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Abstract

We develop a new approach to pricing and hedging contingent claims in incomplete
markets. Mimicking as closely as possible in an incomplete markets framework the
no{arbitrage arguments that have been developed in complete markets leads us to
de�ning the concept of pseudo{arbitrage. Building on this concept we are able to
extend the no{arbitrage idea to a world of incomplete markets in such a way that
based on a concept of risk compatible with the axioms of Artzner et al. we can
derive unique prices and corresponding optimal hedging strategies without invoking
speci�c assumptions on preferences (other than monotonicity and risk aversion). Price
processes of contingent claims are martingales under a unique martingale measure. A
comparison to a version of the Hull and White stochastic volatility model shows that
in contrast to their approach explicitly taking into account optimal hedging strategies
leads to positive market prices of risk for volatility even if the latter is instantaneously
uncorrelated with the stock price process. Our results are, however, in agreement with
the �ndings of Lamoureux and Lastrapes.

JEL Classi�cation: G12 G13

Keywords: arbitrage, pseudo{arbitrage, pricing of contingent claims, hedging, incom-
plete markets, stochastic volatility
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2 1. INTRODUCTION

1 Introduction

Since the pathbreaking papers by Black/Scholes [BS73] and Merton [Mer73] pricing
derivatives in complete markets by no{arbitrage arguments has become standard. As
is well known the normative pricing theory these authors have developed is so com-
pelling for two main reasons. First, in order to derive their prices for derivatives it is
not necessary to invoke speci�c preference relations of individual investors. This is so
because, second, given the prices of the primitive securities there are dynamic trad-
ing strategies in the latter assets that perfectly duplicate the payo� of any derivative.
Hence any deviation of the price of a derivative from the initial price of the duplicating
portfolio strategy gives rise to trading strategies that imply riskless pro�t opportu-
nities. These can, however, not prevail in equilibrium if investors have monotonic
preferences, which can be taken for granted.

The preceding can be looked upon from a slightly di�erent angle. Suppose in a
world of completemarkets somebody proposed an alternative normative pricing theory
suggesting prices for derivatives that were di�erent from arbitrage free prices. Then an
investor following the theory of pricing by arbitrage and the trading strategies that go
with it would have a riskless pro�table strategy against any such pricing theory. Hence
deviating from the alternative normative pricing theory would be individually rational
for every risk averse investor with monotonic preferences. In complete markets the
pricing theory for derivatives is thus an immediate consequence of the hedging theory.

Unfortunately actual markets are incomplete. There are many reasons for that. A
number of prominent examples are stochastic volatility, jump risk, transaction costs,
short sale restrictions or even credit risk . Although the present paper is not primarily
on stochastic volatility the reason for incompleteness we have in mind in writing this
paper is essentially volatility risk. Therefore, as examples of how the problem of
market incompleteness has been addressed in the �nance literature we shall mainly
review in this introduction the literature on stochastic volatility.

The obvious di�erence between the pricing and hedging problem in complete markets
as compared to incomplete markets is that in incomplete markets hedging arguments
are not su�cient to derive unique prices for derivatives. Rather the hedging approach
is used to derive partial di�erential equations for the prices of derivatives that un-
fortunately are speci�ed only up to the market prices of the non{traded sources of
risk. Hence in order to arrive at fully speci�ed pricing equations assumptions need
to be made about these market prices of risk. These assumptions are often based on
more or less carefully developed general equilibrium arguments and include the use
of speci�c utility functions often of the logarithmic or CRRA types. Another typical
approach to solving the problem of specifying a market price of risk is to assume that
the respective risk can be diversi�ed away which implies a market price of zero for this
source of risk. Based on these assumptions unique price processes for derivatives are
calculated, which are subsequently used to derive fully speci�ed hedging strategies.

In the literature on stochastic volatility there are a number of papers that take this ap-
proach. Important examples are Hull/White [HW87], Wiggins [Wig87], Scott [Sco87],
Stein/Stein [SS91], Heston [Hes93], Ball/Roma [BR94], Duan [Dua95], and Renault
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and Touzi [RT96]. However, while these papers claim to propose normative pricing
theories for derivatives under stochatic volatility the prices they propose rely essen-
tially on the assumptions that are made on the market prices of volatility risk. In fact,
taking as a typical example a European call option on a stock, as a consequence of
the independent work of Frey and Sin [FS97] and Cvitani�c, Pham and Touzi [CPT97]
it turns out that in di�usion models for stochastic volatility where the support of the
squared volatility is (0;1) one can always specify the market price of risk of volatility
in such a way that any price for the option between its inner value and the stock price
itself can be supported. Given that neither the speci�c assumptions on preferences
underlying the results in these papers nor the assumption of diversi�ability of volatil-
ity risk (in fact it is a common experience among traders that volatilities for di�erent
stocks tend to move together) can safely be regarded as empirically warranted it is
unclear in what sense the above papers do actually provide a normative pricing the-
ory for derivatives under stochastic volatility. In any case these papers leave open the
question why even if the market followed a di�erent pricing theory than the one they
propose, adhering to the respective pricing theories in these papers should be individ-
ually rational for a trader or investor who most likely does not have the preference
relation assumed in the respective paper and who certainly has no knowledge about
the preference relations of all the other market participants that he faces.

The essential question to ask would be whether based on these theories it would be
possible to exploit market prices for derivatives that deviate from the prices given in
these papers. This issue has been addressed in Chesney and Scott [CS89] who claim
that option{trading based on their stochastic volatility model allows small gains to
be made. However, in their study they leave out the risk dimension. Based on
their stochastic volatility model they set up delta{neutral portfolios including a sec-
ond option to hedge volatility risk. However, their hedging portfolios will only be
delta{neutral if the market actually follows their pricing theory for the option in their
hedging portfolio. This problem is recognised in Bakshi et al. [BCC96] who in a study
of hedging e�ectiveness consider minimal variance hedges in the underlying and the
bond besides delta{neutral hedges that also include a second option. Conceptually
both these papers point in the direction that the present paper takes, namely devel-
oping a normative pricing theory for derivatives in incomplete markets that similar to
the theory in complete markets draws its justi�cation from a theory of hedging but
due to market incompleteness necessarily takes risk explicitly into account.

In that the present paper tries to develop a normative pricing theory it also distin-
guishes itself clearly from a recent strand in the literature that focus entirely on the
question of hedging. The best example of this approach is probably the literature on
super hedging such as it has been developed in the papers by Avellaneda, Levy and
Paras [ALP95] or El Karoui, Jeanblanc{Picquet and Shreve [KJPS98]. While this is
an ingenious theory it is often impractical because the initial amount of money one
has to invest in order to set up a super hedging strategy for a certain contingent claim
is much higher than the price one can achieve for this contingent claim in the market.
As examples we may again point to the previously mentioned results of Frey and Sin
[FS97] and Cvitani�c, Pham and Touzi [CPT97] on the range of option prices when
the support of the volatility is (0;1). Hence the papers dealing with super hedging
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typically assume that volatility is bounded and under this assumption determine su-
per hedging strategies. If the actual volatility leaves the assumed boundaries nothing
is said about the quality of the hedge that these strategies provide. This problem is
avoided in the concept of quantile hedging proposed by F�ollmer and Leukert [FL98].
For a given maximal probability of making a loss in the future these authors determine
the cheapest hedging strategy that will achieve the desired loss probability.

Neither super nor quantile hedging can, however, give rise to a normative pricing
theory. Rather they either take as an input the prices that the market is ready to pay
for a contingent claim and determine the least loss probability or the widest interval
of volatility that can be attained with an optimal hedging strategy whose costs do not
exceed the given market price of the contingent claim considered. Or they start with a
given loss probability or a given interval for the volatility and determine the cheapest
super or quantile hedging strategy that is compatible with these assumptions.

The situation seems to be slightly di�erent for the concept of (local) risk minimisa-
tion suggested by F�ollmer and Sondermann [FS86], Schweizer [Sch91], F�ollmer and
Schweizer [FS90], and Hofmann, Platen and Schweizer [HPS92]. Given the stochastic
processes of primitive securities, in their incomplete market models these authors are
able to determine unique (locally) risk minimising hedging strategies for contingent
claims based on the primitive securities. One might be tempted to regard the value
processes of these strategies as suitable candidates for the price processes of the con-
tingent claims under consideration. If this could actually be done their theory would
indeed combine in incomplete markets a hedging theory with a normative pricing
theory.

However, there are a number of problems with this approach. The least seems to be
that there exists an inconsistency between discrete{time models and continuous{time
models. While in continuous{time models the value processes of locally risk min-
imising hedging strategies can be determined by taking conditional expectations of
the payo�s of the contingent claims considered under the so called minimal martin-
gale measure no such martingale measure need exist in discrete{time models. This
problem has been addressed by Elliott and Madan [EM98] who in discrete time have
introduced a di�erent concept of risk minimisation than the above authors. With
this modi�cation even in discrete{time models they can represent the value processes
of their hedging strategies as martingales under a speci�c probability measure. The
two connected problems that neither of the two approaches addresses are �rst that
the objective function i.e. the concept of risk used in this literature is unintuitive
and economically inappropriate for the problem at hand and second that if the actual
price process of the contingent claim is di�erent from the value process of the locally
risk minimising strategy then simply no locally risk minimising strategy exists and
the theory fails to give any answer as to how to hedge optimally. In particular this
literature uses quadratic risk functions. This implies that any deviation | even pos-
itive | of the value of the hedging portfolio from the payo� of the contingent claim
is considered a manifestation of risk. Obviously this is in sharp contrast to the ideas
underlying the literature on super hedging which only regards as risk the danger of
a shortfall of the value of the hedging portfolio behind the payo� of the contingent
claim to be hedged. Clearly only the latter makes economic sense since in hedging no
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one is interested in hitting precisely the payo� of a contingent claim. What counts is
not to lose money.

