�
<1 (4.1)

and ~� be a IRn-valued predictable process satisfying

E

�Z T

0

Xn

k=1

�
~�(k)u + 1

�2
�(k)u du

�
<1 (4.2)

and

~�
(k)
t > �1; for t 2 [0; T ] and k = 1; :::; n: (4.3)

De�ne ~Z by

d ~Zt := ~Zt�

�
~�t
~�t

��
d

�
Wt
�Nt

�
; for t 2 [0; T ]; (4.4)
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with ~Z0 = 1. Suppose furthermore that

E
�
~Zt

�
= 1; for t 2 [0; T ]: (4.5)

Then ~Z is a nonnegative P -martingale and ~P de�ned by

d ~P

dP
jFt

= ~Zt; for t 2 [0; T ]; (4.6)

is an equivalent probability measure, such that ~W , given by

~Wt =Wt �

Z t

0

~�udu; for t 2 [0; T ]; (4.7)

is a ~P -Brownian motion and N has
�
~P ;Ft

�
-Intensity (~�+ 1n).

Proof.

Use Karatzas, Shreve [KS81], Chapter 3, Theorem 5.1, p. 191 and Br�emaud [Br�e81],

Chapter VI, Theorem T3, p. 166(3) and the orthogonality of W and N (4).

Now we determine ~� and ~�, such that S is a (local) ~P -martingale. For this note that if

~�0(k) is the relative jump size of ~Z of the k-th type, we can write

~Zt = ~Zt�

�Xn

k=1
~�
0(k)
t

�
; for t 2 [0; T ]; (4.8)

if a jump occurs, where
Pn

k=1 ~�
(k) =

Pn
k=1 ~�

0(k) � 1 (compare (2.7) and (2.8)). Then we

get

S
(i)
t

~Zt � S
(i)
t�

~Zt� = S
(i)
t�

~Zt�

��
1 +

Xn

k=1
�
(i;k)
t

��
1 +

Xn

k=1
~�
(k)
t

�
� 1
�

= S
(i)
t�

~Zt�

�Xn

k=1
�
(i;k)
t + ~�

(k)
t + �

(i;k)
t ~�

(k)
t

�
; for t 2 [0; T ]; (4.9)

if a jump occurs. Here we make use of the fact that the di�erent jump-types have no

common jumps. In general (to omit the supplement 'if a jump occurs') we write

S
(i)
t

~Zt � S
(i)
t�

~Zt� = S
(i)
t�

~Zt�

�Xn

k=1

�
�
(i;k)
t + ~�

(k)
t + �

(i;k)
t ~�

(k)
t

�
�N

(k)
t

�
;

for t 2 [0; T ]; (4.10)

and note:

�N (k) = � �N (k); for k = 1; :::; n: (4.11)

Theorem 4.2.

The security process S is a (local) ~P -martingale if ~� and ~� solve the linear system of

equations

��
�t �t

� ������ ~�t
~�t

��
= �t; for t 2 [0; T ]: (4.12)

(3)Note that we use another notation than Br�emaud[Br�e81]. There the intensity under the new measure

is ~� � � , while in our model the new intensity is (~�+ 1n) � �. To ensure the positivity of the intensity, we

need (4.3). We use this notation, to use ~� in a similar way to ~�.
(4)Note that we use stronger assumptions on ~� and ~� than necessary, since we need them to be in �.
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Proof.

Using Elliott [Ell82], Chapter 13, Lemma 13.10, p. 161 it is su�cient and necessary to

show that S ~Z is a (local) P -martingale. Therefore we use the Itô-rule with f : IR2
!

IR; (x; y) 7�! xy and consider:

df
�
~Zt; St

�
= St�d ~Zt + ~Zt�dSt + d

D
~Zc; Sc

E
t
+
�
~ZtSt � ~Zt�St� � St�� ~Zt � ~Zt��St

�
= ~Zt�St� �

��
�t �t

�
d

�
Wt
�Nt

�
+ �t~�td �Nt

+

�
�tdt+

�
�t �t

� ����� ~�t
~�t

��
dt

�
; for t 2 [0; T ]: (4.13)

It is well known that under the regularity conditions of the integrands above, S ~Z is a

(local) P -martingale if the last term (the 'dt'-term) vanishes, i. e. if (4.12) holds.

Since � has an inverse (compare (2.11)), (4.12) has at least one solution, given by

�

�
~�t
~�t

�
=
�
�t �t

�� ��
�t �t

� ��� �t �t
���1

�t; for t 2 [0; T ]: (4.14)

Note that this solution is in R
��

� �
���

. If d is less than m+ n, this solution is not

unique, i. e. the space of equivalent (local) martingale measures is in�nite.

Remark 4.1.

1. We call �

�
~�

~�

�
the market price of risk process of our market model.

