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1 Introduction

Among the countries of former socialist regimes East Germany clearly plays

a special role. Some important problems arising in the reform process from

a centrally planned to a market economy have been readily solved with the

German unification in 1990. East Germany owns political and social stability,

the institutional infrastructure necessary to support market principles and has

a stable monetary system. Nevertheless, big effort is still required to solve the

economic problems. The German government must cope with the economic

transition, which means in first place to rise productivity and employment in

East Germany with the goal of reaching West German levels.

In the beginning of the German unification in 1990, political forces and eco-

nomic leaders believed that this adjustment would be possible within a few

years. The chancellor of the Federal Republic of Germany, Helmut Kohl, pro-

mised that the Neue Bundesländer would have become flourishing landscapes

until the next elections.3 This belief was shared by the major part of the Ger-

man population. A population survey shows that in 1990 expectations about

the period of the transition process were very optimistic. On average, more

than 80 percent of the German population expected that equal productivity in

both parts of Germany would have been reached until the year 2000.

But soon the belief in a fast economic transition faded away. Table 1 shows

the development of the gross domestic product for the first six years after the

unification of Germany. In 1996, the ratio of the gross domestic product per

capita was just 43.26 per cent. Although the ratio raised heavily in the first

years after German unification, today it is clear that it will take a long time to

get the ratio close to one. The data for both parts of Germany reproduced in

table 1 indicate that the real world does not perform as expected. Since 1993,

the steps to close the gap have been very small. Therefore it is clear that it

can be closed only in the long run.

To support the adjustment process of Eastern Germany, the government

soon decided to levy an extra tax. This so called solidarity contribution was

imposed in 1991 and 1992 for the first time at a rate of 7.5 per cent on the

income tax yield. For the following two years, the solidarity contribution was

3 Helmut Kohl: Fernseh– und Hörfunkansprache vom 2. Oktober 1990, reprinted in: Presse–
und Informationsamt der Bundesregierung [7, S. 660–662, 662].
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Table 1: Real Gross National Product in Eastern and Western Ger-
many in prices of 1991

Year

Gross
National
Produkta

Employed
Personsb

Gross National
Produkt per
Employedc

East West East West East West Ratiod

1991 206.0 2647.6 7321 29189 28138.2 90705.4 31.02

1992 222.1 2694.3 6387 29455 34773.8 91471.7 38.02

1993 238.1 2644.5 6208 29005 38353.7 91173.9 42.07

1994 258.3 2706.8 6303 28654 40980.5 94465.0 43.98

1995 274.5 2748.3 6416 28461 42783.7 96563.7 44.31

1996 285.4 2779.2 6603 27818 43222.8 99906.5 43.26

Source: Statistical Yearbook of Germany and own calculations
a In Billion DM.
b On average per year, in 1000.
c In DM.
d In per cent.

stopped without any obvious economic reason. Finally, it was again levied in

1995. Since that time the solidarity tax rate remained constant at 7.5 per cent

of the income tax yield up to the year 1998, when it was reduced to 5.5 per

cent.

These ups and downs of the solidarity tax rate lead to the question if there

is a pattern over time which is optimal in some sense. The purpose of this

paper is the development of an optimal solidarity tax policy. The optimal policy

is understood as that policy which moves GNP of both parts of Germany to

the steady–state growth path in minimal time. This means that the optimal

policy minimizes the time required to achieve equal standards of living in both

parts. The framework for this attempt is a neoclassical growth model, and the

solution will be derived by means of optimal control theory.

In section two we start with the presentation of the growth model, develop

a simple tax policy and introduce the allocation parameter which controls the

allocation of the tax revenue to the two countries. The allocation parameter

was introduced by RAHMAN [8], [9] and INTRILLIGATOR [5] who solved the pro-
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blem of maximizing production in a two-country–model with fixed production

coefficients. In the next section the resulting control problem is solved by

exhibiting a policy satisfying the sufficient optimality conditions. The fourth

and last section shows some policy implications and summerizes the results.

2 The model

Although the following analysis is valid in general for any two countries, we

are primarily concerned with the German reunification. Keeping German reuni-

fication in mind, we choose the standard neoclassical growth model as a basis.

