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Abstract

Stochastic volatility models have been introduced in order to deal with the well-
known empirical de�ciencies of the standard Black-Scholes model. These models are
incomplete which raises new questions for the pricing and the hedging of derivative
securities. In this paper we discuss the superreplication of derivatives in a stochastic
volatility model under the additional assumption that the volatility follows a bounded
process. We characterize the value process of our superhedging strategy by an op-
timal stopping problem in the context of the Black-Scholes model which is similar
to the optimal stopping problem that arises in the pricing of American-type deriva-
tives. Our proof is based on probabilistic arguments. We study the minimality of
these superhedging strategies. As most of the previous work on superheding under
stochastic volatility uses a PDE approach we discuss PDE-characterizations of the
value function of our superhedging strategy. We illustrate our approach by certain
examples and simulations.
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1 Introduction

The pricing and hedging of derivative securities is nowadays well-understood in the context

of the classical Black-Scholes model of geometric Brownian motion. However, recent

empirical research has produced a lot of statistical evidence that is di�cult to reconcile

with the assumption of independent and normally distributed asset returns. Researchers

have therefore attempted to build models for asset price uctuations that are exible

enough to cope with these empirical de�ciencies of the Black-Scholes model. In particular,

a lot of work has been devoted to relaxing the assumption of constant volatility in the

Black-Scholes model and there is a growing literature on stochastic volatility models (SV-

models); see e.g. Ball and Roma (1994) or Frey (1997) for surveys. In this class of models

the stochastic di�erential equation (SDE) that governs the asset price process is driven by

a Brownian motion, but the di�usion coe�cient of this SDE is modelled as a stochastic

process which is only imperfectly correlated to the Brownian motion driving the asset

price process.

SV-models are able to capture the succession of periods with high and low activity

we observe in �nancial markets. However, this increase in realism raises new conceptual

problems for the pricing and the hedging of derivative securities: It is well-known that

SV-models are incomplete, i.e. one cannot replicate the payo� of a typical derivative by

dynamic trading in the underlying risky asset (\the stock") and in some riskless money

market account. This reects a real di�culty in the risk management of derivative secu-

rities and should therefore not be considered as a disadvantage of this class of models.

Today \the uncertain nature of forward volatility is recognized as one of the main factors

that drive market-making in options and custom-tailored derivatives"; see Avellaneda and

Paras (1996).

Of course, if there is a liquid market for certain standard derivative securities on the

stock, the use of dynamic trading strategies in the stock and in these securities might

restore market completeness. However, this approach is not always viable. To begin with,

there is not always trade in a su�cient number of derivative securities on a particular stock.

Even if there are derivative securities available for trading, running a dynamic hedging

strategy in these securities might prove impossible because of prohibitive transaction costs.

Moreover, this approach requires a precise parametric model for the volatility dynamics of

the underlying asset. As volatility is not directly observable, the determination of a good

model for the volatility dynamics and the estimation of the corresponding parameters

poses di�cult problems. Hence there is a considerable risk of model misspeci�cation

that might lead to \bad" hedges. This favours approaches to the risk-management of

derivative securities which require dynamic hedging only in the underlying risky asset

and in the money market account; static positions in liquidly traded derivatives can then

be used in a second step in order to improve the accuracy and reduce the cost of the

hedge. Results from the theory of superhedging imply that even in an incomplete market

it is possible to \stay on the safe side" by using a particular dynamic trading strategy

in the underlying stock and in the money market account; see e.g. Delbaen (1992) or

El Karoui and Quenez (1995) for results on continuous processes, and Kramkov (1996) or

F�ollmer and Kabanov (1998) for generalisations to a general semimartingale framework.

The cost of implementing such a superhedging strategy is given by the supremum of the

expected value of the terminal payo� over all equivalent local martingale measures for the

underlying asset.

Unfortunately the concept of superhedging often leads to prices that are too high

from a practical viewpoint. For instance Frey and Sin (1997) and Cvitanic, Pham, and

Touzi (1997) show that in a typical SV-model where volatility follows an unbounded
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di�usion process the cost of establishing such a superhedge for a European call option is

no smaller than the current price of the underlying stock; hence in this class of models

the cheapest superhedging strategy for a European call option is to buy the underlying

asset. Additional assumptions are therefore called for if one wants to obtain superhedging

strategies which are at least potentially of some practical interest. In this paper we restrict

ourselves to SV-models where the range of the volatility is bounded. Under this additional

assumption we are able to obtain \nontrivial" superhedging strategies for a large class of

derivatives whose payo� may even be path-dependent. These strategies are universal in

the sense that they depend only on the bounds we impose on the volatility and not on a

particular parametric model for the volatility dynamics. We characterize the value process

of our superhedging strategy by an optimal stopping problem in the context of the Black-

Scholes model. Roughly speaking our result can be phrased as follows: the value of a

superhedging strategy for a European type derivative under stochastic volatility equals

value of a corresponding American type derivative under constant volatility. In particular

one can draw on standard numerical methods for the pricing of American type securities

to implement our approach. The proof is based on probabilistic arguments. Our main

tools are the optional decomposition theorem of El Karoui and Quenez (1995) and the

results on time-change for continuous martingales.

In practice it may be impossible to determine �nite bounds on asset price volatility

which hold true with certainty. In those cases we interprete our volatility band as con�-

dence interval for the range of the future volatility. By construction the success-set of our

strategy | the set where the terminal value of the hedge portfolio is no smaller than the

the payo� of the derivative | contains all asset price trajectories with volatility lying in

the volatility band. Moreover, our approach is relatively robust: if the actual volatility

exceeds one one of the volatility bounds by a small amont the resulting loss will typically

be small. Recently F�ollmer and Leukert (1998) have developed a general theory of super-

hedging with a given success probability. In their approach the success set is endogenously

determined; it minimizes the superhedging cost over all strategies with a given success

probability. This yields a very elegant theory. However, by construction the terminal

value of the hedge portfolio is zero on the complement of the success-set. Hence in the

approach of F�ollmer and Leukert the occurrence of an event belonging to the complement

of the success-set may immediately lead to large losses.

It is important to know, if for a given parametric SV-model superhedging strategies

can be constructed which are less expensive than our universal superhedging strategy.

In Section 3 we study this question for a particular class of SV-models where volatility

follows a one-dimensional di�usion. Most parametric models from the �nancial literature

belong to this class. We show that our universal superhedging strategy is in fact the

minimal superhedging strategy, provided that the bounds on volatility are sharp and that

the lower volatility bound is zero. This generalizes the main result of Frey and Sin (1997);

it extends also certain results of Cvitanic, Pham, and Touzi (1997) to path-dependent

derivatives.

In most of the previous work on superreplication in SV-models with bounded volatil-

ity the superhedging cost is characterized by a terminal value problem involving a |

typically nonlinear | parabolic PDE. Important examples of this work are El Karoui,

Jeanblanc-Picqu�e, and Shreve (1998), Avellaneda, Levy, and Paras (1995) and Lyons

(1995). In Section 4 we therefore discuss under which conditions the value function of our

superhedging strategy can be characterized in terms of some nonlinear parabolic PDE.

This gives us also information on the minimality of our universal superhedging strategy

in models where the lower volatility bound is strictly positive.

In order to illustrate our approach to superhedging we compute in Section 5 for certain
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example the value function of our strategy. We present simulations for the superreplication

cost of a call spread and compare our results to those of Avellaneda, Levy, and Paras

(1995). We give analytic results on the superhedging cost for a particular barrier option,

namely the down-and-out call option. Finally we present an example that shows how

static positions in traded derivatives can be used for a reduction of the superhedging cost,

an idea which is explored more systematically in Avellaneda and Paras (1996).

