
 Multi-Fractal Processes as Models for Financial Returns:

A First Assessment

Thomas Lux*

Abstract: Multi-fractal processes have been proposed as a new formalism for modeling the time
series of returns in finance. The major attraction of these processes is their capability of generating
various degrees of long-memory in different powers of returns - a feature that has been found to
characterize virtually all financial prices. Furthermore, elementary variants of multi-fractal models
are very parsimonious formalizations as they are essentially one-parameter families of stochastic
processes. The aim of this paper is to provide a first assessment of the goodness-of-fit of this new
class of models by applying them to four long time series from different financial markets (one
exchange rate, two stock market indices and the price of gold). Our results are very encouraging
in that the estimated models provide an astonishingly good fit to the unconditional distribution of
the data and do even outperform estimates from a GARCH(1,1) specification. However, we also
remark that a trade-off exists between goodness-of-fit for the unconditional distribution and the
capability of the estimated processes to match the autocorrelation patterns of various moments.

Keywords: multi-fractality, long-range dependence, Hölder spectrum

JEL classification: C20, G12

* Helpful comments by and discussion with Angela Hilgers, Fran�ois Schmitt and Dietrich Stauffer
are gratefully acknowledged

July 1999

Address of author:
Department of Economics, University of Bonn, Adenauerallee 24 - 42, D-53113 Bonn,
Tel. +49-228-73-9519, Fax: +49-228-73-7953, E-mail: lux@iiw.uni-bonn.de



2

1. Introduction

While so-called uni-fractal or self-similar processes (like fractional Brownian motion) have been
known for quite some time in the stock market and exchange rate literature, more general multi-
fractal processes have only been considered as candidate generating mechanisms for financial prices
very recently. After some earlier attempts at recovering traces of multi-fractal behavior (Vassilicos,
Demos and Tata, 1993, Ghasghaie, S. et al., 1996) this topic has been taken up in a couple of recent
papers. Among these contributions, Schmitt, Schertzer and Lovejoy (1999) and Vandewalle and
Ausloos (1998a, b) also concentrate on statistical analyses which aims at demonstrating the multi-
fractal nature of various financial records, while Mandelbrot, Fisher and Calvet (1997) proceed one
step further by proposing a compound stochastic process as a generating mechanism of stock returns
and exchange rate changes in which a multi-fractal cascade plays the role of a time transformation.
The message of these papers is quite unequivocal in indicating that the data under consideration
consistently exhibit features that have been found to characterize multi-fractal processes in other
environments (e.g. statistical analyses of turbulence1). However, the methods employed by these
authors differ quite fundamentally from the usual techniques used to estimate and evaluate time
series models in economics. Although a comparison of simulated multi-fractal processes with
empirical data (Fisher, Calvet and Mandelbrot, 1997; Mandelbrot, 1999) suggests that they are, in
fact, able to reproduce to a large extent the empirical characteristics of financial returns, no
assessment of goodness-of-fit is tried in these papers. A comparison of the performance of multi-
fractals with, for example, GARCH processes as a candidate alternative, is hampered by the fact, that
‘time series’ of multi-fractal processes are generated by algorithms that are of a combinatorial nature
(see below for an example) rather than iterative mechanisms. Nevertheless, in order to get some
impression of the explanatory power of this new model, some efforts towards an assessment of its
goodness of fit beyond visual arguments seems indispensable.

The purpose of this paper is to go one (modest) step towards such an assessment of the empirical
performance of multi-fractal cascade models. To this end, we estimate the parameters of simple
multi-fractal processes for the time series of daily variations of various financial data from different
sources: two stock market indices (the German DAX and the New York Stock Exchange Composite
Index), an exchange rate (Deutsche Mark/U.S$), and the daily price of gold from the London
Precious Metal Exchange.2 Although we consider rather long time series (extending over several
decades in all cases), we find that even the most simple one-parameter models of the multi-fractal
type can provide a perplexingly good fit to the unconditional distribution of the data. In formal
terms, even with estimation of only one parameter, we would often not reject the hypothesis that the
empirical data and synthetic data from the pertinent cascade model share the same unconditional
distribution when performing tests of the Kolmogorov-Smirnov type. Comparing the performance of
the new model with that of its main competitor from the econometrics literature, the GARCH model,
we find that the multi-fractal cascades outperform a GARCH(1,1) specification in terms of the
Kolmogorov-Smirnov statistic.

However, the main attraction of multi-fractal processes is their capability of matching elementary
properties of the conditional distribution, i.e. long-term dependence in various powers. When
comparing the theoretical autocorrelation structure of our estimated cascade models with descriptive

                                               
1 The similarities in the time series characteristics of financial data and data from turbulent flows has

stimulated a discussion about similarities in the generating mechanisms among physicists, cf. Vassilicos,
1995; Gashghaie et al., 1996, and Mantegna and Stanley, 1996.

