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ABSTRACT. In this paper a stochastic volatility model is presented that directly pre-
scribes the stochastic development of the implied Black-Scholes volatilities of a set of
given standard options. Thus the model is able to capture the stochastic movements of
a full term structure of implied volatilities. The conditions are derived that have to be
satisfied to ensure absence of arbitrage in the model and its numerical implementation
is discussed.

1. INTRODUCTION

The aim of this paper is to provide a framework for the market-based pricing and hedging
of exotic options and options on volatility indices. In addition to the usual underlying
securities share and bond, the model presented here also uses the prices of liquidly traded
standard options as underlying securities. The prices of the standard options are given
in terms of their implied Black-Scholes volatilities which are stochastic.

We will follow a market-based approach applied to the term structure of implied volatil-
ities which is similar to the market models of the term structure of interest rates by
Miltersen, Sandmann and Sondermann [19], Brace, Gatarek and Musiela [3] and Jamshid-
ian (7).

Using a market based approach means that we do not model 'fundamental’ quantities
like e.g. the stochastic process of the volatility of the share price (as in the traditional
stochastic volatility models of Hull [I6], Heston [I5] or Stein and Stein [22]), or the instan-
taneous conditional forward volatilities (as in the effective volatility model by Derman
and Kani [6]), or forward variances (like in Dupire [9]) but we model the Black-Scholes
implied volatilities directly. This facilitates the fitting of the model to observed option
prices and gives the model a larger degree of flexibility.
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As we allow stochastic dynamics for the implied volatilities we have to ensure that no
arbitrage opportunities arise in the model. Therefore sufficient conditions are derived that
have to be imposed on the drift coefficients of the implied volatilities and that ensure
absence of arbitrage in the model.

1.1. The information content of traded options prices. There are good reasons
for incorporating the prices of at least some traded options into a stochastic volatility
model.

Since the advent of the famous Black-Scholes [2] option pricing model and the intro-
duction of exchange-traded option contracts in the same year the volume and liquidity
of traded options has increased exponentially. Simultaneously more and more complex,
exotic option specifications have arisen with features ranging from American early ex-
ercise, knock-in and knock-out barriers, Asian averaging and lookbacks to combinations
of these and other features with many different payoff functions and multiple underlying
securities.

While on the one end of the spectrum the development has gone towards increasingly
complex specifications, there has been a significant increase in liquidity in the markets
of standard European or American call and put options. For almost every major stock
index or its futures contract there are liquid markets for European or American Call and
Put options with a broad range of strike prices and maturities. These markets make the
trading of a new piece of information possible: information on volatility.

The efficient markets hypothesis in its semistrong form (see e.g. Fama [12]) states, that
prices in liquid markets contain all information that is relevant to the pricing of the
security under concern and that is publicly available in the market. The information
relevant to the pricing of options is information about volatility, information that is not
directly contained in the prices of the underlying security.

It has been debated whether the efficient markets hypothesis is always fully valid but
there is compelling evidence that exchange traded options prices do contain idiosyncratic
information that cannot be backed out from the price information of the underlying
security alone. For example Chiras and Manaster [4] or Fleming et.al. [I3] show, that
predictions of future stock price volatility that are based on the implied volatility of
option prices are superior to predictions that are based on information from the stock
price process alone.

That options prices contain volatility information can also be seen from the fact that
options traders focus on the new information that is encoded in the securities they trade:
information about volatility. Prices of standard options are usually quoted in terms of
the implied volatility ¢ that has to be substituted in the Black-Scholes option pricing
formula (see e.g. equation (R.J) later on) to reach the cash-price of the option. This
does not mean that the market participants assume that the Black-Scholes model with
all its imperfections applies to the actual market, instead they just use the Black-Scholes
formula to make their price quotations more independent from the movements of the
price of the underlying security for which there is already an efficient market.
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The advent of sufficiently liquid markets for standard options has several consequences.

First, the market prices will show deviations from the prices implied by the Black-Scholes
formula. This is not due to any pricing errors in the market but to the inaccuracies in
the assumptions of the Black-Scholes model itself which are already corrected in the
market prices, and — as explained above — it is due to additional information that the
Black-Scholes formula cannot reflect.

Second, because of the liquidity of the standard options market the need to theoretically
price these securities is diminished: A fair price indication can be read from the market
(and it is even likely to be more accurate), arbitrage opportunities will be unlikely to
exist, and a hedge strategy is less important because the position can be unwound quickly.
Pricing models are most useful if there might be arbitrage opportunities in the markets,
if the instrument to price is not well understood, or if a hedging strategy is needed. This
is often not the case for standard options, for exotic options on the other hand there is a
need for pricing models.

Third, given that standard options markets reveal additional information about the likely
dynamics of the underlying, instead of deriving prices for them, a pricing model should
use their prices as input. This should yield an increase in accuracy over the standard
Black-Scholes model. Then the standard options can also be used as additional hedge
instruments.

The model presented here tries to take these points into account. It is designed to
incorporate traded options prices (and thus the information that they contain) in order
to improve the pricing of more exotic instruments.

1.2. Related Literature. The deviation of observed market prices for options from
their theoretical counterparts (as given by the Black-Scholes formula) has triggered a
large literature in which both academics and practitioners alike have tried to improve on
the limitations of the Black Scholes model.

One strand of the literature concentrates on the nature of the underlying asset price
process which was assumed to be a lognormal Brownian motion by Black and Scholes.
Here the main focus is on stochastic volatility models which assume that volatility of
the stock price process is not constant but stochastic itself. Well known papers of this
approach are by Hull [16], Heston [I5] or Stein and Stein [22].

