
THE PRICING OF DERIVATIVES ON ASSETS WITH QUADRATIC VOLATILITY

CHRISTIAN ZÜHLSDORFF

Abstract. The basic model of �nancial economics is the Samuelson model of geometric Brownian
motion because of the celebrated Black-Scholes formula for pricing the call option. The asset volatility
is a linear function of the asset values and the model guarantees positive asset prices. We show that the
pricing PDE can be solved if the volatility function is a quadratic polynomial and give explicit formulas
for the call option: a generalization of the Black-Scholes formula for an asset whose volatiliy is a�ne,
a formula for the Bachelier model with constant volatility and a new formula in the case of quadratic
volatility. The implied Black-Scholes volatilities of the Bachelier and the a�ne model are frowns, the
quadratic speci�cations also imply smiles.
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In their seminal article Black and Scholes (1973) derive a formula for the value of a call option if the
underlying asset follows geometric or economic Brownian motion, a model introduced by Samuelson
(1964). Half a century before Louis Bachelier (1900) already tried to evaluate derivatives if changes in
asset prices are normally distributed. This can be translated to a model where volatility is constant with
respect to the asset value.

In this paper we show that the pricing partial di�erential equation (PDE) can be solved for general
quadratic volatility functions, i.e., functions that are the product of a time dependent function and a
quadratic polynomial. To exclude negative asset prices an absorbing boundary in zero is possible. In
section 1 we derive the pricing PDE and the general solution in the case of quadratic volatility. In section
2 we give formulas for the value of a call option for the three possible speci�cations: constant, a�ne and
quadratic. In section 3 we plot the Black-Scholes implied volatilities of the speci�cations which exhibit
"smiles" and "frowns". Section 4 concludes.

1. The pricing partial differential equation

Wemodel an arbitrage-free frictionless �nancial market where traders can costlessly store money and trade
in an asset whose price X we take to be an element of the space Mc;loc of continuous local martingales
with respect to (
; (Ft); P

�) which is a stochastic base whose �ltration (Ft)t�0 is assumed to satisfy the
usual conditions. As our objective is pricing, P � is already the martingale measure. Denote the domain
of the price process X by

D = [l; r] �1 � l < r �1

it is the smallest interval s.t.

P �fXt 62 Dg = 0 8t:

Further we assume that 0 2 D and that the boundaries l and r are absorbing if they are attainable. The
usual choice is l = 0 and r =1 to model an asset, if the model has a positiv probability of attaining the
left boundary in zero this can be interpreted as bankruptcy. But also other choices of the boundaries are
reasonable, e.g. l = 0 and r = 1 for a zero-bond.

Assumption 1.1. The quadratic variation hXi of X is P �-a.s. absolutely continuous and

dhXit
dt

=
1

2
�2(t;Xt)
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for a deterministic function �(t; x) which is jointly measurable in (t; x) and strictly postive on the domain
of X. By (Karatzas and Shreve 1991, Rem. 3.4.3) it is equivalent to assume that there is a Brownian
motion W with respect to (
; (Ft); P

�) s.t.

dXt = �(t;Xt) dWt:

A european option on the asset is given by its payo� function g and its maturity T . Its value is the
expectation under the martingale measure P �:

V (t; x) = E� [g(XT ) j Xt = x]

The Feynman-Kac theorem (e.g. Karatzas and Shreve 1991) tells us that under suitable smoothness
conditions on g the value function V satis�es the PDE

Vt +
1

2
�2Vxx = 0(1)

with terminal value

V (T; x) = g(x):(2)

The boundary conditions in l and r are

V (t; l) = g(l) V (t; r) = g(r) 8t(3)

as we assumed absorbing barriers. If e.g. r =1 the condition is interpreted as

lim
x!1

V (t; x)

g(x)
= 1:

A (self-�nancing) portfolio is given by its initial value �0 and a F-previsible X-integrable process � (the
portfolio strategy), its value process

�t = �0 +

Z t

0

�s dXs

ful�lls the self-�nancing condition

d� = � dX:

If we apply Itô's formula to the value function

dV (t;X) = (Vt +
1

2
�2Vxx) dt+ Vx dX = Vx dX

we see that the �-hedge �t = Vx(t;Xt) gives the hedge portfolio for the claim g(XT ).