2 Superreplication strategies and optimal stopping

2.1 The general stochastic volatility model

We consider a frictionless �nancial market with continuous security trading where some

risky asset S (the stock) and a riskless money market account B are traded. In our

model the short rate of interest is given by some constant r � 0 such that Bt = exp(rt).

Throughout our analysis we �x some �ltered probability space (
;F ; (Ft); P ) with (Ft)
satisfying the usual conditions, with some Brownian motion Wt de�ned on it. For the

purposes of this paper it is legitimate to assume that P is already a risk-neutral measure

for S.

Assumption 1. S follows a general stochastic volatility model, i.e. it solves the SDE

dSt = St(�tdWt + rdt) (2.1)

for a predictable process �t. We assume �t > 0 and
R t
0
�2sds <1 for all t > 0.

This class of SV-models is very general. In fact, it can be shown that in every arbitrage-

free asset price model where the price process follows continuous trajectories with abso-

lutely continuous quadratic variation the asset price dynamics are of the form (2.1); see

for instance Gallus (1996). Obviously Assumption 1 is satis�ed by most SV-models from

the �nancial literature where volatility is assumed to follow a one-dimensional di�usion;

see Section 3 for examples.

Fix some maturity date T . By Zt := er(T�t)St we denote the price of the forward

contract on S with maturity T . The following set of probability measures Q equivalent to

P on (
;FT ) will be important:

Me := fQ jQ � P and (Zt)0�t�T is a Q-local martingaleg :

For further use we also de�ne the process Mt :=
R t
0
�sdWs. M is a continuous local

martingale under all Q 2 Me with quadratic variation hMit =
R t
0
�2sds. By Itô's formula

S is given by St = S0 exp(rt+Mt � 1
2hMit).

2.2 Construction of Superreplication Strategies via Optimal Stopping

We start with some notation. For a process X which is cadlag we put

Xmin
[0;t] := min

0�s�t
Xs and Xmax

[0;t] := max
0�s�t

Xs :

Let (Ft) be a �ltration on some probability space (
;F ; P ) and �1 and �2 be F -stopping
times such that �1 � �2 a.s.. We denote by F�1;�2 the set of all F-stopping times � with

�1 � � � �2 a.s.. By B we denote the canonical �ltration on C[0;1).

We consider the following class of contingent claims:
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Assumption 2. The payo� H of the contingent claim is of the form

H = f
�
ZT ; Z

min
[0;T ]; Z

max
[0;T ]

�
(2.2)

for some function f : R3
+ ! R such that the process ft := f

�
Zt; Z

min
[0;t] ; Z

max
[0;t]

�
0�t�T

is

bounded below and cadlag.

Remark 2.1. This class of payo�s comprises all path-independent options. Most common

path-dependent options also satisfy Assumption 2, if we assume that the payo� is de�ned

as a function of the forward price Z of the stock. For instance the payo� of barrier options

with barrier condition imposed on Z is of the form (2.2). Note that the payo� of a portfolio

of derivatives where each individual contract is of the form (2.2). is again of this form.

This facilitates the application of our method to portfolios of derivatives.

De�nition 2.2. Consider a contingent claim with maturity date T and payo� H which

is bounded below. A dynamic trading strategy (�t; �t)0�t�T in stock and bond is a super-

replicating strategy for H if

(i) The strategy is admissible, i.e. � is predictable, � is adapted and the value process

Vt = �tSt + �tBt is bounded below.

(ii) The terminal value VT of the strategy equals H. Moreover, the cost process associated

with the strategy is nonincreasing, i.e. we have for all 0 � t � T the representation

Vt = V0 +

Z t

0

�srBsds+

Z t

0

�sdSs + Ct (2.3)

for an non-increasing process C = (Ct)0�t�T with C0 = 0.

We make the following assumption on th easset price dynamics.

Assumption 3. There are constants �min and �max such that 0 � �min � �t � �max <1
for all t � 0.

Remark 2.3. The numbers �min and �max reect expectations about future volatility.

For instance one could use econometric techniques in order to obtain an estimate for the

distribution of historical volatility and choose �min and �max as some lower respectively

upper quantile of this distribution; in that case the interval [�min; �max] can be interpreted

as con�dence interval for the future volatility. If there is a liquid market for derivative

instruments on S, one could alternatively obtain �min and �max from extreme past values

of the implied volatilities of these contracts. In either case the volatility band should

be wide enough to ensure that current implied volatilities of liquidly traded derivatives

are contained in the band. Otherwise the use of static positions in these instruments as

additional hedging tool might lead to inconsistencies; cf Section 5.2.

Now we can state our main result. Consider a claim H satisfying Assumption 2.

Denote by Rz the law of the solution of the SDE dUt = UtdWt with initial value U0 = z.

For two numbers 0 � � � � � 1 with � <1 we de�ne a function ~V � : [0; T ] � R3
+ ! R

via

eV �(t; z;m;m;�; �) = ess sup
n
ER
z

h
f(U�; m ^ Umin

[0;�]; m _ Umax
[0;�] )

i
; � 2 B�2(T�t); �2(T�t)

o
:

(2.4)
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Theorem 2.4. Suppose that Assumptions 1 and 3 hold for S and that H satis�es As-

sumption 2. Then the process V � de�ned by

V �(t) := e�r(T�t) eV �
�
t; Zt; Z

min
[0;t] ; Z

max
[0;t] ;�min; �max

�

is the value process of a superreplicating strategy for H.

Comments:

eV � has an obvious interpretation as price of an American type derivative with partial

exercice feature in a standard Black-Scholes model with volatility equal to one and interest

rate equal to zero. Wider volatility bounds in Assumption 3 lead to a larger time window

for the exercice of this American-type security. In the special case �min = �max = �, i.e. in

a model without volatility uncertainty, the exercice region contains only the deterministic

stopping time � = �2(T � t) and V �
t equals the Black-Scholes price of the derivative.

Consider a payo� of the form H = f(ST ) for some convex function f . By Jensens

inequality we get for any stopping time � 2 B�2
min

(T�t);�2max(T�t)

ER
z [f(U�)] = ER

z

�
f
�
ER
z [U�2max(T�t)

jB� ]
�� � ER

z [f(U�2max(T�t)
)] :

It follows that the sup in (2.4) is attained by taking � = �2max(T � t). Hence V �
t equals the

price of a derivative with payo� f(ST ) in a Black-Scholes model with volatility �max, a

result �rst obtained by El Karoui, Jeanblanc-Picqu�e and Shreve; see El Karoui, Jeanblanc-

Picqu�e, and Shreve (1998).

If H is of the form H = f(ST ) the function eV � can be computed using the standard

binomial model of Cox, Ross, and Rubinstein (1979). If one is dealing with path-dependent

payo�s some algorithm for the pricing of American path-dependent options such as the

forward shooting grid method of Barraquand and Pudet (1996) must be used.

Note that the superreplication cost V � is subadditive, i.e. the superhedging cost

corresponding to a portfolio of two payo�s is no larger than the sum of the superreplication

costs of the two individual payo�s. In order to keep the superreplication cost low the

method should therefore be applied to large portfolios rather than to individual derivatives.