This is, because ACKERMANN [1] showed that the iron law of convergence formu-

lated by BARRO [2] and BARRO /SALA–I–MARTIN [3], [4] is not valid for Germany.

The estimation of the convergence coefficient β lead to a rate of convergence

of 3.66 per cent for Western Germany. Hence, it is almost twice as high as

the rate of convergence predicted by the iron law of convergence, where β was

estimated to be around 0.02.

Prior to the introduction of the solidarity tax, each of the two countries

developes according to the standard neoclassical growth model as introduced

by Robert Solow [11] and Trevor Swan [12]. Therefore capital accumulation

per capita follows the basic differential equation

k̇i(t) = sf [ki(t)]− (δ + n)ki(t) , i = 1,2, (1)

where the parameters have the usual meaning: s denotes the constant saving

rate, δ the depreciation rate and n the population growth rate. The function

f (·) stands for the aggregate neoclassical production function (in part., f ′(0+) =

∞, f ′ > 0 and f ′′ < 0) and the subscript i = 1,2 identifies the country.

Throughout the paper we will use the subscript 1 for the initially poorer

country and the subscript 2 for the initially wealthier one. Thus, in the context

of German reunification, the index 1 stands for Eastern Germany and the index

2 for Western Germany. Setting the starting time of the problem to zero, it

follows that k1(0) < k2(0). Motivated by the evidence found by Ackermann [1,

p. 27–28] we set k2(0) = k, where k stands for the steady–state capital intensity,
i. e. the capital intensity for which k̇ = 0 or, equivalently, sf (k) = (δ + n)k. It

should, however, be noted that the analysis below works for any k2(0) ≤ k.

When the government levies the solidarity contribution, which is modelled
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as a linear income tax, total tax revenue is given by

T (t) = τtL1(t)f [k1(t)] + τtL2(t)f [k2(t)] (2)

where τt denotes the tax rate to be optimized and Li(t), i = 1,2, the population

in country i. We assume that the government sets an upper bound for the tax

rate, denoted τ. Higher tax rates cannot be enforced politically. The control

region for the tax rate is therefore given by the interval [0, τ]. The tax revenue

is then allocated to the two countries as additional investment. The fraction of

this investment allocated to country 1 is controlled by the allocation parameter

βt, which has to be optimized in conjunction with τt. Hence the fraction

allocated to country 2 is given by (1 − βt). Define ρ to be the population

ratio between the two countries: ρ = L1(t)/L2(t) which is constant over time

because the population growth rates are equal in both countries. The additional

investment per capita allocated to country 1 is then given by

βt
T (t)
L1(t)

= βtτt
(
f [k1(t)] +

1
ρ
f [k2(t)]

)
, (3a)

and the part allocated to country 2 by

(1− βt) T (t)
L2(t)

= (1− βt)τtρ
(
f [k1(t)] +

1
ρ
f [k2(t)]

)
. (3b)

With these additional investments capital accumulation now developes accor-

ding to

k̇1(t) = βtt1(t) + s(1− τt)f [k1(t)]−αk1(t) (4a)

and

k̇2(t) = (1− βt)t2(t) + s(1− τt)f [k2(t)]−αk2(t). (4b)

In (4a) and (4b) we used α = (δ +n) as a shorthand notation. Furthermore, we

set ti(t) = T (t)/Li(t), i = 1,2.

The assumption of a constant saving rate seems rather implausible, since

each individuum will adjust its consumption and hence savings in dependency

of its income. Nevertheless it must be introduced in order to find a solution

for the control problem at all. In our opinion, this can be justified as an

approximation of real behavior for small tax rates.

To complete the model, we have to model the behavior of the government.

As already mentioned, the goal of the government is to minimize the period
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[0, T ] required to reach equal productivity or, equivalently, to achieve the same

standard of living in both countries. The government has to choose trajecto-

ries of the tax rate τt and of the allocation parameter βt to reach that goal.

In addition, the initially wealthier country should not be punished by the tran-

sition process. It is therefore demanded that the capital intensity reaches the

steady–state capital intensity k at the end of the transition process. This goal

can be written as

k1(T ) = k2(T ) = k, (5)

where the required period T has to be determined endogenously as a part of

the solution of the control problem.

