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Abstract. The aim of the paper is to develop pricing formulas for European type Asian options written

on the exchange rate in a two currency economy. The exchange rate as well as the foreign and domestic

zero coupon bond prices are assumed to follow geometric Brownian motions. As a special case of a

discrete Asian option we analyse the delayed payment currency option and develop closed form pricing

and hedging formulas.

The main emphasis is devoted to the discretely sampled Asian option. It is shown how the value of

this option can be approximated as the sum of Black-Scholes options. The formula is obtained under the

application of results developed by Rogers and Shi (1995a) and Jamshidian (1991). In addition bounds

for the pricing error are determined.

1. Introduction

No Asian option is traded as a standardized contract in any organized exchange. However, they are

extremely popular in the OTC market among institutional investors. Milevsky and Posner (1997) mention

that the estimated outstanding volume is in the range from �ve to ten billion USD.

Several reasons for introducing Asian options are presented in the literature. A corporation expecting

to have payments in foreign currency claims can reduce its average foreign currency exposure by using

Asian options. Because the average, which is the underlying asset in these contracts, tends to be less

volatile than the exchange rate itself, the Asian option is (normally) priced more cheaply than the standard

option. The hedging costs for the �rm is therefore reduced.

Another reason for introducing Asian options was to avoid speculators in arranging price manipulation

of the underlying asset close to the maturity date.

The value of an Asian option depends at any point in time on the spot exchange rate and on the history

of the spot exchange rate: the Asian option is path{dependent. This increases the complexity of both
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Table 1. Valuation methods for Asian Options

Method References

* Monte Carlo Simulation Kemna and Vorst (1990)

* Approximation via geometric average Vorst (1992)

Laplace transformation Geman and Yor (1993)

* Edgeworth expansion Turnbull and Wakeman (1991)

Levy (1992)

Jacques (1996)

Binomial trees Hull and White (1993)

Fast Fourier Transformation Carverhill and Clewlow (1990)

* Numerical solution of the Kemna and Vorst (1990)

fundamental second order pde

* Numerical solution of the variable Rogers and Shi (1995a)

reduced second order p.d.e. Alziary, D�ecamps and Koehl (1997)

He and Takahashi (1996)

* Rogers and Shi (1995a)

pricing and hedging. In addition the probability distribution of the arithmetic average is unknown if we, as

is usually the case, assume that the exchange rate and the relevant bond prices follow standard lognormal

processes. Numerical techniques must be relied on in order to determine the prices of Asian options in

general, and this brings us in a di�cult position to generate the hedging strategy. The hedging strategy

is determined through the price sensitivity of the Asian option to changes in the average. However, as

the average itself is not a traded asset we need to develop how the average can be duplicated through a

self �nancing strategy in traded assets. The main problem is clearly that we do not have a closed form

solution giving us the price of the Asian option, we have at best a good approximation. No guarantee

exists, however, that the sensitivity of the approximation is just similar or close to the sensitivity of the

true price.

The numerical techniques applied for valuing Asian options are numerous. A majority of the methods

can be extended to the situation we consider with a stochastic developing term structure in both the

domestic and the foreign country. With the symbol * Table 1 indicates those methods which in their

conception are applicable to the valuation problem under stochastic interest rates1. Concerning the

hedging of Asian options only a few papers exist. In Alziary, D�ecamps and Koehl (1997) hedging strategies

are analysed in the situation where the term structure of interest rates develops in a deterministic manner,

and this can obviously not be the relevant case for exchange rate options. Alziary et al use a variable

reduction approach introduced by Rogers and Shi (1995a) to price the Asian option and they continue

showing that the option's delta can be derived from this pde. In their paper they furthermore derive

1See e.g. Nielsen and Sandmann (1996) and Schmidli (1997).
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useful expressions for the di�erence between the European and the Asian option. Turnbull and Wakeman

(1991) give a rough estimate of the delta based on an Edgeworth series expansion. El Karoui and

Jeanblanc-Picqu�e (1993) show that the price of an Asian option on a stock is equal to a European option

on a �ctitious asset which has a random volatility. They propose a super hedging strategy build an

Black and Scholes (1973) formula with volatility equal to the upper bound on the stochastic volatility.

Jacques (1996) uses approximate price formulas based on the lognormal approximation and based on

an inverse Gaussian approximation. In both situations he derives a formula for the hedging portfolio

and shows through numerical examples that these formulae are e�cient in the sense that the replicating

strategy is close to the intrinsic value of the Asian option at maturity. Jacques �nds, comparing the two

approximations, that they are equally e�cient.

From the mathematical point of view the main di�culty of pricing and hedging an Asian option is to

determine the distribution of the arithmetic average. Some of the mentioned approximation techniques

can be interpreted as a change to a more convenient distribution. On one hand this seems to be a

reasonable approach for two reasons. First, the continuously growing literature in �nance based on the

lognormality assumption is in no way a veri�cation of this distribution for the changes of a �nancial asset.

Second, empirical evidence for this distribution is certainly doubtful, but a uniformly better distribution

cannot be identi�ed. On the other hand the objective of �nancial modeling does amount to something

more than the calculation of numbers. The objective is to clarify dependencies. To precisely measure the

size of these dependencies, we have to study examples, i.e. to specify distributions.

A theoretical model should be understood as a reference model. In �nancial markets the relevance

of a reference model for practical purposes is whether or not it is accepted and serves as a guideline to

clarify relationships and the impact of decisions. The Black and Scholes (1973) model has become the

most widely accepted model for the analysis of derivative assets. Although theorists and practitioners

are aware of its weaknesses, this model is used as the reference model in �nance. With a view to the

mathematical problems in the situation of Asian options the tentative to leave the Black and Scholes

model may be strong, but the consistency with results already understood and recognized seems more

important to us.

The problem of pricing and hedging an Asian option proves to be much more di�cult when the bond

markets are described by a model allowing for stochastic term structure developments. It is the extension

to such a situation which will be the aim of this paper.

Following the description in Section 2 of the �nancial market model to be used in this paper, we

analyse in Section 3 the Asian put{call parity, the duplication of the arithmetic average, and the delayed

payment exchange rate option. In the classical Black and Scholes (1973) setting where the underlying

asset is a non-dividend paying stock, the put{call parity, e.g. Stoll (1968), is given by

Ce(t) � Pe(t) = S(t) � e�r(T�t)K
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where Ce and Pe denote the price of an European call and put option respectively. The relationship is

based on a pure arbitrage argument. At time zero the call option is bought and the put option is sold.

The price of this portfolio is equal to the spot price of the underlying stock reduced by the discounted

value of the exercise price, K. Without performing any trade during the lifetime of the options this

portfolio duplicates S(T ) �K at the maturity date of the options. The relationship is based on a buy

and hold strategy and it does not depend on the speci�c model chosen for the development of the stock

price. The reason being that the underlying asset itself is a marketed and non-dividend paying asset.