Assumption 1.2. The function � can be split up �(t; x) = �(t) p(x) for a strictly positive bounded
function � and a quadratic polynomial p(x) = a+ bx+ cx2.

It is a common myth of stochastic calculus that one needs a linear growth condition on the dispersion
function to ensure existence of a (strong) solution of a stochastic di�erential equation (SDE), a recent
example is Dumas, Fleming and Whaley (1998). But this speci�cation is locally Lipschitz which implies
strong uniqueness and existence of a non-exploding weak solution, both results together in turn imply
the existence of a strong solution (Karatzas and Shreve 1991, 5.2.5, 5.5.4, 5.3.23).

We give a constructive example:

dX = X2 dW X0 = x

By Itô's formula the invers process R = 1=X ful�lls

dR = X dt� dW =
1

R
dt� dW R0 =

1

x
:

So R is a Bessel process of dimension 3 which especially implies

lim
t!1

X = 0 P � � a.s.

as R reaches 1 a.s. (see Karatzas and Shreve 1991, 3.3.24). Contrary to intuition the process does not
explode but converges to zero for almost all paths.

If we model with quadratic volatility under the pricing measure there is no problem with existence of
such a process. The right question to ask is which kind of dynamics under the historic measure allow a
risk-neutral dynamics like this, i.e. what forms of drift are consistent with no-arbitrage.

We return to the question of pricing.



PRICING WITH QUADRATIC VOLATILITY 3

Proposition 1.3. Under the assumptions 1.1�1.2 the value of a contingent claim g(XT ) is given by a
value function V (t;Xt) of the following form:

V (t; x) = 
(�2(t)) �(Z(x)) h(�2(t); Z(x))(4)

The time and space changes �2 and Z are de�ned by

�2(t) =

Z T

t

�2(u)du; Z(x) =

Z x 1

p(y)
dy:(5)

The function h satis�es the heat equation

h�2 =
1

2
hzz(6)

in the interval R = Z(D) = [L;R] for L = Z(l) and R = Z(r) with the initial condition

h(0; z) =
g(Z�1(z))

�(z)

and the boundary condition

h(�2; B) =
1


(�2)

g(b)

�(B)
=

h(0; B)


(�2)
B 2 fL;Rg:(7)

The correction functions 
 and � are given by


(�2) = exp(�&�2=8) & = b2 � 4ac �(z) =
p
p(Z�1(z)):

The Proof that (4) is the solution of the PDE (1�2�3) is in appendix A.

2. Formulas for the call option

In this section, we give closed form solutions for the call option

g(x) = (x� k)+ k � 0

for the three possible speci�cations of the volatility function: constant, a�ne and quadratic.

The density of the one-dimensional normal distribution is '(x) = exp(�x2=2)p
2�

and the corresponding

distribution function �(x) =
R x
�1 '(y) dy. All proofs are in appendix B.

Constant Volatility: p = 1

The �rst model of asset prices and as well the �rst description of Brownian motion, the thesis of Louis
Bachelier (1900) (english translation Bachelier 1964), is also the �rst attempt to evaluate an option given
the dynamics of the asset. The Bachelier model is generally assumed to imply that the price process can
get negative, i.e. D = (�1;1). Take

dX = � dW for a � > 0

as speci�cation under the pricing measure. The pricing formula is

Bac(k; x; �) = � [d�(d) + '(d)] d =
x� k

�
:

If we model the asset as positive, i.e. with absorbtion in zero, the pricing formula is

Baca(k; x; �) = Bac(k; x; �) � Bac(k;�x; �):

A�ne Volatility: p(x) = x� l l � 0

The famous model by Samuelson (1964) with a linear volatility function corresponds to the choice l = 0,
the call price is given by the Black-Scholes formula:

BS(k; x; �) = x�(d + �=2)� k�(d� �=2) d =
logx� log k

�

It is easy to verify that the general pricing formula is

A�(k; x; �; l) = BS(k � l; x� l; �):

If we choose to model with absorbtion in zero we have to subtract a correction term given by