3 Formulation of the problem

As a result of these considerations we arrive at the following control problem:

min
0≤τt≤τ
0≤βt≤1

T

s. t. k̇1(t) = βtτt
[
f [k1(t)] +

1
ρ
f [k2(t)]

]
+ s(1− τt)f [k1(t)]−αk1(t),

k̇2(t) = (1− βt)ρτt
[
f [k1(t)] +

1
ρ
f [k2(t)]

]
+ s(1− τt)f [k2(t)]−αk2(t),

k1(0) = k0
1 , k2(0) = k0

2,

k1(T ) = k2(T ) = k,

with k0
1 < k0

2 ≤ k and the equilibrium capital intensity determined by

sf (k) = αk. (6)

The Hamiltonian corresponding to this problem is given by

H(k1, k2, p0, p1, p2, β, τ) =

− p0 + p1

[
βτ
[
f (k1) +

1
ρ
f (k2)

]
+ s(1− τ)f (k1)−αk1

]
+ p2

[
(1− β)τρ

[
f (k1) +

1
ρ
f (k2)

]
+ s(1− τ)f (k2)−αk2

] (7)
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or, equivalently,

H(k1, k2, p0, p1, p2, β, τ) =

− p0 + p1
[
sf (k1)−αk1

]
+ p2

[
sf (k2)−αk2

]
+ (p1 − ρp2)βτ

[
f (k1) +

1
ρ
f (k2)

]
− τ[p1sf (k1) + p2sf (k2)− p2ρf (k1)− p2f (k2)

]
.

(8)

The responses k∗1 (t) and k∗2 (t) describe the total investment in this two–country–

model. The adjoint variables p1(t), p2(t) have therefore a straight economic

interpretation. They can be understood as the shadow prices for an investment

in either country. The higher the shadow price for an investment the more

should be invested. Therefore the investment in the country with the higher

shadow price is more favourable, as long as the two adjoint variables are not

equal. This than leads to the conclusion that the total amount of additional

investment should be allocated to the country with the higher shadow price.

By Pontryagin’s maximum principle, a necessary condition for a feasible

control
(
β∗t , τ∗t

)
, 0 ≤ t ≤ T∗, with response

(
k∗1 (t), k∗2 (t)

)
to be optimal is then

the existence of adjoint variables
(
p0, p1(t), p2(t)

)
s. t. the following is true:

ṗ1 = −p1
[
[τ∗t (β∗t − s) + s]f ′(k∗1 )−α]− p2(1− β∗t )τ∗t ρf ′(k∗1 ) (9a)

ṗ2 = −p2
[
[τ∗t (1− β∗t − s) + s]f ′(k∗2 )−α]− p1β∗t τ∗t

1
ρ
f ′(k∗2 ) (9b)

(p0, p1(t), p2(t)) 6= (0,0,0) ∀t ∈ [0, T∗] (10)

H∗(t) :=H
[
k∗1 (t), k∗2 (t), p0, p1(t), p2(t), β∗t , τ∗t

]
=M

[
t, k∗1 (t), k∗2 (t)

] ∀ t ∈ [0, T∗]
(11)

where

M
[
t, k1, k2

]
= max

0≤τ≤τ
0≤β≤1

H
[
k1, k2, p0, p1(t), p2(t), β, τ

]
and

H∗(t) = 0 on [0, T∗]. (12)

Somewhat more precisely, (9a,b) is to be understood in the sense that the

costates p1(t), p2(t) are absolutely continuous and (9a,b) hold almost every-

where on [0, T∗]. Actually, if we admit only piecewise continuous controls,
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the derivatives ṗ1(t), ṗ2(t) will exist at all points of [0, T∗], except the (finitely

many) jump points of the controls. The same applies to the state equations.

It follows from (11) that—if τ∗t 6= 0—the function p1 − ρp2 ist a switching

function for β∗t :

β∗t =


1 if p1(t) > ρp2(t),
singular if p1(t) = ρp2(t),
0 if p1(t) < ρp2(t).

