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Optimal Shortfall Hedging of Credit Risk

Abstract

In this paper we examine the problem of partially hedging a given credit

risk exposure. We derive hedges which satisfy certain optimality criteria: For

a given investment into the hedge they minimize the remaining risk, or vice

versa. This is motivated by the fact that it is a core business of �nancial

intermediaries to carry risks, and that therefore they do not want to hedge

their risks completely. In contrast to the usual mean-variance criterion, our

hedging strategies try to minimize either the shortfall probability (SP) or the

expected shortfall (ES). In complete markets this allows the investor to save

money by hedging only part of the claim, while taking a certain (minimal) risk

that the hedge does not cover the claim completely. In incomplete markets, a

perfect hedge is not always available, and this methodology introduces a new

way to �nd a hedging strategy which minimizes the shortfall risk. We apply

this to a credit risk model, where default occurs at the �rst jump time of a

Poisson process. The write-down after default is stochastic and independent

of the time of default. In this stylized model we compare hedging strategies

for defaultable bonds and credit default swaps which minimize either the SP

(Quantile Hedging) or the ES. We consider �rst a complete market where the

martingale measure is unique and derive explicit results. Hedging strategies

for both objectives are compared. In the incomplete markets setting, we

consider two situations: In the �rst, we assume that the default risk premium

is unknown from the beginning, and therefore we have to select the worst-

case martingale measure from the set of possible martingale measures. In the

second, the market is complete at the beginning, but at a future time point

the default risk parameter will change randomly, for example because of a

rating change, and this makes the market incomplete. Strategies for both

situations are developped.

JEL Classi�cation: G11; G12; G13; G33

Keywords: VaR; Credit Risk; Coherent Risk Measures; Quantile Hedging;

Incomplete Markets
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1 Introduction

The last years have seen a tremendous increase in theoretical models for the valua-
tion of credit risky securities. These were applied with some success to the valuation
of defaultable bonds as well as options on credit risk, such as credit default swaps.
Compared to this progress the analysis of questions related to the measurement
of credit risk itself and hedging strategies for credit risky securities has fallen be-
hind. In this paper we want to focus on new ways to measure credit risk, such as
the Shortfall Probability (SP) related to Value-at-Risk and the Expected Shortfall
(ES).

Our paper is based on existing credit risk models, of which we will now give a
short account. The theory of the valuation of credit risky securities is divided into
two branches. While the classical approach uses the value of the �rm to determine
the time of default, newer papers model the intensity of a jump-process, and the
time of its �rst jump is the time of default.

The basis for all classical models can be found in the papers of Black and Scholes
[1973] and Merton [1974]. They view a corporate bond as a derivative on the
underlying �rm value, so that classical option pricing formulae can be used to value
those bonds. Merton-based models may be criticized on two points: First, due
to the structure of the model, the time of default is predictable. Second, with
few exceptions, these models describe complete markets. This implies that it is
theoretically possible to hedge all risks by using a dynamic trading strategy. In
reality this is not the case. Even newer models of this class, such as Shimko et al.
[1993], Longsta� and Schwartz [1994] and DuÆe and Lando [1998] do not recognize
this problem.

In contrast to classical models, the time of default in intensity models is not
determined via the value of the �rm, but it is the �rst jump of a point process
(for example, a Poisson process). Important examples of this way of modelling
default risk are the works of Jarrow and Turnbull [1995] and DuÆe and Singleton
[1997]. In these models, the time of default is totally inaccessible and markets
are typically incomplete. The incompleteness leads to the non-uniqueness of the
martingale (pricing-) measure, and therefore prices of securities and options are no
longer uniquely de�ned. However, this problem is not discussed in these models, but
the existence of a certain measure is assumed which is used to value all cash-ows.