2. For � � 0 (4.14) de�nes the market price of risk process �~� associated with the min-

imal (local) martingale measure in a di�usion-model. As we will see (4.14) de�nes

also the minimal (local) martingale measure in our jump-di�usion model (see section

5).

After we have characterized (local) martingale measures in our model and assured their

existence, we continue by characterizing general securities.

For the absence of arbitrage, it is necessary for S to be a (special) semimartingale (see

Delbaen and Schachermayer [DS94], Theorem 7.2, p. 504). This suggests the following

de�nition taken from Hofmann, Platen and Schweizer [HPS92].

De�nition 4.1.

1. A general security is a security F , with the price process being a P -semimartingale.

2. An arbitrage-free security is a general security, such that the (discounted) price pro-

cess is a (local) martingale for some equivalent (local) martingale measure for S.

In Hofmann, Platen and Schweizer [HPS92] arbitrage-free securities are called compat-

ible. Like them, we show in our more general model that every arbitrage-free security has

a decomposition into a self-�nancing replicable security and a part 'orthogonal' to the self-

�nancing replicable part. For this we note that the market price of risk processes de�ned

by (4.12) are elements of �. Thus every market price of risk process has a representation

�

�
~�t
~�t

�
= �t + #t; for t 2 [0; T ]; (4.15)
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with � 2 R
��

� �
���

and # 2 K
�
� �

�
. Since a portfolio process � is a IRd-valued

process, such that
�
� �

��
� 2 �, we have for every � 2 R

��
� �

���
a portfolio

process �, with
�
� �

��
� = �. So we get

�

�
~�t
~�t

�
=
�
�t �t

��
�t + #t; for t 2 [0; T ]: (4.16)

Multiplying both sides with
�
� �

�
which has full rank d, we get

��
�t �t

� ������ ~�t
~�t

��
= �t�t = �t; for t 2 [0; T ]: (4.17)

Since � has an inverse, we get

�t = ��1
t �t; for t 2 [0; T ]: (4.18)

Using these equations, we can prove the following result.

Theorem 4.3.

Every arbitrage-free security F has a representation

dFt = ��t �t + ��t
�
�t �t

�
d

�
Wt
�Nt

�
+ (�t j#t ) dt+ �td

�
Wt
�Nt

�
; for t 2 [0; T ]; (4.19)

with a portfolio process � and �; # 2 K
�
� �

�
. This representation is unique up to

additive constants.

Proof.

Since F is a (special) semimartingale, there is a (predictable) process of �nite variation ~A

and a (local) P -Martingale ~M , such that

dFt = d ~At + d ~Mt; for t 2 [0; T ]: (4.20)

Using the martingale-representation theorem (in the general version for W and �N), there

exists a predictable processes  2 �, such that ~M has a representation

d ~Mt = �t d

�
Wt
�Nt

�
; for t 2 [0; T ]: (4.21)

Since  2 �, there are processes � 2 R
��

� �
���

and # 2 K
�
� �

�
with

t = �t + #t; for t 2 [0; T ]: (4.22)

Then a portfolio process � exists, such that we can write (4.22) as

t =
�
�t �t

��
�t + #t; for t 2 [0; T ]: (4.23)

Then we can rewrite (4.20):

dFt = d ~At + td

�
Wt
�Nt

�



MODELING MARKET RISK IN A JUMP-DIFFUSION SETTING 17

= d ~At + ��t
�
�t �t

�
d

�
Wt
�Nt

�
+ #td

�
Wt
�Nt

�
for t 2 [0; T ]: (4.24)

Since F is arbitrage-free, there exists a (local) martingale measure ~P with corresponding

market price of risk process �

�
~�

~�

�
, such that F is a (local) ~P -martingale. Thus we can

rewrite (4.24):

dFt = d ~A+ ��t

��
�t �t

� ����� ~�t
~�t

��
dt+ ��t

�
�t �t

�
d

�
Wt �

R t
0
~�udu

Nt �
R t
0
(1k + ~�u) � �tdu

�
+

�
�t

����� ~�t
~�t

��
dt+ �td

�
Wt �

R t
0
~�udu

Nt �
R t
0
(1k + ~�u) � �tdu

�

= d ~A+ ��t (��)dt+

�
�t

����� ~�t
~�t

��
dt+ ��t

�
�t �t

�
d

 
~Wt

~�N t

!
+ �td

 
~Wt

~�N t

!
for t 2 [0; T ]: (4.25)

Since F is a (local) martingale under ~P , the �nite variation part of F must vanish. Thus
~A must satisfy

d ~At = ��t �tdt�

�
#t

����� ~�t
~�t

��
dt; for t 2 [0; T ]: (4.26)

Using the decomposition (4.16) of �

�
~�

~�

�
, we get

d ~At = ��t �tdt� (#t j�t ) dt; for t 2 [0; T ]: (4.27)

Thus using (4.20) and (4.24) we get (4.19).