Denoting by A(T ) the arithmetic average of the exchange rate at the Asian option's maturity date, T;

the Asian put{call parity at time T takes the form:

Ca(T )� Pa(T ) = A(T ) �K:

where Ca and Pa denote the price of an Asian call and put option respectively. This contrast to the

previous situation A(T ) is not a traded asset. It means that we cannot expect that the trading strategy

to duplicate the average will be as simple as for the standard European options.

In Section 4 we discuss the pricing of Asian options. The method suggested by Vorst is analysed

and adapted to our setting and we generalize the Rogers and Shi approach to the situation of an Asian

exchange rate option with stochastic interest rates, i.e. we have to take into consideration the time

dependent, multi{dimensional volatility structure. Applying a result from Jamshidian (1991) we derive

an analytical closed form solution for the approximation. Finally, we conclude in Section 5.

2. The financial market model

The model of the �nancial market we consider is a two country model. The exchange rate between

the domestic and the foreign country is assumed to be stochastic. In addition we consider a stochastic

behavour of the interest rate market in both countries, and apply the bond price oriented approach by

Geman, El Karoui and Rochet (1995). The model is based on the international �nancial market model

derived by Amin and Jarrow (1991), and we restrict ourselves to the situation with deterministic volatility

functions. As discussed in the introduction, existing results presume deterministic interest rates. In the

case of the Asian exchange rate option this assumption seems questionable to us. In order to compare

these results with those implied by a stochastic behavour of the interest rate markets we are staying

within the class of lognormal processes.

The continuous time model is de�ned on the �nite time interval [0; T ]. Let (
;F ; P �d ) be a �ltered

probability space where the �ltration fFtgt2[0;T ] is generated by an n-dimensional (n � 3) Brownian

motion fW �
d (t)gt2[0;T ] under P �d . Following Geman, El Karoui and Rochet (1995), the domestic interest

rate market is characterized by the price process of the family of the domestic zero coupon bonds, i.e.

Assumption 2.1:

For any maturity t0 2 [0; T ] the price process fDd(t; t0)gt2[0;t0] of the domestic default free zero coupon
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bond with national value 1 and maturity t0 satis�es the stochastic di�erential equation

dDd(t; t0) = rd(t)Dd(t; t0)dt+Dd(t; t0)�d(t; t0) � dW �
d (t) 8 t 2 [0; t0](2.1)

Dd(t0; t0) = 1 P �d a:s: in the domestic currency,

where frd(t)gt2[0;T ] denotes the domestic continuously compounded spot rate process2and the volatility

structure satis�es the following requirements:

i) for any t0 2 [0; T ] the volatility function

�d(�; t0) : [0; t0]! R
n

is continuous and square integrable on [0; t0] with �(t0; t0) = 0;

ii)
������@�d(t;t0)@t0

������ is bounded on f(t; t0)j0 � t � t0; t0 2 [0; T ]g;
iii) there exists a real number H > 0 such that����

����@�d(t; t0 + �)

@t0
� @�d(t; t0)

@t0

����
���� � H � � 8 t � t0 8 � > 0:

With Assumption 2.1 the domestic interest rate market is arbitrage free and P �d is the unique (domestic)

martingalemeasure (see Geman, El Karoui and Rochet (1995)). The solution for the domestic zero coupon

bond is given by

Dd(t; t0) = Dd(0; t) exp

8<
:

tZ
0

rd(u)du� 1

2

tZ
0

jj�d(u; t0)jj2du+
tZ

0

�d(u; t0) � dW �
d (u)

9=
; :(2.2)

As in Frey and Sommer (1996), the foreign interest rate market and the exchange rate are modeled under

the domestic martingale measure P �d , i.e. with reference to the contribution by Amin and Jarrow (1991),

we assume

Assumption 2.2:

a) For all t0 2 [0; T ] the foreign zero coupon bond market is determined by

dDf (t; t0) =
�
rf (t)� �f (t; t0) � �x(t)�Df (t; t0)dt+Df (t; t0)�f (t; t0) � dW �

d (t)(2.3)

Df (t0; t0) = 1 P �d a:s: in the foreign currency,

b) The exchange rate process fX(t)gt2[0;T ] in units of the domestic currency per one unit of the foreign

currency satis�es

dX(t) =
�
rd(t)� rf (t)

�
X(t)dt+X(t)�x(t) � dW �

d (t) ;(2.4)

where frf (t)gt2[0;T ] is the process of the foreign spot rate and the volatility functions are assumed

to satisfy the same requirements as in Assumption 2.1.

2By x � y for x; y 2 Rn we denote the standard scalar product, i.e. x � y =
nX
i=1

xiyi and jjxjj :=

 
nX
i=1

x2i

! 1
2

denotes the

Euclidian norm.



6 J. AASE NIELSEN AND KLAUS SANDMANN

Given the spot rate processes in both countries the bank account is de�ned by

�dt;T := exp

8<
:

TZ
t

rd(u)du

9=
; for the domestic country, resp. by(2.5)

�
f
t;T := exp

8<
:

TZ
t

rf (u)du

9=
; for the foreign country.

Obviously, the expected discounted value of the foreign zero coupon bond is not a martingale under P �d ,

since P �d is the domestic martingale measure. But for the process
�
Zd(t; t0) := X(t)Df (t; t0)

	
t2[0;t0]

, i.e.

the value of the foreign zero coupon bond denoted in the domestic currency, this is true, since

dZd(t; t0) = rd(t)Zd(t; t0)dt+ Z(t; t0)
�
�x(t) + �f (t; t0)

� � dW �
d (t)(2.6)

Zd(t0; t0) = X(t0)Df (t0; t0) P �d a:s: in the domestic currency.