Finally, none of the above-mentioned credit risk models considers the problem
of partially hedging the risk from default, while bearing the other part. However,
risk bearing is an important business for the banking sector. In our paper, we apply
two concepts of measuring risk to a simple intensity model of credit risk, where the
write-down after default is stochastic and independent of the time of default. We
will determine the optimal hedging strategies for both concepts and compare the
results.
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The classical way of measuring risk is through the mean and variance of a given
portfolio or contingent claim. In recent years, a new approach was developed as
an alternative to the measurement of risk via mean and variance: The so-called
Value-at-Risk of a contingent claim is the worst possible loss which can occur with
a given probability (for example 99%). This measure is widely used in oÆcial
capital adequacy requirements for banks, but also for internal risk-management
purposes. Tha VaR is a static concept which does not take into account that it is
possible to use a dynamically rebalanced trading strategy to hedge against the risk.
F�ollmer and Leukert [1997] generalize the concept of VaR to a dynamic setting and
characterize in a continuous time setup the associated hedging strategy: For a given
initial investment, the payo� from this strategy will have the maximum probability
of being equal to or greater than a predetermined payo� obligation. With other
words, this strategy minimizes the Shortfall Probability (SP) of the hedge.

The latest development in this area are risk measures which are de�ned via
certain desirable axioms, the so-called coherent risk measures (cf. Artzner et al.
[1998]). One of these axioms says, for example, that the total risk of two contingent
claims should not be greater than the sum of their individual risks, which is intuitive
when one considers the case that the one contingent claim is used to hedge the risk
of the other. However, the VaR does not possess this property, so that the VaR is
not a coherent risk measure.

Alternative coherent risk measures are proposed by Artzner et al. [1998]. Al-
though the Expected Shortfall (ES) is not a coherent risk measure, it possesses
similar properties to those required for this class and is superior to the SP. F�ollmer
and Leukert [1998] show how to calculate a hedging strategy which minimizes the
ES for a given initial investment.

In a complete market, these hedging strategies have the following interpretation:
They allow the calculation of how much risk (in the sense of SP or ES) one has to
take if one does not want to invest the full price of the contingent claim into the
hedging strategy. Alternatively, the investor can �x the risk he wants to bear (in
terms of SP or ES) and �nd the cheapest hedging strategy which leaves him with
only so much risk.

F�ollmer and Leukert [1997,1998] apply their methodology to the problem of
hedging a call option on an underlying stock. The results obtained there can be
applied directly to a credit risk model of the Merton [1974] type: here the �rm is
�nanced by debt and equity, the equity corresponds to a call option on the underlying
�rm value and the value of debt is obtained as the di�erence between �rm value and
value of equity. Without going into a full discussion of advantages and disadvantages
of �rm value versus intensity models, it seems to us that the latter class is more
accepted in literature and industry, because in these models the time of default is
unpredictable and they can be �tted quite easily to an observed term structure of
credit risky bonds.
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The same methods can be applied in an incomplete markets setup, where the
martingale measure is not unique and a perfect hedge does not exist for every
contingent claim.

The question of risk-minimization in an incomplete market was �rst discussed
by F�ollmer and Sondermann [1986]. They introduced the notions of local and global
variance minimization. Further progress in this direction was made, for example,
by F�ollmer and Schweizer [1990] and Schweizer [1990,1991,1993] and, recently, by
Gourieroux, Laurent and Pham [1998]. These concepts try to �nd a trading strategy
which has the same expected payo� as the contingent claim and which minimizes
the variance of the di�erence (the so-called hedge error). The concept of local risk-
minimization was applied to credit risky securities by Lotz [1997]. In this setup, the
strategies minimizing the SP or ES o�er an alternative which makes use of more
recently developped risk measures.

In the present paper we will apply the mathematical results from F�ollmer and
Leukert [1997,1998] to a credit risk setting of the intensity class. We start in a
complete market to explain the methodology, calculate some introductory examples
and compare this with other hedging strategies. Our standard example will be the
optimal hedge of the (random) loss from a defaultable bond. This is important
for the investor who has invested in this bond or for a bank which has sold credit
protection to its customers (for example in the form of a credit default swap). Then
we go on to the incomplete market case. Here we consider two situations: In the �rst
case, the default risk premium is unknown from the beginning, and the criterion of
minimizing shortfall probability or expected shortfall leads to the so-called worst-
case martingale measure under which the hedging strategy is calculated. In the
second case the risk-premium is known, but at some intermediate time the default
risk will change randomly, for example because of a rating change. We will derive
optimal hedging strategies and show the relationship between initial investment and
shortfall probability or expected shortfall.