To prove the uniqueness, assume another representation (4.19) of F with coe�cients ��, �#,
��. Then we have

��t �t + ��t
�
�t �t

�
d

�
Wt
�Nt

�
+ (�t j#t ) dt+ �td

�
Wt
�Nt

�
= ���t �t + ���t

�
�t �t

�
d

�
Wt
�Nt

�
+
�
��t

����#t� dt+ ��td

�
Wt
�Nt

�
; for t 2 [0; T ]: (4.28)

which we can simplify to

(��t � ��t)�tdt+
�
(�t j#t )�

�
��t

����#t�� dt
= (���t � �t)

�
�
�t �t

�
d

�
Wt
�Nt

�
+
�
��t � �t

��
d

�
Wt
�Nt

�
; for t 2 [0; T ]: (4.29)

Since the �rst line is a process of �nite variation and the second line is a (local) P -

martingale, the processes must be constant, i. e. the integrands must be zero. Since�
� �

�
is not the zero-matrix and has full rank d, we must have

(�t � ��t) = 0; for t 2 [0; T ]: (4.30)

Then we get immediately�
��t � �t

�
= 0; for t 2 [0; T ]; (4.31)
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respectively

(�t j#t )�
�
��t

����#t� = 0; for t 2 [0; T ]: (4.32)

So the representations are equal apart from a additive constant.

Comparing the representation (4.19) with de�nition 3.3, we see that every arbitrage-free

security F has an unique decomposition into a self-�nancing replicable security, and an

additional 'risk-part'. This risk part can be characterized by the fact that it is not possible

to �nd a self-�nancing portfolio to replicate it with the stocks S and the money market

account B. Hofmann, Platen and Schweizer [HPS92] call these risks totally untradable

assets. Since these risks are more precisely not hedgable in our market model, we call

them unhedgable market risks.

De�nition 4.2.

An unhedgable market risk is a process RM , satisfying

dRM
t = (�t j#t ) dt+ �td

�
Wt
�Nt

�
; for t 2 [0; T ]; (4.33)

with �; # 2 K
�
� �

�
.

Remark 4.2.

1. In a continuous setting, an unhedgable market risk is a generalization of the cost

process of a (locally) risk-minimizing strategy (see F�ollmer and Sondermann [FS86]

and Schweizer [Sch91]), where the cost process is just a P -martingale.

2. Theorem 4.3 states that every arbitrage-free security has a unique decomposition into

a self-�nancing replicable security and an unhedgable market risk. In a continu-

ous setting this generalizes the F�ollmer-Schweizer-decomposition (see F�ollmer and

Schweizer [FS91]).

5. The minimal martingale measure and the risk-preserving martingale

measure

Like Hofmann, Platen and Schweizer [HPS92] we will characterize the minimal equiv-

alent (local) martingale measure, �rst de�ned by F�ollmer and Schweizer [FS91], with

respect to unhedgable market risks. An equivalent (local) martingale measure bP is mini-

mal, if all (locally) square-integrable (local) P -martingales orthogonal to every component

of M (where M is the (local) martingale part of S) are also (local) bP -martingales. This

de�nition is motivated by the characterization of locally risk-minimizing strategies. Under

some regularity conditions, a locally risk-minimizing strategy is characterized by a cost-

process which is orthogonal toM (see Schweizer [Sch91]). To �nd a locally risk-minimizing

strategy, it is su�cient to �nd a risk-minimizing strategy under the minimal equivalent

martingale measure. The latter strategy always exists, as shown in F�ollmer and Sonder-

mann [FS86] in a continuous setting. Then this strategy equals the locally risk-minimizing

strategy under the 'subjective' measure P . F�ollmer and Schweizer [FS91] prove in a con-

tinuous setting that the minimal equivalent martingale measure also preserves orthogonal-

ity, in the sense that every P -martingale orthogonal to M is a bP -martingale orthogonal to

M under bP . But Schweizer [Sch89] gives an (easy to understand) example, showing that

this no longer holds for discontinuous securities-markets. Hofmann, Platen and Schweizer

[HPS92] generalize the orthogonality preserving condition to unhedgable market risks (or

totally untradable assets). They prove that the minimal equivalent (local) martingale

measure is the only martingale measure under which the unhedgable market risks follow

the same stochastic di�erential equation as under the 'subjective' measure. As we will
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see, in our jump-di�usion-model we can prove a similar result. But in our setting the

unhedgable market risks are no longer orthogonal to M .