3. The Asian Put{Call Parity

The payo� of an European type Asian option is determined by the average value of the underlying

asset, i.e. the exchange rate and the strike price. Let T denote the maturity date of the contract, then

the continuous time average exchange rate in the domestic currency is de�ned as

Ac(T ) :=
1

T

TZ
0

X(u)Df (u; u)du;(3.1)

whereas for given averaging times ft1 < : : : < tN = Tg the discrete average is determined by

Ad(T ) :=
1

N

NX
i=1

X(ti)D
f (ti; ti) :(3.2)

For so-called �xed strike Asian options the strike price K (in the domestic currency) is a constant, in

the case of a oating strike Asian option, the strike price is equal to the exchange rate at maturity. The

payo� of an European type Asian option at maturity is therefore determined by

[Al(T )�KT ]
+ := maxfAl(T ) �KT ; 0g(3.3)

[KT � Al(T )]
+ := maxfKT � Al(T ); 0g ;(3.4)

where l 2 fc; dg indicates continuous time or discrete time averaging and KT 2 fK;X(T )Df (T; T )g a

�xed or oating strike speci�cation. For a �xed strike, KT = K; the payo� (3.3) corresponds to a �xed

strike Asian call, (3.4) to a �xed strike Asian put. In the situation KT = X(T )Df (T; T ) the payo� of a

oating strike Asian call is determined by (3.4), whereas (3.3) de�nes a oating strike Asian put. With

Ca(t) as abbreviation for the value of an Asian call at time t and Pa(t) as the value of an Asian put the

Asian put-call parity is given by

Ca(t) � Pa(t) = �t(Al(T )) �KDd(t; T ) for the �xed strike, and(3.5)

Ca(t) � Pa(t) = X(t)Df (t; T )��t(Al(T )) for the oating strike
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speci�cation, where �t(Al(T )) denotes the value at time t of the continuous or discrete time average. The

Asian put-call parity indicates that the di�erence between the value of an Asian call and an otherwise

identical Asian put at time t is determined by the di�erence of the value at time t of the average and the

present value of the strike, i.e. KDd(t; T ) in the case of a �xed strike and X(t)Df (t; T ) in the case of

a oating strike option. The value of the average is determined by the expected discounted value under

the domestic martingale measure P �d . In order to calculate this expected discounted value, we apply the

change of measure technique to the domestic forward risk adjusted measure. By Grisanov's Theorem the

domestic T -forward risk adjusted measure PT
d is de�ned as an equivalent measure with respect to P �d

with the Radon-Nikodym derivative

dPT
d

dP �d

����
t

=
(�dt;T )

�1Dd(T; T )

EP�

d
[(�dt;T )

�1Dd(T; T )jFt]
= exp

8<
:�1

2

TZ
t

jj�d(u; T )jj2du+
TZ
t

�d(u; T ) � dW �
d (u)

9=
;

where dWT
d (t) = dW �

d (t) � �d(t; T )dt de�nes a vector Brownian motion under PT
d . With the domestic

zero coupon bond Dd(t; T ) resp. the foreign bond Df (t; T ) as a numeraire, the stochastic di�erential

equations (2.1), (2.3) and (2.4) can be rewritten as

d

�
Dd(t; t0)

Dd(t; T )

�
=

Dd(t; t0)

Dd(t; T )
�d(t; t0; T ) � dWT

d (t)

d

�
Df (t; t0)

Df (t; T )

�
=

Df (t; t0)

Df (t; T )
�f (t; t0; T ) � [dWT

d (t) � �x(t; T )dt](3.6)

d

�
X(t)Df (t; T )

Dd(t; T )

�
=

X(t)Df (t; T )

Dd(t; T )
�x(t; T ) � dWT

d (t)

where �d(t; t0; T ) := �d(t; t0) � �d(t; T )

�f (t; t0; T ) := �f (t; t0)� �f (t; T )

�x(t; T ) := �x(t) + �f (t; T )� �d(t; T ) :

The solution for the domestic and the foreign zero coupon bonds under the domestic T -forward risk

adjusted measure imply for t0 = t that

Dd(t; T )

Dd(0; T )
=

Dd(t; t)

Dd(0; t)
exp

8<
:1

2

tZ
0

jj�d(u; t; T )jj2du�
tZ

0

�d(u; t; T ) � dW T
d (u)

9=
;(3.7)

Df (t; T )

Df (0; T )
=

Df (t; t)

Df (0; t)
exp

8<
:

tZ
0

�f (u; t; T ) � [�x(u; T ) + 1

2
�f (u; t; T )]dt�

tZ
0

�f (u; t; T ) � dWT
d (u)

9=
; :(3.8)
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Applying (3.8) to the solution for the exchange rate process we can conclude that3

X(t) = X(0)
Df (0; T )

Df (t; T )

Dd(t; T )

Dd(0; T )
exp

8<
:�1

2

tZ
0

jj�x(u; T )jj2du+
tZ

0

�x(u; T ) � dW T
d (u)

9=
;(3.9)

= X(0)
Df (0; t)Dd(t; t)

Dd(0; t)Df (t; t)

� exp
8<
:�1

2

tZ
0

�x(u; t) � (�x(u; t) + 2�d(u; t; T ))du+

tZ
0

�x(u; t) � dWT
d (u)

9=
;

Setting n(t) = maxfijti < tg8t � t1 and n(t) = 0 for t < t1 the value of the discrete average is determined

by the expected discounted discrete average under the domestic martingale measure, i.e.

�t(Ad(T )) = EP�

d
[(�dt;T )

�1Ad(T )jFt](3.10)

= EPT
d
[Dd(t; T )Ad(T )jFt]

=
Dd(t; T )

N

2
4n(t)X
i=1

X(ti)Df (ti; ti)

Dd(ti; ti)
+

NX
i=n(t)+1

EPT
d

�
X(ti)Df (ti; ti)

Dd(ti; ti)

����Ft
�35

=
Dd(t; T )

N

2
4n(t)X
i=1

X(ti)Df (ti; ti)

Dd(ti; ti)

+X(t)
NX

i=n(t)+1

Df (t; ti)

Dd(t; ti)
exp

8<
:�

tiZ
t

�x(u; ti) � �d(u; ti; T )du
9=
;
3
5

where the �rst term of (3.10) just covers the known average at time t determined by the exchange rates

prior to time t. For t = 0 equation (3.10) simpli�es to

�0(Ad(T )) =
X(0)Dd(0; T )

N

NX
i=1

Df (0; ti)

Dd(0; ti)
exp

8<
:�

tiZ
0

�x(u; ti) � �d(u; ti; T )du
9=
; ;(3.11)

3If both interest rate markets are deterministic, i.e. �d(t; t0; T ) = 0 = �f (t; t0; T ) the exchange rate process (3.9) is

determined by

X(t) = X(0)
Df(0; t)Dd(t; t)

Dd(0; t)Df(t; t)
exp

�
�
1

2

Z t

0
jj�x(u)jj2 du+

Z t

0
�x(u) � dWT

d

�

which coincides with the Black-Scholes model applied to exchange rate options by Garman and Kohlhagen (1983)
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which implies for T
N =: �t! 0 that the value of the continuous time average is equal to4

lim
�t!0

�0(Ad(T )) =
X(0)Dd(0; T )

T

TZ
0

0
@Df (0; v)

Dd(0; v)
exp

8<
:�

vZ
0

�x(u; v) � �d(u; v; T )du
9=
;
1
A dv(3.12)

= Dd(0; T )EPT
d

2
4 1

T

TZ
0

X(v)Df (v; v)

Dd(v; v)
dv

3
5 = �0(Ac(T )) :