The next section explains our basic mathematical setup and summarizes some
key results from F�ollmer and Leukert [1997, 1998]. In section 3, we apply these
results to the hedging of credit risky securities in a complete market and give general
results as well as some explicit examples. In section 4 we consider the problem of
shortfall hedging in an incomplete market. Section 5 concludes.

2 Mathematical Setup

This section outlines the general principles of our model. First, the basic process
generating the risks in our market is described. Then, the approach of F�ollmer and
Leukert [1997,1998] is explained.
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2.1 The Market

Instead of constructing a credit risk model of utmost generality, we want to focus
on the issue of partial hedging. For this reason, we intentionally restrict ourselves
to a rather simple credit risk model and also set interest rates to zero. It is straight-
forward to combine the model with an interest rate term structure of ones choice
by simply going over to the appropriate forward measure.

We consider a continuous trading economy with trading interval [0; T ] for a �xed
T > 0. The uncertainty in our model is speci�ed by a probability space (
;F ; P ).
We assume that this probability space is big enough to hold a marked one-jump
Poisson process de�ned as follows:

2.1.1 De�nition A marked one-jump Poisson process on a mark space E is a pair

(N(t); Z), where

� N(t) is a Poisson process with intensity �, and

� Z is a E -valued random variable which is drawn at the �rst jump time � of

the Poisson process.

For further information on marked Poisson or point processes, see Br�emaud
[1981] or Last and Brand [1997]. In our case, we will take E � R

+ . The random
variable Z has a density f on E under P , which may depend on the time of the
jump, f = f(�; �). Generated by the marked Poisson process is a complete, right-
continuous �ltration F = (Ft)t�0. The probability measure P is called the objective
or historical probability.

The interpretation of this setup is the following: The �rst jump of the point
process determines the time of default � . The mark variable Z will inuence the
payo� of the credit-risky security after default. For illustration purposes, we want
to present some special cases which can be treated with the above speci�cation of
the marked Poisson process driving default:

1) The mark space consists of n discrete points, E = fz1; : : : ; zng. Each point
corresponds to a payout pattern of bonds of di�erent seniority classes. For
example, we could have n = 2, a high payout �H and a low payout �L as well
as a senior bond BS and a junior bond BJ , and the following payout pattern:

State BS BJ Probability
z1 �H �L f(z1)
z2 �L �L f(z2)

In that model, the senior bond may recover the higher or lower payout after
default, while the junior bond will always recover only the low payout.
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2) Another possibility is to take E = [0; 1] and use the Beta distribution with
parameters c and d as the distribution of payout ratios. The parameters c
and d could also depend on the default time � , thus introducing a correlation
between default time and payout ratio.

The assumption captures most important features of a typical credit risk model,
such as unpredictable default times and random payo� after default. We will in-
troduce more speci�c assumptions later on which allow us to compute most results
explicitly. The next step of generalization would be to use a jump process with
time-inhomogeneous, deterministic intensity. All results from this paper can be eas-
ily rewritten for this additional complexity, but results can then only be obtained
by numerical methods.

To each set A � E corresponds a jump process N(t; A) via

N(t; A) = N(t)1fZ2Ag

The processes �N(t; A) and �N(t), de�ned by

�N(t; A) := N(t; A)� �

Z t

0

Z
A

f(s; z) dz ds; �N(t) := N(t)� �t

are martingales (for a proof see Br�emaud [1981]).

2.1.2 Assumption The set of possible equivalent martingale measures is given by

P =

(
P � : G :=

dP �

dP
= E

�Z T

0

Z
E

(�h(s; z)� 1)f(s; z) dz d �N(s)

�
;� 2 R

+nf0g;

h(s; �) > 0; E �measurable;

Z
E

f(s; z)h(s; z) dz = 1 8s 2 [0; T ]

)

Therefore, under the equivalent martingale measure P � the Poisson process has the

intensity �� = ��, and the mark variable Z has the distribution f � = fh.