The existence of the minimal equivalent (local) martingale measure is discussed in the

literature in comprehensive manner. Ansel and Stricker [AS93] show that the minimal

equivalent local martingale measure exists, if (2.19) holds with

P
�
�
(i)
t �M

(i)
t > �1

�
= 1 for t 2 [0; T ] and i = 1; :::; d: (5.1)

Otherwise the martingale density bZ = d bP
dP

is no longer positive and the minimal equiv-

alent local martingale measure does not exist. Schweizer [Sch89] proves that the minimal

equivalent martingale measure exists, if and only if (2.19) holds and the process bZ, de�ned
by

d bZt = � bZt���t dMt; for t 2 [0; T ]; (5.2)

is a square-integrable positive P -martingale where � must perform

E

�Z T

0

����(i)u ��� �ln ����(i)u ����+ dDM (i);M (i)
E
u

�
<1 (5.3)

In all these cases, the minimal equivalent (local) martingale measure bP is unique, when-

ever it exists.

As we have seen in section 4, with the stated assumptions of our model, an equivalent

(local) martingale measure exists. It is now easy to prove that also the minimal equivalent

martingale measure exists.

Theorem 5.1.

The minimal equivalent (local) martingale measure exists and is de�ned by its density Ẑ

with respect to P , following

d bZt = bZt�� b�tb�t
��

d

�
Wt
�Nt

�
; for t 2 [0; T ]; (5.4)

where �

� b�tb�t
�

is given by (4.14).

Proof.

Let L be a square-integrable P -martingale orthogonal to every component of M . Then

there exists a process

�
�

 

�
2 � , such that L has the representation

dLt =

�
�t
 t

��
d

�
Wt
�Nt

�
; for t 2 [0; T ]: (5.5)

Then we get

d hM;Lit = d

�Z �

0

Su� �
�
�u �u

�
d

�
Wu
�Nu

�
;

Z �

0

�
�u
 u

��

d

�
Wu
�Nu

��
t

= St� �

��
�t �t

� ����� �t
 t

��
dt

= 0; for t 2 [0; T ]; (5.6)

i. e. L is orthogonal if

�
�t
 t

�
2 K

�
� �

�
.
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Now let bZ be de�ned by (4.14) and consider

d
�
Lt bZt� = Lt�d bZt + bZt�dLt + d

D
Lc; bZc

E
t

+
�
Lt bZt � Lt� bZt� � Lt�� bZt � bZt��Lt�

= bZt��Lt�� b�tb�t
��

d

�
Wt
�Nt

�
+

�
�t
 t

��

d

�
Wt
�Nt

�
+ ( t � b�t)� d �Nt +

��
�t
 t

� ����� b�tb�t
��

dt

�
; for t 2 [0; T ]; (5.7)

Since L is orthogonal to every component of M , i. e. (5.6) holds, and since �

� b�tb�t
�
2

R
��

� �
���

, the last part of (5.7) vanishes, and so L is also a bP -martingale.

The uniqueness of bP follows from the uniqueness of the decomposition (4.15) for every

market price of risk process �

� b�tb�t
�
.

In the case of continuous price-processes, the minimal equivalent (local) martingale

measure preserves the orthogonality of P -martingales like L. In our model this is no longer

true. For this consider

dLt =

�
�t
 t

��
d

�
Wt
�Nt

�
=

�
�t
 t

��
d

 cWtb�N t

!
+

��
�t
 t

� ����� b�tb�t
��

dt; for t 2 [0; T ]; (5.8)

where we use again (5.5) and

� b�tb�t
�
2 R

��
� �

���
. Then we get under bP

d hM;Lit = d

*Z �

0

Su� �
�
�u �u

�
d

 cWub�Nu

!
;

Z �

0

�
�u
 u

��

d

 cWub�Nu

!+
t

= St� �

��
�t �t

� ����� �t
 t

��
dt+ (�t t) � b�t � �tdt; for t 2 [0; T ]; (5.9)

where we use again

� b�tb�t
�
2 R

��
� �

���
. So L is under bP orthogonal to M , if the last

term vanishes. Since we assume (�t t) � �t = 0, (5.9) generally does not vanish. It would

vanish for example for constant b�t, but this is a rather uninteresting case.

Remark 5.1.

1. We conclude that there exists no equivalent (local) martingale measure eP , such that

any orthogonal P -martingale L de�ned by (5.5) and (5.6) is also an orthogonal eP -
martingale, because the minimal equivalent (local) martingale measure is the only

equivalent (local) martingale measure preserving the martingale-property.

2. Note that L de�ned by (5.6) is also an unhedgable market risk in the sense of de�ni-

tion 4.2, since

�
�t
 t

�
2 K

�
� �

�
.

Now we prove our main result which generalizes a similar result in the di�usion-model

of Hofmann, Platen and Schweizer [HPS92].
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Theorem 5.2.

The minimal equivalent (local) martingale measure bP is the only martingale measure,

leaving the processes of unhedgable market risks invariant under a measure-transformation.

Proof.