(13)

The singular value of β∗t can easily be determined.

Lemma 1

If β∗t is singular on some open interval I and τ∗t 6= 0 on I, then

β∗t =
ρ

1 + ρ
.

Proof 1

Differentiating the singularity condition p1 − ρp2 = 0 and inserting the right

hand sides of (9a,b), we obtain after some straight forward manipulations the

condition

p1[f ′(k∗2 )− f ′(k∗1 )][s + τ∗t (1− s)] = 0 on I.

Since the expression in the second square brackets is always positive, this can

only be the case if

p1 = 0 or f ′(k∗1 ) = f ′(k∗2 ).

The first alternative is ecxcluded by (12) together with (10). Hence, from the

second alternative,

k∗1 = k∗2 and k̇∗1 = k̇∗2 on I.

Inserting the right hand sides of the system equations for the derivatives, this

means

β∗t τ∗t (1 +
1
ρ

) + s(1− τ∗t ) = (1− β∗t )τ∗t (1 + ρ) + s(1− τ∗t ).

If τ∗t 6= 0 on I, this implies that

β∗t =
1 + ρ

2 + ρ + 1/ρ
=
ρ(1 + ρ)

1 + 2ρ + ρ2
=
ρ

1 + ρ
.

♦
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The structure of τ∗t is less easy to grasp. Actually, it seems rather forbidden

to try to describe the class of all extremal solutions, hoping that there will be

only one, which would solve the problem, given some existence result. We shall

therefore pursue the reverse way and exhibit one particular feasible extremal

solution, i. e. a control (βt, τt) s. t.

1. (βt, τt) steers the corresponding response
(
k1(t), k2(t)

)
from (k0

1, k0
2) to (k, k)

in some time T ;

2. there exist adjoint variables
(
p0, p1(t), p2(t)

)
, s. t. (9a)–(12) (without the

asterisks) are satisfied.

This, in conjunction with a suitable sufficiency condition, will show that the

candidate control (βt, τt) is indeed optimal.

Our candidate is the control

βt =

1 for 0 ≤ t < t̃
ρ

1+ρ for t̃ ≤ t ≤ T,
(14)

τt = τ for 0 ≤ t ≤ T. (15)

Here t̃ ist the first time at which the responses k1 and k2 coincide:

t̃ = inf{t ≥ 0 : k1(t) = k2(t)},

and T is the first time at which both k1 and k2 reach k. The choice (14) of βt
is motivated through the fact that the first country possesses the lower capital

intensity up to the point t̃. Hence, it has a higher marginal rate of productivity

throughout the interval [0, t̃). Allocating the tax revenue of both countries to

country one therefore clearly contributes stronger to the growth process of

capital than allocating just a fraction of total savings to country one.

The candidate for the tax rate should be choosen as high as possible, hence

at the maximum rate that can be enforced politically, because the higher the tax

rate is the higher is the amount of additional savings, provided the savings rate

remains constant. As already mentioned, for small tax rates the assumption of

a constant savings rate seems to be plausible, although the individuals in reality

will optimize a intertemporal utility function subject to disposable income. The

changes in the fraction of disposable income are small if the tax rate is small.

Therefore this effect seems neglectible.
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In order to show that (14), (15) defines an extremal solution, let us first

consider the corresponding responses. During the first regime, i.e. for 0 ≤ t <
t̃, the system equations become

k̇1 = τ
[
f (k1) +

1
ρ
f (k2)

]
+ s(1− τ)f (k1)−αk1

= τ(1− s)f (k1) +
τ
ρ
f (k2) + sf (k1)−αk1

> 0

(16a)

certainly as long as k1 < k, and

k̇2 = s(1− τ)f (k2)−αk2, (16b)

hence

k̇2
>
< 0 for k2

<
> k̂,

with k̂ defined by

s(1− τ)f (k̂) = αk̂. (17)