The transition density h corresponds to the risk premium for the payout ratio
after default and may depend on the time of default. For the two speci�cations of
the mark space E given above, h looks as follows:

1) When the mark space E consists of 2 discrete points as above, h can be de-
scribed by a pair of real numbers (h(z1); h(z2)) modifying the probabilities
of both events, so that under the equivalent measure the probabilities are
(f(z1)h(z1); f(z2)h(z2)). For a risk averse investor, we would assume h(z1) < 1
and h(z2) > 1, so that claims are valued as if the high payo� is less likely than
under the historical or objective measure.

6



2) On the other hand, we could assume that E = [0; 1] and f and f � are Beta
distributions with parameters c; d and c�; d� respectively. Then for a risk averse
investor, the transition density h would be such that d� > d and/or c� < c,
because both lowers the expected value of the payout.

The parameter � in the change of measure corresponds to the change of default
intensity or probability of a default. Because the new default intensity under the
martingale measure is given by �� = ��, we will have � > 1 for a risk-averse investor.
We assume � to be constant over time. This imposes implicit structure on the risk
premia for default in the economy, which must then also be constant over time. This
assumption can easily be relaxed in favor of time-dependent risk premia, but this
would only make notation more complicated without adding signi�cant new results.

2.1.3 Lemma The density process for the change of measure can be written as

G = �h(�; �)e��(��1)�1f��Tg + e��(��1)T 1f�>Tg

Proof Follows directly from the de�nition of G.

2.2 Shortfall Hedging with the Neyman-Pearson Lemma

The mathematical techniques used in sections 3 and 4 come from F�ollmer and Leuk-
ert [1997,1998]. Both papers deal with the problems of shortfall hedging and use
the Neyman-Pearson Lemma to determine the optimal hedging strategies. While
F�ollmer and Leukert [1997] focus on the Shortfall Probability (SP) and show how to
minimize this probability (so-called quantile hedging), the later paper F�ollmer and
Leukert [1998] is concerned with more general risk measures, from which we will use
the Expected Shortfall (ES). We start with an explanation of these risk measures.
After that, we review the methods of F�ollmer and Leukert [1997,1998] which allow
us to �nd the optimal solution to the hedging problems.

The technique of quantile hedging was introduced in F�ollmer and Leukert [1997].
It is closely related to the concept of Value-at-Risk (VaR). We assume here that the
market is complete so that a perfect hedge is available for every contingent claim at
its arbitrage-free, uniquely de�ned price and that the martingale measure is denoted
by P �. Consider a contingent claim G with initial price G�

0, which should be viewed
as a payment obligation due at time T . Recall the de�nition of Value-at-Risk as
given in Artzner et al. [1998]:

V aR�(G) = inffc : P [G � c] � �g

where x is a constant real number. In other words, the VaR is that boundary so
that the �nal payout obligation G is greater than that number only with probability
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�. The concept of Quantile Hedging can be seen as a generalization of the VaR to
a stochastic boundary. Here we consider the problem: Find a contingent claim H,
the hedge against G, with initial price H�

0 so that the SP is smaller than or equal
to �,

minH�
0 so that P [G � H] � � (1)

The Value-at-Risk for a certain probability � is widely used in the banking in-
dustry for a variety of purposes. However, it has several shortcomings. For example,
the investor above is only concerned with the probability of a loss, but not with the
size of the loss. Furthermore, as shown by Albanese [1997], it is possible that the
VaR increases after diversi�cation of risks, which is counterintuitive. Consider an
investment opportunity which yields 1 in 99% of all cases, but with 1% probability
the investor loses 10. Because G above is a payment obligation, we have G = �1
or G = 10. Consequently, the 1% VaR of G is -1, which means that there is no risk
at the 1% level. Now, instead ten independent projects are undertaken, which yield
a gain of 0.1 or or a loss of -1 each, with the same probabilities as above. Again,
this translates into values for Gi; i = 1; : : : ; 10 of Gi = �0:1 or Gi = 1. In this
situation, the 1% VaR is 0.1. Thus, in spite of the diversi�cation of risk, the VaR
has increased.