Finally, we would like to mention that our approach can easily be adapted to accommodate

portfolios of claims with di�erent maturity dates; see also Avellaneda, Levy, and Paras

(1995). Consider the case of two claims H1 and H2 with | for notational simplicity

path-independent | payo�s f1(ST1) and f2(ST2) and maturity dates T1 > T2. Denote

by V �;1(ST2) the value at time T2 of the superreplicating strategy for H1. De�ne a new

claim H with maturity date T2 and payo� given by H = f2(ST2) + V �;1(ST2). Obviously,

a superreplicating strategy for H, which can be computed from Theorem 2.4, induces a

superreplicating strategy for the portfolio consisting of the claims H1 and H2.

2.3 Proof of Theorem 2.4

We start by a short discussion of the main idea behind the result. It is well known from

the optional decomposition theorems of Delbaen (1992), El Karoui and Quenez (1995) or

Kramkov (1996) that after discounting the ask price of a contingent claim H (the value

of the cheapest superreplicating strategy for H) is given by H := supfEQ[H]; Q 2 Meg.
Consider some | for notational simplicity path-independent | payo� H = f(ST ) and

let moreover t = 0. Then we have for every Q 2Me:

EQ[f(ST )] = EQ[f(ZT )] = EQ[f(Z0 exp(MT � 1=2hMiT ))] :
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By changing the volatility �t for t > T if necessary we may assume that limt!1hMit =1
P-a.s. Now de�ne the increasing process At via

At = A(t) := inffs > 0 : hMis � tg :

Note that under our assumptions on the volatility the mapping t! hMit is P-a.s. a bijec-
tion from [0;1) onto itself with inverse mapping given by A. Now Levy's characterization

of Brownian motion implies that the process Bt := MAt
is a Brownian motion relative

to the new �ltration Gt = FAt
and Mt = BhMit , see e.g. Chapter 3.4 of Karatzas and

Shreve (1988). Moreover hMiT is a G-stopping time which takes its values in the interval

[�2minT; �
2
maxT ] by Assumption 3. Hence we get

EQ[f(ST )] = EQ[f(Z0 exp(BhMiT � 1=2hMiT ))]
� ess sup

�
EQ[f(Z0 exp(B� � 1=2�))]; � 2 G�2

min
T;�2maxT

	
: (2.5)

By the strong Markov property of Brownian motion the value function of the optimal

stopping problem (2.5) is independent of the particular �ltered probability space on which

B is de�ned and equal to eV �(0; Z0). Hence the ask price of H is no larger than V �(0; S0).

Remark 2.5. It is easily seen that the above argument extends to the case where �max =

1 and to path-dependent payo�s that satisfy Assumption 2. Hence for every such claim

and every 0 � t < T the ask price is no larger than

V �(t) = e�r(T�t) eV �
�
t; Zt; Z

min
[0;t] ; Z

max
[0;t] ;�min;1

�
:

Theorem 2.4 would follow from the previous estimates if under Assumptions 3 and 2

H was actually equal to V �; in that case Theorem 2.1.1 of El Karoui and Quenez (1995)

would imply that eV � was a Q-supermartingale for all Q 2Me. Theorem 2.3.1 of the same

paper or Theorem 2.1 of Kramkov (1996) then yields that eV � has a decomposition of the

form

eV �
�
t; Zt; Z

min
[0;t] ; Z

max
[0;t]

�
= V0 +

Z t

0

�sdZs + ~Ct (2.6)

for an decreasing process ~C with ~C0 = 0. Hence Itô's formula implies that

V �(t) = V �(0) +

Z t

0

rV �(s)ds+

Z t

0

�s�sSsdWs +

Z t

0

exp(�r(T � s))d ~Cs ;

which is easily seen to be of the form (2.3). Moreover, V �(T ) is obviously equal to H such

that � and V � form a superreplicating strategy.

As shown in Sections 3 and 4 below, the equality H = V � holds true for a large class

of general SV-models but is wrong in general. To complete the proof of Theorem 2.4 we

therefore need the following

Proposition 2.6. The process eV �
�
t; Zt; Z

min
[0;t]

; Zmax
[0;t]

�
0�t�T

, is a Q-supermartingale for

all Q 2Me.

Proof of Proposition 2.6: De�ne for every 0 � t � T positive random variables

�min(t) and �max(t) via

�min(t) := A(�2min(T � t) + hMit) and �max(t) := A(�2max(T � t) + hMit) : (2.7)
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Lemma 2.7 below shows that �min(t) and �max(t) are F -stopping times. Moreover, t �
�min(t) � �max(t) P-a.s. Now �x some Q 2 Me and de�ne a process J

Q
t via the following

optimal stopping problem

J
Q
t := ess supfEQ[f�

�� Ft] ; � 2 F�min(t);�max(t)g : (2.8)

The proof now consists of two steps:

Step 1: J
Q
t is a Q-supermartingale.

To prove the supermartingale property note �rst that the set of stopping times

F�min(t);�max(t) is shrinking as t increases. We get that

@

@t
�min(t) = A0(�2min(T � t) + hMit)(��2min + �2t ) � 0 ;

@

@t
�max(t) = A0(�2max(T � t) + hMit)(��2max + �2t ) � 0:

The inequalities follow as A0 > 0 and as (��2min + �2t ) � 0 and (��2max + �2t ) � 0 by

Assumption 3. Now let t > s. We get that

EQ[J
Q
t

�� Fs] = EQ
�
ess supfEQ[f�

�� Ft] ; � 2 F�min(t);�max(t)g
�� Fs�

(i)
= ess supfEQ[f�

�� Fs] ; � 2 F�min(t);�max(t)g
(ii)

� ess supfEQ[f�
�� Fs] ; � 2 F�min(s);�max(s)g

= JQs :

Here the equality (i) follows for instance from Theorem 2.5.1 in Wong (1996), inequality

(ii) follows as F�min(t);�max(t) � F�min(s);�max(s) for t > s.

Step 2: J
Q
t is independent of Q and given by eV �

�
t; Zt; Z

min
[0;t]

; Zmax
[0;t]

�
.

For notational simplicity we treat only the case t = 0. We want to write JQ0 in a di�erent

way using the time change introduced in the beginning of the proof. De�ne the process

U via Ut = Z0 exp(Bt � 1=2t), where Bt =MA(t) is Q-Brownian motion. We have

Zt = UhMit ; Z
min
[0;t] = Umin

[0;hMit]
and Zmax

[0;t] = Umax
[0;hMit]

: (2.9)

By (2.9) we get that

EQ[f� ] = EQ
h
f
�
UhMi� ; U

min
[0;hMi� ]

; Umax
[0;hMi� ]

�i

for every F-stopping time � . The following Lemma shows that the mapping � 7! hMi�
is a bijection from F�min(0);�max(0) onto G�2min

T; �2maxT
, the set of all G-stopping times taking

values in [�2minT; �
2
maxT ]:

Lemma 2.7. Let � be an F-stopping time. Then �(�) := hMi� is a G-stopping time.

Conversely, if � is a G-stopping time, �(�) := A� is an F-stopping time.

Using this Lemma we can write JQ0 in a di�erent way:

J
Q
0 = ess sup

n
EQ

h
f(U� ; U

min
[0;�]; U

max
[0;�] )

i
; � 2 G�2minT; �

2
maxT

o
:

The equality JQ0 = eV �
0 now follows as U is a Q-geometric Brownian motion with zero drift,

initial value U0 = Z0 and volatility equal to one, compare the arguments after equation

(2.5).
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Proof of Lemma 2.7: Let � be an F-stopping time. Then we have for any t0 � 0

fhMi� � t0g = f� � At0g
(i)� FAt0

= Gt0 ;

where (i) follows as � and At0 are F-stopping times. Conversely, as hMit0 is a G-stopping
time we have for any G-stopping time �

fA� � t0g = f� � hMit0g � GhMit0
= Ft0 ;

which proves that A� is an F-stopping time.