In view of this literature it seems fairly di�cult to �nd a normative pricing theory in
incompletemarkets that draws its justi�cation from a theory of hedging. Nevertheless,
this is exactly what this paper tries to achieve. Just as has been done in the literature
on super or quantile hedging we assume an asymmetric concept of risk namely the
concept of an expected decrease in portfolio value. What still allows us to derive
unique prices for contingent claims is that just as in arbitrage theory we do not only
look at short positions in contingent claims but also at long positions. The question
we ask is whether at given market prices for a contingent claim and for the primitive
assets it is possible to make a strictly postive expected pro�t from entering the market
for the contingent claim while running the least possible risk from doing so. Finding
an answer to this question will sometimes require going long sometimes it will imply
going short the contingent claim. With this approach we are able to modify the no{
arbitrage concept so that it becomes extendable to the case of incomplete markets.
The extended concept will be called the concept of pseudo{arbitrage.

Using this concept we obtain unique prices for contingent claims that do not give
rise to pseudo{arbitrage opportunities. These prices are justi�ed by the fact that
whenever market prices deviate from pseudo{arbitrage free prices then similar to
what is the case in complete markets we can o�er trading strategies that yield strictly
postive expected payo�s while being risk minimal in well de�ned sense. In fact, our
concept of risk minimality in multi{period securities markets will be an adaptation
of the concept of local risk minimsation introduced by Schweizer. Thus similar to
what is the case in complete markets our theory o�ers an integrated approach to
pricing, hedging and risk management. Moreover, in our framework pseudo{arbitrage
free prices can be represented as expected payo�s of the contingent claims under a
unique martingale measure even in the discrete{time framework, which we shall work
in throughout the entire paper. Finally we shall apply our theory to a version of
the Hull and White [HW87] stochastic volatility model. We shall show that unlike
what was assumed by Hull and White our theory does not lead to a zero market
price of risk for volatility even if the volatility process is instantaneously uncorrelated
with the stock price process. Rather we obtain a positive market price of risk that
diminishes with the size of the stock price volatility itself. This result is line with the
interpretation that Lamoureux and Lastrapes [LL93] give to their empirical results on
the predictive power of implied volatilities.

The present paper is organised as follows. In section two we shall explain our ideas
in a simple two{period example. In section three we shall develop the general theory
for the two{period case. This will be transferred to the multy{period framework in
section four. Section �ve contains our analysis of the modi�ed Hull/White stochastic
volatility model. Section six �nally concludes and gives some suggestions for further
work.
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2 An Example

The purpose of this section is to provide an intuitive understanding of the economic
ideas that underly our approach to the pricing and hedging of contingent claims in
incomplete markets.

Consider the two{period model represented in Figure 1. We assume that there are
frictionless markets for two securities, a stock S and a riskless bond B. The prices for
the stock and the bond are assumed given as are the transition probabilities p1j from
the origin to the di�erent states in the second period. We want to �nd a unique price
C00 in period 0 for the contingent claim which has payo�s C1;� in period 1. With these
payo�s the contingent claim can be interpreted as a call{option on the stock with a
strike of 50.

p  = 0,1
1,2

p  = 0,8
1,0

C   = 0
S   = 45
B   = 1

1,1

1,1

1,1

C  = ?
S   = 50
B   = 1

0,0

0,0

0,0

p  = 0,1
1,1

C   = 0
S   = 30
B   = 1

1,2

1,2

1,2

C   = 20
S   = 70
B   = 1

1,0

1,0

1,0

Figure 1: Market Structure

It is easy to see that by no{arbitrage arguments C00 must be between 4 and 10. Our
aim is now to argue that there is an intuitive extension of the no{arbitrage concept
that singles out a unique price C00 inside this interval.

To this end assume that C00 was slightly below 10. There would no longer be a riskless
hedging strategy in stocks and bonds for the contingent claim. However, we can still
ask how much risk an investor would inevitably have to accept if he went long or
short the contingent claim and hedged this position in stocks and bonds in such a way
that his risk of losing money from the entire transaction became minimal. Against
this backgrond consider taking a short position in the contingent claim at a price of
C00 = 10��. Assume you wanted to invest this amount of money in the stock and the
bond so as to minimise the overall expected loss from this portfolio. This quantity is
given by the following expression

0:1['(30�50)+(10��)]�+0:1['(45�50)+(10��)]�+0:8[�20+'(70�50)+(10��)]� :
It is easy to see that its minimum is attained by choosing ', the holdings in the stock,
equal to 0:05(10+ �). This implies that in states (1; 0) and (1; 1) in the second period
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the value of this portfolio will be nonnegative. In state (1; 2) it will have a value of
�2�. The expected loss from this portfolio will hence be 0:2�. On the other hand the
expected value of the portfolio is 0:025(30 � 13�), which is positive for � < 30=13 or
C00 > 100=13.

Compare these results to those from going long the contingent claim and �nancing
this with a portfolio in stocks and bonds. The expected loss is then given by

0:1['(30�50)�(10��)]�+0:1['(45�50)�(10��)]�+0:8[20+'(70�50)�(10��)]� :
This expression is minimised by choosing ' = �0:05(10+�) i.e. by selling 0:05(10+�)
units of the stock. The remaining funds are invested in the bond. In this case the
portfolio value in the second period will be nonnegative in states (1; 0) and (1; 2),
whereas it will be negative in state (1; 1). The minimal expected loss turns out to be
1=8(6��), which exceeds the minimal risk of the short position in the contingent claim
for � < 30=13. Moreover, the expected value of this portfolio will be 13=40� � 3=4,
which is negative for � < 30=13 or C00 > 100=13.

These calculations reveal that as long as C00 > 100=13 there is actually a whole range
of short positions in the contingent claim, which at zero cost o�er a positive expected
payo� at a lower risk (in terms of expected loss) than the minimal risk of any long
position in the contingent claim that could be entered into at zero cost. Hence, even
without specifying an exact tradeo� between risk and return we may conclude that for
any C00 > 100=13 it is possible to �nd risk averse investors with monotonic preferences
who would prefer taking a short position in the contingent claim to both taking a long
position in this asset or staying out of this market completely.

Particular investors of this type would be arbitrageurs. In the classical sense these
would be investors seeking riskless pro�t opportunities. Such riskless pro�t oppor-
tunities hardly ever exist in practice since actual markets are incomplete and small
deviations of actual market prices for contingent claims from theoretical prices ob-
tained in complete markets models need by no means indicate riskless pro�t opportu-
nities. Nevertheless, we observe that so called \arbitrage desks" in banks are busily
trading well inside theoretical arbitrage bounds for the prices of derivatives so that
these bounds are actually never attained. Therefore, we would argue that it would be
more realistic to describe the behaviour of arbitrageurs as that of investors seeking
positive pro�t at as low a risk as possible. We suggest that when looking at a market
for a particular contingent claim arbitrageurs would consider that zero{cost position
in this asset that would imply the lowest possible risk. If this portfolio allowed them
to achieve a payo� that would be su�cient to compensate them for taking the risk
they would enter the market. Otherwise they would stay out.

This vision of arbitrageurs means that we do not regard them as in�nitely risk averse
investors. However, by the role assigned to them the set of positions or trading
strategies arbitrageurs would be allowed to choose from would be restricted. In the
market for the contingent claim they would only be allowed to take risk minimal
zero{cost positions. Such restrictions do not seem implausible since banks do assign
di�erent trading policies to di�erent trading books. That is they place restrictions on
the types of positions that may be taken by the traders responsible for a particular
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book. \Arbitrage policies" comparable to the one described above are often popular
with banks since they are viewed to yield more stable if sometimes smaller pro�ts
than taking outright positions.

If we adopted this | admittedly stylised | vision of arbitrageurs and the ensuing
extended idea of \arbitrage", in our example it would not seem reasonable to assume
that as the price of the contingent claim dropped slightly below 10 all the arbitrageurs
would immediately leave the market. Rather we would expect many of them to remain
active in the market preferring the short position to the long position in the contingent
claim. However, arbitrageurs will di�er in their perceptions of the tradeo� between
risk and return. Hence, as the price for the contingent claim approached 100=13
arbitrage activity would fade. At C00 = 100=13 it would come to a complete end since
at minimal risk no positive expected payo� could be made and hence, whatever the
arbitrageurs' exact risk{return tradeo�, it would be preferabel for them to stay out
of the market.

A similar argument could be made for C00 < 100=13 with arbitrageurs preferring the
long to the short position. We would, therefore, argue that C00 = 100=13 is the unique
price for the contingent claim at which in the market for this asset there would be no
arbitrage activity of the type described above.

Figure 2 summarises the situation. The two schedules represent | for di�erent values
of C00 | the minimal risk that an investor would have to face when setting up at zero
cost a short (decreasing schedule) or a long position (increasing schedule) respectively
in the contingent claim. They intersect at C00 = 100=13. This can be seen as a
point of indi�erence between long and short positions in the contingent claim since at
this price risk and expected payo� from both positions in this asset are equal. This
provides a further argument for why at this point all arbitrage activity should come
to a halt since for an investor interested only in taking positions with minimal risk
there would be no reason any more to prefer one position to the other.

C0,0

MRL
MRS

10

6 / 13

4 100 / 13

Figure 2: Minimum Risk Schedules

Summing up we argue that it makes sense to assume that there is some sort of \arbi-
trage activity" going on even within the arbitrage bounds for the prices of contingent
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claims. Given this we have identi�ed a unique price C00 = 100=13 inside this interval
at which all \arbitrage activity" as we have described it would cease since arbitrageurs
would be indi�erent between long and short positions in the contingent claim and,
moreover, no positive expected payo� could be obtained from either a risk minimal
long or short position. Put di�erently, at a price of 100/13 it is individually rational
for every risk averse investor con�ned to taking only risk minimal positions in the
contingent claim not to deviate from the pricing theory of the market. On the other
hand for every price C00 6= 100=13 there exist arbitrageurs for whom deviating from
the pricing theory of the market is individually rational. The price of C00 = 100=13
obtains at the intersection point of the minimal risk schedules for the long and the
short positions in the contingent claim.