A�C(k; x; �; l) = l

�
k � l

l

x� l

l
�(d� �=2)��(d+ �=2)

�
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with

d =
1

�
log

�
l

x� l

l

k � l

�
:

Quadratic Volatility with two roots: p(x) = (x � l)(r � x) d = r � l > 0

This model was used by Rady and Sandmann (1994) and Miltersen, Sandmann and Sondermann (1997)
with l = 0 and r = 1 for LIBOR rates. The pricing formula is

Q2(k; x; �; l; r) =
1

d
[(x� l)(r � k)�(e+ d�=2)� (k � l)(r � x)�(e� d�=2)]

with

e =
1

d�
log

�
x� l

r � x

r � k

k � l

�
:

Quadratic Volatility with no roots:

p(x) = 1 +

�
x�m

d

�2

d > 0

The parameters m and d give the location and slope of the quadratic volatility: the parabola has its
minimum in m and doubles its value in m� d. The space transformation is

Z(x) = d

�
�

2
+ arctan

x�m

d

�
and the solution of the pricing PDE is

Q0(k; x; �;m; d) =
1

sin(z=d)

2

d�

X
n>0

cn exp
�
(1� n2)�2=2d2

�
sinn z sinn z = sin(nz=d)

for coe�cients given by equation (12) in appendix B.

3. Implied Volatilities

In this section we give examples of the behaviour of (Black-Scholes) implied volatilities for the di�erent
speci�cations.

Take X0 = 100, a maturity T = 1, and choose speci�cations of the volatility functions such that the
at-the-money volatilities equal a Black-Scholes volatiliy of 20%. Most important, we will see that the
corrections for an absorbing barrier in 0 are so small that they are only of academic interest. We �rst
look at three a�ne volatilities:

Bac is a Bachelier model with constant volatility � = 20, the value of the correction in 0 is 1:1 � 10�6.

Sam a Samuelson model with � = :2 whose implied volatility is constant.

A�ne is an a�ne model with l = �100 and � = :1, the correction in 0 is 1:15 � 10�11.

Figure 1 plots the di�erent speci�cations and �gure 2 gives their implied volatilities. It is obvious that
the implied volas of the a�ne model vary between the Bachelier (l = �1) and the Black-Scholes (l = 0)
implied volatility.

Q0-0 is a quadratic model with no root, m = 0, d = 100 and � = :11, the correction is 9:9 � 10�13.

Q0-1 is a quadratic model with no root, m = d = 100 and � = :2, the correction is 2:8 � 10�4.

Q2 is a quadratic model with two roots in l = 0 and r = 200, � = :002.

Figure 3 plots the di�erent speci�cations and �gure 4 gives their implied volatilities. To make the implied
volatility smile we have to use an input function that is above the linear one. Together with the a�ne
implied volatilities a wide range of smiles and frowns are possible.

4. Conclusion

If we want to price real world options we have to incorporate interest rates. Let r denote the (determin-
istic) short rate and de�ne the bank account:

db = rb dt b0 = 1
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Under the risk-neutral measure the dynamics of the discounted asset Xb = X=b has to be a martingale
and the price of the call with strike k is

V (t;Xt) = E�
�
(XT � k)+

bT
j Ft

�
= E

�
(Xb

T � k=bT )
+ j Ft

�
:

The pricing formulae from section 2 hold with k replaced by kb = k=bT if we assume that the discounted
asset price Xb = X=b satis�es assumptions 1.1�1.2.

For the Dumas et al. (1998) model with quadratic volatility for the forward price of the asset the formulas
could immediately be used.

Generally, we have to assume the quadratic volatility for the price of the asset discounted by some
numeraire N , whereas for the linear model this is implied for the discounted asset XN = X=N for any
numeraire process:

dX = � � � dt+ �X dW =) dXN = � � � dt+ �XN dW

The usual trick to make a numeraire change to evaluate an option that is homogeneous of degree one
in the asset price does only work if the volatility of the asset stays the same under the new numeraire,
i.e., only in the case of linear volatility. This is what makes the Samuelson model of geometric Brownian
motion the most convenient one for pricing.