Note that k̂ < k. If k2 starts at k0
2 < k̂ (k0

2 > k̂), then it will rise (fall) under
regime 1 in a strictly monotone way to k̂, but will never reach it under regime
1. This is because if the solution to (16b) should hit k̂ at some finite point
t̂: k2(̂t) = k̂, this would provide a nontrivial solution (in some neighborhood of
t̂, corresponding to the initial condition k2( t̂ ) = k̂ which is different from the
equilibrium solution k2 ≡ k̂ (note that k̂ has been defined as the equilibrium

point of the right hand side of (16b)). Uniqueness of solutions of such diffe-

rential equations (the function on the right hand side of 16b) ist Lipschitz in a
neighborhood of k̂) prevents this from happening. If k2 starts at k0

2 = k̂, then

it will stay there as long as regime 1 lasts. In any case, for k0
2 > 0, there is

some lower bound m > 0 for the values of k2 and hence f (k2) during regime

1. Therefore, from (16a),

k̇1 ≥ τ(1− s)f (k1) +
τ
ρ
m + sf (k1)−αk1

≥ τ
ρ
m > 0

as long as k1 < k. This means that, under regime 1, k1 will rise to any level
< k in finite time and hence meet k2(t) at some finite time t̃. In case k0

2 = k̂,
k2 ≡ k̂ and k1(̃t) = k2(̃t) = k̂. Otherwise, k̃ = ki(̃t) < k̂ or > k̂. In any case,

ki(̃t) < k.
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At time t̃, the regime switches to βt = ρ/(1 +ρ). The system equations then

become

k̇1 = τ(1− s)f (k1) + sf (k1)−αk1, (18a)
k̇2 = τ(1− s)f (k2) + sf (k2)−αk2, (18b)

with initial condition k1(̃t) = k2(̃t) = k̃. Hence the joint path of k1 and k2 for

t ≥ t̃ is given by

k̇ = τ(1− s)f (k) + sf (k)−αk , k(̃t) = k̃.

As long as k < k, k̇ > 0, and k is reached at some finite time T since

k̇ ≥ τ(1− s)f (k) ≥ τ(1− s)f (k̃) > 0

for k ≤ k. This shows that the proposed control (14), (15) is indeed feasible,

i. e. condition 1 is satisfied. For later use, note that

k1(t) < k , k2(t) < k for all 0 ≤ t < T. (19)

Let us now turn to the construction of the adjoint variables (p0, p1, p2).

Choosing p0 = 1, (10) certainly will be satisfied . To obtain p1, p2 solve the

adjoint equations (9a,b) backward in time, starting at t = T , under regime 2:

ṗ1 = −p1

{[
τ
( ρ

1 + ρ
− s

)
+ s
]
f ′(k)−α

}
− p2

ρ
1 + ρ

τf ′(k) (20a)

ṗ2 = −p2

{[
τ
( ρ

1 + ρ
− s

)
+ s
]
f ′(k)−α

}
− p1

1
1 + ρ

τf ′(k). (20b)

It is then easily calculated that

ṗ1 − ρṗ2 = −[s(1− τ)f ′(k)−α](p1 − ρp2). (21)

In order to ensure that the singular control βt = ρ/(1 +ρ) is indeed part of an

extremal solution, p1 − ρp2 = 0 must be fulfilled on [̃t, T ], corresponding to a

choice of end conditions p1(T ), p2(T ) s. t.

p1(T ) = ρp2(T ). (22)

The Hamiltonian on (̃t, T ] is given by

H(t) = −1 + p1(t)1 + ρ
ρ

[
[1 + τ(1− s)]f [k(t)]−αk(t)] (23)

= −1 + p1(t)1 + ρ
ρ
r[k(t)],

10



with r(k) =
[
1 + τ(1 − s)]f (k) − αk. In order to meet the requirement (12) at

t = T , the end condition p1(T ) must be chosen so that

H(T ) = −1 + p1(t)1 + ρ
ρ
r(k) = 0. (24)

Since r(k) > 0, p1(T ) > 0 and, by (22), p2(T ) > 0. Note that the pair(
p1(T ), p2(T )

)
of end conditions is uniquely determined by (22) and (23). The

costate p1 then evolves according to the homogeneous linear differential equa-

tion

ṗ1 = −p1

[[
s + τ(1− s)]f ′(k)−α].