3 Minimality of our superhedging strategies

In this section we study under which conditions the superhedging strategy constructed in

Theorem 2.4 is actually the minimal superhedging strategy. To analyze this question we

have to introduce additional assumptions on the probabilistic structure of the volatility

process. We are particularly interested in the case where the volatility follows a one-

dimensional di�usion. We therefore make

Assumption 4. We assume that S satis�es the equations

dSt = St(jvtj1=2dW (1)
t + rdt) ; (3.1)

dvt = a(vt)dt+ �1(vt)dW
(1)
t + �2(vt)dW

(2)
t ; (3.2)

for Wt = (W
(1)
t ;W

(2)
t ) a standard twodimensional Wiener process on (
;F ; P ), (Ft)t2R+ .

We assume that the coe�cients are such that the vector SDE (3.1), (3.2) has a non-

exploding and strictly positive solution.

Theorem 3.1. Suppose that S is given by a SV-model satisfying Assumption 4. Assume

moreover that there is some 0 < �max � 1 such that

(i) The real functions a; �1; �2 are locally Lipschitz on (0; �2max); b(x) :=
p
�21(x) + �22(x)

belongs to C1((0; �max)).

(ii) �2(v) > 0 for all v 2 (0; �2max).

(iii) 0 < �t :=
p
vt � �max, where the last inequality is of course strict for �max =1.

Then for every claim H = f
�
ZT ; Z

min
[0;T ]

; Zmax
[0;T ]

�
satisfying Assumption 2 the value process

of the minimal superhedging strategy is given by

V �(t) := e�r(T�t) eV �
�
t; Zt; Z

min
[0;t] ; Z

max
[0;t] ; 0; �max

�
; 0 � t � T : (3.3)

Comments:

The above class of volatility models contains the models considered by Wiggins (1987),

Hull and White (1987) or Heston (1993) as special cases. Note that we allow for nonzero

�1 and hence for nonzero correlation between volatility innovations and asset returns.

Hypothesis (ii) ensures that volatility innovations and asset returns are not perfectly

correlated which in turn implies that the market is incomplete. Moreover, this hypothesis

ensures that for all t > 0 and all 0 < K1 � K2 < �max we have that P [�t < K1] > 0

and P [�t > K2] > 0, i.e. the open interval (0; �max) is contained in the range of �t for all

t > 0.
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Consider models with unbounded volatility, i.e. �max = 1. Applying Theorem 3.1

to ordinary call options we get that in a large class of SV-models where the volatility

follows a one-dimensional di�usion the ask price of a call option is equal to S0, the current

price of the stock. This is the main result of Frey and Sin (1997). For a large class of

Markovian SV-models with unbounded volatility and for payo�s of the form H = f(ST )

the characterization of the ask price by the optimal stopping problem (2.4) has been

obtained previously by Cvitanic, Pham, and Touzi (1997). Their approach is based on

the characterization of the ask price as viscosity supersolution to the Bellman equation

corresponding to the in�nitesimal generator of the process S. Using that characterization

they conclude that the ask price is given by the smallest concave majorant f� of f . In

Lemma 5.4 of their paper it is moreover shown that the solution to the optimal stopping

problem (2.4) is equal to f�. This result stems from two facts, �rst from the well-known

characterization of the solution to (2.4) as smallest superharmonic majorant of f and

second from the observation that concave functions are superharmonic for U by Jensen's

inequality and the martingale property of U .

As shown below, Theorem 3.1 follows from combining results from Frey and Sin (1997)

with the following Proposition which applies to general Markovian SV-models.1

Proposition 3.2. Consider a model where S is given by a stochastic process satisfying

Assumption 1. Suppose that there is some 0 < � <1 such that the following holds:

1. The process X = (S; �) is a two-dimensional strong Markov family de�ned for all initial

values X0 = (S0; �0) 2 R+� (0; �). The corresponding family of measures will be denoted

by (Px)x2R+�(0;�).

2. For every � > 0 and every x 2 R+�(0; �) there is a sequence of strictly positive density

martingales G1;n = (G1;n
t )0�t�T with G

1;n
0 = 1 such that

(i) G1;n is adapted to the �ltration generated by X.

(ii) The process Zt = er(T�t)St, 0 � t � T is a local martingale under the probability

measures Q
1;n
x de�ned by dQ

1;n
x =dPx = G

1;n
T .

(iii) limn!1Q
1;n
x [hMiT > �2(T � �) ] = 1.

3. For every compact set K �� R+ � (0; �) and every � > 0 there is a sequence G2;n of

strictly positive density martingales G2;n = (G2;n
t )0�t�T with G

2;n
0 = 1 such that

(i) G2;n is adapted to the �ltration generated by X.

(ii) Z is a local martingale under the measures Q
2;n
x de�ned by dQ

2;n
x =dPx = G

2;n
T .

(iii) limn!1 infx2K Q
2;n
x [hMiT < � ] = 1.

Then for every claim H satisfying Assumption 2 the ask price is no smaller than

e�r(T�t) eV �
�
t; Zt; Z

min
[0;t] ; Z

max
[0;t] ; 0; �

�
:

Proof of Proposition 3.2:

While the following proof is rather technical, the underlying idea is simple. We want to

show that for every G-stopping time � with � � �2T and every � > 0 there is a sequence of

Qn 2 Q such that Qn[hMiT 2 [�; �+�]]! 1 as n!1. Together with the right-continuity

1The author is grateful for interesting discussions with N. Touzi and H. Pham which were very helpful

in obtaining Proposition 3.2.
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of our payo�s this implies the result. To construct such a sequence of martingale measures

we �rst choose a sequence Q1;n of local martingale measures that put most of the mass

on trajectories with \high" volatility. As soon as hMit = � we \drive the volatility down"

using another sequence Q2;n 2 Me. The Markov property of X allows us to construct a

sequence of measures Qn 2Me that combines these properties.

We now give a formal proof. By the Markov property of X it is enough to consider

the case t = 0. As mentioned above, the crucial step is the following Lemma:

Lemma 3.3. For all G- stopping times � with � � �2T and for every "; � > 0 there is

some Q 2Me such that

Q
�hMiT 2 [�; � + �]

�
> 1� " : (3.4)

To prove Lemma 3.3 de�ne for a given G-stopping time � a random time � by � =

A(�). By Lemma 2.7 � is an F-stopping time. Denote by D2
[0;T ] the twodimensional

Skorohod space. Hypothesis 2.(i) and 3.(i) implies that the densities Gi;n can be written

as functions of the trajectories of X: G
i;n
t = Gi;n(t;Xs; 0 � s � t) for some function

Gi;n : [0; T ]� D2
[0;T ] ! R+ with

y1; y2 2 D2
[0;T ]; y

1 = y2 on [0; t] ) Gi;n(t; y1) = Gi;n(t; y2) :

Now de�ne an equivalent martingale measure Q 2Me by

dQ

dP
��FT

:= G1;n1(� ^ T ; X)G2;n2 (T � � ^ T ; ��^T (X)) ; (3.5)

where � denotes the shift operator on D2. By de�nition � = infft > 0; hMit � �g. Hence

Q[hMiT 2 [�; � + �]] = Q[hMiT � �; hMiT � hMi� � �] (3.6)

= Q[� � T ; (hMiT�� � �� � �)] : (3.7)

Now by de�nition of Q it follows that (3.7) is given by

EP
h
1f��TgG

1;n1(� ^ T ; X)1f(hMiT��^T ) � ��^T � �gG2;n2 (T � � ^ T ; ��^T (X))
i
:

Conditioning on F�^T we get from the strong Markov property that this is equal to

EP
�
1f��TgG

1;n1(� ^ T ; X)EP
X�

�
G2;n2(T � � ^ T ; X); hMiT��^T � �

� �
: (3.8)

Now using that G2;n2 is a martingale and that hMit is increasing we get

EP
X�

�
G2;n2(T � � ^ T ; X); hMiT��^T � �

�
= EP

X�

�
G2;n2(T ; X); hMiT��^T � �

�
� EP

X�

�
G2;n2(T ; X); hMiT � �

�
:

Moreover we may obviously replace G1;n1(� ^ T ; X) by G1;n1(T ; X) in (3.8). Hence

Q
�hMiT 2 [�; � + �]

� � EP
�
1f��TgG

1;n1(T ; X)Q2;n
X�

[hMiT � �]
�

(3.9)

Fix some " > 0. Choose n1 large enough so that Q1;n1 [� � T ] < "=3, and choose

K �� R+ � [0; �] with Q1;n1 [Xt 62 K for some t 2 [0; T ]] < "=3. Now choose �nally for

this set K some n2 such that

Q2;n2
x [hMiT � �] > 1� "=3 for all x 2 K :
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This is possible by hypothesises 2(iii) and 3(iii). We get that (3.9) is no smaller than

EP
�
1f��Tg1fX�2KgG

1;n1(T ; X)Q
1;n1
X�

[hMiT � �]
�

� (1� "=3)Q1;n1
�
(� � T ) \ (X� 2 K)

�
� (1� "=3)

�
1�Q1;n1 [� � T ]�Q1;n1

�
Xt 62 K for some t 2 [0; T ]

� �
� (1� "=3)(1 � 2"=3) > (1� ") :

Hence we have proven Lemma 3.3. We now show that the Proposition follows from the

Lemma. As in the proof of Theorem 2.4 we de�ne the process Ut := ZA(t). We get

H = f
�
UhMiT ; U

min
[0;hMiT ]

; Umax
[0;hMiT ]

�
:

Now let � be some G-stopping time. By Lemma 3.3 there exists a sequence of local

martingale measures Qn 2Me such that Qn[hMiT 2 [�; �+ �] > 1� 1=n. By Assumption

2 the process t! f
�
Zt; Z

min
[0;t]

; Zmax
[0;t]

�
is right continuous such that

lim
n!1

Qn
h���H � f

�
U� ; U

min
[0;�]; U

max
[0;�]

���� > �
i
= 0 (3.10)

for all � > 0. Consider �rst the case of bounded f . It follows from (3.10) that

lim inf
n!1

EQn

[H] � ER
Z0

h
f
�
U� ; U

min
[0;�]; U

max
[0;�]

�i
:

As � was arbitrary we get that supQ2Me EQ[H] � eV �(0; Z0). For unbounded but positive

f the claim now follows by monotone integration.

Proof of Theorem 3.1:

We have to show that under the assumptions of Theorem 3.1 Conditions 2 and 3 of

Proposition 3.2 are satis�ed. Our argument is based on results from Frey and Sin (1997)

for models with unbounded volatility. If �max <1 we transform our problem to the case

�max = 1 using some smooth and strictly increasing function  that maps the interval

(0; �2max) onto (0;1). By Itô's formula yt :=  (vt) solves the SDE

dyt = ~a(yt)dt+ ~�1(yt)dW
(1)
t + ~�2(yt)dW

(2)
t ;

where the coe�cients ~a, ~�1; ~�2 and ~b :=
p
~�21 + ~�22 satisfy hypothesis (i) and (ii) of Theorem

3.1 on (0;1).

As in Frey and Sin (1997) we consider measures Qi;n 2Me with densities given by

dQ1;n

dP
= exp(nW

(2)
t � 1

2
n2T ) and

dQ2;n

dP
= exp(�nW (2)

t � 1

2
n2T )

for some n 2 N. As �t = p
vt and �2(vt) are strictly positive, the �ltration generated by

X = (S; v) coincides with the �ltration generated by (W (1);W (2)), see e.g. Harrison and

Kreps (1979). Hence our density martingales are adapted to the �ltration generated by

X. By Girsanov's theorem yt is under Q
i;n a solution to the SDE

dynt = ~a(ynt )� n~�2(y
n
t )dt+

~b(ynt )dB
i;n
t ; y0 = y (3.11)

for a new Qi;n-Brownian motion Bi;n. Now we have the following two results from Frey

and Sin (1997):

Lemma 3.4. Assume that for n 2 N and for i = 1; 2 the SDE (3.11) has a global solution

which is strictly positive. Then the following holds:
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(i) For every L > 0, T > 0, every initial value y > 0 and every " > 0 there exists

N1 2 N such that

Q1;n [ynt � L for some 0 � t � T ] > 1� " for all n � N1:

(ii) For every L > 0, T > 0, y > 0 and " > 0 there exists N2 2 N such that

Q2;n
�
ynt � L�1 for some 0 � t � T

�
> 1� " for all n � N2:

Lemma 3.5. Assume again that for n 2 N and for i = 1; 2 the SDE (3.11) has a global

solution which is strictly positive. Then the following holds:

(i) For every L > 0, T > 0, and " > 0 there exists N1 2 N such that for y0 = 2L

Q1;n [ynt > L for all 0 � t � T ] > 1� " for all n � N2:

(ii) For every L > 0, T > 0 and " > 0 there exist N2 2 N such that for y0 = L=2

Q2;n [ynt < L for all 0 � t � T ] > 1� " for all n � N2:

To verify that Conditions 2.(iii) and 3.(iii) of Proposition 3.2 are implied by Lemmas

3.4 and 3.5 one now uses exactly the same arguments as in the proof of Theorem 3.1 in

Frey and Sin (1997).

4 PDE-Characterisation of the value function V
�

4.1 Previous results

In most of the previous work on superreplication in stochastic volatility models the value

process of superhedging strategies is characterized by a terminal value problem involving

some | often nonlinear | parabolic PDE. Important examples of this work are the

independent papers Avellaneda, Levy, and Paras (1995), Lyons (1995) and El Karoui,

Jeanblanc-Picqu�e, and Shreve (1998). These papers consider mainly path-independent

derivatives. Therefore we will concentrate on payo�s of the form H = f(ST ) for some

continuous function f . Moreover, we assume without loss of generality that r = 0 such

that eV � = V �.

The main result of Avellaneda, Levy and Paras and Lyons can be stated as follows.

Suppose that S satis�es Assumptions 1 and 3 and that the terminal value problem

hAVt +
1

2
x2

�
��2min

�
hAVxx

��
+ �2max

�
hAVxx

�+�
= 0 ; hAV(T; x) = f(x) (4.1)

has a solution in C1;2([0; t)�R+). Then hAV(t; St) is the value at time t of a superhedging

strategy for H. The proof is a simple application of Itô's formula: We get

f(ST ) = hAV(T; ST ) = hAV(0; S0) +

Z T

0

hAVx (t; St)dSt

+

Z T

0

(hAVt +
1

2
S2
t �

2
t h

AV
xx )(t; St)| {z }

� 0 by (4:1)

dt ;

such that the strategy with value process hAV(t; St) and stockholdings hAVx (t; St) has a

representation of the form (2.3).
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Remark 4.1. Lyons (1995) has developed an extension of this result to markets with

more than one risky asset. Cvitanic, Pham, and Touzi (1997) prove that the terminal

value problem (4.1) admits a classical solution if �min > 0 and if the payo� is su�ciently

smooth. Moreover, they show that in a large class of SV-models of the form (3.1), (3.2)

with �2(v) > 0 for all v 2 (�2min; �
2
max) the ask price of a claim with payo� f(ST ) is no

smaller than hAV(t; St), provided of course that a solution to (4.1) exists.