Appendix A. Solving the pricing PDE

The proof we give is a generalization of the one given by (Rady and Sandmann 1994) for a model with
two roots in f0; 1g for LIBOR rates (see also Rady 1997). In this section we omit function arguments
and subscripts denote partial di�erentials. Note that for the time � and space Z functions de�ned by (5)
it holds:

�2t = ��2 Zx =
1

p
Zxx = �

px
p2

Z�1z = p(Z�1)

Suppose that the solution of the pricing PDE (1) is of the form

V (t; x) = 
(�2(t)) �(Z(x)) h(�2(t); Z(x))

where h is a solution to the heat equation

h�2 =
1

2
hzz:

Then

V�2 = �(
�2h+ 
h�2) Vxx =



p2
[�zzh+ 2�zhz + �hzz � px(�zh+ �hz)]

and the PDE becomes

0 = V�2 �
1

2
p2Vxx

= 
�(h�2 �
1

2
hzz| {z }

=0

)� 
hz(�z �
1

2
px�| {z }

E1

)� h(
1

2

(�zz � px�z)� 
�2�| {z }

E2

):

To solve the PDE it must hold E1 = E2 = 0. For E1 this is equivalent to

�z =
1

2
px�(8)

which implies (x = Z�1(z))

�(z) = exp

�
1

2

Z z

px(Z
�1(y))dy

�
=
p
p(Z�1(z))

as Z z

px(Z
�1(y))dy =

Z Z�1(z) px(v)

p(v)
dv = log[p(Z�1(z))]:

Now (8) implies

�zz =
1

4
�(2ppxx + p2x)
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so E2 = 0 is equivalent to


�2 =
1

4

(ppxx � p2x=2) = �&
=8:

It follows from the theory of ordinary di�erential equations that the term in braces is constant i� p is a
quadratic polynomial 1.2 and we can solve for


(�2) = exp(�&�2=8):

The initial condition is

g(x) = V (0; x) = �(Z(x)) h(0; Z(x)) , h(0; z) =
g(Z�1(z))

�(z)
:(9)

Appendix B. Solving the PDE for the call option

Notice the following speci�cs which will ease the computation of the formulas: The boundary condition
for h in L will always be of Dirichlet type as

h(�2; L) = (Z�1(L)� k)+ = 0:

Suppose that we have solved the pricing PDE (1�2�3) on the domain (l; r) for an l < 0. If we want
to �nd a solution on the domain (0; r) the only characteristic of the PDE that changes is the boundary
condition which is for the call to be 0 in 0. The obvious solution to this is to take

h0(�
2; z) = h(�2; z)� h(�2; 2z0 � z) z0 = Z(0)(10)

as the solution to the heat equation on R = (z0; R).

The transition density of a one-dimensional Wiener process is

p� (x; y) = PfW�2 2 dy jW0 = xg =
1

�
'

�
x� y

�

�
:

Constant Volatility: p = 1

It holds & = 0, 
 � 1,

Z(x) = x; Z�1(z) = z; and �(Z�1(z)) = 1:

The domain for this speci�cation is the whole real line D = (�1;1). There is no boundary condition
as R = (�1;1). The fundamental solution for the heat equation in IR is p� , so with the substitution
y = x� �ey

Bac(k; x; �) = h(�2; x) =

Z 1

�1
h(0; y)p� (x; y) dy

=

Z 1

�1
(y � k)+p� (x; y) dy

=

Z d

�1
(x � �y � k)'(y) dy

= (x� k)�(d) + �'(d) for d =
x� k

�
:

By (10) the price for the case of an absorbing boundary in 0 is easily obtained as z0 = 0:

Baca(k; x; �) = Bac(k; x; �) � Bac(k;�x; �)

A�ne Volatility: p(x) = x� l l � 0

We have

& = 1 
(�2) = exp(��2=8) Z(x) = log(x� l) Z�1(z) = l + ez �(z) = ez=2

The initial value is

h(0; z) = (l + ez � k)+e�z=2:
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For the domain D = (l;1), R = IR, we get

h(�2; z) =

Z 1

�1
h(0; y)p�(z; y) dy

=

Z d

�1
(l + ez��y � k)e�

z��y
2 '(y) dy

= e�
2=8

�
ez=2�(d+ �=2)� (k � l)e�z=2�(d� �=2)