2 Details on the time horizon and length of each series can be found in Table 1.
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empirical statistics (Hurst exponents and fractional differencing parameter), we find that there is a
certain trade-off between achieving goodness-of-fit for the unconditional distribution and the task of
matching the autocorrelation patterns of various moments. In particular, the best fits of the empirical
density come along with an unrealistically high degree of long-term dependence in squared and
absolute returns.

2. The Multi-Fractal Model 3

The multi-fractal model put forward in Mandelbrot, Calvet and Fisher (1997) postulates that returns
{ r(t) } follow a compound process:

  (1) r(t) = BH[θ(t)].

In this notation, BH[ ] is a fractional Brownian motion with index H, and θ(t) is the distribution
function of a multi-fractal measure which plays the role of a time-deformation. Both component
processes are assumed to be independent of each other. With a time-homogeneous Brownian process
BH, the multi-fractal measure, θ(t), is responsible for changes in the scale of the fluctuations which
may generate heteroscedasticity of the overall dynamics. In contrast to the GARCH model and its
descendants, the above cascade model is scale-free and, therefore, one and the same specification can
be applied to data of different sampling frequencies. This feature is highlighted by Fisher, Calvet, and
Mandelbrot in their analysis of both high-frequency and daily returns of the Deutschmark/U.S.$
exchange rate.

The physics literature knows several models of multiplicative cascades which could be used for
concretizing the time-transformation θ(t). Mandelbrot, Calvet and Fisher focus on the so-called
Binomial and Log-normal cascades, while Schmitt, Schertzer and Lovejoy (1999) estimate the
parameters of the Log-Levy model for a number of foreign exchange rates. To get a basic idea of
this approach, it is useful to first have a look at one of the simplest cases, the Binomial model.

In their original form, multi-fractal cascades are operations performed on probability measures. The
‘cascade’ starts with assigning uniform probability to the interval [0,1]. In the first step, this interval
is split up into two subintervals of equal length, which receive a fraction p1 and 1 - p1, respectively,
of the total probability mass. In the next step, each subinterval is again split up into two subintervals,
which again receive fractions p1 and 1 - p1 of the probability mass of their ‘mother’ intervals. In
principle, this procedure is, then, repeated ad infinitum. The successive results of this splitting
process at steps 2,  6, and 12 are shown in the first three panels of Fig. 1. The lower panel shows an
example of a compound process where the same cascade is used as a time transformation and the
index of the Brownian motion is H = 0.5.

Insert Fig. 1 about here

It is easy to envisage more or less complicated variants of this general procedure: first, the
probabilities could be assigned in a systematic fashion (e.g. always assigning probability p1 to the left

                                               
3 Tel (1988), Falconer (1990) and Evertz and Mandelbrot (1992) are recommendable introductory sources to

multi-fractal processes.
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hand descendant and 1 - p1 to the right-hand descendant of a mother interval). Alternatively, this
assignment could be made randomly, which is the case in the illustration in Fig. 1. Going beyond the
Binomial model, one could think of more than two subintervals to be generated in each step (which
leads to multinomial cascades) or of generating  random numbers for p1 in each step instead of using
the same constant value in each iteration. The Log-normal and Log-Levy models mentioned above
are examples of the latter type of multi-fractal measures.

In order to present the distinguishing features of multi-fractal measures, we first note that the scaling
of the measure, denoted by µ, within some small box of size ε, obeys a law of the form:

(2)  µ([0,ε] ∼  εα   for ε →  0.

The exponent α in eq. (2) is known as the Hölder exponent and may be obtained as:

(3)  α = 
ε

µ ε
ε→ 0

0
lim

log ([ , ])
log

.

While uni-fractal measures are characterized by one single Hölder exponent4, for multi-fractal
measures (like the ones resulting from the above cascade models), the Hölder exponent is not
unique. The behavior of such measures can, thus, only be described by the distribution of their
Hölder exponents. This distribution is denoted as the multi-fractal spectrum f(α).

Denoting by N iε α( )  the subset of intervals of length ε with a certain Hölder exponent αi, it can be
shown that for ε -> 0, this number behaves like:

(4) N iε α( )  ∼  ε α− f i( ) .

f(αi) can, then, also be interpreted as the fractal dimension of the subset of boxes carrying Hölder
exponent αi. Eq. (4) suggests that the spectrum f(α) may be estimated  by a box-counting algorithm
for N iε α( ) . In fact, this line of attack is pursued in several applications in the natural sciences as
well as in an early application of the multi-fractal framework to economic data (Vassilicos, Demos
and Tata, 1993).