Let �P be an equivalent (local) martingale measure, such that an unhedgable market risk

RM follows the same stochastic di�erential equation under P and �P . Then there exist �,

# 2 K
�
� �

�
, such that

dRM
t = (�t j#t ) dt+ ��t d

�
Wt
�Nt

�
; for t 2 [0; T ]; (5.10)

respectively

dRM
t = (�t j#t ) dt+ ��t d

�
�Wt
��N t

�
; for t 2 [0; T ]; (5.11)

where �W is a Brownian motion under �P , de�ned by

�Wt =Wt �

Z t

0

��udu; for t 2 [0; T ]; (5.12)

��N is the compensated Poisson process de�ned by

��N t = Nt �

Z t

0

(1k + ��u) � �udu; for t 2 [0; T ]; (5.13)

and �

�
��t
��t

�
is the associated market price of risk process of �P .

Substituting (5.12) and (5.13) in (5.11), we get

dRM
t = (�t j#t ) dt+ ��t d

�
Wt
�Nt

�
�

�
�t

����� ��t
��t

��
dt; for t 2 [0; T ]: (5.14)

Recall that the market price of risk process has a decomposition

�

�
��t
��t

�
=
�
�t �t

�� ��t + �#t; for t 2 [0; T ]; (5.15)

with a portfolio process �� and �# 2 K
�
� �

�
. Then (5.14) equals

dRM
t = (�t j#t ) dt+ ��t d

�
Wt
�Nt

�
+
�
�t
���#t � dt; for t 2 [0; T ]: (5.16)

Since we have �#; � 2 K
�
� �

�
, the only (local) martingale measure �P which preserves

(5.10) and (5.11), has a market price of risk process with �# = 0, P -a.s, i. e. �P = bP .
The last result seems to be a contradiction to the condition that in jump-di�usion

models the orthogonality of martingales is not preserved by a measure transformation.

But the next result will clear this point.

Theorem 5.3.

Under the minimal martingale measure, the unhedgable market risks are in general not

orthogonal to M .
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Proof.

Let RM be an unhedgable market risk under bP and letM (i) be the martingale part of S(i)

under bP . Then
d


M;RM

�
t
= d

*Z �

0

Su� �
�
�u �u

�
d

 cWub�Nu

!
;

Z �

0

(�u j#u ) du+

Z �

0

��ud

 cWub�Nu

!+
t

= St� �
�
0 �t

�
�t � b�t � �t; for t 2 [0; T ]: (5.17)

Again the last term does not vanish in general, and so in general the unhedgable market

risk RM is not orthogonal to M under bP .
6. Conclusion

We show that it is possible, to generalize the paper of Hofmann, Platen and Schweizer

[HPS92] to jump-di�usion-models. Similar to them, we model securities which are repli-

cable in a self-�nancing way and market risks which can not hedged by the underlying

securities. Then we de�ne arbitrage-free securities and prove that they can be decomposed

into a self-�nancing replicable security and an unhedgable market risk.

Furthermore we study the equivalent (local) martingale measures in our model, and

characterize them by the their associated market price of risk process. By doing this, we

introduce the notion of the minimal martingale measure. We prove that this is character-

ized by leaving the unhedgable market risks invariant under a change of measure. So we

generalize a similar result in Hofmann, Platen and Schweizer [HPS92]. Furthermore we

state that this is no contradiction to the well known property of the minimal martingale

measure that it does not preserve orthogonality in discontinuous models. We prove that

the unhedgable market risks are in general not orthogonal to the (local) martingale part

of S under the minimal (local) martingale measure.
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Appendix A. Formulas

Equation (2.20):

dA
(i)
t = �

(i)
t d

D
M (i);M (i)

E
t

= �
(i)
t

�
d
D�
M (i)
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Equation (2.24):
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for t 2 [0; T ] and i = 1; :::; d: (A.2)
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Equation (4.9):
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for t 2 [0; T ]: (A.4)

Equation (4.15) equals the following equations:
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(j)
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(j)
t ; for t 2 [0; T ] and j = 1; :::;m; (A.5)

and
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� ~�
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Equation (4.16) equals the following equations:
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for t 2 [0; T ]: (A.14)
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28 HOLGER WIESENBERG
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for t 2 [0; T ]: (A.16)
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which we can simplify to equation (4.29)
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t � ��

(m+k)
t

�#
(m+k)
t

�
�
(k)
t dt

=
Xd

i=1

�
��
(i)
t � �

(i)
t

��Xm

j=1
�
(i;j)
t dW

(j)
t +

Xn

k=1
�
(i;k)
t d �N

(k)
t

�
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+
Xm

j=1

�
��
(j)
t � �

(j)
t

�
dW

(j)
t +

Xn

k=1

�
��
(m+k)
t � �

(m+k)
t

�
d �N

(k)
t ; for t 2 [0; T ]:(A.19)

Equation (4.33):

dRM
t =

Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t dt

+
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
�
(m+k)
t d �N

(k)
t ; for t 2 [0; T ]; (A.20)

Equation (5.5):

dLt =
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
 
(k)
t d �N

(k)
t ; for t 2 [0; T ]: (A.21)