The identi�cation of this price depends on the speci�c measure of risk. However,
this is easily seen to be the only measure of risk in our market model that would be
consistent in the sense of the axioms of Artzner et al. [ADEH96]. Moreover, beyond
assuming this speci�c risk measure the argument for why at every C00 6= 100=13 there
would be forces driving the price of the contingent claim to the intersection point
between the minimal risk schedules does not depend on a full speci�cation of the
arbitrageurs' preferences. Notice, however, that using this measure of risk implies the
assumption that investors do not default on their liabilities. This seems reasonable if
the risk an individual investor takes is small relative to his endowment.

On the other hand, if we were to argue that C00 = 100=13 was actually the only
price for the contingent claim that could prevail in equilibrium we would have to
assume that arbitrage activity even in an arbitrarily small interval around C00 would
be strong enough to swamp demand and supply from all the other market participants.
This being a strong assumption we would still argue that the price we have ideti�ed
is of practical interest since by its properties described above it would give a good
indication for the price around which a trader in this contingent claim should place
bid and ask quotes in order to protect himself against being exploited by other market
participants.

Finally, before passing to the general two{period model let us brie
y note that the
price of the contingent claim we have derived can be represented as the expected
payo� of this asset under a martingale probability measure q with the q1j given by

q1;0 =
5

13
; q1;1 = q1;2 =

4

13
:

In fact if we were to �nd the price of an arbitrary contingent claim in our market model
by determining the intersection of the respective minimal risk schedules we would �nd
that this price could always be calculated as the expected payo� of this claim under
the same martingale measure q. This means that even if we were to introduce more
than one contingent claim in the above model at the prices determined following the
above procedure this would not give rise to arbitrage opportunities.
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3 The Two{Period Model

3.1 Basic De�nitions and Results

In this and the following sections we shall consider a two{period securities market
similar to the one represented in Figure 1. Before stating our assumptions about
this market we shall introduce some useful notation. We shall immediately make
it su�ciently general so that it will also �t the multi{period markets that we shall
discuss in the sequel.

The time and information structure in our market models will be described by event
trees. The vertices in these trees will be indexed by pairs (ij) 2 IIN2

0 with i being the
time index and j the state index in period i.

In our model there will be three securities, a contingent claim, a stock and a bond.
P 0
ij := (Cij ;Sij;Bij) represents the column{vector of the prices of the contingent claim,

Cij, the stock, Sij, and the bond, Bij , in vertex (ij). The entire price process will
be denoted P := (C;S;B) with C, S and B representig the price processes of the
contingent claim, the stock and the bond respectively. By �Xij := Xij � Xij� we
shall denote the increment of the price of asset X (contingent claim, stock or bond)
in vertex (ij), where (ij�) indicates the vertex preceeding the vertex (ij).
By 'ij := ('C

ij;'
S
ij;'

B
ij) we denote the portfolio that an investor holds when leaving

vertex (ij). 'C
ij, '

S
ij and 'B

ij represent the amounts of the contingent claim, the stock
and the bond respectively in this portfolio. Negative numbers indicate short positions.

Next we introduce some concepts related to portfolios. Again we state them in a way
general enough to use them in multi{period models as well.

De�nition 3.1

a) The value of a portfolio in vertex (ij) is given by V ('ij; Pij) := 'ij � Pij , "�"
representing the inner product.

b) A portfolio 'ij is called admissible if it relies only on the path of the price process
P up to vertex (ij) and if V ('ij; Pij) = 0.

c) A short (long) position in the contingent claim in vertex (ij) is an admissible
portfolio with 'C

ij = �1 ('C
ij = 1). The set of all short (long) positions in

the contingent claim in vertex (ij) at prevailing prices will be denoted �s(Pij)
(�l(Pij)).

d) A portfolio strategy, ', is a stochastic process that assigns an admissible portfolio
to every vertex (ij) in the event tree.

e) A short (long) strategy in the contingent claim is a portfolio strategy 's ('l)
that assigns a short (long) position in the contingent claim to every vertex (ij)
in the event tree before the maturity of the contingent claim.
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Notice that the zero{value condition in part b) of this assumption is nothing but an
accounting rule. The following assumption now describes our two{period model. It
is a generalisation of the model in Figure 1.

Assumption 3.2

a) The event tree consists of two periods, i 2 f0; 1g, with one state in period 0 and
three states in period 1. The transition probabilities from state (0; 0) to the three
di�erent states in period 1 are given exogenously and are assumed known.

b) There are two assets, a stock and a bond, which trade frictionlessly in both
periods. The price process B is assumed constant and equal to 1. S is exogenous,
stochastic and adapted to the event tree. �S1;j 6= 08j. Moreover, the �S1;j will
not all have the same sign (absence of arbitrage between stock and bond). Finally,
if �S1;0 < 0 then �S1;j > 0; j 2 f1; 2g and p1;0j�S1;0j > p1;j�S1;j; j 2 f1; 2g.
If �S1;0 > 0 then �S1;j < 0; j 2 f1; 2g and p1;0�S1;0 > p1;jj�S1;jj; j 2 f1; 2g.

c) There is a contingent claim with payo�s (c1;�) = (C1;�) in period 1, which can be
bought or sold in period 0 at a price of C0;0.

The previous assumption requires two comments. First, what may seem a restrictive
assumption on the relative sizes of the �S1;� is in fact a harmless technical assumption
that rules out some artefacts that may otherwise occur in a discrete{time model.
Notice in particular that this assumption does neither restrict in any way the expected
value nor the variance of �S1;�. Second, by assuming that S is given exogenously we
imply that the price of the contingent claim unilateraly adapts to the price of the
stock. While this is a problematic assumption from a general equilibrium point of
view it makes sense from the point of view of a derivatives' trader if we assume that
the volume of trades in the stock induced by the trading in contingent claims in period
0 is small relative to the general turnover in the stock market.

We now introduce the key{concept of risk that we shall use throughout the paper.

De�nition 3.3

The risk of a portfolio in state (ij) is given by

R('ij ; Pij) := Ep[ [V ('ij ; Pi+1;�)]� j (ij) ] ;

where the expectation is taken with respect to the transition probabilities pi+1;� over all
vertices (i+ 1; �) in period i+ 1 that succeed vertex (ij).

As already stated in the previous section the choice of this measure of risk can be
justi�ed on grounds of the axioms given in Artzner et al. [ADEH96]. In fact, under
Assumption 3.2 it is the only consistent measure of risk in the sense of these axioms.
Notice also that unlike the quadratic measures of risk that underly the theory of (local)
risk minimisation according to F�ollmer, Schweizer and Sondermann this measure of
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risk does not punish overhedging. In this sense it is compatible with the ideas under-
lying the literature on super hedging. It is, moreover, compatible with our intuition
that risk means the danger of losing money. Finally, this measure of risk has received
considerable interest in the literature on portfolio theory (see Dembo [Dem91], Jaeger,
Rudolf and Zimmermann [JRZ95], Reichling [Rei96], Kadu� and Spremann [KS96])
and is also meanwhile widely recognized as being superior to VaR.

As motivated in the previous section we are interested in determining the minimal risk
from entering the market for the contingent claim by taking either a long or a short
position in this asset. The following lemma asserts that for every price C0;0 of the
contingent claim it is indeed possible to �nd risk minimising long and short positions.

Lemma 3.4

Under Assumtion 3.2 8 C0;0 2 IR 9'�0;0 2 �l(P0;0) and '��0;0 2 �s(P0;0) such that

R('�0;0; P0;0) � R('0;0; P0;0) 8 '0;0 2 �l(P0;0) and

R('��0;0; P0;0) � R('0;0; P0;0) 8 '0;0 2 �s(P0;0) :

Proof

Consider �l(P0;0). In this case R('0;0) is of the following form

R('0;0; P0;0) = Ep[ [C1;� + 'S
0;0�S1;� � C0;0 ]

� ] :

This is easily seen to be a convex function of 'S
0;0. Moreover, since some of the �S1;�

are positive while others are negative we have

lim
'S
0;0
!1

'0;0 2�l(P0;0)

R('0;0; P0;0) ! 1 and lim
'S
0;0
!�1

'0;0 2�l(P0;0)

R('0;0; P0;0) ! 1 ;

which together with the convexity of R in 'S
0;0 ensures the existence of a risk minimal

long position in the contingent claim. The argument for the short position being
similar this proves the lemma. 2

Clearly, from our market structure the contingent claim will in general not be a
redundant asset. Therefore, a riskfree hedging strategy in the stock and the bond
will | special cases apart | not be available. Our aim is nonetheless to formulate a
single pricing rule that is based on trading strategies, gives unique prices for redundant
and non{redundant contingent claims and can be interpreted as a generalisation of
the no{arbitrage principle. In keeping with our intuition explained in the previous
section that arbitrageurs search for pro�t opportunities while trying to minimise risk
we propose the following concept of a \pseudo{arbitrage opportunity" in the two{
period model.

De�nition 3.5

In the two{period market model of Assumption 3.2 at prices P0;0 there exists a pseudo{
arbitrage opportunity for the contingent claim i� there is a portfolio '�0;0 with the
following properties:
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a) '�0;0 2 �l(P0;0) [ �s(P0;0) ;

b) R('�0;0; P0;0) � R('0;0; P0;0) 8 '0;0 2 �l(P0;0) [ �s(P0;0) ;

c) Ep[V1;�('�0;0) ] > 0 :

The de�nition makes sense in that in view of Lemma 3.4 it will always be possible
to �nd risk minimising long and short positions in the contingent claim. Moreover,
if there exists a pseudo{arbitrage opportunity there exist risk averse investors with
monotonic preferences who would be ready to exploit it i.e. invest in the portfolio
'�0;0. Furthermore, as required the concept of pseudo{arbitrage is an extension of the
no{arbitrage concept in the following sense:

Proposition 3.6

If at prices P0;0 there is an arbitrage opportunity for the contingent claim there is also
a pseudo{arbitrage opportunity for this claim at these prices.