Another approach for determining f(α) is known as the method of moments. Here, one considers the
quantities:

(5) S q( , )ε  = 
j

N

j
q

=
∑

1

( )ε
µ ,

which give the sums over all boxes of the q-th power of the mass contained in each box, i.e. the q-th
moment of the measure. The sum in eq. (5) can be written as the sum of the product of boxes
N iε α( )  times the q-th power of their pertinent mass εα i :

                                               
4 The concept of the Hölder exponent is, therefore, a generalization of that of the Hurst exponent which is used

for the  single exponents of uni-fractal processes.



5

(6) S q( , )ε  = N i
q

i
iε

αα ε( ) ( )⋅∑  = εα αi iq f

i

⋅ −∑ ( ) .

For different powers q, different elements give the dominating contribution to the sum on the right-
hand side. Hence, replacing measures by distributions, it turns out that the dominating contribution
to different moments comes from different fractal subsets of the support. Considering a multi-fractal
distribution as a mathematical model of financial returns, this finding can be related to the well-
known differences in the behavior of various powers of returns.

In order to get a handle on the behavior of the so-called partition functions S q( , )ε , we can replace
the whole sum by its dominant contribution leading to (cf. Tel, 1988, or Evertz and Mandelbrot,
1992):

(7) S q( , )ε  ∼  ετ( )q   with: τ(q) = 
α

α αarg min[ ( )]q f− .

After computing an estimate of the empirical analogue of τ(q), i.e. the empirical scaling function of
moments, f(α) can be obtained from (7) by way of a Legendre transformation:

(8)  f(α) = 
q

q qargmin[ ( )]α τ− .

Redefining τ( )q q Hq= ⋅  - 1, we can highlight the key difference between uni-fractal and multi-

fractal processes: for the former Hq is a constant and, hence, τ(q) is linear in q. Multi-fractal
processes, on the contrary are characterized by continuously changing Hq and hence, a nonlinear
development of τ(q). It is this feature which makes these later formalisms an attractive model of
financial returns. In fact, variability of H over various powers has been found to be a pervasive
feature of financial data. The first systematic inquiry into the behavior of various measures of long-
term dependence with varying powers q has been contributed by Ding, Engle and Granger (1993)
and their findings have been confirmed in a number of other studies recently (Lux, 1996; Mills,
1997). The consensus now is that this feature appears in virtually all financial prices (Anderson and
Bollerslev, 1997; Lobato and Savin, 1998). It is noteworthy that, although the above authors did not
refer to multi-fractality in their papers, they did already point to empirical regularities of the type
depicted in eq. (7) that are consistent with the multi-fractal model. Their basic message is, therefore,
very similar to that of the recent contributions from physicists (Schmitt, Schertzer and Lovejoy,
1999; Vandewalle and Ausloos, 1998a, b) who, however, concentrated on deriving the spectrum of
Hölder exponents (eq. (8)). As the f(α) spectrum and the scaling of moments are related by the
Legendre transformation, the finding of a non-trivial spectrum confirms what has been found to be a
salient feature of the data in the economics literature. The virtue of this alternative approach is, of
course, to go beyond a description of stylized facts and to propose a new explanatory model that
accounts for these facts.

3. Estimation of the f(α) spectrum

In our application, we simplify from the outset the multi-fractal model, eq. (1), put forward by
Mandelbrot et al. by assuming that H = 0.5.  This means we restrict the price process assuming that
(in transformed time) the logs of prices follow a (Wiener) Brownian motion instead of fractal
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Brownian motion with arbitrary H. The reason is that evidence in favor of H ≠ 0.5 is weak in that
statistical tests can usually not reject the null hypothesis H = 0.5 (cf. Lo, 1991; Goetzman, 1991;
Mills, 1993),5 while absolute and squared returns have values of H significantly exceeding 0.5.
Furthermore, dependence in absolute returns is stronger than in squared returns (Ding et al., 1993).
Hence, the picture from the literature as well as from the analysis of our time series is that long-term
dependence (which shows up in an estimate H > 0.5) is confined to various powers of returns, but is
almost absent in the raw data. In order to model long-term dependence in the powers, we do not
need to assume a fractional Brownian motion of returns. This feature of the data can be accounted
for by the introduction of the multi-fractal time-transformation alone.

In estimating the multi-fractal spectrum of our returns time series, we note that under our
assumption of Brownian motion of prices changes in transformed time the spectrum of the
compound process r(t) = BH[θ(t)] is related to the spectrum of the multi-fractal time-transformation
θ(t) in the following way (cf. Mandelbrot, Calvet and Fisher):

(9)  fr ( )α  = f Hθ α( )  = fθ α( / )2 .