These models can usually reproduce the typical shapes of implied volatilities observed in
the markets (the ‘smile’) but they cannot be fitted easily to any given implied volatilities.
Furthermore these models have only one additional factor driving the stochastic volatility
and cannot be extended to the multi-factor case, and the expressions given for the prices of
the standard European Call and Put options are very complex and cannot be considered
to be in closed form (e.g. Heston’s model still requires a numerical inversion of the Fourier
transformation).

In another direction of research — the implied tree approach —, the aim was to keep as
closely as possible to the Black-Scholes setup while exactly reproducing the option prices
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given in the market. This is achieved by specifying a time- and state (i.e. share price)
dependent volatility function which does not contain any additional random component.
Models of this type are by Rubinstein [20], Derman and Kani [6], Derman et.al. [7] and
Dupire [0, [I1].

While exactly reproducing the option prices observed in the market the implied volatility
models have the drawback that they do not allow for idiosyncratic stochastic dynamics in
the option prices. This is in conflict with empirical observationf] and with the continuous
updating of the new information reflected in the option prices. The poor results in a
hedging test performed by Dumas et.al. [] are probably also due to this drawback.

Dupire [U] took a first step towards incorporating stochastic dynamics into the term
structure of volatilities, but again he models realized volatilities (and forward contracts
on it) and not implied volatilities from options prices.

In a recent paper Derman and Kani [6] have extended their implied tree approach to allow
for stochastic dynamics in the full term- and strike structure of implied local volatilities.
They derive restrictions on the drift of the local volatilities that are necessary for absence
of arbitrage, and these restrictions involve integrals over all possible share prices and
times before the maturity of the forward volatility concerned. The complexity of these
restrictions makes the model hard to handle and we are going to propose a slightly
different approach. Furthermore it is not obvious how in Derman and Kani’s model it is
ensured that the implied volatilities satisfy certain no-arbitrage restrictions as expiry is
approached. (These restrictions will be derived later on.) The fundamental problem is,
that Derman and Kani specify two things that may be contradictory: the dynamics of
the spot volatility and the implied volatilities for different strike prices and maturities.
Nevertheless the approach taken in these two papers is closest to the approach taken
here.

As the dynamics of a whole term structure of security prices are to be captured, the
modelling of implied volatilities is similar to the modelling of the term structure of interest
rates. There one of the most elegant solutions to the problem of fitting a range of prices
to a model has been proposed by Heath, Jarrow and Morton [14] which is to model the
whole term structure of interest rates and then to impose restrictions on the drift of the
rates to ensure absence of arbitrage.

While the Heath-Jarrow-Morton approach was very successful, it still did not directly
describe the dynamics of the most liquid instruments in the fixed income market: the
Libor futures and the interest rate swaps. Therefore in some recent papers f there has
been a shift to models that directly model the rates that are used in the market (i.e.
forward Libor and swap rates) instead of instantaneous forward rates. These models
were termed market models of interest rates and they were the direct inspiration for this

1See e.g. Skiadopulous et. al. [21] for an analysis of the dynamics of implied volatility surface given
by the S & P 500 options at the CME.
2See e.g. Miltersen, Sandmann and Sondermann [I9], Brace, Gatarek and Musiela [3] and Jamshidian
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paper: Here too, the aim is to directly model the implied volatilities as they are quoted
in the market and not some fundamental but unobservable quantity.

1.3. Structure of the paper. The stochastic volatility model is built up in several
steps, going from single options via a discrete term structure of maturities to a continuous
term structure of maturities.

After the introduction of the model setup in the next section, the main intuition is
discussed using a single traded European call option. The no-arbitrage condition on the
drift of the option’s implied volatility is derived, and we analyse the restrictions that have
to be imposed to ensure regularity of the option price at expiry. The smile- and frown
effect are analysed and it is shown how they can be incorporated using the volatility of
volatility and the correlation of the implied volatility with the share price.

In the following section the model is extended to a discrete term structure of option prices
and implied volatilities. We introduce the concept of a forward implied volatility and its
differences to the forward volatility found in Dupire [d]. Again no-arbitrage conditions
are derived and consistency conditions at expiry dates.

Then, this setup is extended to a continuous term structure of implied volatilities and
instantaneous forward volatilities. While this may seem more complicated in some re-
spects, in others it is more convenient as the process of the spot volatility arises naturally
from the model.

Furthermore it is shown in each section how this model can be implemented to price a
variety of exotic options, and also to price futures contracts on implied volatility. Such
contracts are traded on some exchanges, e.g. the VOLAX future at the DTB. The
conclusion sums up the results of this paper.

2. MODEL SETUP

2.1. Traded Securities. The model is set up in a probability space (€2, (F;)>0), @),
where the filtration (F;)(>0) is generated by the N + 1 - dimensional Brownian motion
(Wo, W) = (Wy, Wy... ,Wy) and satisfies the usual conditions. @ is the martingale
measure (or pricing measure) under which discounted price processes are martingales.

There are several liquidly traded securities: the underlying of the options S (called the
share price from now on), a set of European Call options with strike prices and maturitiesf]
{(Km,Tn) m < M}, and a riskfree investment opportunity (the bank account) with
constant interest rate r. To each state variable (time, share price, implied volatilities)
there is exactly one traded security (bond, share, traded options) so that the markets are
complete (assuming a nonsingular variance/covariance structure of the asset prices).

Market completeness distinguishes this model from the classical stochastic volatility mod-
els where the share is assumed to be the only traded risky security and therefore markets
are incomplete. On the other hand, by adding one traded derivative these models can

3The set of options will be a continuum in later sections.
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be completed, too. Here the traded standard options and their prices are taken as direct
input which has the additional advantage that no market prices of risk or preferences
have to be specified: The market price of risk can be implied from the observed prices.