3.1. Duplication of the Arithmetic Average. The duplication of the discrete arithmetic average in

the case of deterministic interest rate markets is straightforward. According to (3.11) we buy

Dd(0; T )

N

NX
i=1

Df (0; ti)

Dd(0; ti)
(3.13)

units of the foreign currency and invest these units in the foreign bond market. More precisely we take a

long position of 1
N

Dd(0;T )
Dd(0;ti)

units in the zero coupon bond with maturity date ti 2 t1; :::; tN = T . At times,

ti 2 t1; :::; tN, the payo� of the long position in the zero coupon bonds with maturity ti is converted by

the prevailing exchange rate to take a long position in the domestic zero coupon bonds with maturity

date T . Under deterministic interest rates the following relationship between initial forward and future

spot prices holds:

Dd(0; T )

Dd(0; ti)
= Dd(ti; T ):(3.14)

With an increase in the long position of the domestic zero coupon bond at each time ti by
1
N
X(ti)

units, the �nal payo� of this self-�nancing strategy is just equal to 1
N

PN
i=1X(ti), the payo� de�ned by

the arithmetic average. The average can with deterministic interest rates be duplicated by a trading

strategy which is close to a buy and hold strategy. Trades are only performed at the sampling dates.

We will now turn our attention to �nd the portfolio strategy to duplicate the arithmetic average where

the term structure of interest rates develops in a stochastic manner. To ease the understanding, and also

to highlight the importance of having stochastic interest rates in the two countries, we will consider only

a single term in the average, assuming that the `average' consists only of the spot exchange rate at time

ti and that the payment takes place at time T > ti. Such a contract will be referred to as a delayed

payment exchange rate contract.

The payment at time T , the maturity of the contract, is X(ti)D
f (ti; ti) which is known at time ti < T .

The value of this payment at time ti is X(ti)Df (ti; ti)Dd(ti; T ). This is not the value of a domestic

traded asset, whereas its two components, X(ti)Df (ti; ti) and Dd(ti; T ), are traded assets. The value at

4As in Vorst (1992) the expected continuous time average in the case of deterministic interest rates and a at yield curve

is given by

lim
�t!0

�0(Ad(T )) = X(0)
e�r

dT

T

Z T

0
e�(r

f
�rd)vdv

=
X(0)

T

1

rd � rf

h
e�r

f T � e�r
dT
i
�! 0
T!1
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time t < ti of the contract, denoted by V (t; ti); can be obtained from the above derived expression for

the conditional expected value of the discounted arithmetic average.

V (t; ti) := EP�

d

h�
�dt;T

��1
X(ti)D

f (ti; ti)jFt
i

= EPT
d

�
Dd(t; T )

X(ti)Df (ti; ti)

Dd(ti; ti)
jFt
�

(3.15)

= Dd(t; T )X(t)
Df (t; ti)

Dd(t; ti)
exp

8<
:�

tiZ
t

�x(u; ti) � �d(u; ti; T )du
9=
; :

The procedure to obtain the portfolio of traded assets is the same as in the former case, the only di�erence

is that the holdings of the di�erent claims will now explicitly depend on the volatility structure of the

model through the term exp

�
�

tiR
t

�x(u; ti) � �d(u; ti; T )du
�
. Observe that �d(u; ti; T ) equals 0 if the

domestic interest rate is deterministic, which will give us back the pure deterministic model. If, on the

other hand, the domestic market is stochastic but the foreign market is deterministic, we will still have

the inuence from the volatility structure on the holdings and no buy and hold strategy exists. This

means that the delayed payment structure has importance for the hedging strategy. Call and put options

on exchange rates are very popular instruments in the market and the above discussion shows that the

investor has to take into consideration the settlement risk, as the settlement often takes place with a

delay from the option's maturity by 2 banking days.

The delayed exchange rate value calculated in (3.15) can be duplicated through the following strategy:

�1(t; ti) :=
@V (t; ti)

@X(t)Df (t; ti)
=

V (t; ti)

X(t)Df (t; ti)

number of foreign zero coupon bonds with maturity ti;

�2(t; ti) :=
@V (t; ti)

@Dd(t; ti)
= � V (t; ti)

Dd(t; ti)
(3.16)

number of domestic zero coupon bonds with maturity ti;

�3(t) :=
@V (t; ti)

@Dd(t; T )
=

V (t; ti)

Dd(t; T )

number of domestic zero coupon bonds with maturity T:

Generalizing this result in an obvious manner the terminal value of the discrete arithmetic average

exchange rate Ad(T ) can be duplicated by the following self-�nancing portfolio strategy at time t � T

a) Foreign zero coupon bond market:

For each ti > t hold a long position of �1(t;ti)
N foreign zero coupon bonds with maturity ti.

b) Domestic zero bond market

i) For each ti > t take a short position of �2(t;ti)
N domestic zero coupon bonds with maturity ti.

ii) For each ti > t hold a long position of �3(t)
N domestic zero coupon bonds with maturity T .

iii) For each ti � t hold a long position of X(ti)
N domestic zero coupon bonds with maturity T .

We observe that with stochastic interest rates the duplicating trading strategy implies continuous trading

on the foreign and domestic market. Furthermore, the di�erence between the value of Asian call and put
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options is not completely determined by the market prices of the foreign and domestic zero coupon bonds

and the exchange rate since it depends on the volatility structure. With respect to this, the arithmetic

average and the future price under stochastic interest rates share the same property.

3.2. Delayed Payment Exchange Rate Options. A further application of the derived duplication

strategy is the pricing and hedging of a delayed payment exchange rate option. The payo� of this option

at maturity T is determined by
�
X(� )Df (�; � )�K

�+
resp. [K � X(� )Df (�; � )]+ where � < T . The

structure is similar to an usual European exchange rate call or put option. The di�erence is the delayed

payment. By the change of measure technique, the arbitrage price Cd of the delayed payment exchange

rate call is equal to

Cd(X(t);K; t; �; T ) = EP�

d

h�
�dt;T

��1 �
X(� )Df (�; � ) �K

�+���Fti

= EP�

d

"�
�dt;T

��1 � V (�; � )

Dd(�; T )
�K

�+�����Ft
#

(3.17)

= Dd(t; T )EPT
d

"�
V (�; � )

Dd(�; T )
�K

�+�����Ft
#

:

The ratio process is a lognormal martingale under the domestic T -forward risk adjusted measure, i.e.

d

�
V (t; � )

Dd(t; T )

�
=

V (t; � )

Dd(t; T )
�x(t; � ) � dWT

d (t)(3.18)

which implies that the solution for the delayed exchange rate call option is determined by

Cd(X(t);K; t; �; T ) = V (t; � )N (d1)�KDd(t; T )N (d2)

d1;2 =

ln
�

V (t;�)
KDd(t;T )