Now we turn to the empirical estimation of the parameters of multi-fractal models. Using the method
of moments as described above, we consider the behavior of powers of returns:6

(10) S t q( , )∆  = { ( ) ( ) }
int[ / ]

p t t p t
t

T t q

+ −
=
∑ ∆

∆

1

Eq. (10) has to be interpreted as a time-series analogue of eq. (5): p() is the logarithm of the price,
and various powers of returns replace the powers of the measure µ. Furthermore, instead of dividing
the support into finer and finer intervals, we consider different levels of time aggregation (thus, ∆t
replaces the box length ε).

As the first step, we compute the empirical partition functions S t q( , )∆  and use them to estimate the
scaling function τ(q) from regressions in log co-ordinates. The upper panel of Fig. 2 shows a
selection of partition functions for some low (left-hand side) and higher moments (right-hand side)
for the German stock market index DAX.7 As can be observed, the empirical behavior is very close
to the presumed linear shape for moments of small order, while the fluctuations around the
regression line become more pronounced for higher powers. This is, however, to be expected as the
influence of chance fluctuations is magnified with higher powers q.

The resulting scaling function for moments in the range [-10, 20] is exhibited in the lower left panel
of Fig. 2, For comparison, the broken line shows the behavior expected with Wiener Brownian
motion, i.e. scaling according to q/2 - 1. There is a clear deviation from pure Brownian motion. The
qualitative picture is the same found by Mandelbrot et al. as well as Schmitt, Schertzer and Lovejoy.
Finally, the last step consists in computing the multi-fractal f(α) spectrum.  The lower right-hand
panel of Fig. 2 is a visualization of the Legendre transformation. The spectrum is obtained by
drawing lines of slope q and intercept -τ(q) for various q. If the underlying data indeed exhibits
                                               
5 It is also well-known that the R/S and other estimation methods are positively biased around H = 0.5 which

may explain some (seemingly significant) findings of H in excess of one half in the earlier literature (cf.
North and Halliwell, 1994).

6 Int[.] denotes the integer part of the argument in brackets.
7 Here and in the following the plots from the other three time series are almost identical.
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multi-fractal properties, these lines would turn out to constitute the envelop of the distribution f(α).
As can be seen, a convex envelope emerges from our scaling functions. Again, this outcome is
shared by all other studies available hitherto, which may suggest that such a shape of the spectrum is
a robust feature of financial data. As emphasized by Mandelbrot et al., some very simple cascade
model give rise to similar f(α) spectra and may therefore be considered as candidate models for
financial data.

Insert Fig. 2  about here

4. Spectra of Binomial and Log-normal Models

The binomial cascade has already been used as an illustration above. In its simplest form, it consists
in splitting a bounded support repeatedly into two subintervals of equal length and assigning them
the fractions p1 and 1 - p1 of the mass of the mother interval. It has been shown that the resulting
spectrum of Hölder exponents has a closed-form solution which reads:

(11)   f(α) = − −
−

−
−

− −
−

−
−

α α
α α

α α
α α

α α
α α

α α
α α

max

max min

max

max min

min

max min

min

max min
log ( ) log ( )2 2 .

The spectrum is, thus, restricted to an interval [αmin, αmax] with the minimum and maximum
attainable exponent being defined by the binomial structure: assuming p1 ≥ 0.5, we have
αmin log ( )= − 2 1p  and αmax log ( )= − −2 11 p .

The second model, the Log-normal cascade, assumes that the multipliers in each step are random
draws from a Log-normal distribution instead of being fixed quantities as in the Binomial model.
More concretely, denoting by M the multipliers (the analogue of p1 and 1 - p1 above), log2(M) is
assumed to follow a Normal distribution with mean λ and variance σ2. While in the binomial case,
the total mass is preserved in each iteration, this is obviously not the case when using two random
numbers to split up the mass of each mother interval. However, one can introduce restrictions in
order to preserve the mass on average, which would prevent a collapse of the measure to zero or
explosion to infinity (and would, therefore, prevent non-stationarity in a time series context). The
necessary requirement is E[M] = 0.5, which can be guaranteed by appropriate choice of σ2 (or, vice
versa, appropriate choice of  λ if σ2 is given).8 The Log-normal cascade with this restriction,
therefore, boils down to a one-parameter model as well which is fully defined by the parameter λ. Its
fractal spectrum is given by:

(12)   f(α) = 1 − −
−

( )
( )

α λ
λ

2

4 1
.