Driven by this analysis, we also look at hedging strategies which minimize the
ES. Here we follow F�ollmer and Leukert [1998]. The ES of the obligation G over a
constant amount c is de�ned as

E[(G� c)+]

It is easy to see that this risk measure can be reduced through diversi�cation of
risks and is therefore superior to the SP (or VaR): For this purpose, consider one
large investmentG on the one hand, and n small investments of size 1=n, G1; : : : ; Gn,
on the other hand. The Gi; i = 1; : : : ; n are distributed as G=n. Now, we have

E

" 
nX
i=1

Gi � c

!+#
� E

"
nX
i=1

�
Gi �

c

n

�+#

=
nX
i=1

E

��
Gi �

c

n

�+�

= nE

"�
G

n
�
c

n

�+
#

= E
�
(G� c)+

�
So, the ES of investing into the diversi�ed projects G1; : : : ; Gn is smaller than or
equal to the risk of investing into the big project G.
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The generalization of this risk measure to a stochastic boundary is straightfor-
ward, and here we consider the problem: Find a contingent claim H with initial
price H�

0 , so that the ES is smaller than or equal to �, formally

minH�
0 so that E[(G�H)+] � � (2)

In both cases (SP and ES), it is also useful to consider the equivalent dual
problem: Given an initial amount of money V0 for the hedge, �nd a contingent
claim H with initial price H�

0 � V0 < G�
0 so that the SP or the ES is minimized,

formally

minP [G � H] so that H�
0 � V0 (3)

or minE[(G�H)+] so that H�
0 � V0 (4)

We will mostly consider the problems in this form, because then it is much easier
to compare the results.

The problems described above are solved in two steps: First, the optimal con-
tingent claim (hedge) H has to be found. Second, a trading strategy has to be
constructed which generates the hedge.

The optimal hedges H are described in F�ollmer and Leukert [1997,1998]. In
general, H is given by a modi�cation of the payment obligation G, H = 'G, where
' is a random variable from the set

R = f' : 
! [0; 1]; ' FT �measurableg

' is called the success ratio and its shape depends on the problem at hand. The
optimal success ratio is known explicitly in a complete market, where the set of
equivalent martingale measures consists of only one element, P = P �. In the case
where we want to minimize the SP with a given investment V0, the optimal success
ratio '̂Q is given by

'̂Q = 1AQ + 1f dP
dP�

=~aGg

with

AQ =

�
dP

dP �
> ~aG

�
; ~a = inf

n
a : E�[G1f dP

dP�
>aGg] � V0

o
;  =

V0 � E�[G1f dP
dP�

>~aGg]

E�[G1f dP
dP�

=~aGg]

AQ is called the success set of the hedge.

On the other hand, if we want to minimize the ES with a given investment V0,
the optimal success ratio '̂ES is given by

'̂ES = 1AES + 1f dP
dP�

=~ag
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with

AES =

�
dP

dP �
> ~a

�
; ~a = inf

n
a : E�[G1f dP

dP�
>ag] � V0

o
;  =

V0 � E�[G1f dP
dP�

>~ag]

E�[G1f dP
dP�

=~ag]

In section 3, we will use these results to compute the optimal hedge for credit
risky securities in a complete market. In an incomplete market, the situation is
di�erent and more complicated. The problems (3) and (4) translate into

minP [G � H] so that E�[H] � V0 8P � 2 P (5)

or minE[(G�H)+] so that E�[H] � V0 8P � 2 P (6)

Here, under certain conditions, the following form of '̂ is necessary for optimality
(see F�ollmer and Leukert [1997]). There exist measures P̂Q 2 P and P̂ES 2 P such
that the optimal success ratios ful�ll

'Q =

(
1 if dP > âQHdP̂Q

0 if dP < âQHdP̂Q
; ÊQ[H'̂Q] = V0

'ES =

(
1 if dP > âESdP̂ES

0 if dP < âESdP̂ES
; ÊQ[H'̂ES] = V0

In section 4, we use this to �nd the optimal success set for a credit risk security
in an incomplete markets setup.