We assume that the share price process can be represented as a stochastic volatility
lognormal Brownian motion:

(2.1) dS =rSdt + oSdW,

where o is stochastic. The drift of rS is imposed to make the discounted share price a
martingale, and given a positive price process for S a representation like (R.1) can always
be found. We will analyse the precise nature of the dynamics of ¢ later on.

The prices of the Call options are given by the Black-Scholes formula and option specific
implied volatilities 6(K,,, Ty,). The implied volatility is typically different across the
traded options. We denote with implied volatility the Black-Scholes implied volatility as
opposed to the actual volatility which is the volatility of the share price process.

As the model is not set up in a Black-Scholes world with constant share price volatility,
the Black-Scholes formula serves only as a convenient way of describing option prices
via the parameter . Typically, the implied Black-Scholes volatility ¢ of the options is
neither equal to the actual share price volatility ¢ nor to some expectation of it. There
are close links between actual and implied volatilities but they are more complex and
will be discussed in more detail later on. For now it is only important to note that it is
much easier to observe the value of the implied volatilities than the actual volatility.

We can restrict our attention to the Call option prices as Put option prices follow from
Put-Call parity:

C—-—P=S—Ke T,

Put-Call parity follows directly from a comparison of payoff profiles and therefore holds
independently of the distribution and dynamics of the share price or of possibly stochastic
volatility. Hence Call and Put options with the same maturity and strikes have to have
the same implied volatility.

2.2. Implied Volatilities.

2.2.1. Definition. The implied volatility ¢ of an option is implicitly defined as the pa-
rameter ¢ that yields the actually observed option price when it is substituted into the
well-known Black Scholes formula (together with time ¢, the price S of the underlying,
interest rate r and the parameters K, T of the option). The Black-Scholes formula is

(2.2) C(S,t; K, T;r,6) = SN(dy) — e "TDKN(dy),
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where the coefficients d; and dy are given by

g - mS/E) + (r + 50T —1)

1 ~

oV —t
]  In(S/K) + (r — 16°)(T — 1)
> ovVT —1

(N(z) is the cumulative standard normal distribution function.) The Black-Scholes for-
mula (2.2) is the solution to the well-known Black-Scholes partial differential equation

1
(23) 0=0C;+ 55'252055 +1rCyg—rC,

with the final condition C(S,T) = (S — K)* and appropriate boundary conditions at
S — 0and S — co. (To simplify notation we will write all partial derivatives as subscripts
from now on.) Note that the solution of this partial differential equation equals the
actually observed option price only for the implied volatility for this option. Similarly,
implied volatilities can also be defined for more complex options (e.g. American or Barrier
options) which still have to satisfy the Black-Scholes partial differential equation (2.3)
(unless there is strong path-dependence in the option price in which case the state space
will have to be extended).

It is common practice in futures markets to quote option prices not directly but in terms
of the implied volatility that has to be used in the BS-formula to reach the cash price of
the option. This relieves the market makers from the task to track every single movement
in the price of the underlying asset and enables the traders to concentrate on the option-
specific features.

2.2.2. Forward Options Prices. If instead of the spot price of the underlying the forward
price ' (with the same maturity 7" as the option)

(2.4) F(t)=eTYS(t),  dF =oFdW,
is given, then the modified model of Black [l] gives the forward option prices C' as

where the coeflicients d; and dy are now
g In(F/K) + $6%(T — t)

! oVT —1
.  In(F/K) — 16%(T —t)
2T 6T —1t ’

and the forward price C' of the option has to satisfy the forward version of the Black-
Scholes p.d.e.

_ 1 _
(2.6) 0=0Cy+ 5a—QFZCSS.

The Black formula remains valid for stochastic interest rates, and as long as share price
and interest rate process are independent, forward prices are martingales for all maturities
under the original martingale measure. This can be used to make the analysis independent
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of possibly stochastic interest rates, and the forward prices of the options and the share
can be approximated with the respective futures prices at very small errors.

2.2.3. Stochastic Implied Volatilities. In actual markets the implied volatility for a traded
option is by no means constant. We therefore specify the following dynamics for the
implied volatility of an option with maturity 7" and strike K:

N
(2.7) d6 (T, K) = u(T, K)dt + (T, K)dWy + Y _ v,(T, K)dW,,.
n=1
The implied volatility is driven by the Brownian motions Wy, ..., Wy and a term ydW,

that is driven by the same Brownian motion that is driving the share price. This can be
used to model the correlation between implied volatility and share price movements. Neg-
ative correlation of this type is frequently observed, especially at large down movements
of the share price there is an increase in the implied volatility.

To simplify notation we will write the N-dimensional Brownian motion W = (W, ... , Wy)?
and the volatility vector v = (vy,...vy) in vector notation such that equation (B.7) be-
comes

(2.8) do(T,K) = u(T, K)dt + ~(T, K)dWy + v(T, K)dW.

The implied volatility 6 and the diffusion parameters v, « and v are predictable stochastic
processes which can depend on the full state vector (S,t,d) consisting of share price S,
time t and all implied volatilities 6. To keep the notation clear only the dependence on
the maturity 7" and the strike K are shown explicitly.