Note that from a given spectrum like (11) or (12) the Hölder exponent of the qth moment is easily
obtained by applying the inverse Legendre transformation. Visually, this corresponds to identifying
the resulting exponent by a local slope equal to q of the spectrum. From the hump-shaped

                                               
8 Note that without such restriction E[M] = exp(-λ ln(2) + 0.5 σ2 (ln(2))2)
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appearance of both theoretical distributions, it is obvious that the relevant Hölder exponent at q = 2
will be smaller than the one at q = 1, which is accordance with the usual finding of higher persistence
in absolute returns than in squared values.

For the application of these models to our data set, we have to keep in mind, that the cascade models
are used for the volatility or time deformation θ(t) and that the returns themselves result from the
compound process B.5[θ(t)]. When fitting the empirical spectrum in Fig. 2, we, therefore, have to
take into account the shift in the spectrum as detailed in eq. (9).

5. Estimation of Cascade Models and Comparison with GARCH

Unfortunately, there is hardly any statistical theory available for determination of the parameters of a
cascade model. We therefore have to resort to ad hoc methods for estimating p1 or λ. We pursue
two approaches here: first, we compute the best fit of (11) and (12) for the empirical spectrum using
a least square criterion which is the common approach pursued in physical applications. To this end,
we restrict our attention to the positively sloped, left-hand part of the spectrum. The reason is, that
the right-hand arm is computed from partition functions with negative powers and is, therefore,
strongly affected by chance fluctuations due to the Brownian process. In fact, performing
experiments with synthetic data from multi-fractal processes with both Binomial and Log-normal
time transformation, we found, that the location of the downward sloping part was strongly biased
and, even with a symmetrical theoretical spectrum, often showed the same skewness as our empirical
spectra. As a consequence, a fit based on the left-hand arm alone seems preferable.9 Results from this
procedure are exhibited in Table 1.

In order to have some indication of goodness-of-fit of these estimates beyond estimation of the f(α)
spectrum, we applied the Kolmogorov-Smirnov test to Monte Carlo simulations of the cascade
models with estimated parameters p1 or λ. As an alternative for the traditional estimation method
based on the distribution of Hölder exponents, we also performed a grid search for the variant of the
multi-fractal cascades that achieves the best fit to the unconditional distribution of the empirical data.
Since we are dealing with a one-parameter family of stochastic processes in both the Log-normal ad
Binomial cases, such an approach can be implemented at reasonable computational costs. The
criterion used here was again the Kolmogorov-Smirnov statistic.

Let us shortly recall  the details of the Kolmogorov-Smirnov tests: given two random samples of size
n, X1, X2, ..., Xn, and m, Y1, Y2, ..., Ym, the Kolmogorov-Smirnov statistic (denoted by K in the
following) is defined as the supremum of the absolute vertical distances between the empirical
distribution functions, S1(x) and S2(x):

(13)  K = sup ( ) ( )
x

S x S x1 2− .

                                               
9 It may be added that fits with both arms gave inferior results throughout and sometimes even led to violations

of the restrictions of the underlying model. Note also that a bias towards skewness on the right implies also
that our empirical f(α) shape does not necessarily speak against a more symmetric shape as would be
implied by the Binomial and Log-normal models.
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If K exceeds the 1 - α quantile of its theoretical  distribution, the null hypothesis H0: S1(x) = S2(x)
can be rejected in favor of the alternative S1(x) ≠ S2(x). This test for identical distribution functions
of two random samples is denoted the Smirnov test. If instead of comparing two empirical samples,
one wishes to test whether the empirical distribution function, say S1(x), follows some hypothesized
distribution function F*(x), one would use the closely related statistic of the Kolmogorov test:

(13a) K’ = sup ( ) * ( )
x

S x F x1 − .

Quantiles of both test statistics can be found in Conover (1980). Our application here lies somewhere
in between the designs of the Smirnov and Kolmogorov test: we are able to estimate the parameters
of a stochastic model, but lack an analytical solution to the resulting unconditional distribution. Our
solution consists in performing Monte Carlo simulations of the multi-fractal cascade models with
estimated parameters p1 and λ and comparing the unconditional distributions from the simulated time
series with that of the underlying financial data. In order to facilitate comparisons, we used simulated
time series of the same sample size as the empirical data. In this case (i.e. m = n) the 95% and 99%
quantiles of the Kolmogorov test are given by  1.36 n  and 1.63 n , while the pertinent quantiles of
the Smirnov test are 1.92 n  and 2.30 n .