Together with the end condition p1(T ) > 0 this implies that p1 = ρp2 > 0, in

particular

p̃ = p1(̃t) = ρp2(̃t) > 0. (25)

Finally, during regime 2,

M(t, k1, k2) = −1 + p1(t)
[
f (k1)−αk1 +

1
ρ

(f (k2)−αk2)
]

+ max
0≤τ≤τ

τp1(t)(1− s)[f (k1) +
1
ρ
f (k2)

]
= −1 + p1(t)

[
f (k1)−αk1 +

1
ρ

(f (k2)−αk2)
]

+ τp1(t)(1− s)[f (k1) +
1
ρ
f (k2)

]
,

(26)

so that, comparing with (23), (11) is indeed satisfied along k1(t) = k2(t) = k(t).

Coming now to regime 1, the adjoint equations are given by

ṗ1 = −p1
[
[τ(1− s) + s]f ′(k1)−α] (27a)

ṗ2 = −p2
[
s(1− τ)f ′(k2)−α]− p1

1
ρ
τf ′(k2). (27b)

They have too be solved on [0, t̃] with the end conditions (25). As a con-

sequence, the solution to the homogeneous linear differntial equation (27a)

staisfies p1 > 0 on [0, t̃]. Next, observe that
.︷ ︸︸ ︷

p1 − ρp2 = α(p1 − ρp2) + s(1− τ)
[
ρp2f ′(k2)− p1f ′(k1)

]
+ τp1

[
f ′(k2)− f ′(k1)

]
= (p1 − ρp2)

[
α− s(1− τ)f ′(k2)

]
+ v(t)

(28)

11



with

v(t) =
[
s(1− τ) + τ

]
p1
[
f ′(k2)− f ′(k1)

]
.

Since p1 > 0 and f ′(k2) < f ′(k1) during regime 1, v(t) < 0. By the variation of

parameters formula it follows that(
p1 − ρp2

)
(t) = −eA(t)

∫t̃
t
e−A(s)v(s)ds > 0 for 0 ≤ t < t̃,

with

A(t) = −
∫t̃
t

(
α− s(1− τ)f ′[k2(s)]

)
ds.

This shows that p1 > ρp2 on [0, t̃). A similar argument shows that p2 > 0 on

[0, t̃). The maximized Hamiltonian is given by

M(t, k1, k2) =− 1 + p1(t)[sf (k1)−αk1] + p2(t)[sf (k2)−αk2] (29)

+ max
0≤τt≤τ
0≤βt≤1

[[
p1(t)− ρp2(t)

]
βτ
[
f (k1) +

1
ρ
f (k2)

]
− τ[p1(t)sf (k1) + p2(t)sf (k2)− p2(t)ρf (k1)− p2(t)f (k2)

]]
=− 1 + p1(t)[sf (k1)−αk1] + p2(t)[sf (k2)−αk2]

+ max
0≤τt≤τ

τ
[
(1− s)p1(t)f (k1) + (1− s)p2(t)f (k2)

+
1
ρ

[p1(t)− ρp2(t)]f (k2)
]

=− 1 + p1(t)[sf (k1)−αk1] + p2(t)[sf (k2)−αk2]

+ τ
[
(1− s)p1(t)f (k1) + (1− s)p2(t)f (k2)

+
1
ρ

[p1(t)− ρp2(t)]f (k2)
]
,

showing that, along k1(t), k2(t),

H(t) =M
(
t, k1(t), k2(t)

)
,

so that (11) is satisfied. (12) follows in the usual way from from (24) and the

fact that the system equations are autonomuous.

Gathering the results, we have shown that our candidate control (14), (15)

gives indeed rise to a feasible extremal solution. Moreover, it is obvious that

the right hand sides of the system equations are strictly concave functions

in (k1, k2) (for any admissible choice of βt, τt). One may therefore evoke

any sufficiency theorems for time optimal control problems (cf., e.g., SEIER-

STAD/SYDSÆTER [10, S. 146–147]) to show that (14), (15) is the unique opti-

mal control. Indeed, in our case, the argument is so simple that we present
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it here. To this end, let us return to the ∗–notation for our candidate con-

trol and responses corresponding to it, and let, for brevity, g(k1, k2, β, τ) =

(g1, g2)′ denote the functions defining the system dynamics (i. e. the functions

on the right hand side of the system equations). Write k∗(t) =
(
k∗1 (t), k∗2 (t)