After the construction of the optimal claimH used to hedge against the payment
obligation G, one can proceed to generate the contingent claim H by a dynamic
trading strategy. In a complete market this is straightforward, because here by
de�nition for every contingent claim there exists a duplicating dynamic trading
strategy. In an incomplete market, the results of Kramkov [1996] and F�ollmer and
Kabanov [1998] can be used. De�ne

H(t) = H0 ess.sup ~P2P
~E[HjFt]

This process admits an optional decomposition

H(t) = H(0) +

Z t

0

�(s) dX(s)� C(t);

where C is an increasing optional process and � is an admissible strategy. C can
be interpreted as amount which can be withdrawn from the trading strategy while
more and more information becomes available.
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In credit risk markets, such a dynamic hedging strategy is unlikely to be suc-
cessful because of the illiquidity of the market. On the other hand, most credit risk
derivatives are traded in an over-the-counter fashion, so that the exact parameters
needed by the counterparties can be entered into the contracts. For these two rea-
sons, we do not consider step 2 (replication of the optimal hedge) in this paper, but
are satis�ed with the construction of the optimal hedge (step 1).

3 Complete Markets

In this section we will apply the results from F�ollmer and Leukert [1997,1998] to
a credit risk setting with a complete market. Therefore, regarding the risk-neutral
probability measure P �, we make the following

3.0.1 Assumption There exists a unique martingale measure P � equivalent to P ,

and its density is given by

dP �

dP
= E

�Z T

0

Z
E

(�h(s; z)� 1)f(s; z) dz d �N(s)

�

For the two speci�cations of our mark space, we discuss the requirements on
traded assets which make the market complete:

1) For the case when the mark space E consists of two points, three assets have
to be traded in order to guarantee completeness of the market: These are a
non-defaultable bond, a senior bond and a junior bond.

2) On the other hand, if the mark space is a continuum, for example E = [0; 1],
then in�nitely many securities are needed for the market to be complete. This
is analogous to the situation in Bj�ork et al. [1997]. Although this is a strong
assumption on the market, it is nevertheless often used in the credit risk
literature, see for example Sch�onbucher [1996,1997].

In this probabilistic setting, we consider a contingent claim G, which we view as a

payment obligation due at date T , of the following form:

3.0.2 Assumption

G := C1f�>Tg +D1f��Tg

where
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� C � 0 is a constant and

� D � 0 is a random variable with distribution f � = fh under P � on the mark

space E .

3.0.3 Remark The speci�cation is quite general and allows G to be interpreted as
one of several securities associated to credit risk:

� For C = 1 and D = � this is a credit risky bond of face value 1, where � is
the payo� ratio of the bond in the case of default. For example, a corporation
which wants to sell its bonds to an insurance company could be required to
package the bonds with some kind of default insurance by a third party so
that the overall shortfall risk meets regulatory requirements for the insurance
company.

� for C = 0 and D = (1 � �), this is a credit default swap which protects
against the default of the credit risky bond above. Here, we could imagine
a bank which has sold credit protection against default to its customers and
now wants to reinsure itself.

3.1 The Optimal Shortfall Hedge for a given Initial Invest-

ment

F�ollmer and Leukert [1997,1998] deal with the hedging of a call option in a Black-

Scholes world with Brownian motions. In contrast, in our setting we have much less

price dynamics: The only time there is a random price change is at the time of de-

fault. Therefore, a dynamic hedging strategy loses much of its appeal in our setting.

Instead, we focus on the optimal contingent claimH for the hedging problem, which

will be a contract specifying a certain payout depending on the time of default �

and payout ratio �. Another argument for this treatment is that credit derivatives

are traded in an over the counter market and standardized contracts have not yet

emerged, so that there is the possibility to specify the contracts according to the

needs of the counterparties. Therefore, we consider the following

3.1.1 Problem Given an initial amount of capital V0, �nd a contingent claim with

payout HQ at time T and price HQ
0 � V0 so that the probability of a successful

hedge, P [HQ � G] is maximal. Following F�ollmer and Leukert, we call this the

problem of quantile hedging.

12



Alternatively, we can search for a contingent HES so that the expected shortfall

E[(G�HES)+] is minimal.