�
� 1

2

�R
t

jj�x(u; � )jj2du
�

�R
t

jj�x(u; � )jj2du
�1

2

(3.19)

=

ln
�
X(t)Df (t;�)
KDd(t;�)

�
�

�R
t

�x(u; � ) � �d(u; �; T )du� 1
2

�R
t

jj�x(u; � )jj2du
�

�R
t

jj�x(u; � )jj2du
�1

2

:

Since V (t; � ) is not a traded asset the duplicating portfolio cannot be determined in terms of this value

process. By applying our former results the duplicating strategy in terms of traded assets is given by

Cd(X(t);K; t; �; T )

=
�
X(t)Df (t; � )�1(t; � ) +Dd(t; � )�2(t; � ) +Dd(t; T )�3(t; � )

� �N (d1)�KDd(t; T )N (d2)

= X(t)Df (t; � ) � �1(t; � )N (d1) +Dd(t; � ) � �2(t; � )N (d1) +Dd(t; T ) � ��3(t; � )N (d1)�KN (d2)
�
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where, obviously, the partial derivatives

@Cd(X(t);K; t; �; T )

@X(t)Df (t; � )
= �1(t; � )N (d1)

@Cd(X(t);K; t; �; T )

@Dd(t; � )
= �2(t; � )N (d1)

@Cd(X(t);K; t; �; T )

@Dd(t; T )
= �3(t; � )N (d1) �KN (d2)

are the corresponding hedge ratios. For the standard European type exchange rate option, i.e. T = �

the pricing formula (3.19) coincides with the usual option pricing formula

Ce(X(t);K; t; � ) = X(t)Df (t; � )N (d1)�Dd(t; � )KN (d2)

= Cd(X(t);K; t; �; � );

since (3.16) implies �1(t; � ) = 1; �2(t; � ) = ��3(t) and �d(t; �; T ) = 0 for T = �:

4. Pricing and Hedging of Asian Options: The Approximation Method

The calculation of the value of an Asian option and the hedge ratio requires the application of numerical

methods and the speci�cation of the volatility functions. With the Assumptions 2.1 and 2.2, the volatility

functions of the exchange rate process and the domestic and foreign zero coupon bond markets are

restricted to be non-stochastic. As a consequence, the discretely or continuously sampled arithmetic

average of the exchange rate represents a weighed average of multi-dimensional lognormally distributed

variables. A variety of numerical approaches for the pricing of Asian options can be considered in the case

of one-dimensional lognormally distributed variables with constant volatility. Obviously these methods

must be generalized in severals ways, since our situation implies time-dependent volatility functions, a

complicated correlation structure and a multi-dimensional distribution.

As already discussed in a similar but less complex situation by Nielsen and Sandmann (1996) the Fast

Fourier transformation technique applied in a paper by Carverhill and Clewlow (1990) to the pricing

of Asian options can not be generalized to the situation of stochastic interest rates. The Edgeworth

expansion which was applied by Turnbull and Wakeman (1991) involves complicated calculations of the

�rst four moments of the arithmetic average. In the case of stochastic interest rates these calculations

must be done in a recursive and hence by a slow algorithm similar to the one proposed by Nielsen and

Sandmann. The Laplace transformation approach introduced by Geman and Yor (1993) is associated

with the numerical inversion of a non-trivial Laplace transformation. Although this approach is of high

mathematical elegance, the generalization of this method to the multi-dimensional case does not lead to

a profound economic interpretation. Finally, it seems to us that a multinomial approximation based on

the binomial approach of Hull and White (1993) is not appropriate in our case and would raise complex

convergency questions. Therefore, we will not consider these methods.

The numerical analysis will involve two methods: a generalization of the Vorst (1992) approximation,

and an adoption of the Rogers and Shi (1995a) approach.
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The Vorst approximation is based on a payo� argument, i.e. a higher and lower payo� in terms of

a geometric average option. Since the latter option possesses a closed form solution in the case of non

stochastic volatility functions the approximation involves no further numerical problems and endows us

with hedging strategies for closely related payo�s.

Rogers and Shi propose an approximation in the case of non stochastic interest rates. In addition,

they are able to derive upper and lower bounds which are tight compared to the bounds derived by Vorst.

Since the method is very e�cient from the numerical point of view in the one-dimensional case, it seems

to be interesting to generalize the method to our situation and to ask for some economic interpretation.

For simplicity of the exposition we restrict ourselves to the �xed strike Asian option. The oating strike

case is covered if we apply a further change of measure, i.e. by choosing X(T )Df (T; T ) as a numeraire.

Note, that by

dPT
d

dPX

����
t

=
X(T )Df (T; T )

EPT
d
[X(T )Df (T; T )jFt]

= exp

8<
:�1

2

TZ
t

jj�x(u; T )jj2 du+
TZ
t

�x(u; T ) � dWT
d (u)

9=
;(4.1)

the new probability measure is de�ned. Furthermore, dWX(t) = dWT
d � �x(t; T )dt de�nes a vector

Brownian motion under PX and the arbitrage price of a oating strike Asian option can be expressed by

EP�

d

h�
�dt;T

��1
[X(T ) � Al(T )]

+jFt
i
= X(0)D(0; T )EPX

h
[1� ~Al(T )]

+jFt
i

(4.2)

with ~Ad(T ) =
1
N

NP
i=1

X(ti)
X(T ) resp.

~Ac(T ) =
1
T

TR
0

X(u)
X(T )du and

X(t)

X(T )
=

Df (0; t)

Df (0; T )

Dd(0; T )

Dd(0; t)
exp

8<
:

TZ
0

�x(u; T ) � �d(u; t; T )du
9=
;

exp

8<
:�1

2

TZ
0

jj�x(u; t)1u�t � �x(u; T )jj2 du
TZ
0

(�x(u; t)1u�t� �x(u; T )) � dWX (u)

9=
; :(4.3)

Thus the oating strike case can be solved as the �xed strike case by changing from the domestic T -forward

risk adjusted measure to the measure PX and adjusting the volatility functions.

4.1. Generalization of the Vorst (1992) approximation. As already mentioned, the Vorst approx-

imation is based on the dominance of the arithmetic over the geometric average, i.e.

