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Abstract

Stochastic volatility models model asset dynamics by a bivariate di�usion pro-

cess. For practical calculation of prices of �nancial derivatives lattice models

are necessary. In this paper we present a procedure to construct discrete pro-

cess approximations converging to such models.
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1 Introduction

In a highly simpli�ed model Black and Scholes explained how the intrinsic

risk in a call option could be completely removed by continuous trading in the

underlying stock and a Bond. This has been the starting point for a theory

of pricing and hedging contingent claims. In this paper we study an exten-

sion where the asset prices are modeled by bivariate di�usions (see Hull and

White (1987), Chesney and Scott (1989) and Heston (1993)). These models

are the continuous time limits of models used in the time{series literature, so

called GARCH models. Recently Ritchken and Trevor (1997) and Duan and

Simonato (1997) presented two di�erent approaches to construct a GARCH

approximation. Unfortunately the implementation is tricky and complicates

the analysis of the algorithm. Although in actual calculations prices converge

to the correct continuous state solution, both papers are lacking a proper con-

vergence proof. The purpose of this article is to present a method by which a

discrete lattice can be constructed for a class of stochastic volatility models,

including those currently used in the literature.

Section two present the framework. In section 3 we present conditions to en-

sure convergence of prices by ensuring weak convergence (in distribution) of a

discrete process. The structure of our problem recommends constructing �rst

a (one{dimensional) lattice describing only the dynamics of the volatility (sec-

tion 4) which is then extended to the two{dimensional dynamics of the joint

volatility and stock dynamic (section 5).

2 The Di�usion setup

We suppose that we observe a constant interest rate r and that the stock{

price can be described by the stochastic process (St)t which is solution to the
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following system of stochastic di�erential equations:

dvt=�(vt � �v)dt+ '(vt)dW
1
t (1)

dSt= �(vt)Stdt+  (vt)StdW
2
t (2)

where (W 1;W 2) is a two{dimensionalWiener{process on a suitable probability

space (
;F ; P ) with constant correlation � and � a suitable constant.

Following the equivalent martingale measure technique, developed by Harri-

son and Pliska (1981), F�ollmer and Sondermann (1986) the value of �nancial

derivatives will be calculated as discounted expectations under a suitable mar-

tingale measure. Here we choose �(v) = r, i.e. the so called minimal martin-

gale measure introduced by F�ollmer and Schweizer (1991) (see also Hofmann,

Platen and Schweizer (1992)). In economic terms this states that there is no

premium for volatility risk.

Di�erent speci�cations of the function ' and  allow us to treat the models

present in the literature in a uni�ed way (see table 1). We will suppose the

functional forms

'(v)= p1 + p2v + p3
p
v

and  (v)= k1v + k2
p
v + k3 exp(v)

for suitable k1; k2; k3; p1; p2; p3 � 0, which ensure the existence of a solution

to the system (1),(2). Here we excluded a time{dependency in the volatility.

This will result in a time{homogeneous lattice, which is much easier to handle.

However our technique could easily be extended to incorporate this feature.

We denote by

Z :=

 
v

X

!

the joint volatility and (logarithmic) stock dynamics. Applying the Itô{formula
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Table 1

Di�erent model speci�cations

model '(v)  (v)

Hull and White (1987) v v

Heston (1993)
p
v

p
v

Stein and Stein (1991) const: v

Chesney and Scott (1989) const: expfvg

we see that the Z dynamics can be described by the instantaneous drift

�(v) =

0
BBBBB@
�(v � �v)

�(v)�  (v)2

2

1
CCCCCA

and the instantaneous variance/covariance matrix

�(v) =

0
BBBBB@
'(v)2 �

2'(v) (v)

�

2'(v) (v)  (v)
2

1
CCCCCA

3 How to discretize

The purpose is to construct a sequence of discrete trading models indexed by

its re�nement n and converging to the continuous time trading model of the

previous section in a suitable sense. Such a discrete model corresponding to

re�nement n is speci�ed by a discrete set T n = f0 = tn0 < tn1 : : : < tnn = Tg of
equidistant trading dates, i.e. for i = 0; : : : ; n : tni+1 � tni = �tn :=

T
n
.

We denote by

Z
n
:=

 
v

X

!
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the discrete dynamics. Since the original process is time{homogeneous, we re-

strict ourselves here to a time{homogeneous Z
n
, too. The appropriate conver-

gence concept is in our case here to require weak{convergence in distribution:

Z
n d
=) Z

S
n d
=) S is a straightforward consequence from the observation that the

function exp is continuous.