Equation (5.6):

d
D
M (i); L

E
t

= d

�Z �

0

Xm

j=1
S
(i)
u��

(i;j)
u dW (j)

u +

Z �

0

Xn

k=1
S
(i)
u��

(i;k)
u d �N (k)

u ;Z �

0

Xm

j=1
�(j)u dW (j)

u +

Z �

0

Xn

k=1
 (k)u d �N (k)

u

�
t

= d

�Z �

0

Xm

j=1
S
(i)
u��

(i;j)
u dW (j)

u ;

Z �

0

Xm

j=1
S
(i)
u��

(j)
u dW (j)

u

�
t

+d

�Z �

0

Xn

k=1
�(i;k)u d �N (k)

u ;

Z �

0

Xn

k=1
 (k)d �N (k)

u

�
t

= S
(i)
t�

�Xm

j=1
�
(i;j)
t �

(j)
t dt+

Xn

k=1
�
(i;k)
t  

(k)
t �

(k)
t dt

�
= 0; for t 2 [0; T ]; (A.22)

Equation (5.7):

d
�
Lt bZt� = Lt�d bZt + bZt�dLt + d

D
Lc; bZc

E
t

+
�
Lt bZt � Lt� bZt� � Lt�� bZt � bZt��Lt�

= Lt� bZt�Xm

j=1

b�(j)t dW
(j)
t + Lt� bZt�Xk

i=1
b�(k)t d �N

(k)
t

+ bZt�Xm

j=1
�
(j)
t dW

(j)
t + bZt�Xk

i=1
 
(k)
t d �N

(k)
t

+ bZt�Xm

j=1
�
(j)
t
b�(j)t dt

+ bZt��Xk

i=1

�
 
(k)
t + Lt�b�(k)t +  

(k)
t b�(k)t

�
�N

(k)
t

�
�Lt� bZt�Xk

i=1
b�(k)t �N

(k)
t � bZt�Xk

i=1
 
(k)
t �N

(k)
t

= Lt� bZt�Xm

j=1

b�(j)t dW
(j)
t � Lt� bZt�Xk

i=1
b�(k)t �

(k)
t dt

+ bZt�Xm

j=1
�
(j)
t dW

(j)
t

� bZt�Xk

i=1
 
(k)
t �

(k)
t dt+ bZt�Xm

j=1
�
(j)
t
b�(j)t dt

+ bZt��Xk

i=1

�
 
(k)
t + Lt�b�(k)t +  

(k)
t b�(k)t

�
dN

(k)
t

�
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= bZt�Xm

j=1

�
Lt�b�(j)t + �

(j)
t

�
dW

(j)
t

+ bZt��Xk

i=1

�
 
(k)
t + Lt�b�(k)t +  

(k)
t b�(k)t

�
d �N

(k)
t

�
+ bZt�Xm

j=1
�
(j)
t
b�(j)t dt� bZt�Xk

i=1
 
(k)
t �

(k)
t dt

�Lt� bZt�Xk

i=1
b�(k)t �

(k)
t dt

+ bZt��Xk

i=1

�
 
(k)
t + Lt�b�(k)t +  

(k)
t b�(k)t

�
�
(k)
t dt

�
= bZt�Xm

j=1

�
Lt�b�(j)t + �

(j)
t

�
dW

(j)
t

+ bZt��Xk

i=1

�
 
(k)
t + Lt�b�(k)t +  

(k)
t b�(k)t

�
d �N

(k)
t

�
+ bZt�Xm

j=1
�
(j)
t
b�(j)t dt

+ bZt�Xk

i=1

�
� 

(k)
t �

(k)
t � Lt�b�(k)t �

(k)
t +  

(k)
t �

(k)
t

+Lt�b�(k)t �
(k)
t + �

(k)
t b�(k)t �

(k)
t

�
dt

= bZt�Xm

j=1

�
Lt�b�(j)t + �

(j)
t

�
dW

(j)
t

+ bZt��Xk

i=1

�
 
(k)
t + Lt�b�(k)t +  

(k)
t b�(k)t

�
d �N

(k)
t

�
+ bZt�Xm

j=1
�
(j)
t
b�(j)t dt+ bZt�Xk

i=1
 
(k)
t b�(k)t �

(k)
t dt; for t 2 [0; T ]; (A.23)

where we use

Lt bZt � Lt� bZt�
=
�
Lt� +

Xn

k=1
 
(k)
t �N

(k)
t

�
Ẑt�

�
1 +

Xn

k=1
b�(k)t �N

(k)
t

�
� Lt� bZt�

=
�
Lt� bZt� + bZt�Xn

k=1
 
(k)
t �N

(k)
t

��
1 +

Xn

k=1
b�(k)t �N

(k)
t

�
� Lt� bZt�

=
�
Lt� bZt� + bZt�Xn

k=1
 
(k)
t �N

(k)
t + Lt� bZt�Xn

k=1
b�(k)t �N

(k)
t

+ bZt�Xn

k=1
 
(k)
t �N

(k)
t

Xn

k=1
b�(k)t �N

(k)
t

�
� Lt� bZt�

= bZt�Xn

k=1
 
(k)
t �N

(k)
t + Lt� bZt�Xn

k=1
b�(k)t �N

(k)
t

+ bZt�Xn

k=1
 
(k)
t b�(k)t �N

(k)
t

= bZt�Xn

k=1

�
 
(k)
t + Lt�b�(k)t +  

(k)
t b�(k)t

�
�N

(k)
t ; for t 2 [0; T ]: (A.24)