�
:

with

d =
zx � zk

�
=

log(x� l)� log(k � l)

�
:

Combining the factors we get

A�(k; x; �; l) = 
(�2) ezx=2 h(�2; zx)

= (x� l)�(d+ �=2)� (k � l)�(d� �=2)

= A�(k � l; x� l; �; 0)

= BS(x� l; k � l; �):

As z0 = log(�l) the correction term is

A�C(k; x; �; l) = 
(�2) ezx=2 h(�2; 2z0 � zx)

= l

�
k � l

l

x� l

l
�(c� �=2)��(c+ �=2)

�
for

c =
2z0 � zx � zk

�
=

1

�
log

�
l

x� l

l

k � l

�
:

Quadratic Volatility with two roots: p(x) = (x � l)(r � x) d = r � l > 0

It is

& = d2 
(�2) = exp(�d2�2=8)

Z(x) =
1

d
log

�
x� l

r � x

�
Z�1(z) = l +

d

1 + e�dz
�(z) = d

edz=2

edz + 1

The initial value is

h(0; z) =

�
r � k

d
edz=2 �

k � l

d
e�dz=2

�+

so for D = R = IR:


(�2)h(�2; z) = 
(�2)

Z 1

zk

�
r � k

d
edy=2 �

k � l

d
e�dy=2

�
p� (z; y) dy

= 
(�2)

Z z�zk
�

�1

�
r � k

d
ed(z��y)=2 �

k � l

d
e�d(z��y)=2

�
�(y) dy

=
r � k

d
edz=2�

�
z � zk
�

+
�

2

�
�
k � l

d
e�dz=2�

�
z � zk
�

�
�

2

�
Combining the factors we get the formula Q2.

Quadratic with no root:

p(x) = 1 +

�
x�m

d

�2

d > 0

This implies

& = �4=d2 
(�2) = exp(�2=2d2)

Z(x) = d

�
�

2
+ arctan

x�m

d

�
Z�1(z) = m+ d tan

�z
d
�
�

2

�
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�(z) =

r
1 + tan2

�z
d
�
�

2

�
=

1

cos
�
z
d �

�
2

� =
1

sin z=d

The initial value is

h(0; z) = cos
�z
d
�
�

2

�h
m+ d tan

�z
d
�
�

2

�
� k

i+
=

h
(m� k) cos

�z
d
�
�

2

�
+ d sin

�z
d
�
�

2

�i+
= [(m� k) sin z=d� d cos z=d]

+

The general solution of the heat equation (Carslaw and Jaeger 1959, 3.3) on the �nite domain R = (0; d�)
with Dirichlet boundary condition is given by

h(�2; z) =
2

d�

X
n>0

an exp
�
�n2�2=2d2

�
sinn z sinn z = sin(nz=d)(11)

with coe�cients

an =

Z d�

0

h(0; z) sinn z dz:

The general integrals are

Sn =

Z
sin1 sinn d� =

(
1
2

�
z � d

2 sin2 z
�

n = 1
d
2

�
sinn+1

n+1 � sinn�1
n�1

�
n > 1

Cn =

Z
cos1 sinn d� =

(
�d

2 cos
2
1 n = 1

d
2

�
cosn+1

n+1 + cosn�1
n�1

�
n > 1

so our coe�cients are

an = ((m� k)Sn � dCn)
���d�
Z(k)

:

The boundary condition given by the general formula (7) in R = d� is

h(�2; d�) = de��
2=2d2 :

The solution for a time dependent boundary is by (Carslaw and Jaeger 1959, 3.5) a sum (11) with
coe�cients

bn = n(�1)n+1

Z t

0

e(n
2�1)�=2d2d� =

(
t n = 1

n(�1)n+1d2 e
(n2�1)t=2d2�1

n2�1 n > 1

For our special problem we get the coe�cients

cn = an + bn:(12)
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Figure 1. A�ne Volatility Functions
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Figure 2. A�ne Implied Volatilities
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Figure 3. Quadratic Volatility Functions
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Figure 4. Quadratic Implied Volatilities