We denote by P n
x (En

x ) the probability of P
n (the expectation) conditional on

Z = x and

�n(x) :=Z1+�tn � x

��n(x) :=
Ex[�n(x)]

�tn

��ni;j(x) :=
cov(�n

t (x)i;�
n
t (x)j)

�tn

due to our assumption that Z
n
is time{homogeneous these terms are time inde-

pendent. �n
t (x) is the instantaneous increment, ��n(x) the local drift and ��ni;j(x)

the local variance/covariance matrix conditional on x. It is natural to require

that the �rst two moments converge to their corresponding continuous{time

counterparts. We will now state a theorem which is an immediate restriction

of the martingale Central Limit Theorem (see e.g. Ethier and Kurtz (1986),

p. 354). It claims that under the further restriction that the mesh becomes

\su�ciently quick dense", that this is su�cient:

Theorem 1 Suppose that for all c > 0:

(1) the local drift converges uniformly on fjxj � cg
(2) the local variance/covariance matrix converges uniformly on fjxj � cg
(3) jump{sizes diminish

8q > 0 : max
x�q

j�n(x)j n�! 0 a:s:
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Then:

Z
n d
=) Z

Please note that these are all local conditions. The conditions of this theorem

will guide us in our construction.

4 Construction of the volatility{grid

We will proceed �rst by constructing a one{dimensional grid approximation

of v and then extend this to a two{dimensional Z approximation.

In order to get rid of the dependency on '(vt) in equation (1), Nelson and

Ramaswamy (1990) suggest to de�ne �rst the function

f(x) :=
Z x 1

'(v)
dv

Setting Y := f(v), an application of the Itô{formula yields

Lemma 2

dYt = �Yt dt+ dW 2
t

where �Y is a suitable adapted process.

Note that the model of Chesney and Scott (1989) is speci�ed directly in terms

of Yt = ln vt with �Y = a� bY for some constants a; b.

A lattice{grid for Y is immediately constructed for each re�nement n by taking

the grid points Yj = j
p
�tn for j 2 ZZ.

It will turn out that it is not necessary to know the process �Y . It is only

necessary to know how to transform back, i.e. we need we are looking for a

function R(z) with f(R(z)) = z. In table 2 we present f and R, for the models

from the literature. It can be checked that they are true.
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Table 2

The transformations f; R for the models from the literature

model f(x) R(z)

Hull and White (1987) ln x ep2z

Heston (1993) 2
p
x

z2

4 ; z > 0

0 ; otherwise

Stein and Stein (1991) const:x 1=const:x

Chesney and Scott (1989) ln exp

The transformation R on Y yields the grid for v, i.e.:

vj = R

�
j
q
�tn

�

As was pointed out by Nelson and Ramaswamy (1990), v may become so

small, however the v{drift so great, that jumps into adjacent nodes are no

longer su�cient. However multiple jumps in the grid become necessary, to

ensure martingale properties are in [0; 1]. That is the dynamics is given by

vuj =minfvj+k j vj+k � vj � �2(vj)�tn; k oddg
for an \up"{jump

vdj =maxfvj+k j vj�k � vj � �2(vj)�tn; k oddg _ 0

for a \down"{jump

i.e. in general vuj is just two grid nodes below vuj and the further jumps just

ensure that the necessary drift lies between these two nodes.

We will denote the corresponding probabilities by �puj ; �p
d
j . The probability of a

single jump will be completely speci�ed in any node j by the drift{condition.

Therefore we set

�puj =
�(vj � �v)�tn + vj � vdj

vuj � vdj
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Since

@R

@x
=

1
@f

@x

= '

a Taylor series expansion of Y yields immediately that the local volatility

is matched up to an error{term of order
p
�tn for any speci�cation of the

probability �puj .

Proposition 3 Under the above assumptions we have

(1) the drift converges properly

(2) the variance converges properly

(3) weak{convergence

PROOF. We check the assumptions of Nelson and Ramaswamy (1990). Their

assumption 5 is vacuous in our case, since our model is time independent.

Assumption 7 serves to establish the existence of the continuous solution,

which we supposed from the very beginning. Moreover from the observation

@f(x)

@x
= '(f(x))

follows that assumption 8 and 10 hold. Now we need to distinguish two cases:

(1) p1 6= 0: Assumption 6 holds e.g. with �T;R. Therefore we conclude from

their theorem 2 on p. 405 that weak{convergence of our discrete approx-

imation of the continuous volatility process v holds.

(2) p1 = 0: Assumption 9 can be ful�lled with � = '. Moreover it is easy

to check that our de�nition of the jumps coincides with thoses of Nelson

and Ramaswamy (1990). Therefore we conclude from their theorem 3

on p. 408 that weak{convergence of our discrete approximation of the

continuous volatility process v holds.
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5 Extension to the Z{grid

Next we come to the construction of the grid in the X{direction at each node

vj. Constructing the grid points at node vj in X direction is a very simple

task:

Xj;k :=  j

q
�tn � k for k 2 ZZ

The jumps contained in the v{grid carry over and pose no further problem.