Remark 4.2. Note that the above argument also works for functions hAV 2 C1;1([0; t) �
R+), if the space derivative hAVx (t; �) is moreover absolutely continuous in x for every t. For
an extension of Itô's formula to such situations see e.g. (Krylov 1980, Theorem 2.10.1).

We now discuss the relation between eV � and the nonlinear PDE (4.1). For this we

have to distinguish the cases �min = 0 and �min > 0.

4.2 The case �min = 0

In this case the value function eV � of our superhedging strategy will typically not belong

to C1;2([0; T ) � R+), as the second derivative eV �
xx is usually discontinuous at the optimal

stopping boundary of the optimal stopping problem de�ning eV �, see also Section 5.1

below. We therefore contend ourselves with a local result.

Proposition 4.3. Assume that �min = 0.

(i) If the value function eV �(t; St; 0; �max) de�ned in (2.4) is of class C1;2 in some open

set B �� ([0; T ) � R+), eV � solves in B the following version of the PDE (4.1).

eV �
t (t; x) +

1

2
x2�2max[

eV �
xx(; x)]

+ = 0 for all (t; x) 2 B : (4.2)

(ii) Suppose that there is a solution hAV of the terminal value problem (4.2), which

belongs to C1;1([0; t)�R+) and whose space derivative hAVx (t; �) is moreover absolutely
continuous. Then eV � = hAV.

Proof: We start with (i). From the characterization of solutions to the optimal stopping

problem (2.4) via variational inequalities we get for all (t; x) 2 B

eV �
t (t; x) +

1

2
x2�2max

eV �
xx(t; x) � 0 (4.3)

eV �(t; x) � f(x) and eV �(T; x) = f(x) ; (4.4)

where at least one of the two inequalities must holds with equality. For a proof see e.g.

Jaillet, Lamberton, and Lapeyre (1990) or Myeni (1992). Moreover, eV � is decreasing in

t, i.e. we have eV �
t � 0 in B(t0; x0). Choose some (t0; x0) 2 B. Now we distinguish two

cases.

(a) eV �
xx(t0; x0) > 0: We shall show that this implies eV �(t0; x0) > f(t0; x0); hence equality

must hold in (4.3) which shows that (4.2) holds in this case. Assume to the contrary thateV �(t0; x0) = f(t0; x0); in that case we must have eV �
t (t0; x0) = 0, as eV �

t (t0; x0) < 0 would

yield a contradiction to (4.4). However, together with eV �
xx(t0; x0) > 0 this implies thateV �

t (t0; x0) +
eV �
xx(t0; x0) > 0 which contradicts (4.3).

(b) eV �
xx(t0; x0) � 0: We show that in that case eV �

t (t0; x0) = 0, which implies the result.

Assume to the contrary that eV �
t (t0; x0) < 0. Hence strict inequality holds in (4.3) such

that (4.4) must hold with equality. However, together with eV �
t (t0; x0) < 0 this contradicts

(4.4) which proves that we must have eV �
t (t0; x0) = 0.
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Let us now turn to (ii). As shown before hAV induces a superhedging strategy in all

SV-models satisfying Assumptions 1 and 3, hence in all models satisfying the hypothesis

of Theorem 3.1. As eV � is minimal in these models we have the inequality hAV � eV �. The

converse inequality is proved in (Cvitanic, Pham, and Touzi 1997, Remark 6.1).

4.3 The case �min > 0

To study the relation between eV � and solutions to the nonlinear PDE (4.1) we de�ne the

function u: R+ �R+ � R+ ! R by

u(t1; t2; x) := ess supfER
x [f(U�)] ; � 2 Bt1;t1+t2g ; (4.5)

where B denotes the canonical �ltration on C[0;1]. The function eV � is related to u via

eV �(t; x;�min; �max) = u(�2min(T � t); (�2max � �2min)(T � t); x) : (4.6)

Now we may express u as follows:

u(t1; t2; x) = ER
x

�
ess sup

�
ER
x [f(U�)jFt1 ] ; � 2 Bt1;t1+t2

	�
= ER

x [h(t2; UT1)] ;

where h is de�ned via the following standard optimal stopping problem

h(t; x) = ess supfER
x [f(U�)] ; � 2 B0;tg : (4.7)

We make the following regularity assumption on h.

Assumption 5. The function h de�ned in (4.7) is continuous on ([0;1) � R+) and

is of class C1;1((0;1) � R+). Moreover, for every t there is a �nite number of points

x1; : : : ; xn(t) such that for all x 2 R+ � fx1; : : : ; xn(t)g there is an open environment

B(t; x) � ((0;1) � R+) where h is twice continuously di�erentiable in x. Moreover the

functions ht, xhx, hxx and x2hxx are uniformly bounded on (0;1) � R+.

Remark 4.4. These regularity assumptions typically hold for the value function of the

optimal stopping problem (4.7), provided that the terminal value f is su�ciently smooth;

see for instance the examples in Section 5.1.

Proposition 4.5. Suppose that �min > 0. Under Assumption 5 we have the following

(i) u belongs to C1;1;2((0;1) � (0;1)� R+).

(ii) We have for all (t1; t2; x) 2 (0;1) � (0;1) � R+

ut1(t1; t2; x) =
1

2
x2uxx(t1; t2; x) ; (4.8)

ut2(t1; t2; x) = ER
x

�
x�2U2

t1
hxx(t2; UT1)

� � 1

2
x2[uxx(t1; t2; x)]

+ : (4.9)

Equality in (4.9) holds if and only if hxx(t2; �) is either everywhere nonnegative or

everywhere nonpositive.

(iii) eV �(t; x;�min; �max) satis�es the following di�erential inequality:

eV �
t +

1

2
x2
�� �2min[

eV �
xx]

� + �2max[
eV �
xx]

+
� � 0 : (4.10)

Equality holds if and only if equality holds in (4.9), in particular for f convex on

R+ or f concave on R+. Moreover, we have eV �(t; x) � hAV(t; x); equality holds if

and only if (4.10) holds with equality.
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Remark 4.6. The most important result here is (iii). This result implies that in a model

with strictly positive lower volatility bound the ask price of a derivative whose payo� is

neither everywhere convex nor everywhere concave may be smaller than eV �. However, as

shown in Section 5.1, numerical values of eV � and hAV are typically close to each other.

Proof: Note that for t2 �xed u coincides with the solution of the initial value problem

~u(t; x) =
1

2
x2~uxx(t; x); ~u(0; �) = h(t2; �) :

Hence u is C1 in t, C2 in x and it satis�es (4.8). By Proposition 4.3 and Assumption 5

the function h solves for almost all x the PDE ht =
1
2x

2[hxx]
+. Again by Assumption 5

we may exchange di�erentiation and expectation yielding

ut2(t1; t2; x) = ER
x [ht(t2; Ut1)]

=
1

2
ER
x

�
U2
t1 [hxx(t2; Ut1)]

+
�

� 1

2

�
ER
x

�
U2
t1
hxx(t2; Ut1)

��+
; (4.11)

where the last estimate follows from Jensen's inequality. Next we compute the derivatives

of h(t2; Ut1) with respect to x, the value of U at t = 0. We get for almost all Ut1

@2

@x2
h(t2; Ut1) =

@

@x

�
hx(t2; Ut1)

Ut1
x

�
=
U2
t1

x2
hxx(t2; Ut1) :

As the last expression is bounded by Assumption 5 we may exchange expectation and

di�erentiation and get

@2

@x2
u(t1; t2; x) = x�2ER

x

�
U2
t1hxx(t2; Ut1)

�
:

Combining this with (4.11) we get ut2(t1; t2; x) � 1
2
x2[uxx(t1; t2; x)]

+, i.e. (4.9). Obviously

equality holds if and only if equality holds in (4.11), which proves (ii). Let us now turn

to (iii). By (4.6) we get that

eV �
t = ��2minut1 � (�2max � �2min)ut2

(a)

� ��2min

1

2
x2uxx � (�2max � �2min)

1

2
x2[uxx]

+

(b)
= �1

2
x2(��2min[

eV �
xx]

� + �2max[
eV �
xx]

+) ;

which is (4.10). Here (a) follows from statement (ii) and (b) from the relation uxx = eV �
xx.