Proof

If at prices P0;0 there is an arbitrage opportunity for the contingent claim there obvi-
ously exists '�0;0 2 �l(P0;0) [ �s(P0;0) such that R('�0;0; P0;0) = 0 and
Ep[V1;�('�0;0) ] > 0 ; which by de�nition is a pseudo{arbitrage opportunity for this
contingent claim. 2

Beyond these results we should like to convince ourselves that similar to requiring
absence of arbitrage in complete markets absence of pseudo{arbitrage in the setting
of Assumption 3.2 implies a unique price for any arbitrary contingent claim. Moreover,
in the previous section we have introduced arbitrageurs as risk averse investors with
monotonic preferences who are | if they enter the market for the contingent claim |
con�ned to taking risk minimal zero{cost positions in this asset. We should like to see
our intuition con�rmed that if there was a pseudo{arbitrage opportunity one could
�nd arbitrageurs who would enter the market for the derivative so as to drive the price
towards the| hopefully unique| price prescribed by the absence of pseudo{arbitrage
opportunities. On the other hand, if there was no pseudo{arbitrage opportunity we
should like arbitrageurs not to be active in the market for this contingent claim. The
following section will be devoted to the discussion of these issues.

3.2 Pseudo{arbitrage free Prices

As indicated by item b) of De�nition 3.5 an essential step in determining whether a
price system gives rise to a pseudo{arbitrage opportunity is to �nd the risk minimal
long and short positions in the contingent claim at going prices and to determine the
expected payo�s they imply. This motivates
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De�nition 3.7

The functions MRL0;0 and MRS0;0 will be called the minimum risk functions for a long
or a short position respectively in the contingent claim. They are de�ned as follows

MRL0;0 : IR ! IR+

C0;0 7! min'0;02�l(P0;0)R('0;0; P0;0)
MRS0;0 : IR ! IR+

C0;0 7! min'0;02�s(P0;0)R('0;0; P0;0) :

Under Assumption 3.2 these functions are well de�ned by Lemma 3.4. They have an
intuitive economic interpretation. For every C0;0 MRS0;0 gives the minimum risk that
an investor has to accept up to the next trading date from selling the contingent claim
at going prices and investing the proceeds optimally in a hedging portfolio of stocks
and bonds. Likewise for every C0;0 MRL0;0 gives the minimum risk that an investor
would have to incur from buying this claim and �nancing it optimally with a portfolio
of stocks and bonds. Examples of graphs of these functions are depicted in Figure 2.
The following lemma states that these graphs will in fact always be of a similar shape
as those in Figure 2.

Lemma 3.8

MRL0;0 and MRS0;0 are both convex and continuous in C0;0. MRL0;0 is either strictly
monotonically increasing in C0;0 or constant and equal to zero. MRS0;0 is either strictly
monotonically decreasing in C0;0 or constant and equal to zero.

Proof

see Appendix A 2

With the help of the MRS and MRL functions it is now easy to identify a candidate
for a pseudo{arbitrage free price for the contingent claim in our two{period securities
market. Proceeding as in the example of Section 2 we shall be interested in the
intersection point of the MRS and MRL schedules.

Proposition 3.9

Under Assumption 3.2 there is a unique C�
0;0 such that MRS0;0(P

�
0;0) =MRS0;0(P

�
0;0),

where P �
0;0 := (C�

0;0; S0;0; 1).

Proof

By the monotonicity properties of the MRL and MRS functions we have

lim
C0;0!1

(MRS0;0(P0;0) �MRL0;0(P0;0)) � 0

and
lim

C0;0!�1
(MRS0;0(P0;0)�MRL0;0(P0;0)) � 0 :

Hence, by continuity there exists at least one intersection between MRL and MRS.
If this intersection is in the region where MRL and MRS are both positive then by
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the strict monotonicity of the two functions it is unique. It therefore remains to show
that it is also unique if the intersection is in the region where both functions are equal
to zero.

Assume to the contrary that there were to values C0;0 > C0;0 giving rise to oth-
erwise identical price vectors P 0;0 and P 0;0 such that MRL(P 0;0) = MRL(P 0;0) =
MRS(P 0;0) = MRS(P 0;0). Hence there are zero{risk portfolios '

0;0
2 �s(P 0;0) and

'0;0 2 �l(P 0;0). Assume further that the prevailing price vector is P 0;0. Consider

shorting the contingent claim. Then the portfolio '1
0;0 := (�1; 'S

0;0
; 'B

0;0
+(C0;0�C0;0)

is admissible at going prices. So is the portfolio '2
0;0 := '0;0. Moreover, by the fact

that '
0;0

and '0;0 are both risk{free we have

�C1;j + 'S

0;0
S1;j + 'B

0;0
� 0 8 j and

C1;j + 'S
0;0S1;j + 'B

0;0 � 0 8 j :

Hence, adding up the portfolios '1
0;0 and '2

0;0 produces a zero{cost portfolio that is
independent of the contingent claim and has strictly positive payo�s in every state of
period 1, i.e. is an arbitrage opportunity in the stock and the bond. This is, however,
in contradiction to Assumption 3.2.

If the prevailing price vector had been P 0;0 a similar argument could have been made
based on risk{free portfolios '

0;0
2 �l(P 0;0) and '0;0 2 �s(P 0;0) assuming that the

contingent claim had been bought rather than sold. This completes the proof of the
proposition. 2

Let us now examine the properties of the intersection point between the MRS and
MRL schedules in detail. To facilitate the discussion we shall introduce some new
notation. By C�

0;0 we denote the price for the contingent claim at which the MRS and
MRL schedules intersect for given prices of the stock and the bond. The full price
vector corresponding to this situation will be denoted P �

0;0 := (C�
0;0;S0;0; 1). Finally,

'�l0;0 and '�s0;0 respectively represent the long and short positions in the contingent
claim by which the minimum risk from buying or selling the contingent claim can
actually be attained at prices P �

0;0.

Eventually we want to show that C�
0;0 is indeed the unique pseudo{arbitrage free price

for the contingent claim. Since by Proposition 3.6 we have that absence of arbitrage
is a necessary condition for the absence of pseudo{arbitrage we had better be able to
prove

Proposition 3.10

Under Assumption 3.2 at prices P �
0;0 there are no arbitrage opportunities between the

contingent claim, the stock and the bond.

Proof

Suppose to the contrary that there exists an arbitrage opportunity between the con-
tingent claim, the stock and the bond at prices P �

0;0. Then one of the following must
hold:



16 3. THE TWO{PERIOD MODEL

a) 9 '0;0 2 �s(P �
0;0) such that R('0;0; P

�
0;0) = 0 and V ('0;0; P1;j) � 0 8 j with at

least one strict inequality.

b) 9 '
0;0

2 �l(P �
0;0) such that R('

0;0
; P �

0;0) = 0 and V ('
0;0
; P1;j) � 0 8 j with at

least one strict inequality.

Let us consider case a). Since MRS and MRL are equal by assumption at P �
0;0 there

must be some portfolio '
0;0
2 �l(P �

0;0) such that R('
0;0
; P �

0;0) = 0. However, adding

up '0;0 and '
0;0

we obtain a risk{free portfolio that is independent of the contingent

claim and produces a strictly positive payo� in at least one state j in period 1, i.e.
is an arbitrage opportunity in the stock and the bond. Yet, this is in contradiction
to Assumption 3.2. Obviously a similar argument could be made for case b), which
completes the proof of the proposition. 2

The following proposition now gives necessary conditions for a price system and po-
sitions in the contingent claim to give rise to an intersection point between the MRS
and MRL schedules.

Proposition 3.11

Let there be given a price system P �
0;0 such that MRS(P �

0;0) = MRL(P �
0;0) and denote

by '�s0;0 and '�l0;0 the corresponding risk minimising short and long positions in the
contingent claim. Then under Assumption 3.2 there is a permutation of the indices
j 2 f1; 2g such that

V ('�l0;0; P1;0) = 0 ; V ('�s0;0; P1;0) = 0 ;

V ('�l0;0; P1;1) � 0 ; V ('�s0;0; P1;1) � 0 ;

V ('�l0;0; P1;2) � 0 ; V ('�s0;0; P1;2) � 0 ;

where strict inequalities hold if the payo� c of the contingent claim is not in the linear
space spanned by the payo�s of the stock and the bond and equalities hold if c is spanned
by the payo�s of the two traded assets.

Proof

see Appendix B

With this result in place we are now in a position to characterise fully the intersection
point between the MRS and MRL schedules. That is we can state explicit formulas
for C�

0;0 and the risk minimising long and short positions in the contingent claim.
Notice that for a full characterisation of these portfolios it is su�cient to determine
the holdings in the stock.

Theorem 3.12

Let the states in period 1 be ordered as in Proposition 3.11. Then the following holds:
There exists a unique martingale measure q := (q1;j) ; j 2 f0; 1; 2g such that

C�
0;0 = Eq[C1;� ] :
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q is given by

q1;0 = �
 
p1;1

�S1;1
�S1;0

+ p1;2
�S1;2
�S1;0

!
=N

q1;1 = p1;1 =N

q1;2 = p1;2 =N

N = �
 
p1;1

�S1;1
�S1;0

+ p1;2
�S1;2
�S1;0

!
+ p1;1 + p1;2 :

At prices P �
0;0 the stock holdings in the risk minimal long and short positions in the

contingent claim are given by

'�l;S0;0 =
C�
0;0 �C1;0

�S1;0

'�s;S0;0 = �'�l;S0;0 :

Proof

see Appendix C

It is worth pointing out that as a result of this theoremwe can use any contingent claim
that is not spanned by the payo�s of the traded assets to determine the martingale
measure q. q is hence independent of the particular payo� of the contingent claim.