Because of the ‘non-standard’ application of the Kolmogorov-Smirnov type test here, we are,
however, careful in avoiding an interpretation in terms of ‘rejection’ and ‘acceptance’, but prefer to
simply interpret the resulting K’s as measures of similarity of the distributions under consideration.
Table 1 exhibits the means and standard deviations of the K statistic obtained for both the f(α)
estimates and those obtained by grid-search for all four financial time series. Means and standard
deviations are computed from 2,000 Monte Carlo samples in each case. As the time series differ in
size, the K statistics have been multiplied by n  to facilitate comparability.

As can also be observed in Table 1, results turned out to be quite different for both estimation
methods. First, the parameter estimates from the least-square fit of the spectrum did not appear to
generate unconditional distributions with a particularly good fit. With K n  hovering between 4.34
for the Log-normal model in the case of the U.S./DM exchange rate10 and a highest value of 31.56
for the Binomial model with the NYSE composite index, the performance did not appear to be
particularly encouraging.

The picture changes, however, dramatically, when we turn to the results from our more direct grid
search of the cascade parameters. In all cases, results turned out to be very clear in that the behavior
of the Kolmogorov-Smirnov statistic showed a smooth variation with a unique global minimum
whose parameters are exhibited in Table 1. Judged by the K statistics, a tremendous improvement
could be obtained in all cases with the resulting unconditional distributions showing much greater
similarity to the empirical data than before. In most cases, the mean values over 2,000 Monte Carlo
replications are within the 95% quantile of the Smirnov or even the Kolmogorov test.

                                               
10 Interestingly, the Log-normal model has also been estimated for the U.S.$/DM exchange rate in Calvet,

Fisher and Mandelbrot (1997). From the information given in their paper, one can infer an estimate of λ =
1.11 which differs somewhat from our result (λ = 1.03). Due to a somewhat different sample horizon and
their allowance of H ≠ 0.5, results are, however, not directly comparable.
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It is also interesting to note that in both variants of the cascade models the K minimizing values of
the parameters p1 and λ are smaller than those obtained by the fit of f(α). As a consequence,
volatility bursts in the simulations are more moderate with the parameters from the grid search.

It is also worthwhile noticing that under our grid search approach both cascade models perform
more or less equally well and that the results for all four financial time series are very similar in terms
of parameter estimates and goodness of fit. This is a signature of the statistical similarity of data from
different financial markets and suggests also that the multi-fractal model may be able to capture some
basic properties of these data. Note also that the fit is the more remarkable as no attempts have been
made at all to account for skewness in the data.

To introduce a benchmark for the performance we also estimated GARCH(1,1) models and again
explored goodness-of-fit by means of Monte Carlo simulations using the Kolmogorov-Smirnov
criterion. Because of the higher computational costs involved with a grid search over a higher-
dimensional parameter space, we estimated parameters by a standard maximum likelihood
procedure.11 Results are also shown in Table 1.  Consistent with experience from the literature,
parameter estimates are also remarkably constant across markets. Results from Monte Carlo
simulations show, however, that the fit of the unconditional distribution is considerably worse than
that of  the multi-fractal models.

Insert Table 1 about here

Having explored the goodness-of-fit of the unconditional distribution function that can be achieved
by multi-fractal processes we turn back to the characteristics of the conditional distribution. As we
already said, the main motivation for our interest in the cascade models is their potential ability to
generate varying degrees of long-term dependence in moments which is what we observe in
empirical records. The f(α) spectrum, in principle, encapsulates all available information on this long-
range autocorrelation structure. Parameter estimation based on the spectrum, therefore, should lead
to selection of models that largely share the same pattern of long-memory as the underlying data.

But how good is this fit of the conditional distribution? In order to get some clue to the performance
of the Binomial and Log-normal cascades in this respect, we compared the theoretical Hölder
exponents at powers q = 1 and q = 2 with empirical estimates.12 Theoretical numbers are easily
obtained by applying the inverse Legendre transformation to eq. (11) and (12) and solving for q = 1
and 2. In the lower right panel of Fig. 1, the resulting exponents α(q = 1) and α(q = 2) are identified
as points with local slope equal to 1 or 2, respectively. As for empirical estimation, we used both the
time-honored rescaled range method (R/S) and the Geweke/Porter-Hudak (GPH) method for
estimating the parameter of fractional differentiation d by a regression in the frequency domain
(Geweke and Porter-Hudak, 1983). The R/S technique gives a point estimate of the Hölder exponent
itself, while the estimate d from the second approach is related to the Hölder exponent  by: α = d +

                                               
11 One may argue that this different way of estimation, which does not use the minimization of the

Kolmogorov-Smirnov distance directly, could introduce a bias against the GARCH model. However,
although not identical, ML estimation and minimization of K are closely related criteria. Furthermore, we
performed a local grid search around the estimated parameters and could not find improvements to the K
statistic by parameter variation.