To ensure existence and uniqueness of the process of implied stochastic volatilities the
diffusion parameters must satisfy certain regularity conditions which are given in the
following well-known theorem (see e.g. Karatzas and Shreve [[I8] p. 284ff):

Theorem 1 (Existence and Uniqueness). Let M be the number of traded options and let
X =(S,61,69,...,0) € RM*L be the state vector. Let T > 0 and

u(.,.) : [0,T] x RM™ — RM* and v(.,.) : [0,T] x RM+1 — [RMFIXN+1

be measurable functions satisfying

(2.9) u(t, z)| + [v(t,z)| < C(1 + [z)
for all z € RM*', t € [0,T] and some constant C, and

for all z,y € RM* t € [0,T] and some constant D.
Then the stochastic differential equation X (0) = Xy and

N
(2.11) dX =u(t, X)dt + > v(t, X)dW;,

i=0
has a unique t-continuous solution X (t;w) = (S(t;w),01(t;w), da(t;w), ... ,om(t;w))
each component of which is measurable, adapted and square-integrable.
This solution is called a strong solution.
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Because we absorbed the share price process into the state vector X, the Lipschitz growth
condition will have to be satisfied for the diffusion coefficients of .S, too. Specifically, the
regularity conditions of this theorem are satisfied if the diffusion coefficients of the implied
volatilities given in equation (R.7) are Lipschitz continuous, and if the spot volatility
process o is regular and some Lipschitz continuous function of the other state variables.

In this model the crucial problem will be to ensure regularity for the volatility ¢ of the
share price and regularity of the drift coefficients w,, of the implied volatilities 6. The
other coefficients will not pose any problems: The drift of the share price is given by
rS under the martingale measure, and the volatility of the implied volatilities can be
specified by the user.

3. MODELLING ONE IMPLIED VOLATILITY

3.1. No-Arbitrage Conditions. So far there are no provisions in the model to en-
sure that there are no arbitrage opportunities. The situation is similar to the situation
in the Heath-Jarrow-Morton [I4] model for interest rates: In both cases we have an
over-specified model with more securities than sources of randomness: in Heath-Jarrow-
Morton there is a continuum of bond prices (which are specified in terms of forward rates)
and only a finite number of Brownian motions driving the model, here we have a possibly
large number of option prices (in terms of implied volatilities) with again only a finite
number of Brownian motions.

The solution to this problem is in both cases to impose restrictions on the dynamics
of the factors that ensure that the discounted security prices are martingales under the
pricing measure. We will do this now for the case of only one traded option (and thus
also only one implied volatility).

3.2. Dynamics. To describe the dynamics of the option prices we will need the partial
derivatives of the option prices. These are for the Black-Scholes formula

n(d1)
Cs=N(d Coe = — 1
s =Nia) 5T ST — 1
C&:S\/T—tn(dl) O&&:S\/T_tn(dl)@
o

0 1

C, = — Sn(dl)U _ ’/“KG_T(T_t)N(dZ) Cgs = —ngn(dl).
24/T —t o
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And also Cx = —Cy, Cxx = Csg, Cr = —Cy. In forward prices the partial derivatives
are:

n(d)
FoyT —t
C’& :F\/T—tTl(dl) é&a :%F\/T—tn(dl)dldg

OF :N(d1> OFF -

= Fn(dl)& = 1
Cy=— ———= Cps ==dan(d
’ W re == dyn(d1)
again with Cx = —Cp, Cxg = Cpp, O = —C,. Here N(z) is the cumulative standard
normal distribution function and n(x) = \/%e*"”z/ 2 is its density.

Using the dynamics of the implied volatilities and of the share price we can now derive
the dynamics of the option prices that are implied by these dynamics using [t6’s lemma:

1
dC =Cydt + CgdS + §U2SQCSsdt
1
(31) + Csdo + EC&&d <> +4Cgsd <6,5> .
3.3. Drift Restrictions. For absence of arbitrage we need that the discounted option
price process has zero drift under the martingale measure, or equivalently that it has
drift »Cdt if it is not discounted. The drift component of C' is according to (B.1]) given
by
1
rCdt = E[dC | =Cydt + rSCsdt + 50252055&
1

(3.2) + Cudt + §C&&v2dt + CssyoSdt.

To simplify notation all dependencies on (S, ¢,6; K,T) in 6, u, v and 7 have been dropped.
Furthermore we will write

N
(33) =) v
n=1

for the volatility of the implied volatility, and
(3.4) f=W(F/K), s:=W(S/K), 7:=T—t.
Equation (B.2) can be reduced using the Black-Scholes partial differential equation (2.3):

1
0=(Cy+rSCs + 5&252055 —rCys) dt
1
+ <§(0'2 - 5’2)52055

1
(35) + C&U + 50&&1}2 + 70’505&) dt,
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whence we can derive the no-arbitrage drift of the implied volatility of the option:

1
(3.6) T (((32 — 0%)S2Cs — Crav® — 2705035,).
For European call options the no-arbitrage drift restriction is expanded to
1 1 d
(37) ou 25(62—02)—§d1d2v2+\/—2?07.

It is necessary for absence of arbitrage that this restriction is satisfied for all options at
all times (Q— almost surely). Note that the restriction (B.7) has to hold for each implied
volatility and its diffusion parameters individually. If we have several traded options we
will also have a set of restrictions, one for each drift parameter. Not surprisingly, we also
get the same restriction when the derivation is taken via the forward options prices C.
Here we have to impose that C' has no drift under the martingale measure, which will

yield equation (B.7).

3.4. Volatility Bubbles at ¢t = T'. Examination of equation (B.7) shows several inter-
esting features of the stochastic implied volatility:

e If the implied volatility is constant (i.e. v = u = v = 0), the drift restriction is
only satisfied if 6 = ¢. In this case the option price must be given by the standard
Black-Scholes equation with the correct implied volatility.

e The implied volatility ¢ has a mean fleeing behaviour which is shown in the term
with (6% —¢?) (‘mean fleeing as opposed to ‘mean reversion). The further it is away
from the spot volatility o the more it is pushed away from it.[|

e The speed of the mean-fleeing behaviour seems to go to infinity as ¢t — 7. This
means that the solution to the stochastic volatility equation will blow up as ¢t — T
unless there is another force counteracting it.