Having thus dealt with the issue of risk minimisation we now turn to the question of
expected payo�s of risk minimising strategies. A useful result in this direction is

Proposition 3.13

Let P �
0;0, '

�l
0;0 and '

�s
0;0 be as in Theorem 3.12. Then we have

Ep[V ('�l0;0; P0;�) ] = Ep[V ('�s0;0; P0;�) ] = 0 :

Proof

Assume that contrary to the proposition we had Ep[V ('�l0;0; P0;�) ] < 0. This would
imply

R('�l0;0; P
�
0;0) = Ep[ [V ('�l0;0; P0;�) ]

� ]

> Ep[ [V ('�l0;0; P0;�) ]
+ ]

= Ep[ [V (�'�l0;0; P0;�) ]
� ]

= R('�s0;0; P
�
0;0) ;

contradicting that '�l0;0 and '
�s
0;0 give rise to an intersection between the MRS and MRL

schedules at prices P �
0;0. Clearly, a similar argument could be made for Ep[V ('�s0;0; P0;�) ]

proving that both expectations are greater or equal to zero. Using this result twice
and the fact that by Theorem 3.12 we have '�l0;0 = �'�s0;0 we obtain

0 � Ep[V ('�l0;0; P0;�) ] = Ep[V (�'�s0;0; P0;�) ] = �Ep[V ('�s0;0; P0;�) ] � 0 ;
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which proves the proposition. 2

This result is interesting in three respects. First, at prices P �
0;0 a trader holding the

risk minimising positions '�l0;0 or '�s0;0 in the given contingent claim will be hedged
on average under the exogenous probability measure p. Second, P �

0;0 being the pre-
vailing price system there are no pseudo{arbitrage opportunities with respect to the
(arbitrary) contingent claim. Third at prices P �

0;0 there will consequently not be any
arbitrage activity in the market for the contingent claim. Indeed, these prices prevail-
ing a risk averse investor con�ned to taking risk minimal zero{cost positions in the
contingent claim can only attain zero expected pro�t by engaging in the market for
the contingent claim. However, in general, i.e. if the payo� of the contingent claim
is not spanned by the traded assets, taking a risk minimal position in the contingent
claim will imply taking some positive risk. Hence, no arbitrageur will engage in this
market.

It remains to show that P �
0;0 is indeed the only price system precluding pseudo{

arbitrage opportunities. This is obvious if the payo� of the contingent claim is spanned
by the payo�s of the traded assets. In this case there is in fact a unique arbitrage free
price for the contingent claim. This is given by C�

0;0. For any other price C0;0 6= C�
0;0

there would be arbitrage opportunities between the contingent claim, the stock and
the bond implying the existence of pseudo{arbitrage opportunities between these as-
sets by Proposition 3.6.

To see that P �
0;0 is also the only price system precluding pseudo{arbitrage opportunities

even if the payo� of the contingent claim is not spanned by the payo�s of the stock
and the bond consider a price system P 0;0, which is the same as P �

0;0 apart from the

price of the contingent claim being C0;0 > C�
0;0. In this case denote the risk minimising

long and short positions in the contingent claim by 'l
0;0 and 's

0;0. Suppose the stock
holdings in 'l

0;0 and 's
0;0 were given by

'l;S
0;0 =

C0;0 � C1;0

�S1;0

's;S
0;0 =

C1;0 �C0;0

�S1;0
:

It is easy to see that as long as

C0;0 <
C1;2 � �S1;2

�S1;0
C1;0

�S1;2
�S1;0

� 1
(1)

with these stock holdings the signs of the payo�s of these long and short positions in
the di�erent states in period 1 will still be as described in Proposition 3.11. Hence,
the above stock holdings are indeed risk minimising under this condition. However,
comparing the payo�s in period 1 with P 0;0 the prevailing price system to the payo�s
of the risk minimising positions in the case of P �

0;0 we obtain

V ('l
0;0; P1;0) = V ('�l0;0; P1;0) = 0
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V ('l
0;0; P1;j) = C1;j +

C0;0 � C1;0

�S1;0
�S1;j � C0;0

< C1;j +
C�
0;0 � C1;0

�S1;0
�S1;j � C�

0;0 ; j 2 f1; 2g

and

V ('s
0;0; P1;0) = V ('�s0;0; P1;0) = 0

V ('s
0;0; P1;j) = �C1;j +

C1;0 � C0;0

�S1;0
�S1;j + C0;0

> �C1;j +
C1;0 � C�

0;0

�S1;0
�S1;j + C�

0;0 ; j 2 f1; 2g ;

where the inequality signs stem from the fact that �S1;j=�S1;0 < 0 by Assumption
3.2. Since by Proposition 3.13 the expected payo�s of both the risk minimising long
and short positions are zero at prices P �

0;0 it follows from the above that for C0;0 > C�
0;0

but still su�ciently small to satisfy equation (1) we have

Ep[V ('l
0;0; P1;� ] < 0

Ep[V ('s
0;0; P1;� ] > 0 :

Hence, due to the monotonicity properties of the MRS and MRL functions we have
proved the existence of pseudo{arbitrage opportunities in the contingent claim. It is
easy to see that if C0;0 exceeded the upper limit given in equation (1) there would
be an arbitrage opportunity between the contingent claim, the stock and the bond
implying again the existence of pseudo{arbitrage opportunities between these assets
by Proposition 3.6.

By similar arguments one could obviously prove the existence of pseudo{arbitrage
opportunities for all C0;0 < C�

0;0. Even if C0;0 was still su�ciently large so as to
preclude arbitrage opportunities between the contingent claim, the stock and the
bond we would have

Ep[V ('l

0;0
; P1;� ] > 0

Ep[V ('s

0;0
; P1;� ] < 0 :

We have hence shown

Theorem 3.14

Under Assumption 3.2 P �
0;0 is the unique pseudo{arbitrage free price system.

Moreover, a comparison of the expected payo�s of the risk minimising positions in the
contingent claim shows that for C0;0 < C�

0;0 (C0;0 > C�
0;0) it will always be possible

to �nd risk averse investors with monotonic preferences who will be ready to take
long (short) but no short (long) positions in the contingent claim. In particular for
C0;0 < C�

0;0 (C0;0 > C�
0;0) arbitrageurs not too risk averse would be long (short) in the

contingent claim thus excerting some pressure on the price of this asset driving it in
the direction of C�

0;0.



20 4. THE MULTI{PERIOD MODEL

4 The Multi{Period Model

The results obtained in the previous section would be of little interest if they were
con�ned to the two{period model we have studied so far. However, it is obvious
that this simple model can serve as a building block for a fully 
edged multi{period
model in which we can study interesting examples such as the pricing and hedging of
options under stochastic volatility. The following assumption, which is modelled on
Assumption 3.2 makes this idea precise.

Assumption 4.1

a) The event tree consists of N + 1 2 IIN periods, i 2 f0; : : : ; Ng. In period i there
are 3i states of the world labelled j 2 f0; : : : ; 3i � 1g. Each vertex (ij) in period
i < N has three successors labelled (i+ 1; j3), (i+ 1; j3 + 1) and (i+ 1; j3 + 2).
The transition probabilities from state (i; j) to its successors in period i+ 1 are
given exogenously and are assumed known.

b) There are two assets, a stock and a bond, which trade frictionlessly in all peri-
ods. The price process B is assumed constant and equal to 1. S is exogenous,
stochastic and adapted to the event tree. �Si;j 6= 08(i; j). Moreover, for every
vertex (ij) and its three successors according to item a) the following holds: the
�Si+1;� will not all have the same sign (absence of arbitrage between stock and
bond); if �Si+1;j3 < 0 then �Si+1;j3+k > 0; k 2 f1; 2g and pi+1;j3 j�Si+1;j3j >
pi+1;j3+k�Si+1;j3+k; k 2 f1; 2g; if �Si+1;j3 > 0 then �Si+1;j3+k < 0; k 2 f1; 2g
and pi+1;j3�Si+1;j3 > pi+1;j3+kj�Si+1;j3+kj; k 2 f1; 2g.

c) There is a contingent claim with payo�s (ci;�) in periods i 2 f1; : : : ;Mg, where
M � N is the maturity of the contingent claim. For i = M we obviously have
(cM;�) = CM;�. In every vertex (ij) of the event tree with i < M the contingent
claim can be bought or sold at a price of Ci;j.

In a nutshell this assumption means that in every vertex up to period N � 1 of the
multi{period event tree we repeat the structure of the two{period model that we have
studied in the previous sections. Consequently all the de�nitions and results obtained
in the two{period model can easily be carried over to the multi{period model by
applying them to each vertex in the multi{period event tree separately. In fact they
can be rephrased so that they �t the multi{period framework if we replace the index
(0; 0) used in the previous sections by the general index (ij) and the indeces (1; j)
by the general indices (i + 1; j3 + k), where k 2 f0; 1; 2g. Assuming this done we
shall apply the results obtained in the two{period case to simplify the analysis of the
multi{period model. For the precision of language it will, however, be useful to adapt
De�nition 3.5 to the multi{period framework.

De�nition 4.2

Given the multi{period market model of Assumption 4.1 in a vertex (i; j); i < M of
the event tree there exists a local pseudo{arbitrage opportunity for the contingent claim
i� at prices Pi;j there is a portfolio '�i;j with the following properties:
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a) '�i;j 2 �l(Pi;j) [ �s(Pi;j) ;

b) R('�i;j; Pi;j) � R('i;j ; Pi;j) 8 'i;j 2 �l(Pi;j) [ �s(Pi;j) ;

c) Ep[Vi+1;�('�i;j; Pi+1;�) j (i; j) ] > 0 :

Since in the multi{period framework it makes sense to talk about the pro�ts and
losses from dynamic trading we now introduce the concept of a pro�t{and{loss process
generated by a portfolio strategy.