The inequality eV �(t; x) � hAV(t; x) follows now from the maximum principle for viscosity

solutions of nonlinear parabolic PDE's, see Remark 6.1 of Cvitanic, Pham, and Touzi

(1997).

5 Examples and simulations

In order to illustrate our approach we now compute for certain examples the value functioneV �. For simplicity we assume r = 0 throughout this section such that S = Z andeV � = V �.
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5.1 Path-independent derivatives

In this section we consider path-independent derivatives whith payo� given by some func-

tion f(ST ). As in Section 4 we distinguish between the cases �min = 0 and �min > 0.

i) The case �min = 0: In the case of unbounded volatility, i.e. �max =1, eV � is given by

the smallest concave majorant f� of f , see the comments following Theorem 3.1. Cvitanic,

Pham, and Touzi (1997) give the following description of f� as a�ne envelope of f :

f�(x) = inf fc > 0 ; 9� 2 R such that c+�(z � x) � f(z) for all z > 0g : (5.1)

Let us now consider a call-spread with strike prices K1 < K2 as more speci�c example;

the payo� of this derivative is given by f(x) := [x � K1]
+ � [x � K2]

+. This payo� is

interesting in our context as it is neither everywhere convex nore everywhere concave.

Hence the superreplication price is not simply the Black-Scholes price corresponding to

one of the volatility bounds. Using the description (5.1) it is immediately seen that for

�max =1 the superreplicating cost is given by

f�(x) :=

�
K2�K1

K2
x ; 0 < x � K2

K2 �K1 ; x > K2
: (5.2)

For �max <1 we have to use numerical techniques to obtain values for eV �. Figure 1 showseV �, the superreplication cost for a standard call-spread with K1 = 90, K2 = 100, time

to maturity equal to 6 month and volatility bounds given by �min = 0 and �max = 0:4.

Observe that eV �(t; x) = K2 �K1 whenever x � K2, as for x � K2 immediate exercice is

the optimal strategy in the stopping problem de�ning eV �.

Note that the left limit limx!K�

2

eV �
x (t; x) must be larger than (K2�K1)=K2, as eV � �

f�, the superreplicating cost for �max = 1. eV �
x is therefore discontinuous in x = K2,

hence in particular not absolutely continuous with respect to x; compare also Figure

1. By Proposition 4.3 (ii) the terminal value problem (4.1) does therefore not admit a

classical solution.This shows that at least for �min = 0 the PDE-approach to superhedging

is not always as straightforward as it seems at �rst sight.

In Figure 2 we have graphed the superhedging cost for a \call-spread" with smooth

terminal payo� f ,2 time to maturity equal to 6 month and volatility bounds given by

�min = 0 and �max = 0:4, together with the terminal payo� f . Recall the de�nition of the

optimal stopping boundary B� for the stopping problem de�ning eV �. Here B� is given by

B� = f(t; b�(t)) ; b�(t) = inffx > 0; eV �(t; x) = f(x)g :
We see that in the example with smooth terminal payo� we have \smooth �t", i.e. the

space derivative eV �
x is continuous at b�. However, the second derivative eV �

xx is discontin-

uous at b�: On the one hand we have

lim
x!b�(t)+

eV �(t; x) = f
00

(b�(t)) < 0 :

On the other hand it follows from the characterization of eV � via variational inequalities

that eV �
xx(t; x) � 0 whenever V (t; x) > f(x); see also the proof of Proposition 4.3. The

regularity properties of this example, which are typical for optimal stopping problems

with su�ciently smooth payo�, motivate some of the hypothesises in Assumption 5.

ii) The case �min > 0: We know from Proposition 4.5 (iii) that eV � is typically not equal

to the ask-price of a path-independent derivative whenever the terminal payo� is of mixed

2f is given by the Black-Scholes price of a standard call-spread with K1 = 90, K2 = 100, time to

maturity one week and volatility 0.2.
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Figure 1: Superreplication cost for a standard call-spread with K1 = 90, K2 = 100, time to
maturity 6 month and volatility bounds �min = 0 and �max = 0:4.
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Figure 2: Superreplication cost for a \smooth call-spread" with terminal payo� f(x), time to
maturity 6 month and volatility bounds �min = 0 and �max = 0:4.

convexity. To get a feeling for the numerical size of the di�erence between eV � and the ask-

price, which is given by the solution hAV to the terminal value problem (4.1), we computedeV � for the standard call-spread considered above. In Table 1 we present for di�erent values

of S0 our solution eV � together with values for hAV taken from Avellaneda, Levy, and Paras

(1995), assuming that the volatility is bounded by �min = 0:1 and �max = 0:4. We see

that the di�erence between the two functions is relatively small.

5.2 Barrier options

We now consider a particular barrier option namely a down-and-out call on the forward

price with strike price K and barrier H as example of a derivative with path-dependent

payo�. In the notation introduced in Section 2.2 its payo� is given by

f
�
ZT ; Z

min
[0;T ]

�
:= [ZT �K]+1n

Zmin
[0;T ]

�H
o :

For this particular payo� we may give an analytic expression for the superhedging strategyeV �. For our analysis we have to distinguish if H > K or if H � K.

i) The case H � K: It is well-known that in this case a rational investor will never
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S0 75 80 85 90 95

eV � 2.71 3.92 5.09 6.53 7.78

hAV 2.69 3.73 4.90 6.15 7.44

eV � � hAV 0.02 0.19 0.19 0.38 0.34

Table 1: Superreplication price for a standard call-spread with K1 = 90, K2 = 100, time to
maturity 6 month, and volatility bounds �min = 0:1 and �max = 0:4. eV � gives the superreplication
cost according to our approach, hAV is the solution to the terminal value problem (4.1).

exercice an American down-and-out call before maturity; see e.g. Reimer and Sandmann

(1995) for the corresponding portfolio argument. Hence our superhedging cost eV � equals

the price of the down-and-out call in a Black-Scholes model with constant volatility equal

to the upper volatility bound �max and zero interest rate, independently of �min. This

price is well known, see e.g. Reimer and Sandmann (1995) or Chapter 9 of Musiela and

Rutkowski (1997). By Theorem 3.1 this is the ask-price for the down-and out call in a

large class of SV-models with volatility range [0; �max]. As the optimum in the stopping

problem for eV � is attained at a deterministic stopping time, the proof of Theorem 3.1

shows that eV � is the ask price for the barrier option even if �min > 0.