3.4.1. The Case of Constant o. The reason for the mean-fleeing behaviour becomes clear-
est in the situation of constant o (i.e. the classical Black-Scholes world) but with &
different from o, and possibly stochastic. This is clearly a situation with arbitrage op-
portunities because by Black-Scholes the option prices should exhibit a constant implied
volatility of . This arbitrage manifests itself in form of a volatility bubble.

If the implied volatility is too large (6 > o) the option is too expensive compared to
its Black-Scholes price, and the dS-component will have a negative contribution to the
expected growth rate. This must be compensated, and the only possible compensation
would be through a locally expected increase in the implied volatility. This would push
it even further away from the correct level of ¢ = o.

The whole mechanism is very similar to a price bubble in general equilibrium theory.
There prices are moved further and further away from their fundamental value because
the agents expect them to do exactly this. As long as agents expect this to go on the
wrong valuation can be sustained.

4As dy and do also contain terms in & this statement will have to be modified slightly.
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Here we have a bubble in the option price which is driven by the dynamics of the implied
volatility. The initial option price is wrong but it does not revert to its correct value
because the implied volatility grows. This pushes the option price even further away
from its correct value which in turn requires an even larger drift in the implied volatility
to sustain.

Because we have a finite time-horizon the bubble has to burst at the maturity of the
option. This is where the drift of the implied volatility explodes but even an infinite
implied volatility cannot support the incorrect option price. The discounted option price
loses its martingale property at this point and the solution to the s.d.e. for the implied
volatility ceases to exist. (The Lipschitz growth condition (2.9) in theorem [[ is not
satisfied.) Thus the only specification of & that prevents volatility bubbles is to set
0 = o = const.

3.4.2. The Case of Time-Dependent o(t). As a further example let us consider the case of
a time-dependent (but non-stochastic) spot volatility function o(t). Here it is well-known
that the correct specification of the implied volatility for any option with maturity 7" is
given by the average future volatility

~2 1 T 2 d
(3.8) 6" =5y t o*(s)ds.
The dynamics of the implied volatility can be inferred from equation (B.§) by taking the
time-derivative of v/&2:

do 1 1 9
(3.9) a_2(3T—t(U —0°),
which is in exact accordance with the drift restriction (B.7). Conversely, the average future
volatility (B.§) is the only solution of (B.7) that remains finite at 7. A specification of
implied and spot volatilities should therefore obey some relationship that ensures that
the implied volatility is (close to) the expected average spot volatility over the remaining
lifetime of the option.

3.5. No-Bubbles-Restrictions. Bubbles in the implied volatilities are an undesirable
feature of any pricing model and comparable to the presence of arbitrage opportunities.
Therefore restrictions have to be imposed to prevent bubbles from occurring. This can
be achieved by using the last degree of freedom that is left in the model: the stochastic
process of the spot volatility o.

The explosion at time T' of the drift of the implied volatility is caused by the terms in
1/(T —t) in equation (B.7). Noting that d; and dy also contain terms of 1/y/T —t we
must therefore require that

1 1 1 ds
3.10 li — (62 = 0%) — —=dydv* + — < Vo
(3.10) s {Q&T—t(g o)~ gpdidat” = 0y < o0 7

and that ¢ remains bounded a.s., too. Then the s.d.e. for the implied volatilities &
still has a unique and bounded solution and all price processes are well-specified and
arbitrage-free.
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As equation (B.10) contains only terms in 1/(T —t) it is sufficient to have linear conver-
gence to zero of the term in the curly brackets, i.e.

(3.11) {(&2 — 0?) — dydo(T — )0 + 2do/T — 1 m} —O(T—t) as t—T.
Noting that
. : 1.8
lim divVT —t = limdovT —t = —In(—)
t—T t—T o K
this simplifies in the limit of t — T to
(3.12) 6%0% — 2vfo0 —6* + f20? = 0.
Equation (B.12) can be viewed as a quadratic equation for the spot volatility o or as a

fourth order polynomial equation for the implied volatility 6. The equation for the spot
volatility has the roots

a9 BTN o ooy

Here the positive root has to be taken to ensure a positive relationship between ¢ and o.

Although there are closed form solutions for the full fourth-order polynomial equation
(B-12) for &, here we only consider the case of ¥ = 0. Then (B.I3) has the root:

1 4
(3.14) 67 = 50"+ ’/UZ + 22,

(The other root would yield a negative value for 62.)

Equations (B.13) and (B.14) have several consequences:

e For nonstochastic 7, i.e. v =~ = 0, the spot volatility equals the implied volatility
o = ¢ in the limit as maturity approaches. For times before maturity the process
of the spot volatility follows from the rate of change of the implied volatility via
equation (B.7).

e Stochastic implied volatilities require stochastic spot volatilities. Otherwise the spot
volatility o could not converge to its limit as it is required in equation (B.I3).

e For a given maturity 7" and different strike prices K and K’ the limits of the implied
volatilities ¢(K') and 6(K') as t — T are linked by (B.I4). This yields an implied
volatility structure that exhibits the smile effect as shown in figure [I.

e The extent of the smile effect is directly related to the volatility of volatility v
Thus v? need not necessarily be estimated from historical data, it can also be fitted
to an observed market smile.

e Similar to the smile effect, a 'sneer’ (i.e. asymmetry in the implied volatilities) can
be incorporated using ~.
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FIGURE 1. Implied volatilities as t — T. Parameter values: S = 100,
c=02,v=01,v=0

3.6. Specification of the Spot Volatility Process. There is considerable freedom in
the choice of the specification of the spot volatility process provided equation (B.13) is
satisfied as maturity is approached ¢ — T. Apart from this there is a unique specifi-
cation of the spot volatility process for any given drift of the implied volatility under
the martingale measure. Here it should be noted that the specification of the drift of the
implied volatility under the martingale measure need not necessarily agree with empirical
observations, as this drift will typically contain a risk premium.