De�nition 4.3

The pro�t{and{loss process (P/L process) generated by a portfolio strategy ' given a
price process P is a stochastic process de�ned by

PLi;�(';P ) :=
i�1X
k=0

'k;� ��Pk+1;� ; 0 � i < N :

As a consequence of this de�nition the P/L process generated by a long strategy in
the contingent claim is in particular given by

PLi;�('l; P ) := Ci;� +
i�1X
k=0

'S
k;��Si+1;� ;

while the P/L process generated by a short strategy in the contingent claim is given
by

PLi;�('s; P ) := �Ci;� +
i�1X
k=0

'S
k;��Si+1;� :

With these de�nitions in place we can now state our central result on the existence
and uniqueness of a locally pseudo{arbitrage free price process in the multi{period
model.

Theorem 4.4

Under Assumption 4.1 the following holds for all 0 � i �M .

a) There is a unique price process P � := (C�; S;B) such that there are no local
pseudo{arbitrage opportunities between the stock, the bond and the contingent
claim.

b) There exists a unique martingale measure q such that C� is given by

C�
ij = Eq[Ci+1;� j (ij) ] + cij

for all vertices (ij) in the event tree with i < M and

C�
Mj = cMj

for all verices (Mj) in the event tree.
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The martingale measure q is characterised by transition probabilities from ar-
bitrary vertices (ij) to their successors. The transition probabilities are given
by

qi+1;j3 = �
 
pi+1;j3+1

�Si+1;j3+1
�Si+1;j3

+ pi+1;j3+2
�Si+1;j3+2
�Si+1;j3

!
=Nij

qi+1;j3+1 = pi+1;j3+1 =Nij

qi+1;j3+2 = pi+1;j3+2 =Nij

Nij = �
 
pi+1;j3+1

�Si+1;j3+1
�Si+1;j3

+ pi+1;j3+2
�Si+1;j3+2
�Si+1;j3

!

+pi+1;j3+1 + pi+1;j3+2 :

c) At prices P � there are unique long and short strategies in the contingent claim,
'�l and '�s, such that for every vertex (ij), 0 � i < M we have

R('�lij ; P
�
i;j) < R('l

ij ; P
�
i;j) 8 'l

ij 2 �l(P �
ij)

and
R('�sij ; P

�
i;j) < R('s

ij; P
�
i;j) 8 's

ij 2 �l(P �
ij) ;

where '�lij ('
�s
ij ) is the long (short) position in the contingent claim assigned to

vertex (ij) by the strategy '�l ('�s). For the stock holdings in these strategies
we have

'�l;Sij =
C�
ij � Ci+1;j3

�Si+1;j3

'�s;Sij = �'�l;Sij :

d) PL�;�('�l; P �) and PL�;�('�s; P �) are martingales under the exogenous probability
measure p.

Proof

a) Proceed by backward induction from period i = M to period i = 0 and apply
Theorem 3.14 to each vertex.

b)-c) Proceed by backward induction from period i = M to period i = 0 and apply
Theorem 3.12 to each vertex.

d) Proceed by backward induction from period i = M to period i = 0 and apply
Proposition 3.13 to each vertex to obtain

Ep[PLi+1;�('
�l; P �) j (ij) ] = Ep[PLi+1;�('

�l; P �)� PLij('
�l; P �) j (ij) ]

+PLij('
�l; P �)

= Ep[C�
i+1;� + '�l;Sij �Si+1;� � C�

ij j (ij) ]
+PLij('

�l; P �)

= PLij('
�l; P �) :
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Since a similar argument could obviously be made for '�s this completes the
proof of the theorem. 2

While this theorem is an easy consequence of the results obtained in the two{period
model the economic rationale behind it deserves some additional comments.

First, the locally pseudo{arbitrage free price process P � is compatible with rational
expectations. Indeed, in periodM�1 we may apply the same reasoning as in the two{
period model to argue that if the price of the contingent claim di�ers from the locally
pseudo{arbitrage free price there will be scope for arbitrage activity in broad sense
as we have described it in Section 2. For this reason an investor following the theory
proposed in this paper will expect that in period M � 1 the locally pseudo{arbitrage
free price will prevail. Consequently in period M � 2 just as in period M � 1 he
will argue that any deviation from the locally pseudo{arbitrage free price will invoke
countervailing supply and demand from arbitrageurs that will also in period M � 2
drive the price of the contingent claim towards the locally pseudo{arbitrage free price.
Continuing in this way up to period 0 we obtain that the locally pseudo{arbitrage
free price process is indeed consistent with rational expectations.

Second it is worthwhile studying the relations that exist between the concept of a
locally pseudo{arbitrage free price process and the concept of local risk minimisation
introduced by Schweizer ([Sch88]). At �rst sight the two concepts bear little resem-
blance due to the fact that Schweizer uses a quadratic objective function whereas the
measure of risk used in this paper is based on the [�]� function. However, Schweizer's
central concepts can easily be adapted to the framework of this paper. We need to
de�ne what we mean by \remaining risk". Then we need to show that the strategies
'�l and '�s are \locally risk minimising" in Schweizer's sense for the price process P �

with respect to the concept of remaining risk to be de�ned. Before we can do that we
need to de�ne what in our framework is an \admissible local variation" of a portfolio
strategy.

De�nition 4.5

Let ' be a portfolio strategy at prices P . An admissible local variation of ' at some
trading date i is a portfolio strategy �' such that �'k;� = (0; 0; 0)8 k 6= i and �'i;� =
(0;�i;�;�i;�) .

Notice that unlike what is the case in Schweizer's de�nition ([Sch88], p. 18) in our
de�nition �i;� can never be chosen freely but is automatically determined by the choice
of �i;� and the requirement that �' should be a portfolio strategy. Next we introduce
our concept of remaining risk.

De�nition 4.6

At a trading date i the remaining risk at prices P up to trading date M > i of a
portfolio strategy ' is given by

Ri;�(';P ) := Ep

"
M�1X
k=0

R('k;�; Pk;�)�
i�1X
k=0

R('k;�; Pk;�)

����� (i; �)
#
:
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Closely following Schweizer we posit

De�nition 4.7

A portfolio strategy ' is called locally risk minimising on a set of trading dates
f0; : : : ;M � 1g at prices P if for any trading date i 2 f0; : : : ;M � 1g and any admis-
sible local variation �' of ' we have

Ri;�('+�';P ) � Ri;�(';P ) p � a:s: :

Notice that under Assumption 4.1 this concept of a locally risk minimising trading
strategy is void of meaning if the holdings in the contingent claim are zero. For
then due to the absence of arbitrage opportunities between the stock and the bond
the only locally risk minimising portfolio strategy is the strategy that is identically
equal to zero. However, this makes sense in that there is no point in considering risk
minimal hedging or �nancing strategies if only holdings in the stock and the bond are
taken into account. Having thus transferred Schweizer's concepts to our framework
we obtain

Proposition 4.8

Under Assumption 4.1 at prices P �, '�l and '�s are locally risk minimising portfolio
strategies for all trading dates i 2 f0; : : : ;M � 1g.

Proof

The proof follows by backward induction. At trading dateM�1 we haveRM�1;�(';P �) =
R('M�1;�; P �

M�1;�). Hence, by Theorem 4.4 '�l and '�s are locally risk minimising. As-
suming the proposition to hold up to some trading date 0 < i+ 1 < M � 1 we have
for trading date i

Ri;�('�l; P �) = E[Ri+1;�('�l; P �) j (i; �) ] +R('�li;�; P
�
i;�) :

Using the induction assumption and the monotonicity of the conditional expectation
as well as the fact that by Theorem 4.4 '�li;� minimises R('i;�; P �

i;�) over all ' 2 �l(P �
i;�)

it is obvious that the proposition holds for trading date i as well. Since a similar
argument could be made for '�s this completes the proof of the proposition. 2

Finally assume that the actual price process in the market was arbitrary (apart from
satisfying Assumption 4.1) but the pro�t and loss of a trading strategy was still cal-
culated using the locally pseudo{arbitrage free price process P �. Then whenever the
actual price of the contingent claim was above (below) the locally pseudo{arbitrage
free price there would be an incentive for a trader to go short (long) in the contingent
claim. For, if he did so he could enter into the locally risk minimising short (long)
strategy '�l ('�s) | knowing by Theorem 4.4 that the pro�t{and{loss process result-
ing from this strategy would be a martingale | and pocket the di�erence between the
costs (payo�) of this portfolio and the actual price of the contingent claim. Hence,
if the deviation of the actual price process of the contingent claim from the locally
pseudo{arbitrage free price process persisted the total pro�t{and{loss process that
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would result from entering repeatedly into locally risk{minimising portfolio strategies
in the contingent claim as described above would be a sub{martingale. Apparently
this is the closest analogue of an arbitrage strategy we can hope to �nd in our in-
complete markets' framework. Notice that using the price process P � rather than the
actual price process to determine the pro�ts and losses does make sense in that in a
complete markets' framework one would naturally use the arbitrage free price process
to determine hedging portfolios and to calculate the result from strategies designed
to exploit arbitrage opportunities.

This discussion shows that the concept of locally pseudo{arbitrage free prices does
indeed give an economically sensible meaning to the idea of \mispricing" even when
markets are incomplete. The concept itself is consistent in that it agrees with rational
expectations. Moreover, using a duly adapted concept of a locally risk{minimising
portfolio strategy we were able to outline a normative trading theory by which in our
incompletemarktes' framework deviations from the locally pseudo{arbitrage free price
process can be exploited while taking risk that is minimal in a well{de�ned sense.