Ad(T ) � Gd(T ) :=

 
NY
i=1

X(ti)D
f (ti; ti)

! 1
N

;(4.4)

Ac(T ) � Gc(T ) := exp

(
1

T

Z T

0

ln
�
X(u)Df (u; u)

�
du

)
:
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If the geometric average is lognormally distributed the arbitrage price of an European type geometric

average call or put option has a closed form solution (for l 2 fc; dg)

Cg(t;K; T ) = Dd(t; T )
h
EPT

d
[Gl(T )jFt]N (d1)�KN (d2)

i
(4.5)

Pg(t;K; T ) = Dd(t; T )
h
KN (�d2) �EPT

d
[Gl(T )jFt]N (�d1)

i
(4.6)

EPT
d
[Gl(T )jFt] = exp

�
mGl

(t) +
1

2
�2Gl

(t)

�
mGl

(t) = EPT
d
[lnGl(T )jFt]

�2Gl
(t) = VPT

d
[lnGl(T )jFt]

d1 =
mGl

(t)� ln(K) + �2Gl
(t)

�Gl
(t)

; d2 = d1 � �Gl
(t):

The Vorst approximation for an Asian option and the bounds are given by (l 2 fd; cg)

Cg(t;K; T ) � Ca(t;K; T ) � Dd(t; T )
h
EPT

d
[Gl(T )jFt]N (d01)�KN (d02)

i
(4.7)

� Cg(t;K; T ) +Dd(t; T )EPT
d
[Al(T ) �Gl(T )jFt]

Pg(t;K; T ) � Pa(t;K; T ) � Dd(t; T )
h
KN (�d02) �EPT

d
[Gl(T )jFt]N (�d01)

i
(4.8)

� Pg(t;K; T )�Dd(t; T )EPT
d
[Al(T ) �Gl(T )jFt]

with

d01=2 =
mGl

(t) � ln(K0)� �2Gl
(t)

�Gl
(t)

; K 0 = K �EPT
d
[Al(T )� Gl(T )jFt]:

Since the expected value of the discretely and continuously sampled arithmetic average under the domes-

tic T -forward risk adjusted measure is given by (3.11) and (3.12) respectively, we only need to determine

the mean and variance of the logarithmic geometric average

Proposition 4.1:

Suppose the domestic and the foreign interest rate markets and the exchange rate satisfy the Assumptions
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2.1 and 2.2. The expected value of the geometric exchange rate average is determined by

EPT
d
[Gl(T )jFt] = exp

�
mGl

(t) +
1

2
�2Gl

(t)

�

mGd
(t) :=

1

N

2
4n(t)X
i=1

ln

�
X(ti)Df (ti; ti)

Dd(ti; ti)

�

+
NX

i=n(t)+1

�
ln

�
X(t)

Df (t; ti)

Dd(t; ti)

�
� 1

2

Z ti

t

�x(u; ti) �
�
�x(u; ti) + 2�d(u; ti; T )

�
du

�35

�2Gd
(t) :=

1

N2

N�1X
i=n(t)

0
B@

ti+1Z
maxfti;tg

������
������

NX
j=i+1

�x(u; tj)

������
������
2

du

1
CA

mGc
(t) :=

1

T

2
4 tZ
t0

ln

�
X(v)Df (v; v)

Dd(v; v)

�
dv +

TZ
t

ln

�
X(t)Df (t; v)

Dd(t; v)

�
dv

�1

2

TZ
t

0
@ vZ

t

�x(u; v) � ��x(u; v) + 2�d(u; v; T )
�
du

1
A dv

3
5

�2Gc
(t) :=

1

T 2

2
64

TZ
t

������
������
TZ
u

�x(u; v)dv

������
������
2

du

3
75

Remark:

If t = t0; i.e. the sampling period is just starting, the complexity of the above expressions are

reduced, since n(t0) = 0 and those parts which take care of the past exchange rate evolution

are dropped.

Proof. The price process of the exchange rate under the domestic T -forward risk adjusted measure is

given by (3.9). For the discrete geometric average this implies

VPT
d
[lnGd(T )

��Ft] = VPT
d

2
4 1

N

NX
i=n(t)+1

tiZ
t

�x(u; ti) � dW T
d (u)

3
5

=
1

N2
VPT

d

2
64 N�1X
i=n(t)

ti+1Z
maxft;tig

0
@ NX
j=i+1

�x(u; tj)

1
A � dW T

d (u)

3
75

=
1

N2

N�1X
i=n(t)

0
B@

ti+1Z
maxft;tig

����
����

NX
j=i+1

�x(u; tj)

����
����
2

du

1
CA
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EPT
d
[lnGd(T )jFt] = EPT

d

"
1

N

NX
i=1

ln

�
X(ti)Df (ti; ti)

Dd(ti; ti)

������Ft
#

=
1

N

2
4n(t)X
i=1

ln

�
X(ti)D

f (ti; ti)

Dd(ti; ti)

�
+

NX
i=n(t)+1

EPT
d

�
ln

�
X(ti)D

f (ti; ti)

Dd(ti; ti)

�����Ft
�35

=
1

N

2
4
0
@n(t)X

i=1

ln

�
X(ti)Df (ti; ti)

Dd(ti; ti)

�1A

+
NX

i=n(t)+1

0
@ln�X(t)

Df (t; ti)

Dd(t; ti)

�
� 1

2

tiZ
t

�x(u; ti) �
�
�x(u; ti) + 2�d(u; ti; T )

�
du

1
A
3
5 :

The last equality uses the independency of the n-dimensional Brownian motion. Similarly, the �rst and

second moments in the continuous time case are determined by

EPT
d

h
lnGc(T )

���Fti = EPT
d

2
4 1

T

TZ
0

ln

�
X(v)Df (v; v)

Dd(v; v)

�
dv

����Ft
3
5

=
1

T

2
4 tZ
0

ln

�
X(v)Df (v; v)

Dd(v; v)

�
dv +

TZ
t

ln

�
X(t)Df (t; v)

Dd(t; v)

�
dv

�1

2

TZ
t

2
4 vZ
t

�x(u; v) � ��x(u; v) + 2�d(u; v; T )
�
du

3
5dv

3
5

VPT
d

h
lnGc(T )

���Fti = VPT
d

2
4 1
T

TZ
t

ln
�
X(v)Df (v; v)

�
dv

����Ft
3
5

=
1

T 2
� VPT

d

2
4 TZ
t

0
@ vZ

t

�x(u; v) � dWT
d (u)

1
A dv

����Ft
3
5

=
1

T 2
� VPT

d

2
4 TZ
t

0
@ TZ

u

�x(u; v)dv

1
A � dWT

d (u)

����Ft
3
5 =

1

T 2
�
2
4 TZ
t

����
����

TZ
u

�x(u; v)dv

����
����
2

du

3
5

where again the independency condition of the n-dimensional Brownian motion is applied to justify the

linearity of the variance operator.

The maximum approximation error �"V orst for an European type Asian call or put option implied by the

Vorst (1992) approach is given by the discounted di�erence between the expected arithmetic and geo-

metric average under the domestic T -forward risk adjusted measure. With the solution for the expected

arithmetic average (3.10) and Proposition 4.1 the maximumapproximation error �"V orst can be computed

in terms of the volatility structure and the initial market prices.