Assuming one would like to specify the drift of the implied volatility as a function
u*(d,...) of the implied volatility (and possibly other parameters) the process of the
spot volatility has to be chosen such that equation (B.7) is satisfied, i.e.
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This is a quadratic polynomial in ¢ and its solution is

0 = yda\/T + {(32 — 276u* + Tday(7Pdy — Ule)}%
(3.15)

1 521 11
o=2r-Th+{or 2o+ - T 2w - ot |
So, given a specific u*, the spot volatility process that is consistent with u* is given by
equation (B.13). The approach taken here is exactly the opposite of the classical stochastic
volatility models. There, after specifying the dynamics of the spot volatility process, the
option prices and implied volatilities are derived. Here we specify the process of the
implied volatility and derive a consistent spot volatility process. As the spot volatility
cannot be observed directly this seems to be a more pragmatic approach.

One natural specification would be to choose u* = 0, i.e. the implied volatility is a
martingale. This, and zero correlation v = 0 would yield

v? 1
(3.16) o’ =6"— (f2 — —7254) :

o 4
Here again we can see, that ¢ and & can be constant only if both are equal. Which
of the specifications for the drift of the implied volatility to choose remains part of the
modelling problem.

3.7. Implementation of the One-Factor Model and the Pricing of other De-
rivative Securities. By a suitable choice of the spot volatility process o(7,5,S5) as a
function of the state variables time (as time to expiry 7), implied volatility ¢ and share
price (as log-moneyness f) any drift can be supported for the implied volatility process,
and the model even keeps its Markovian structure. This makes the implementation of
the model in a tree- or Finite-Difference-based algorithm possible, without needing to
recourse to Monte-Carlo methods.

There are two state variables: share price S and implied volatility . The dynamics of
these two state variables under the martingale measure are:

(3.17) dS =rSdt+o(r,5,5)dWy
(3.18) do = u*dt + yvdWy + vdW;.
(Without loss of generality we can collapse the N Brownian motions W7, ... Wy to one.)
Similar to the argument used in the derivation of the drift restriction on the implied
volatility, we can derive the restriction on the drift of the price P(.S, d,t) of any derivative

security that is not strongly path dependent. This price can be expanded using Ito’s
lemma and it turns out that it must satisfy the following partial differential equation:

1
0=P —rP+rSPs+ 502(7, 5,5)5%Pgg

1
(3.19) +705Pos +u"Ps + S0* Py,
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with appropriate final- and boundary conditions. The price of the security could be
written as a function of the state variables because of the Markovian nature of the model
setup.

The correct specification of the boundary conditions and the solution of partial differential
equations like (B.19) with finite difference methods is now standard in options pricing
theoryf].

The pricing becomes particularly simple if the payoff does not depend on the share price,
like in the case of the implied volatility futures contract VOLAX at the DTB. Here the
payoff at time 77 is proportional to the weighted average of the implied volatilities of a
basket of at the money options with maturity 7, > T;. If one simplified the basket of
at the money options to one pre-specified option, then the payoff is simply the value of
a(1y) at time T5.

The price of this security is the expected discounted value of the payoff, thus
(3.20) P(t) = e " MIE [ 5(T1) | = e (50 + E [ T ytds ]).

The price of the volatility future depends directly on the specification of the drift of the
implied volatility under the martingale measure. Thus it is undetermined as long as the
process of & is not determined. This can be done either by specifying a process for the
spot volatility o and then deriving the process that the implied volatility ¢ has to follow,
or by directly specifying the process of the implied volatility 6. Furthermore, equation
(B-20) can be used to fit u* to the price of a volatility futures contract.

4. STOCHASTIC FORWARD VOLATILITIES

If implied volatilities are given for several options with increasing maturities Ty, Ts, ... T,
is given, the structure of the implied volatilities can be analysed more clearly if forward
implied volatilities are used.

4.1. Change to Local Variances. It is more convenient for the following sections to
change the setup from modelling the implied volatility ¢ to the modelling of its square,
the implied variance 62. With the definition

(4.1) do = udt + vdW + vdW,
[t0’s lemma yields:
(4.2) d6* = (26u + v? 4+ %) dt + 260dW + 26vd W,
which can be expanded to
(4.3) de? = Udt + 26vdW + 26vdW,

1 2dy
T—t VT —t

Equation (£4) is the no-arbitrage restriction on the drift U of 5.

(4.4) U= (62 — %) + (1 — dydy)v* + o + 2.

°See Wilmott et. al. [23] for an applied introduction.
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4.2. Forward Volatilities. Using the implied variance the concept of a forward implied
volatility is easily explained: If the share price S follows a geometric Brownian motion
the variance of the log of the share price at time T is

(4.5) E[(InS(T)—InS(t)?] = (T —t)o*

If there are two implied volatilities 67 and &2 for the maturities Ty < Ty, the forward
volatility 612 over the time interval (77, 75] is defined as

(4.6) (T, — )63 = (Ty — )62 + (Ty, — T1) 6%,
This can be rearranged to yield

. 1 . .
(4.7) O1y = T (1o = t)o3 — (Th — t)57) -

Just like the implied volatility ¢; gives an indication of the market’s expectation of the
average volatility of the share price process until 77, the forward volatility 715 gives
an indication of the expected volatility in the time interval [T7,T5]. If the volatility of
S jumps from &; to G19 at T3, then the log share price In S(75)/S(t) has the variance
(T, — t)o3, which is consistent with the second implied volatility &.