Le us now consider the case �max =1. Inspection of the formula for the Black-Scholes

price of our barrier call shows that in that case eV � is given by

eV �(t; Zt; Z
min
[0;t]) = 1n

Zmin
[0;t]

�H
o(Zt �H) :

By Theorem 3.1 this is the ask-price of the down-and-out call in most of the standard

SV-models with unbounded volatility . The corresponding hedging strategy is a buy and

hold strategy. At t = 0 we buy one share of the stock and sell H zero-coupon bonds

with maturity T . If the barrier is hit the value of our position is zero and we dissolve the

portfolio immediately, otherwise we hold our position until maturity.

ii) The case H > K: An elementary argument shows that for �min = 0 the function eV �

equals

eV �(t; Zt; Z
min
[0;t]) = 1n

Zmin
[0;t]

�H
o(Zt �K) ; (5.3)

independently of �max. By Theorem 3.1 this is the ask-price for the down-and-out call

in a large class of SV-models with �min = 0. Let us now look what happens if �min > 0.

Here we have

eV �(t; Zt; Z
min
[0;t] ) = 1n

Zmin
[0;t]

� H
oER

Zt

�
1�
Umin
[0;�2

min
(T�t)]

� H
�

ess sup
n
ER
U(�2

min
(T�t))

h
f(U� ; U

min
[0;�])

i
; � 2 B0;(�2max��

2
min

)(T�t)

o�

= ER
Zt

�
1�
Umin
[0;�2

min
(T�t)]

� H
� �U(�2min(T � t))�K

� �
; (5.4)

where the last equality follows from (5.3). Obviously (5.4) and hence eV � is equal to the

price of the option in a Black-Scholes model with constant volatility equal to the lower

volatility bound �min. For an explicit formula see again Reimer and Sandmann (1995)

or Chapter 9 of Musiela and Rutkowski (1997). It is not di�cult to see that eV � is the

ask-price of the option in a large class of SV-models with volatility range [�min;1).
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iii) Using \vanilla options" to reduce the hedge cost: We now present a nu-

merical example that explains how traded \vanilla options" can be used to reduce the

superhedging cost. We want to hedge a down-and-out call with strike price K = 80, bar-

rier H = 100 and time to maturity 3 month, assuming that the volatility range is given by

�min = 0:15 and �max = 0:4. We moreover assume that we can take arbitrary positions in

a standard call option with K = 100 and time to maturity 3 month, trading at an implied

volatility of �impl = 0:3. If we do not take any position in the vanilla call the superhedging

cost for the barrier option is given by the price of the option in a Black-Scholes model

with volatility � = 0:15. If we add a position of � standard calls to our portfolio, the

hedge cost is given by the sum eV �
� + �C(S0). Here eV �

� represents the superhedging cost

of the payo�

f�

�
ZT ; Z

min
[0;T ]

�
:= [ZT � 80]+1n

Zmin
[0;T ]

�100
o � �[ZT � 100]+ ;

and C(S0) denotes the current markety price of the vanilla call. The following table gives

the superreplication cost for � = 0 and for � = �2:5.

Superhedging cost for � = 0: 25.7

Superhedging cost for � = �2:5: 23.6

Black-Scholes price for � = 0:225: 21.8

We see that by using a static position in the vanilla call we can achieve a drastic reduction

of our hedge cost. Our superhedging price is now much closer to the Black-Scholes price

for a \reasonable" input volatility of � = 0:225. Of course in our situation one should

choose � so that the superhedging cost of the portfolio is minimized. This idea is developed

systematically in Avellaneda and Paras (1996).

References

Avellaneda, M., A. Levy, and A. Paras (1995): \Pricing and Hedging Derivative

Securities in Markets with Uncertain Volatilities," Applied Mathematical Finance, 2,

73{88.

Avellaneda, M., and A. Paras (1996): \Managing the volatility risk of portfolios of

derivative securities: the Lagrangian Uncertain Volatility Model," Applied Mathemati-

cal Finance, 3, 21{52.

Ball, C., and A. Roma (1994): \Stochastic Volatility Option Pricing," Journal of

Financial and Quantitative Analysis, 29(4), 584{607.

Barraquand, J., and T. Pudet (1996): \Pricing of American Path Dependant Deriva-

tives," Mathematical Finance, 6, 17{51.

Cox, J., S. Ross, andM. Rubinstein (1979): \Option Pricing: A Simpli�edApproach,"

Journal of Financial Economics, 7, 229{263.

Cvitanic, J., H. Pham, and N. Touzi (1997): \Superreplication in Stochastic Volatility

Models Under Portfolio Constraints," preprint, CREST, Paris, forthcoming in Applied

Probability Journals.

Delbaen, F. (1992): \Representing Martingale Measures when Asset Prices are Contin-

uous and Bounded," Mathematical Finance, 2, 107{130.

19



El Karoui, N., M. Jeanblanc-Picqu�e, and S. Shreve (1998): \Robustness of the

Black and Scholes Formula," Mathematical Finance, 8, 93{126.

El Karoui, N., and M.-C. Quenez (1995): \Dynamic Programming and Pricing of

Contingent Claims in an Incomplete Market," SIAM Journal on Control and Opti-

mization, 33(1), 27{66.

F�ollmer, H., and Y. Kabanov (1998): \Optional Decomposition and Lagrange Mul-

tipliers," Finance and Stochastics, 2, 69{81.

F�ollmer, H., and P. Leukert (1998): \Quantile Hedging," preprint, Humboldt-

Universit�at Berlin.

Frey, R. (1997): \Derivative Asset Analysis in Models with Level-Dependent and

Stochastic Volatility," CWI Quaterly, Amsterdam, 10, 1{34.

Frey, R., and C. Sin (1997): \Bounds on European Option Prices under Stochastic

Volatility," preprint, ETH Z�urich.

Gallus, C. (1996): \Robustness of Hedging Strategies for European Options," in

Stochastic Processes and Related Topics, ed. by H. Engelbert, H. F�ollmer, and J. Zabcyk,

Amsterdam. Gordon and Breach.

Harrison, J., and D. Kreps (1979): \Martingales and Arbitrage in Multiperiod Secu-

rities Markets," Journal of Economic Theory, 20, 381{408.

Heston, S. (1993): \A Closed Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options," Review of Financial Studies, 6, 327 {

343.

Hull, D., and A. White (1987): \The Pricing of Options on Assets with Stochastic

Volatilities," Journal of Finance, 42(2), 281{300.

Jaillet, P., D. Lamberton, and B. Lapeyre (1990): \Variational Inequalities and

the Pricing of American Options," Acta Appl. Math., 21, 263{289.

Karatzas, I., and S. Shreve (1988): Brownian Motion and Stochastic Calculus.

Springer, Berlin.

Kramkov, D. (1996): \Optional Decomposition of Supermartingales and Hedging Con-

tingent Claims in Incomplete Security Markets," Probability Theory and Related Fields,

105, 459{479.

Krylov, N. (1980): Controlled Di�usion Processes. Springer, Berlin.

Lyons, T. (1995): \Uncertain Volatility and the Risk-free Synthesis of Derivatives,"

Applied Mathematical Finance, 2, 117{133.

Musiela, M., and M. Rutkowski (1997): Martingale Methods in Financial Modelling,

Applications of Mathematics. Springer, Berlin.

Myeni, R. (1992): \The Pricing of the American Option," The Annals of Applied Prob-

ability, 2, 1{23.

Reimer, M., and K. Sandmann (1995): \A Discrete Time Approach for European and

American Barrier Options," SFB 303 Discussion Paper B-272, University of Bonn.

Wiggins, J. B. (1987): \Option Valuation under Stochastic Volatility, Theory and Em-

pirical Estimates," Journal of Financial Economics, 19, 351{372.

20



Wong, D. (1996): Generalised Optimal Stopping Problems and Financial Markets, Pit-

man Research Notes in Mathematics. Addison-Wesley.

21