5 An Application to Stochastic Volatility

In this section we shall apply our theory to the pricing and hedging of options in
a stochastic volatility framework. Among the numerous stochastic volatility models
that have been suggested in the literature (for an overview see Frey (1997) [Fre97]) we
shall concentrate on a modi�cation of the model proposed by Hull and White (1987)
[HW87]. In contrast to these authors we shall allow for correlation between the stock
price and the volatility. In particular we shall take as a starting point the following
continuous{time speci�cations of the processes of the (discounted) stock price S and
the square of its volatility �

dSt = �Stdt+ �tStdW
1
t

d�t = ��tdt+ 
�(�dW 1
t +

q
1� �2dW 2

t ) ;
(2)

where � = �2, while �; �; 
 as well as � are constants and W 1 and W 2 are independent
standard Brownian motions under the given exogenous physical probability measure.
With these speci�cations the increments in the stock price and the square of its
volatility are instantaneously correlated with a correlation factor of �. This type of a
stochastic volatility model is particularly interesting in that it can be viewed as the
continuous{time limit of the NGARCH model suggested by Engle and Ng [EN93] (see
Frey 1997 [Fre97]).

Our aim is to �nd a discrete{time model that approximates this continuous time
speci�cation and at the same time satis�es Assumption 4.1. This is easily achieved
along the lines suggested in He (1990) [He90]. Following He's method we approximate
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the increments in the two Brownian motions by two uncorrelated random variables
w1 and w2, which we specify as follows

w1 = (�1)1[��0] 1=2 ((�1 �
p
3) ; (�1 +

p
3) ; 2)

w2 = 1=2 ((�1 +
p
3) ; (�1�

p
3) ; 2) :

These two random variables give rise to three realisations

!0 = ((�1)1[��0] 1=2 (�1 �
p
3) ;

1

2
(�1 +

p
3))

!1 = ((�1)1[��0] 1=2 (�1 +
p
3) ;

1

2
(�1�

p
3))

!2 = ((�1)1[��0] ; 1) ;

which occur with an equal probability of 1=3.

With the help of w1 the increments of the stock price can be approximated by

�Si+1;� = maxf1[Sij>0](�Sij�t+ �ijSijw
1(�)

p
�t) ; �Sijg :

This speci�cation ensures that even in a discrete{time model the stock price is always
nonnegative. Moreover, zero is an absorbing boundary for S, which is necessary for
the absence of arbitrage in our model. Furthermore, in order to preclude arbitrage
we need to make sure that the �Si+1;� are not all of the same sign. In particular to
satisfy Assumption 4.1 as long as Sij 6= 0 we must have

sign(�Si+1;j3) 6= sign(�Si+1;j3+1) : (3)

If this is satis�ed, by the choice of w1 it immediately follows that sign(�Si+1;j3) 6=
sign(�Si+1;j3+2). Moreover, it is easy to see that if condition (3) is satis�ed we also
have that j�Si+1;j3j > j�Si+1;j3+kj ; k 2 f1; 2g so that the conditions in Assumption
4.1 on the relative size of the increments of the stock price process at each point of
time are satis�ed as long as they are di�erent from zero. A simple calculation reveals
that condition (3) is satis�ed if for �ij we have

�ij >
2

(�1)1[��0](1 �p
3)
�
p
�t : (4)

Notice that as �t ! 0 this condition simply requires � to be nonnegative, which
is guaranteed by the speci�cation of the model in equation (2). In order to satisfy
condition (4) we propose the following discretisation of the � process.

��i+1;� = max
�
1[ 2�

1�
p
3

p
�t<

p
�ij]

�
��ij�t+ 
�ij(�w

1(�) +
q
1� �2w2(�))

p
�t
�
;

p
�ij � 2�

1�p
3

p
�t

)

Using Theorem 4.4 we can now easily determine the martingale measure q correspond-
ing to the locally pseudo{arbitrage free price process as long as S is su�ciently far
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away from the lower boundary of zero so that �Si+1;� 6= �Sij. Under this condition
the martingale measure is given by

qi+1;j3 =
1

3

 
(�1)1[��0]

4

1 +
p
3

�

�ij

p
�t+ 1

!

qi+1;j3+1 =
1

3

 
(�1)1[��0]

�2
1 +

p
3

�

�ij

p
�t+ 1

!

qi+1;j3+2 =
1

3

 
(�1)1[��0]

�2
1 +

p
3

�

�ij

p
�t+ 1

!
:

(5)

Notice that q is strictly positive as long as condition (4) is satis�ed. If S was zero
the martingale measure would be arbitrary. If S was so close to the lower boundary
of zero that it could reach this boundary with the next increment we would have to
calculate the martingale measure in the respective vertex according to the formulae
in Theorem 4.4 using the actual increments of S in this vertex.

For the time being it is, however, more interesting to compare the martingale mea-
sure in equation (5) to the martingale measure proposed by Hull and White ([HW87])
in their model of stochastic volatility. They suggested that as long as the volatil-
ity process was uncorrelated with the gross consumption process the market price of
volatility risk should be zero. Assuming like Hull and White that �, the process of
squared volatility, was uncorrelated with the stock price process in our framework this
would mean that the expected value of w2 under the martingale measure q sould be
zero. This is easily seen not to be the case. In fact, in our framework the martin-
gale measure satisfying the assumptions of Hull and White would have to solve the
following system of equations.

(�1�
p
3)~qi+1;j3 + (�1 +

p
3)~qi+1;j3+1 + 2(1� ~qi+1;j3 � ~qi+1;j3+1) = (�1)1[��0]

�2�
p
�t

�ij

(�1 +
p
3)~qi+1;j3 + (�1�

p
3)~qi+1;j3+1 + 2(1� ~qi+1;j3 � ~qi+1;j3+1) = 0

As long as S is su�ciently far away from the lower boundary of zero ~q is given by

~qi+1;j3 =
1

3

 
(�1)1[��0]

�1
1 �p

3

�

�ij

p
�t+ 1

!

~qi+1;j3+1 =
1

3

 
(�1)1[��0]

�1
1 +

p
3

�

�ij

p
�t+ 1

!

~qi+1;j3+2 =
1

3

 
(�1)1[��0](�1) �

�ij

p
�t+ 1

!
:

(6)

Again it is easy to see that this martingale measure is strictly positive as long as
condition (4) is satis�ed. Comparing ~q and q shows that our theory leads to a mar-
tingale measure that is clearly distinct from the one suggested by Hull and White.
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This means that Hull/White prices of options imply the existence of local pseudo{
arbitrage opportunities. In particular if the market followed the prices suggested by
Hull and White instead of entering into a delta hedging strategy on the basis of their
prices it would be possible to buy or sell options and enter into locally risk minimising
hedging strategies as de�ned in the previous section on the basis of locally arbitrage
free prices. Whenever such a position was entered into this would lead to an increase
in the trader's wealth instead of leaving it constant as would be the case if the trader
delta hedged Hull/White prices. The ensuing pro�t and loss process from this strat-
egy would be a martingale. Hence, the trader would be hedged in mean. Repeatedly
entering into such positions would yield a trader's wealth process that would be a
sub{martingale while the trader's risk at any point in time would be minimal in the
sense of De�nition 4.7. Hence, a trader following the theory proposed in this paper
could exploit a trader following Hull and White's theory.

Finally, we should like to point out that the results presented in this section are
compatible with the interpretation that Lamourex and Lastrapes [LL93] give to their
empirical results on the predictive power of implied volatilities. In fact calculating
the expectation of w2 under q we obtain

Eq[w2 j (ij) ] = (�1)1[��0] �
�ij

1 + 3
p
3

3(1 +
p
3)

< 0 :

This shows that if we leave possible correlations between the increments in the stock
price and the increments in volatility out of the picture and concentrate solely on the
source of risk proper to volatility under the martingale measure q the expected incre-
ment in volatility will be less than under the physical probability measure. Hence we
have a positive market price of volatility risk. Moreover, since �ij is in the denomina-
tor of the above expected value the market price of risk is decreasing in the voaltility
of the stock price. Both agrees well with the �ndings of Lamourex and Lastrapes.

6 Conclusion

In this paper we have developed a new approach to pricing and hedging contingent
claims in incomplete markets. It distinguishes itself from the previous literature in
that the prices we suggest are justi�ed by a theory of hedging. Our aim was to
mimic as closely as possible in an incomplete markets framework the no{arbitrage
arguments that have been developed in complete markets. This has lead us to de�ne
the concept of pseudo{arbitrage. Building on this concept we were able to extend the
no{arbitrage idea to a world of incomplete markets in such a way that based on a
concept of risk compatible with the axioms of Artzner et al. [ADEH96] we could derive
unique prices and corresponding optimal hedging strategies without invoking speci�c
assumptions on the risk{return preferences of investors (other than monotonicity and
risk aversion) or even fully 
edged general equilibrium models. Our price processes
can be represented as martingales under a unique martingale measure. A comparison
to a version of the Hull/White stochastic volatility model has shown that in contrast
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to their approach explicitly taking into account optimal hedging strategies may well
lead to non{zero market prices of risk for volatility even if the latter is instantaneously
uncorrelated with the stock price process. This was shown to be in agreement with
the �ndings of Lamoureux and Lastrapes [LL93].

A driving assumption behind our results is clearly the measure of risk that we have
adopted. Although economically a strong assumption it may well be considered a
weak assumption from a practical perspective since in view of the ongoing discussion
about measuring an controlling the risks of banks it does not seem unreasonable to
expect that a measure of risk as we have used it will in the future be stipulated by
the regulatory bodies to replace VaR. Moreover, our measure of risk is well founded
on the axiomatic basis laid by Artzner et al. [ADEH96]. As it stands we believe that
our theory is better suited than the existing literature to support pricing and trading
decisions of individual traders who can only base their decisions on market data but
not on the observation of preferences.

It seems worthwhile considering the extension of the concepts proposed in this paper
in a number of directions. From an applications point of view it would be interest-
ing to take the discrete{time model in this paper to a continuous{time framework
and employ more e�cient numerical techniques to solve the optimisation and pricing
problems. Furthermore, one might be interested in relaxing the assumption that the
true stochastic processes are actually known. The ideas in this paper could also be
used to tackle the issue of developing a normative theory for volatility trading with-
out necessarily assuming that observed option prices are correct. Moreover, it may
be worthwhile trying to apply the ideas in this paper to other situations of market
incompleteness such as credit risk.