While this interpretation with time-dependent volatility gives a good intuition of the
workings of the model, it is not exactly true for stochastic volatility.

Furthermore, the forward implied volatility is different from the forward volatility and
the forward contract on realized volatility introduced in Dupire [0, 9]. Dupire’s forward
contract on volatility captures the market expectation of the realized volatility of S over
the relevant interval, while the definition above uses implied volatilities from options
prices. In a stochastic volatility environment implied volatilities and expected realized
average volatilities do not coincide, and forward implied volatilities and forward contracts
on realized volatility differ, too.

The difference is easily seen for the implied volatilities: The option price is E[ C(0) |,
the expectation of the price of the option as a function of some stochastic spot volatility
0. By definition of th implied volatility this must be equal to C(5). Because C is a
nonlinear function, E[ C(0) | is not equal to C'(E[ o ]). Therefore the expected average
volatility E[ & | is not equal to the implied volatility 6. The same argument applies to
forward volatilities, too.

4.3. Forward Volatility Model Setup. We assume that we are given a set of option
maturities 71,75, ... Ty, the implied volatility &, of the first option (i.e. the option
with maturity 77), and the forward volatilities &; ;41 for the later intervals [T}, T;44], @ €
{1,... ,M —1}.

The dynamics of these variables and of the share price S are

dsS = rSdt +0SdW,
(4.8) do? = U,dt +y1dWy +udW
d6z'2,z‘+1 = Upindt +viipdWo v 0dW
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for alli € {1,..., M —1} where again dWV is the increment of a N-dimensional Brownian
motion and the volatility parameters v are in vector form. Given this specification the
values and dynamics of the (direct) implied volatilities can be derived using the following
relationships

-1
R 1

(49) O'T2L = Tn — Tl _t 2:: i+1 H+1

1 i n—1 T
410 s —— QT_tA T;, _E 1,1
(4.10) 7 %6 (Th — 1) (Th —t)orm + ;( +1 )Vii+1

. - o1 .
(411) Up = m 2(T1 - t)O'lUl + ;(ﬂ+1 - ﬂ)vi,i+1

These parameters will be needed in the drift-restrictions on the forward volatilities in the
next section.

4.4. No-Arbitrage Dynamics of the Forward Volatilities. From the definition ([.7)
it is now easy to derive the arbitrage-free dynamics of the forward volatilities. The
dynamics must satisfy:

. 1 . .
(4.12) d(61,) = [d (T2 = 1)63) — d ((Ty - )a7)]
T, — T
where the 62 follow the arbitrage-free dynamics of equation ([.4). This is expanded to
(413) da'%Q = Ulgdt + U12dW + ’}/12dW0
1 N .
= T2 — Tl [(TQ - t)Ug - (Tl — t)Ul - (O'g - O'%)]dt
1
+ T2 — Tl [(TQ — t)UQ — (Tl — t)l)l] dW
1
+ T, [(Ty — )2 = (Ty — )1 ] dW.

Substitution from the arbitrage-free dynamics of the plain implied volatilities (f.4) yields
the drift Uyp of the forward volatility 63,.

U =% (Ty — U, — (Ty — U, — (65 — 67)].
- T2 _ Tl [TQUS(]- - d21d22) - 7—1'1]%(1 - dlldlg)
<4'14> + 2‘7<d22\/7T2’Y2 - d12ﬁ71) + 7'2”)/22 — Tl’y%]

For absence of direct correlation between volatility and share price v; = 0 = 5 it takes
a particularly simple form

1

4.15 Uis =
(4.15) 2=

[(TQ — t)Ug(l — d21d22> — (Tl — t)U%(]_ — dlldlg)} .
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This restriction must be applied to the drift coefficients of the forward volatilities, and in
addition to this the restriction in equation (B.7) must be satisfied by the first volatility
01. The remarks and the modelling strategy of the previous section still apply to the first
implied volatility &1, we have just extended the model using the forward volatilities for
later maturities.

Note that there are no regularity problems in equations (f.14) and (£.15). The implied
volatilities for time intervals in the future are not directly connected to today’s spot
volatility and therefore there is no need to achieve direct consistency between both.

4.4.1. Implementation Strategy. For the implementation of a stochastic implied volatil-
ity model with forward volatilities a Monte-Carlo (MC) simulation is the appropriate
method. First, the problem will be in at least three dimensions (share price and two
implied volatilities) and MC methods are superior for higher dimensional models, and
second there will be path-dependence in the model (e.g. through the summation terms
in (£.9)) which makes tree- and p.d.e.-based methods infeasible.

The implementation will have to be done in several steps: First, the dynamics for the
spot volatility ¢ have to be derived using the implied volatility ¢; with the shortest time
to maturity 7 and its no-arbitrage drift u*. This is done exactly as in the previous
section. This will yield the dynamics of the short end of the term structure of volatilities
day, of the spot volatility do, and of the share price d.S.

Given this specification and the volatilities 7; ;+1, v; ;11 of the forward implied volatilities
0ii+1, the drifts U; ;41 of the forward implied volatilities can be derived using equations

(E14) and (F.13) in conjunction with equation ([.§).

Now all dynamics are specified and the MC simulation can be run until maturity 77 of
the shortest option. At T3 the first option disappears and the role of the shortest option
01 in the specification of the spot volatility is taken over by the next maturity 75 and
the respective implied volatility do (which coincides with 12 at this point).

4.5. A Continuum of Forward Volatilities. In practical applications there will only
be a discrete set of available options (and thus of forward volatilities), nevertheless it has
some advantages to analyse the case when there is a full term structure of options. The
regularity problems will be resolved very elegantly and the relationship between spot and
implied forward volatilities will be uniquely determined, thus removing some potential
for misspecification of the drift of the first implied volatility u] in the case of discrete
options maturities.