Here at each time{point ti we have now a two{dimensional grid, indexed by

(j; k) where j continues to correspond to denote v dependence whereas k

denotes X dependence.

Now we explain what are the successors of a node xj;k and their transition

probabilities. For a down{move in volatility we will allow the stock to move to

one of four successors. We will refer to these as (u; u); (u; d); (d; u) and (d; d) in

decreasing order. Each is the immediate grid successor in its layer (see �gure

1). They are �xed one of these is chosen. Similarly to the preceding section,

xdddj;k

xdduj;k

xdudj;k

xduuj;k

 (vj)

xuddj;k

xuduj;k

xuudj;k

xuuuj;k

H
H
HY

 (vdj )
�
�
�*

 (vuj )

Fig. 1. part of the transition grid

in order to being able to match the drift, when the X{variance is too small

and the X{drift too great, we need to allow for multiple jumps in X{direction.

Here we choose the closest node above the drift:

xdudj;k =minfx jx = l � vj �
q
�tn; l 2 ZZ

and x > xj;k + �2(vj)�tng
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De�ning for a; b; c 2 fu; dg

�j;k :=
xdudj;k � xj;k

 dj
p
�tn

and �j;k :=
xuudj;k � xj;k

 uj
p
�tn

we can easily index all successor{nodes of xj;k by �j;k and �j;k.

In the next step we �x the eight transition probabilities of the eight nodes.

This de�nes a random variable Rj;k. We denote by R1;j;k (R2;j;k) its v (X)

marginal. For convergence we require that we match the two drift terms, the

two variances and the covariance. According to the observations of the previous

section, drift and variance for the (vt)t process are correct as long as puddj;k +

puduj;k + puudj;k + puuuj;k = �puj holds independent of k.

So we have the following equation system:

X
a;b;c2fu;dg

pa;b;cj;k =1 (3)

X
a;b2fu;dg

p
d;a;b
j;k = �puj (4)

E
h
R2;j;k

i
= �2(vj)�tn (5)

Var
�
R2;j;k

�
= (vj)

2�tn (6)

E
h
R1;j;k �R2;j;k

i
=2�1;2(vj)�tn (7)

(4) corresponds to setting the v{drift, (5) to theX{drift, (6) to theX{variance

and (7) to the covariance up to an error term of order O(�t2n).

Instead of resolving this equation system we solved a slightly di�erent one.

First we simplify further by assuming that the di�erence between two nodes

in X{direction is equal  j regardless of an up{ or a down{move. Moreover

that vuj �vj = vj�vdj in v{direction. It is straightforward to see that replacing

all xa;b;c by xa;b;c � �(vj)�tn and requiring E
h
R2;j;k

i
= 0 is equivalent to

requiring condition (5), which we will do in the sequel. To simplify our further
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Table 3

Nodes and probabilities

node probability

�xduuj;k = (��j;k + 1) j
p
�tn pduuj;k

�xdudj;k = ��j;k j
p
�tn pdudj;k

�xdduj;k = (��j;k � 1) j
p
�tn pdduj;k

�xdddj;k = (��j;k � 2) j
p
�tn pdddj;k

�xuuuj;k = (��j;k + 1) j
p
�tn puddj;k

�xuudj;k = ��j;k j
p
�tn puduj;k

�xuduj;k = (��j;k � 1) j
p
�tn puudj;k

�xuddj;k = (��j;k � 2) j
p
�tn puuuj;k

calculations, we suppose that X adopts the values �xabcj;k as in table 3 where we

de�ne:

�xdud = xdud � �(vj)�tn

�xuud = xuud � �(vj)�tn

��j;k :=
�xdudj;k � xj;k

 dj
p
�tn

and ��j;k :=
�xuudj;k � xj;k

 uj
p
�tn

Moreover we replace condition (6) by

E
h
R

2
2;j;k

i
=  2

j�tn (8)

and condition (7) by

E
h
R1;j;k �R2;j;k

i
= � �  j ��j �

q
�tn (9)

To exclude ambiguity about the solution, for a; b 2 fu; dg we added the fol-
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Table 4

De�nition of functions

�1() =
1� 2

2 + 2
�2() =

2 � 2

2 � 4 + 3

�1() = �2 + 3 �1() = 2 + 1

�2() = �22 + 6 � 6 �2() = 22 + 2 + 2

�3() =
2 + 2

��2() �3() =
2 � 4 + 3

�2()

lowing four equations to our system:

�
�xabuj;k

�2 � pabuj;k +
�
�xabdj;k

�2 � pabdi;j;k
= 2

j ��tn �
�
pabuj;k + pabdj;k

�

which expresses pabuj;k in terms of pabuj;k and ��j;k resp. ��j;k. It is easy to see that

under these four conditions, equation (8) is automatically ful�lled.