4.2. The Conditional Expectation Approach. In their paper on the value of an Asian option Rogers

and Shi (1995a) derive an approximation by use of a conditional expectation. The computation of the

approximation can be done very fast numerically. In addition, the approximation error turns out to be
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quite small for an appropriate choice of the conditioning variable. This very nice approximation was

introduced by Rogers and Shi for the Black and Scholes (1973) framework.

The objective of this section is to generalize the Rogers and Shi approach to the situation of an Asian

exchange rate option with stochastic interest rates, i.e. we have to take care of the time dependent,

multi-dimensional volatility structure. The generalization proves to be straightforward.

Whether the approximation is useful or not depends on the size of the approximation error. The

latter depends on the choice of the conditioning random variable. The choice of this random variable is

of course related to the speci�c contract under consideration. Like Rogers and Shi (1995b) we can not

determine the conditioning variable which minimizes the approximation error. Instead, we follow their

argument and motivate a speci�c choice.

Let Z be a random variable, Al(T ) the discretely or continuously sampled arithmetic average and K

the �xed strike of the Asian option. The forward value of an Asian option is equal to the expected value

of the terminal payo� under the domestic T -forward risk adjusted measure PT
d . For simplicity of the

expressions, denote by Et[:] the conditional expection with respect to the �-algebra Ft: As in Rogers and

Shi (1995a) this expectation satis�es the following relation

Et
PT
d

�
[Al(T )�K]+

�
= Et

PT
d

h
Et
PT
d

�
[Al(T ) �K]+jZ�i � Et

PT
d

�h
Et
PT
d
[Al(T ) �KjZ]

i+�
:(4.9)

The di�erence between the unconditional expectation and the lower bound, i.e. the forward value of the

approximation error can be estimated by "RS :

0 � Et
PT
d

�
Et
PT
d

�
[Al(T )�K]+jZ�� hEt

PT
d

[Al(T ) �KjZ]
i+�

=
1

2
Et
PT
d

h
Et
PT
d

[jAl(T ) �Kj jZ]�
���Et

PT
d

[Al(T ) �KjZ]
���i

� 1

2
Et
PT
d

h
Et
PT
d

h � ���Al(T ) �K � Et
PT
d

[Al(T )�KjZ]
���� ���Zi i(4.10)

� 1

2
Et
PT
d

��
VPT

d
[Al(T )jZ]

� 1
2

�
� 1

2

�
Et
PT
d

h
VPT

d
[Al(T )jZ

i� 1
2

=: "RS

The main di�erence to the original Rogers and Shi approach is that we have to consider a n-dimensional

random variable Z instead of a one-dimensional5. More precisely we restict Z by

Assumption 4.1:

a) Z is a normally distributed n-dimensional random variable under the domestic forward risk ad-

justed measure PT
d .

b) Z = (Z1; � � � ; Zn)T satis�es the following normalizing and independency conditions

i) EPT
d
[Zj ] = 0; VPT

d
[Zj] = 1 8j = 1; � � � ; n

ii) covPT
d
(Zj ; Zk) = 0 8j 6= k 8j; k = 1; � � � ; n

iii) covPT
d
(Zj ;WT

d;k) = 0 8j 6= k 8j; k = 1; � � � ; n:

5The same argument can be applied to the oating strike Asian option. Instead of the measure PT
d the problem should

be considered under the measure PX (see (4.1)).
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The lower bound for the arbitrage price of an Asian option is now determined by

Proposition 4.2:

Let Z be a random variable satisfying Assumption 4.1 and suppose that the exchange rate and the

domestic and foreign zero coupon bond market satisfy the Assumption 2.1 and 2.2 resp. Denote by

K(t) the di�erence between the strike K and the known average at the t, i.e. K(t) := K � T
t
Ac(t) or

K(t) := K � N
n(t)Ad(t) resp.. The lower bound for an Asian exchange rate option with K(t) > 0 is given

by

Dd(t; T )Et
PT
d

[[Ad(T )�K]+](4.11)

� Dd(t; T )Et
PT
d

2
4
2
4
0
@ 1

N

NX
i=n(t)+1

F (t; ti) exp

�
mt(ti) � Z +

1

2
�2t (ti; ti)

�1A �K(t)

3
5
+3
5

in the case of a discrete Asian option, and

Dd(t; T )Et
PT
d

[[Ac(T ) �K]+](4.12)

� Dd(t; T )Et
PT
d

2
64
2
4 1

T

TZ
t

F (t; u) exp

�
mt(u) � Z +

1

2
�2t (u; u)

�
du�K(t)

3
5
+
3
75

in the case of a continuous Asian option, where

F (t; � ) := X(t)
Df (t; � )

Dd(t; � )
exp

8<
:�1

2

�Z
t

�x(u; � ) � ��x(u; � ) + 2�d(u; �; T )
�
du

9=
; 2 R

�2t (�; s) :=

minfs;�gZ
t

�x(u; � ) � �x(u; s)du�mt(� ) �mt(s) 2 R

mt(� ) := (mt;1(� ); � � � ;mt;n(� ))
T 2 Rn

mt;k(t) := Et
PT
d

2
4Zk

�Z
t

�xk(u; � ) � dWT
d;k(u)

3
5

Proof. For simplicity of the proof we consider the situation t = 0 and omit the subscript t. The assump-

tions on Z imply for the conditional expectation
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and for the conditional covariance

�2(s; t) := covPT
d
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=
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The conditional expected value of the exchange rate is determined by
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= EPT
d
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4F (0; t) exp

8<
:

tZ
0

�x(u; t) � dWT
d (u)

9=
;
������Z
3
5

= F (0; t) exp
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which obviously implies
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and with (4.9) the lower bounds are determined.

So far the lower bound is depending on the speci�c choice of the conditioning random variable Z.