Given a continuous set of implied volatilities 62(¢,T) for all maturities T > ¢ we can
define the forward volatilities 67(t, T) with

1 T

4.16 52(t.T) = ——
(416) PT)= 5= |

57 (t, s)ds
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and equivalently

(4.17) o3 (t,T) = a% (T —t)6*(t,T)],

which is the continuous analogue to equations (.9) and (£.7). The spot volatility at time
t (for which we had to make assumptions earlier on) is now given directly by the limit
of the implied volatilities as T\, t through equation (B.I3). We define the short implied
volatility

(4.18) 6(t) = lim 6(1,7)

and define f(t),~(t) and v(t) analogously. Substituting into (B.I3) yields the spot volatil-
ity

a(t)
The spot volatility must assume this value to ensure absence of arbitrage in the limit

of the very short maturity option. For options at the money (f = 0) this reduces to
o(t) =a(t).

The dynamics of the 6]2@(t, T) are defined in analogy to equation as
(4.20) doF(t,T) = Us(t,T)dt + vs(t, T)dW + ~5(t, T)dWy,

(4.19) o) = L8 \/ o0~ L5 0 - 720

and again (given sufficient regularity to interchange the order of integration) we can
recover the dynamics of the implied volatilities 6%(¢,T') in analogy to equations (F11])

and (f.16):

(4.21) v(t,T) = 2T t1)6(t T /t vr(t, s)ds
(4.22) o1, T) = (T_tl)& T /t vy (t, 5)ds.

4.6. No-Arbitrage Dynamics of the Forward Volatilities. The restriction on the
drift Uy (¢, T') of the continuous forward volatility (¢, T") follows from the discrete case. In
the restriction (f.14) on the drift Uj, of the discrete forward volatility 15 we let maturity
T, approach Ti, i.e. the limit as T5 \ 7} =: T'. This yields:

1 . .
= g (T 0 (= 0~ 3 o0)
Ue(t,T) = lim Uy,
To\T1
d

(4.23) (T —-0)U(t,T)—6%(t,T)].

T dT
The no-arbitrage drift U(¢,T") of the T-maturity implied volatility is given in equation
(B.4) which makes the evaluation of ({.23) a matter of straightforward but tedious algebra.
Alternatively one could perform the differentiation in (£.23) numerically when the model
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is implemented. This can be done without major losses in accuracy as most of the
parameters have to be evaluated numerically, anyway.

Although the expression (f.23) for the drift restriction looks rather complicated, it is still
preferable to the drift restrictions derived by Derman and Kani [6] in a similar context.
Derman and Kani derive drift restrictions on the conditional local volatility of the share
price, and the restrictions involve a double integral of which one is infinite. Here we have
an (admittedly complicated) expression in elementary functions with only finite integrals
of the relevant parameters from ¢ to 7' like they also appear in the interest-rate model of
Heath, Jarrow and Morton [14] which was the inspiration for this model.

4.7. Implementation. The implementation of the continuous-maturity version of the
model is very similar to the MC implementation of the discrete-maturity model of the
previous section. The only difference is, that we are now relieved from the task to specify
a drift u* for the first implied volatility to recover the spot volatility . Now the spot
volatility is given directly by equation (.19) which in turn defines the share price process
dS = rSdt+ oSdW,.

For the forward volatilities 6¢(¢,T") we have to specify the initial values 64(0,7), their
volatilities v(¢,T) and their correlations «(¢,T) with the share price. The drifts follow

from equation (£.23).

Now the model dynamics can be simulated using standard MC techniques. Here after
each time-step the new drift restrictions have to be calculated.

5. CONCLUSION

In this paper a class of stochastic volatility models was presented that is based on implied
volatilities that are observed in the prices of liquidly traded options. It was shown how
to derive a consistent spot volatility process and which restrictions have to be satisfied
to ensure absence of arbitrage in the model.

The approach taken here is fundamentally different from classical stochastic volatility
models where the spot volatility is taken as fundamental variable, and we believe it has
several advantages:

First, for the implementation of the model the estimation of the relevant parameters
(the volatility of the implied volatility) is much facilitated because implied volatilities are
directly observable in market prices.

Secondly, the model will be automatically fitted to the fundamental options prices, and
the additional information that is reflected in their implied volatilities is also incorporated
in the model. This ability to fit is only comparable to models of the implied-tree class,
but this model incorporates stochastic dynamics which most implied tree models do not.
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Third, the extension of the model to a multifactor setting has been demonstrated. In its
multifactor versions (either with discrete or with continuous sets of implied volatilities)
the model is capable of reproducing much richer dynamics than one-factor models.

The stochastic implied tree model by Derman and Kani [6] is the one that is closest
in scope and philosophy to this model. Nevertheless, the reader will have realized by
now that there are fundamental differences between both approaches, most importantly
the no-bubbles restrictions (which are not in Derman and Kani) in this model and the
market-based approach (as opposed to Derman and Kani’s "effective volatility’ approach).

Although the analysis in this model is based on European Call options, the methods
presented can also be used with the implied volatilities of other options (e.g. options of
American type) as underlying factors. Then, the partial derivatives of the options are
needed to derive the no-arbitrage drift restrictions (like it was done in section 3.3), but
qualitatively the model would not change.

Another interesting extension of the paper would be the incorporation of independent
dynamics for options of the same maturities but different strike prices. The problem here
is that the no-bubbles restrictions still must be satisfied as maturity approaches. Thus
the final value for the implied volatilities would be pre-determined (via the value of the
spot volatility and equation (B.13)). Further research will have to show whether there is
a sufficiently simple way to ensure the final condition while still allowing richer dynamics
within the smile.
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