Equation (5.8):

dLt =
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
 
(k)
t d �N

(k)
t

=
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
 
(k)
t d

�
N
(k)
t �

Z t

0

�
(k)
t du

�
=
Xm

j=1
�
(j)
t d

�
W

(j)
t �

Z t

0

b�(j)u du

�
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+
Xn

k=1
�
(k)
t d

�
N
(k)
t �

Z t

0

�
1 + b�(k)u

�
�
(k)
t du

�
+
Xm

j=1
�
(j)
t
b�(j)t dt+

Xn

k=1
 
(k)
t b�(k)t �

(k)
t dt

=
Xm

j=1
�
(j)
t dcW (j)

t +
Xn

k=1
 
(k)
t d b�N (k)

t

+
Xm

j=1
�
(j)
t
b�(j)t dt+

Xn

k=1
 
(k)
t b�(k)t �

(k)
t dt

=
Xm

j=1
�
(j)
t dcW (j)

t +
Xn

k=1
 
(k)
t d b�N (k)

t ; for t 2 [0; T ]; (A.25)

Equation (5.9):

d
D
M (i); L

E
t

= d

�Z �

0

Xm

j=1
S
(i)
u��

(i;j)
u dcW (j)

u +

Z �

0

Xn

k=1
S
(i)
u��

(i;k)
u d b�N (k)

u ;Z �

0

Xm

j=1
�(j)u dcW (j)

u +

Z �

0

Xn

k=1
 (k)u d b�N (k)

u

�
t

= d

�Z �

0

Xm

j=1
S
(i)
u��

(i;j)
u dcW (j)

u ;

Z �

0

Xm

j=1
S
(i)
u��

(j)
u dcW (j)

u

�
t

+d

�Z �

0

Xn

k=1
�(i;k)u d b�N (k)

u ;

Z �

0

Xn

k=1
 (k)u d b�N (k)

u

�
t

= S
(i)
t�

�Xm

j=1
�
(i;j)
t �

(j)
t dt+

Xn

k=1
�
(i;k)
t  

(k)
t

�
1 + b�(k)t

�
�
(k)
t dt

�
= S

(i)
t�

�Xm

j=1
�
(i;j)
t �

(j)
t +

Xn

k=1
�
(i;k)
t  

(k)
t �

(k)
t

+
Xn

k=1
�
(i;k)
t  

(k)
t b�(k)t �

(k)
t

�
dt

= S
(i)
t�

�Xn

k=1
�
(i;k)
t  

(k)
t b�(k)t �

(k)
t

�
dt; for t 2 [0; T ]; (A.26)

Equation (5.10):

dRM
t =

Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t dt

+
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
�
(m+k)
t d �N

(k)
t ; for t 2 [0; T ]; (A.27)

Equation (5.11):

dRM
t =

Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t

+
Xm

j=1
�
(j)
t d �W

(j)
t +

Xn

k=1
�
(m+k)
t d ��N

(k)
t ; for t 2 [0; T ]; (A.28)

Equation (5.12):

�W
(j)
t =W

(j)
t �

Z t

0

��(j)u du; for t 2 [0; T ]; (A.29)

Equation (5.13):

��N
(k)
t = N

(k)
t �

Z t

0

�
1 + ��(k)u

�
�(k)u du; for t 2 [0; T ]; (A.30)
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Equation (5.14):

dRM
t =

Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t dt

+
Xm

j=1
�
(j)
t d

�
W

(j)
t �

Z t

0

��(j)u du

�
+
Xn

k=1
�
(m+k)
t d

�
N
(k)
t �

Z t

0

�
1 + ��(k)u

�
�(k)u du

�
=
Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t dt

+
Xm

j=1
�
(j)
t dW

(j)
t �

Xm

j=1
�
(j)
t

��
(j)
t dt

+
Xn

k=1
�
(m+k)
t d

�
N
(k)
t �

Z t

0

�(k)u du

�
�

Xn

k=1
�
(m+k)
t ��

(k)
t �

(k)
t dt

=
Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t dt

+
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
�
(m+k)
t d �N

(k)
t

�

Xm

j=1
�
(j)
t

��
(j)
t dt�

Xn

k=1
�
(m+k)
t ��

(k)
t �

(k)
t dt; for t 2 [0; T ]: (A.31)