Following Rogers and Shi (1995a) we �x Z such that the conditional variance of the terminal payo� is

small. In order to calculate the conditional variance at time t note that
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The conditional variance for the discrete Asian option at time t is equal to

V t
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d
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=
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and for the continuous Asian option
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Using the approximation expfxg � 1 + x and the fact �2t (s; t) = �2t (t; s) the conditional variance can be

approximated by
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Since by de�nition
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the conditional covariance at time t is approximated by zero if we set the randomvariable Z = (Z1; � � � ; Zn)T

equal to

Zk =
1
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Alternatively we could use the approximation
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This suggests a speci�cation of the random variable Z equal to

Zk =
1

�k

0
@ NX
j=n(t)+1

tjZ
t

�xk(u; tj) � dWT
d;k(u)

1
A(4.14)

�2t;k = Et
PT
d

2
64
0
@ NX
j=n(t)+1

tjZ
t

�xk(u; tj) � dWT
d;k(u)

1
A
2
3
75 =

N�1X
j=n(t)+1

0
B@

tj+1Z
tj

0
@ NX

i=j+1

�xk(u; ti)

1
A
2

du

1
CA

=) mt;k(tj) =
1

dk

NX
i=n(t)+1

2
64
minftj;tigZ

t

(�xk(u; ti) � �xk(u; tj)) du

3
75



22 J. AASE NIELSEN AND KLAUS SANDMANN

In case of a continuously sampled Asian option, the same argument implies that the conditional covariance

is approximated by zero if we choose Z equal to

Zk =
1

�k

TZ
t

0
@ sZ

t

�xk(u; s)dW
T
d;k(u)

1
A Df (t; s)
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ds(4.15)

�2t;k = V t
PT
d
[Zk] =

TZ
t

0
@ TZ

u

�xk(u; s)
Df (t; s)

Dd(t; s)
ds

1
A
2

du

=) mt;k(� ) =
1

�k

�Z
t

0
@ TZ

u

�xk(u; s)
Df (t; s)

Dd(t; s)
ds

1
A � �xk(u; � )du :

Using the alternative approximation the Z vector is found to be

Zk =
1

�k

TZ
t

sZ
t
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1
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Numerical integration then has to be performed to �nd the approximate price represented by the lower

bound.

4.3. The Conditional Expectation Approach. Closed Form Solution. In this section the n{

dimensional random variable, Z, will be replaced by a 1{dimensional random variable and it is shown

that a closed form solution for the lower bound in this situation can be derived. This closed form solution

can be interpreted as a portfolio of European type options, where each option has a structure similar

to the delayed exchange rate option discussed in section 3.2. Of course the results can be applied to

the Black-Scholes model, i.e. to the case of deterministic interest rates and constant volatility for the

underlying asset.

Proposition 4.3:

Let Z be a one-dimensional standard normally distributed random variable and suppose that the exchange

rate and the domestic and foreign zero coupon bond markets satisfy the Assumption 2.1 and 2.2 resp.

Denote by K(t) the di�erence between the strikeK and the known average at the t, i.e. K(t) := K�T
t Ac(t)

or K(t) := K � N
n(t)Ad(t) resp.. The lower bound for an Asian exchange rate option with K(t) > 0 is

given by

Dd(t; T )Et
PT
d

[[Ad(T )�K]+](4.17)
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in the case of a discrete Asian option, and

Dd(t; T )Et
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d

[[Ac(T ) �K]+](4.18)
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in the case of a continuous Asian option, where

F (t; � ) := X(t)
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d (u)
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Proof. For simplicity of the proof we consider the situation t = 0 and omit the subscript t. The assump-

tions on Z imply for the conditional expectation
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and for the conditional covariance
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The conditional expected value of the exchange rate is determined by
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which obviously implies
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and with (4.9) the lower bounds are determined.

The formal di�erence between the exact equation for the value of an Asian option and the lower bound is

that we are not integrating with respect to a n-dimensional Brownian motion. Applying an argument by

Jamshidian (1991), a closed form solution for the lower bound of a �xed strike discretely sampled Asian

option can now be derived.
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Theorem 4.1:

Under the Assumptions of Proposition 4.3 and the assumption that sign(m(ti)) = sign(m(tj ))8i; j, the
lower bound of a �xed strike discretely sampled Asian call option at time t with K(t) > 0 is equal to
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where N (�) denotes the standard normal distribution and z� is the unique solution at time t of the problem
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Proof. To simplify the proof it is su�cient to consider the situation at time zero. The lower bound of

the �xed strike discretely sampled Asian call option is equal to
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Due to the sign condition on the m(ti) there exists a unique z� such that the arithmetic average is equal

to K. Formally we can now apply Jamshidian's (1991) argument, i.e.
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The condition on sign(m(ti)) in Theorem 4.1 is di�cult to analyse in general. Assuming a Vasicek term

structure model for the domestic as well as for the foreign bond market it turns out that the condition

is ful�lled for some correlation structures. On the other hand it is also possible to �nd situations where

the condition is not ful�lled.

The lower bound for a �xed strike discrete Asian put option is equal to
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In the case of continuous sampling the lower bounds can be expressed by
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for the �xed strike call and by
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for the �xed strike put, where z� is the solution of
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In both situations the value of z� can be computed with standard algorithms. Furthermore, applying the

change of measure to PX ; similar closed form solutions can be derived to approximate the oating strike

Asian option.

So far the closed form solution of the lower bound depends on the speci�c choice of the conditioning

random variable Z. As Rogers and Shi (1995a), we �x Z such that the conditional variance of the terminal

payo� is small. In order to calculate the conditional variance at time t note that
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The conditional variance for the discrete Asian option at time t is equal to
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and for the continuous Asian option
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the conditional covariance at time t is approximated by zero if we set the random variable Z equal to
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Alternatively we could use the approximation
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This suggests a speci�cation of the random variable Z equal to
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In case of a continuously sampled Asian option, the same argument implies that the conditional covariance

is approximated by zero if we choose Z equal to

Z =
1
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t

0
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Using the alternative approximation Z is found to be
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The approximation error to the price of an exchange rate Asian option is now determined by equation

(4.10). For a discrete Asian option the approximation error is estimated by:
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and in the case of a continuous Asian option by:
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:

5. Conclusion

Foreign exchange rate Asian options have been analysed with the primary aim to �nd a good approx-

imation for their pricing. A model for the foreign exchange should describe not only the exchange rate

itself but also the term structure of interest rates in the two countries. The total correlation structure in

this two-country economy will be important for the pricing purpose. The correlation structure inuences
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the Asian put-call parity relationship, and it turns out that the pricing strategy applied to establish

the put-call parity has to be continuously updated. This is in contrast to the classical put-call parity

relationship in the Black and Scholes setting.

An important feature of the Asian option is the delayed payment structure. It is argued that this

feature is also important for ordinary options and its inuence on pricing is analysed.

The Asian option is in this paper priced through two di�erent approximation methods, the Vorst

(1992) approximation and, as the paper's main contribution to the literature, through the Rogers and

Shi (1995a) approach combined with an exact pricing of their approximated lower bound. This exact

pricing takes the form of a sum of delayed payment options. The pricing error for the Rogers and Shi

approximation is developed.

Furthermore, we conjecture to apply the methodology to other �nancial contracts with a similar mathe-

matical structure. Examples are basket options and more generally n-color rainbow type options. As in

our case the methodology may imply an approximation to the value of these options by a portfolio of

simpler �nancial contracts.

It is ongoing research to do numerical analysis of the theoretical results presented in this paper and to

extend the results to cover the important topic of hedging long term Asian options in an international

setting.
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