Finally, the paper clearly considers a special situation in that in our incomplete mar-
kets model there is only one stock and the markets can be completed by introducing
a single non{redundant asset. Relaxing these assumptions will raise a number of
interesting issues that will also be left to future research.
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Appendix

A

First we prove the convexity of MRL. For simplicity we skip the index (0; 0) where no
ambiguities can arise.

In vertex (0; 0) take two prices C > C for the contingent claim. Denote by P the
price vector in this vertex with the high price for the contingent claim and by P the
otherwise identical vector with the low price for the contingent claim.

Let ' 2 argmin'2�l(P ) and ' 2 argmin'2�l(P ). Take � 2 (0; 1). Then we have

MRL(�P + (1 � �)P ) � R((�' + (1� �)'); (�P + (1 � �)P ))

� �R(';P ) + (1 � �)R(';P )

= �MRL(P ) + (1� �)MRL(P ) ;

where the �rst inequality follows from the de�nition of MRL and the fact that
(�' + (1 � �)') 2 �l(�P + (1 � �)P ), while the second inequality is an immedi-
ate consequence of the subadditivity of the [�]� function implying the subadditivity
of R(�). This proves the convexity and hence the continuity of MRL in C. A similar
argument can obviously be made for MRS.

To prove the monotonicity of MRL suppose that MRL(P ) > 0. We have

MRL(P ) = R(';P ) = Ep[ [C1;� + '�S1;� � C0;0 ]
� j (0; 0) ]

> Ep[ [C1;� + '�S1;� � C0;0 ]
� j (0; 0) ]

� Ep[ [C1;� + '�S1;� � C0;0 ]
� j (0; 0) ]

= MRL(P ) ;

proving that MRL is strictly monotonically increasing if it is not zero. We also con-
clude from this calculation that had MRL(P ) been equal to zero in agiven vertex it
would have remained so for all C < C because by construction of the measure of risk
it is non{negative for every P .

The proof of the monotonicity of MRS follows the same line starting out with the
assumption that MRS(P ) > 0. This completes the proof of the lemma. 2
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B

Assume �rst that c is not in the linear space spanned by the payo�s of the stock and
the bond. Then since the MRS and MRL schedules intersect by assumption and since
Assumption 3.2 precludes arbitrage opportunities between the stock and the bond we
must have R('�s0;0) > 0 and R('�l0;0) > 0. Now, consider the di�erent states in period
1 in turn.

Assume that V ('�l0;0; P
�
1;0) < 0. Then since p1;0j�S1;0j > p1;jj�S1;jj j 2 f1; 2g by part

b) of Assumuption 3.2 '�l0;0 could only be a risk minimising position if we had that
V ('�l0;0; P

�
1;j) � 0 for both j = 1 and j = 2. However, then R(�'�l0;0; P �

0;0) = 0 and
| contrary to assumption | we could not have an intersection between the MRS
and MRL schedules. Hence, V ('�l0;0; P

�
1;0) � 0. Yet, we cannot have V ('�l0;0; P

�
1;0) > 0

either. To see this, notice that since R('�l0;0; P
�
0;0) > 0 we must have V ('�l0;0; P

�
1;j) < 0

for at least one j 2 f1; 2g. Since by Assumption 3.2 both �S1;j j 2 f1; 2g are of
opposite sign as �S1;0 we could if V ('�l0;0; P

�
1;0) > 0 change '�l0;0 so as to reduce risk.

Hence, since '�l0;0 is risk minimal by assumption we must have V ('�l0;0; P
�
1;0) = 0.

By a similar argument it is easy to see that we must also have V ('�s0;0; P
�
1;0) = 0.

Moreover, since R('�l0;0; P
�
0;0) > 0 for at least one j 2 f1; 2g we must have

V ('�l0;0; P
�
1;j) < 0. However, this inequality cannot hold for both j = 1 and j = 2

at the same time since then we would have R(�'�l0;0; P �
0;0) = 0 and we could not have

an intersection between the MRS and MRL schedules. Hence, we may assume without
loss of generality that V ('�l0;0; P

�
1;1) < 0 and V ('�l0;0; P

�
1;2) > 0.

By a similar reasoning it is easy to see that we must have V ('�s0;0; P
�
1;j) < 0 for exactly

one state j 2 f1; 2g and V ('�s0;0; P
�
1;j
) > 0 for the remaining state in period 1.

It remains to show that assuming V ('�l0;0; P
�
1;1) < 0 and V ('�l0;0; P

�
1;2) > 0 implies that

j = 2 and j = 1. However, since the fact that V ('�s0;0; P
�
1;0) = 0 and V ('�l0;0; P

�
1;0) = 0

implies that '�s0;0 = �'�l0;0 the above tenet immediately follows.

This proves the proposition for the case that c is not in the linear space spanned by
the payo�s of the stock and the bond in period 1.

If on the other hand c is in the linear space spanned by the payo�s of the stock and
the bond we have R('�s0;0; P

�
0;0) = 0 and R('�l0;0; P

�
0;0) = 0. It immediately follows

that V ('�s0;0; P
�
1;j) � 0 and V ('�l0;0; P

�
1;j) � 0 8j. However, since a strict inequality

for one j would | in contradiction to Assumption 3.2 | imply the existence of an
arbitrage opportunity in the stock and the bond we must have V ('�s0;0; P

�
1;j) = 0 and

V ('�l0;0; P
�
1;j) = 0 8j.

This completes the proof of the proposition. 2
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C

We need to show that for an arbitrary contingent claim with payo� c we obtain
MRS(P �

0;0) = MRL(P �
0;0) if and only if C

�
0;0, '

�l;S
0;0 and '�s;S0;0 are as given in the theorem.

By the zero value conditions in state 0 in period 1 according to Proposition 3.11 we
necessarily have for the stock holdings in the long and short positions in the contingent
claim at an intersection point between the MRS and MRL schedules

'�l;S0;0 =
C�
0;0 � C1;0

�S1;0

'�s;S0;0 = �'�l;S0;0 :

Moreover, by de�nition of an intersection between the MRS and MRL schedules the
risk of the long and short positions in the contingent claim needs to be equal. By
Proposition 3.11 we, hence, need to equate the expected payo� of a short position in
vertex (1; 1) with the expected payo� of a long position in vertex (1; 2). Plugging '�l0;0
and '�s;S0;0 into the respective equations we obtain

p1;1

 
�C1;1+

C�
0;0 �C1;0

�S1;0
�S1;1 + C�

0;0

!
= p1;2

 
C1;2 �

C�
0;0 �C1;0

�S1;0
�S1;2� C�

0;0

!
:

Solving for C�
0;0 we obtain

C�
0;0 = q1;0C1;0 + q1;1C1;1q1;2C1;2 ; (7)

where the q1;j are as given in the theorem for j 2 f0; 1; 2g.
To see that C�

0;0, '
�l
0;0 and '�s;S0;0 thus obtained do give rise to an intersection between

the MRS and MRL schedules we need to show that at prices P �
0;0 '

�l
0;0 and '�s;S0;0 are

indeed risk minimising positions in the contingent claim. To this end consider the
values of the two positions in the di�erent states in period 1.

Clearly, V ('�s0;0; P1;0) = V ('�l0;0; P1;0) = 0 by construction. Now, assume for the mo-
ment that

V ('�l
0;0; P1;1) = C1;1 +

P
2

j=0 q1;jC1;j �C1;0

�S1;0
�S1;1 +

2X
j=0

q1;jC1;j

=

�
C1;0

�
�S1;2 ��S1;1

�S1;0

�
+C1;1

�
1�

�S1;2

�S1;0

�
+C1;2

�
�S1;1

�S1;0
� 1

��
p1;2

N

� 0 :

(8)

Then by construction we also have

V ('�l0;0; P1;2) � 0 :
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Finally by a simple calculation we obtain

V ('�l0;0; P1;2) = �
"
C1;0

 
�S1;2 ��S1;1

�S1;0

!
+ C1;1

 
1� �S1;2

�S1;0

!
+ C1;2

 
�S1;1
�S1;0

� 1

!#
p1;1

N

� 0

and

V ('�s0;0; P1;1) = �
"
C1;0

 
�S1;2 ��S1;1

�S1;0

!
+ C1;1

 
1� �S1;2

�S1;0

!
+ C1;2

 
�S1;1
�S1;0

� 1

!#
p1;2

N

� 0

Since by Assumption 3.2 we have p1;0j�S1;0j > p1;jj�S1;jj ; j 2 f1; 2g in this situation
it is not possible to adjust '�l0;0 or '

�s
0;0 (i.e. more precisely the holdings in the stock

in the two portfolios) so as to reduce risk. The long and short positions as given in
the theorem are hence risk minimal at prices P �

0;0 provided equation (8) is satis�ed. If
equation (8) was not satis�ed for a given contingent claim with payo� (c1;�) = (C1;�)
we would have

V ('�l0;0; P1;2) � 0 ;

and it would su�ce to interchange the numbering of states 1 and 2 in period 1 to see
that the above argument would go through unaltered. Hence we have shown that the
long and short positions as given in the theorem are indeed risk minimal at prices
P �
0;0.

Finally, we need to show that the (q1;�) as given in the theorem actually constitute a
martingale measure. As it is easy to see that we have

2X
j=0

q1;j = 1 and
2X

j=0

q1;j�S1;j = 0 ;

it su�ces to show that q1;j > 0 8 j 2 f0; 1; 2g. However, since equation (7) holds
for arbitrary contingent claims it holds in particular for the Arrow{Debreu securities.
Obviously, the prices for these securities in vertex (0; 0) would just be the (q1;�). Now,
since by Proposition 3.10 at prices P �

0;0 there are no arbitrage opportunities between
any arbitrary contingent claim, the stock and the bond it follows that q1;j > 0 8 j 2
f0; 1; 2g. This completes the proof of the theorem. 2
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