A solution is given by

pdudj;k =
�
��1(��j;k)�

q
�tn � (1 � �puj )�2(��j;k)

�
��3(��j;k)

pdduj;k =
�
��1(��j;k)�

q
�tn � (1� �puj )�2(��j;k)

�
��3(��j;k)

puudj;k =
�
�1( ��j;k)�

q
�tn � �puj �2( ��j;k)

�
� �3( ��j;k)

puduj;k =
�
�1( ��j;k)�

q
�tn � �puj �2(

��j;k)
�
� �3( ��j;k)

together with

pduuj;k = �1(��j;k)p
dud
j;k

pdddj;k = �2(��j;k)p
ddu
j;k

where we used the de�nitions of table 4.

Lemma 4 All transition probabilities pa;b;cj;k are between 0 and 1.
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PROOF. We check that all probabilities are positive. Since they sum to one

this will ensure that they are less than one. For � 2 [�1; 1] and  2 ]0; 1] we

have

0<�1()��tn � (1� �puj )�2()

0<�1()��tn � �puj �2()

0>�1()��tn � (1 � �puj )�2()

0>�1()��tn � �puj �2()

Moreover it follows easily that �3() � 0, since

0� 2 + 2

0<�8 + 6 + 12

and �3() � 0, since

0� 2 � 4 + 3

0> 82 � 8 � 12

This implies immediately the assertion.

Please note that the discrete process is pathindependent and recombining. The

following proposition states that in the limit, with our choice of the probabil-

ities the �rst two moments converge properly and that weak convergence to

the continuous solution holds (please note that with the notations on page 4,

here the local increment is �n(xj;k) = (R1;j;k; R2;j;k)). Thus we do now check

the conditions of theorem 1:

Lemma 5

8c > 0 : sup
xj;k�c

E
h
R2;i;j

i
�tn

n�! �(vj)

PROOF.
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E
h
R2;j;k

i
=

X
a;b;c2fu;dg

p
a;b;c

j;k (xa;b;cj;k � xj;k)

=
X

a;b;c2fu;dg

pa;b;cj;k (�xa;b;cj;k � xj;k)

+�2(vj)�tn

+
q
�tn

X
a;b;c2fu;dg

pa;b;cj;k ( (vaj )�  j)

| {z }
=E[R1;j;k]=O(�tn)

=�2(vj)�tn +O(
q
�tn

3

)

uniformly

Lemma 6

8c > 0 : sup
xj;k�c

Var
�
R2;i;j

�
�tn

�  2
j

n�! 0

PROOF. This follows from the general fact that the observation Var(R2;j;k�
�(vj)) = Var(R2;j;k) together with the fact that equation (8) is ful�lled and

Var(R2;j;k) = E[R
2
2;j;k]� E[R2;j;k]2 = E[R

2
2;j;k]�O(�t2n) by Lemma 5.

Lemma 7

� j�vj
q
�tn = 2�1;2(vj)�tn +O

�q
�tn

3�

i.e. requiring (7) is equivalent to (9).

PROOF. We have:

�vj= vuj � vj

=
@R

@x
(vj)

q
�tn +O(�tn)

='(vj)
q
�tn +O(�tn)

Therefore:
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� j�vj
q
�tn= � j'(vj)�tn +O

�q
�tn

3 �

=2�1;2(vj)�tn +O
�q

�tn
3
�

Lemma 8

8c > 0 : sup
xj;k�c

E
h
R1;i;j �R2;i;j

i
�tn

n�! �

PROOF. With Lemma 7 similarly to Lemma 5.

Lemma 9 Denote:

for q > 0 : Gq := f(j; k) j jxj;kj; vj � qg
for (j; k) :mj;k := max

a;b;c2fu;dg
jxa;b;cj;k � xj;kj

Jump{sizes diminish, i.e.:

8q > 0 : max
(j;k)2Gq

maxfmj;k; v
+
j � vj; v

�
j � vjg n�! 0

PROOF. Since R is increasing, xj;k � R(q)
p
�tn and v+j � vj as well as

v�j � vj converge with order O(p�tn) to 0.

Theorem 10 A sequence of discrete processes whith the above properties con-

verges weakly in distribution to the two{dimensional process (v; S) which is

solution to 1,2.

PROOF. With the notations as on page 4 we have for all c > 0:

max
f(j;k)j�xj;k�cg

max
a;b2f1;2g

j��na;bj n�! 0

max
f(j;k)j�xj;k�cg

max
a;b2f1;2g

j��na;bj n�! 0

The proof concludes by applying Lemma 5 to 9.
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This Theorem allows us immediately to deduce convergence of prices for the

European put option and thus through put{call{parity for European call op-

tions as well.
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