)′
and k(t) =

(
k1(t), k2(t)

)′ for our candidate response and the response to any

other admissible control (βt, τt) resp., and (committing some abuse of notati-

on) g∗ = g∗(t) = g
(
k∗1 (t), k∗2 (t), β∗t , τ

)
and g = g(t) = g

(
k1(t), k2(t), βt, τt

)
as well as

p(t) =
(
p1(t), p2(t))′ for the vector of adjoint variables belonging to our candi-

date. Then, if there is an admissible control (βt, τt), 0 ≤ t ≤ T , s. t. T < T∗,

i. e.

k1(T ) = k2(T ) = k,

we may conclude that

0 =
∫T

0

[
ṗ + pg∗k

]
(k− k∗)dt

= p(T )
[
k(T )− k∗(T )

]− ∫T
0
p
[
g− g∗ − g∗k (k− k∗)

]
dt

> p(T )
[
k(T )− k∗(T )

]
= p1(T )

[
k− k∗1 (T )

]
+ p2(T )

[
k− k∗2 (T )

]
> 0,

leading to a contradiction. The reasons for the above relations are as follows:

• The first equality by the adjoint equations (9a,b).

• The second equality by partial integration noting that k(0) = k∗(0).

• The first inequality by (strict) concavity of g1, g2 (in k) and p1 > 0, p2 > 0.

• The last inequality by p1(T ) > 0, p2(T ) > 0 together with (19) (for t = T ; note

that the T appearing in (19) is now T∗).

4 Summary, Extensions and Policy Implications

It was shown that the time optimal solidarity tax rate should remain constant

throughout the whole transition period [0, t̃] and the following period of cat-

ching up to the steady–state growth path (̃t, T∗]. In addition, the solidarity

tax rate should be choosen at the upper bound τ. Therefore, the observed

ups and downs of the solidarity tax rate cannot be optimal. Nevertheless they

may be explained through the political business cycle. The elections to the

German Bundestag in 1994 and 1998 could be the reason for the lowering of

the solidarity tax rate.
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Figure 1: The development of the capital intensity in the two
countries for k2(0) = k and k1(0) < k2(0)
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Based on a numerical solution for Cobb–Douglas production
functions.
The solid line illustrates the development for country 2 and the
dashes line for country 1. At the point t̃ the capital intensities
coincide for the first time. At the point T∗ the goal of the adjust-
ment process is reached.

The development of the capital intensities under optimal control is illu-

strated in figure 1. For this calculations a Cobb–Douglas production function9

was choosen to represent the production possibilities of both countries. The

solution of the differential equations (4a,b) is only possible by numerical

integration10, because equation (4a) cannot be solved algebraicly over the inter-

val [0, t̃). Therefore, the point t̃ and in the following the point T∗ can only be

determined numerically, too. The initially wealthier country experiences losses

in capital per capita and, even more important from the government point of

view, losses in disposable income during the whole transition period.

Calculating the transition period for different values of the optimal tax rate

τ shows that the transition period decreases when the tax rate increases, but

with dimishing rates. This relationship is illustrated in figure 2 for reasonable

9 Since we are interested in explicit solutions of the development of the capital intensity we
need an explicit production function. The Cobb–Douglas production function was proofed
to be valid in the long run and follows from a fairly general aggregation of individual
production functions. See Krelle [6, pp. 71–72].

10 A fifth–order Runge–Kutta algorithm was choosen because of its simple implementation
and the sufficient accuracy.
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Figure 2: The minimal adjustment time T∗ for Eastern Ger-
many as a function of the income tax rate τ

-τ
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Based on a numerical solution for Cobb–Douglas production
functions.

parameter values. While the optimal trajectory of the solidarity tax rate is now

solved, the government faces the problem to determine the upper bound of

the solidarity tax rate. If the transition period would be the only objective,

the upper bound should be choosen as high as possible. But with respect to

other objectives lying outside the model, e. g. disposable income, a trade–off

between these opposite goals may exist.
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