12 There is no need to give results for GARCH processes here as they are characterized by exponential decay
of the autocorrelation function and are, therefore, unable to match the pertinent empirical findings.
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0.5. In order to facilitate comparison, we add 0.5 to the estimates of the fractional differencing
parameter in Table 2. While it is known that the R/S method is quite robust (Brock and de Lima,
1995), there is still no asymptotic distribution theory available for this method. We, therefore,
confine ourselves to the point estimates, while for the (GPH) method 95% confidence intervals from
the asymptotic distribution of the estimates can be computed and are also given in the table.

Our empirical findings confirm the usual picture: we  always find α > 0.5 for both absolute and
squared returns. Furthermore, absolute returns have a larger exponent than squared returns in all
cases except for the somewhat unusual estimates for the gold price with the GPH method.
Comparing the theoretical Hölder exponents from the fits of the spectrum, we see that the
correspondence between the empirical estimates and those implied by the pertinent multi-fractal
model is best for the German DAX, while the theoretical exponents appear to underestimate the
degree of long-term dependence in the NYCI and the Gold price and overstates long-range
correlations in the US$-DM exchange rate. It is also remarkable, that both the Binomial and Log-
normal model always lead to very similar results.

Turning to the performance of the second set of estimates form the grid search, we see that they
uniformly overstate the degree of long-range dependence. The perplexingly good fit to the
unconditional distribution, therefore, seems to come at the cost of a poor performance with respect
to the characteristics of the autocorrelation structure. Thus, it seems that we face a certain trade-off
between both criteria.

Insert Table 2 about here

5. Conclusion

The purpose of this paper was to contribute to an evaluation of the recent proposal of multi-fractal
processes as a model for financial returns. From their very construction, these processes are able to
account for the pervasive finding of long-memory effects in volatility. They also allow to capture a
broader spectrum of dependence structures than models of the uni-fractal type in that different
degrees of auto-correlation in various powers of returns can be explained within these models.
However, up to now, evaluation of these models has been restricted to demonstrating their visual
similarity with empirical records. As other models (e.g. GARCH) are also very similar to empirical
records upon inspection, an assessment should ideally rely on less subjective criteria.

In the absence of any standard methods of inference we tried a grid search for the parameter values
of the Log-normal and Binomial cascade models using the Kolmogorov-Smirnov distance as a
selection criterion. As it turned out, these most elementary multi-fractal models achieved an
impressive fit for various empirical data, although these are essentially one-parameter families of
stochastic processes and no adjustments for skewness have been made. However, we also noticed a
certain trade-off in that the better fit of the unconditional distribution comes at the cost of deviations
of the implied autocorrelation structure from the empirical findings. Similarly as with the GARCH
approach, various refinements could be developed to overcome this deficiencies of the most
elementary multi-fractal models. Obvious avenues for improvements are the use of more complicated
cascade processes (e.g. multinomial models) and the choice of alternative distributions for the price
increment other than the Normal.
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Nevertheless, taking into account the very simple structure of the one-parameter families of
stochastic processes used in this paper, the results reported above appear quite remarkable. In our
view, they confirm that this new model is worthwhile further considerations by economists. A major
obstacle to its widespread use is the combinatorial character of existing multi-fractal models and the
lack of standard time-series techniques for estimation and statistical inference. As concerns future
research, what is most urgently needed is a reformulation of the multi-fractal model in terms of
iterative processes13 for which one could develop more standard tools of estimation and statistical
inference. Appropriate refinements may lead to rush of new results and new models for the volatility
of financial prices.
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Table 1: Estimates of the Parameters of Binomial and Log-normal Cascades

Model Method Data Parameter estimates Kolmogorov
distance . n0.5

DAX p1 = 0.6991 26.23
(1.29)†

Binomial
(Parameter: p1)

LS-Fit of f(α) NYCI p1 = 0.7735 31.56
(1.00)†

US$-DM p1 = 0.6133 6.70
(0.71)†

Gold p1 = 0.7495 20.98
(1.29)†

DAX λ = 1.0920 21.11
(2.58)

Log-normal
(Parameter: λ)

LS-Fit of f(α) NYCI λ = 1.1776 25.53
(2.83)

US$-DM λ = 1.0295 4.34
(1.33)

Gold λ = 1.1473 15.85
(2.65)

DAX p1 = 0.5605 1.71
(0.28)

Binomial
(Parameter: p1)

Minimization
of Kolmog.