Equation (5.15) equals the following equations:

� ��
(j)
t =

Xd

i=1
�
(i;j)
t

��
(i)
t + �#

(j)
t ; for t 2 [0; T ] and j = 1; :::;m (A.32)

and

� ��
(k)
t =

Xd

i=1
�
(i;k)
t

��
(i)
t + �#

(m+k)
t ; for t 2 [0; T ] and k = 1; :::; n; (A.33)

Equation (5.16):

dRM
t =

Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t dt

+
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
�
(m+k)
t d �N

(k)
t

+
Xm

j=1
�
(j)
t

�Xd

i=1
�
(i;j)
t

��
(i)
t + �#

(j)
t

�
dt

+
Xn

k=1
�
(m+k)
t

�Xd

i=1
�
(i;k)
t

��
(i)
t + �#

(m+k)
t

�
�
(k)
t dt

=
Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t dt

+
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
�
(m+k)
t d �N

(k)
t

+
Xm

j=1
�
(j)
t

Xd

i=1
�
(i;j)
t

��
(i)
t dt+

Xm

j=1
�
(j)
t

�#
(j)
t dt

+
Xn

k=1
�
(m+k)
t

Xd

i=1
�
(i;k)
t

��
(i)
t �

(k)
t dt+

Xn

k=1
�
(m+k)
t

�#
(m+k)
t �

(k)
t dt

=
Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t dt

+
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
�
(m+k)
t d �N

(k)
t
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+
Xd

i=1

��
(i)
t

�Xm

j=1
�
(i;j)
t �

(j)
t +

Xn

k=1
�
(i;k)
t �

(m+k)
t �

(k)
t

�
| {z }

=0

dt

+
Xm

j=1
�
(j)
t

�#
(j)
t dt+

Xn

k=1
�
(m+k)
t

�#
(m+k)
t �

(k)
t dt

=
Xm

j=1
�
(j)
t #

(j)
t dt+

Xn

k=1
�
(m+k)
t #

(m+k)
t �

(k)
t dt

+
Xm

j=1
�
(j)
t dW

(j)
t +

Xn

k=1
�
(m+k)
t d �N

(k)
t

+
Xm

j=1
�
(j)
t

�#
(j)
t dt+

Xn

k=1
�
(m+k)
t

�#
(m+k)
t �

(k)
t dt; for t 2 [0; T ]: (A.34)

Equation (5.17):

d
D
M (i); RM

E
t

= d

�Z �

0

Xm

j=1
S
(i)
u��

(i;j)
u dcW (j)

u +

Z �

0

Xn

k=1
S
(i)
u��

(i;k)
u d b�N (k)

u ;Z �

0

Xm

j=1
�(j)u #(j)u dt+

Z �

0

Xn

k=1
�(m+k)u #(m+k)u �(k)u dt

+

Z �

0

Xm

j=1
�(j)u dcW (j)

u +

Z �

0

Xn

k=1
�(m+k)u d b�N (k)

u

�
t

= d

�Z �

0

Xm

j=1
S
(i)
u��

(i;j)
u dcW (j)

u ;

Z �

0

Xm

j=1
�(j)u dcW (j)

u

�
+d

�Z �

0

Xn

k=1
S
(i)
u��

(i;k)
u d b�N (k)

u ;

Z �

0

Xn

k=1
�(m+k)u d b�N (k)

u

�
= d

�Z �

0

Xm

j=1
S
(i)
u��

(i;j)
u d

�
W (j)

u �

Z u

0

b�(j)s ds

�
:Z �

0

Xm

j=1
�(j)u d

�
W (j)

u �

Z u

0

b�(j)s ds

��
+d

�Z �

0

Xn

k=1
S
(i)
u��

(i;k)
u d

�
N (k)
u �

Z u

0

�
1 + b�(k)s

�
�(k)s ds

�
;Z �

0

Xn

k=1
�(m+k)u d

�
N (k)
u �

Z u

0

�
1 + b�(k)s

�
�(k)s ds

��
=
Xm

j=1
S
(i)
t��

(i;j)
t �

(j)
t dt

+
Xn

k=1
S
(i)
t��

(i;k)
t �

(m+k)
t

�
1 + b�(k)t

�
�
(k)
t dt

= S
(i)
t�

�Xm

j=1
�
(i;j)
t �

(j)
t dt+

Xn

k=1
�
(i;k)
t �

(m+k)
t �

(k)
t dt

�
| {z }

=0

+S
(i)
t�

Xn

k=1
�
(i;k)
t �

(m+k)
t b�(k)t �

(k)
t dt

= S
(i)
t�

Xn

k=1
�
(i;k)
t �

(m+k)
t b�(k)t �

(k)
t dt; for t 2 [0; T ]: (A.35)
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