NYCI p1 = 0.5721 1.24
(0.36)

distance US$-DM p1 = 0.5662 1.20
(0.31)

Gold p1 = 0.5974 1.38
(0.22)

DAX λ = 1.0116 1.88
(0.50)

Log-normal
(Parameter: λ)

Minimization
of Kolmog.

NYCI λ = 1.0158 1.46
(0.46)

distance US$-DM λ = 1.0128 1.42
(0.47)

Gold λ = 1.0138 4.23
(0.72)

continued...
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DAX
α0

6414 10= ⋅ −.

(5.07)§

α1 = 0.1520 (7.61)
β1 = 0.8186 (49.86)

2.17
(0.69)

GARCH (1,1) Maximum
Likelihood

NYCI
α0

6104 10= ⋅ −.

(4.44)§

α1 = 0.0787 (3.81)
β1 = 0.9093 (48.18)

3.81
(0.73)

US$-DM
α0

78 50 10= ⋅ −.

(3.74)§

α1 = 0.1049 (8.26)
 β1 = 0.8836 (80.45)

2.25
(0.94)

Gold
α0

6114 10= ⋅ −.

(2.46)§

α1 = 0.1023 (6.78)
β1 = 0.8853 (54.25)

5.51
(1.00)

† The displayed values of Kolmogorov distances are the means over 2,000 Monte Carlo
replications, standard deviation are given in parenthesis.
§ t-values of the GARCH parameters are given in parenthesis.

Note: The 95% (99%) points of the Kolmogorov tests (i.e. comparison of empirical distribution
with hypothesized distribution function are 1.36/ n  and 1.63/ n , respectively. The 95% and
99% points for the Smirnov test (i.e. comparison of independent samples) are 1.92/ n  and
2.30/ n , respectively (cf. Conover, 1980, c. 6).

The time intervals and number of observations are:
DAX: 10/59 - 12/98 (n = 9818),
NYCI: 01/66 - 12/98 (n = 8308),
US$-DM: 01/74 - 12/98 (n = 6140),
Gold price: 01/78 - 12/98 (n = 5140).
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Table 2: Empirical and Theoretical Hurst/Hölder Exponents

Model Method Data α at q = 2 α at q = 1

DAX 0.71 0.88

Binomial LS-Fit of f(α) NYCI 0.51 0.77

US$-DM 0.89 0.96

Gold 0.57 0.81

DAX 0.72 0.91

Log-normal LS-Fit of f(α) NYCI 0.47 0.82

US$-DM 0.91 0.97

Gold 0.56 0.85

DAX 0.97 0.98

Binomial Min. of NYCI 0.96 0.98

Kolmog. US$-DM 0.96 0.99

distance Gold 0.92 0.97

DAX 0.97 0.99

Log-normal Min. of NYCI 0.95 0.98

Kolmog. US$-DM 0.96 0.99

distance Gold 0.96 0.99

DAX 0.77 0.85

Empirical Hurst NYCI 0.80 0.88

Estimates Exponent US$-DM 0.75 0.86

from R/S Gold 0.85 0.93

DAX 0.69
(0.55, 0.83)

0.85
(0.71, 0.99)

Empirical GPH:†

NYCI 0.65
(0.51, 0.79)

0.91
(0.76, 1.05)

Estimates d + 0.5 US$-DM 0.74
 (0.58, 0.90)

0.79
(0.63, 0.95)

Gold 1.12
 (0.95, 1.28)

1.07
(0.90, 1.23)

† Asymptotic 95% confidence intervals of the Geweke/Porter-Hudak estimates of the parameter of
fractional differencing are given in parentheses. For information about the data, see Table 1.



17

Fig. 1: Development of a Binomial Cascade and its Use as a Time Deformation. The upper
panels of the figure show (from top to bottom) the development of a binomial measure after 2, 6,
and 12 iterations of the cascade. In the lower panel, a compound process is illustreted in which the
same cascade is used as a time transformation device. Superimposed is a Wiener Brownian motion
(H = 0.5). The parameter p1 used in this example was 0.5605 which gave the best fit of the multi-
fractal model with binomial time transformation for German stock returns under minimization of
the Kolmogorov-Smirnov distance. Note that the integrals under the first three curves are equal to
1 in each iteration.
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Fig. 2: Scaling and Multi-Fractal Spectrum of DAX Returns. The upper panel shows the
partition functions obtained for a variety of (positive) moments ranging from q = 0.1 to q = 9.
While we observe an almost perfectly linear relationship for the lower moments, there is more
randomness in the scaling of higher moments. The bottom panel shows that the deviation form the
expected behavior τ(q) = q/2 - 1 under Brownian motion (left), and the f(α) spectrum of Hölder
exponents obtained from the Legendre transformation (right).