It turns out that the optimal contingent claims H are given by a modi�cation

of the payment obligation 'G, where ' is the so-called success ratio which can be

determined explicitly. The following theorem provides the optimal success ratio for

both problems:

3.1.2 Theorem For C 6= 0, there are two critical values of initial investment V1; V2

for the Quantile and Expected Shortfall case with

V Q
1 =

Z
D1fDaQ

K
�he��(��1)�<1g dP

� V ES
1 =

Z
D1faES

K
�he��(��1)�<1g dP

�

V Q
2 = V Q

1 + CP �[� > T ] V ES
2 = V ES

1 + CP �[� > T ]

where the constants aQK and aESK are given by

aQK =
1

C
eT (��1)� aESK = eT (��1)�

Depending on the initial investment V0, we have the following three cases:

1) V0 < V1: Here the optimal success ratio reduces to a success set given by

AQ
1 = fDaQ1 �he

��(��1)� < 1g \ f� � Tg for the Quantile case and

AES
1 = faES1 �he��(��1)� < 1g \ f� � Tg for the Expected Shortfall case.

In both cases, a1 is the solution to

V0 =

Z
D1A1 dP

�

and we have a1 > aK .

2) V0 2 [V1;V2]: De�ne

AQ
2 := faQ2 D�he

��(��1)� < 1g \ f� � Tg

AES
2 := faES2 �he��(��1)� < 1g \ f� � Tg

In both cases, the optimal success ratio is given by

' = 1A2 +
V0 � V1

CP �[� > T ]
1f�>Tg

and a2 = aK.
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3) V0 > V2: Again, the optimal success ratio reduces to a success set given by

AQ
3 = f� > Tg [ (faQ3D�he

��(��1)� < 1g \ f� � Tg)

AES
3 = f� > Tg [ (faES3 �he��(��1)� < 1g \ f� � Tg)

and in both cases a3 is the solution to

V0 =

Z
H1A3 dP

�

For C = 0, the critical values of investment do not exist and the solution reduces to

case 3) above.

Proof: See appendix.

3.1.3 Remark The randomization which occurs in the theorem above if the cap-
ital invested into the hedge lies in the interval [V1; V2] is diÆcult to interpret in
economic terms: It corresponds to making the payout of the hedge dependent on a
probabilistic event which is completely independent from the payout obligation G,
such as a throwing of dice. It is extremely unlikely that a contract which involves
such a randomization will be traded in reality, so typically investors will use a hedge
H with a price below V1 or above V2.

3.2 The Optimal Hedge for a given Shortfall Probability or

Expected Shortfall

Conversely, it is also possible to start with a given shortfall probability � and �nd
the minimal required initial amount of capital. In other words, we have the

3.2.1 Problem Given a probability of a successful hedge 1 � �, �nd a contingent

claim with payout HQ at time T and with minimal price HQ
0 at time zero so that

the probability of a successful hedge,

P [HQ � G] = 1� �

In the following, we de�ne by G�
0 the unique price of the payment obligation

G at time 0. The theorem which provides a solution to this problem is similar to
theorem 3.1.2:

14



3.2.2 Theorem For C 6= 0, there are two critical values �1; �2 for the shortfall

probability �,

�1 = P

"
D�h

bQKG
�
0

e��(��1)� > 1

#
; �2 = �1 + P [� > T ]

with

bQK =
C

G�
0

e��(��1)T =
1

G�
0

1

aQK

We have the following three cases:

1) � < �1: Here the optimal success ratio reduces to a success set given by

BQ1 = f� > Tg [ (f
D�h

bQ1 G
�
0

e��(��1)� < 1g \ f� � Tg)

where bQ1 is the solution to

1� � = P [BQ1 ]

2) � 2 [�1; �2]: The optimal success ratio is given by

BQ2 =

�
D�h

bQ2 G
�
0

e��(��1)� < 1

�
\ f� � Tg

 ̂Q = 1BQ2
+

�2 � �

P [� > T ]
1f�>Tg

We have bQ2 = bQK .

3) � > �2: Again, the optimal success ratio reduces to a success set given by

BQ3 = (f
D�h

bQ3 G
�
0

e��(��1)� < 1g \ f� � Tg)

and bQ3 is the solution to

1� � = P [BQ3 ]

For C = 0, the critical values for the shortfall probability do not exist, and the

solution reduces to case 1) above.
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Proof: See appendix.

Instead of a shortfall probability � we can also use a given expected shortfall �
and �nd the minimal required initial amount of capital. In other words, we consider
the

3.2.3 Problem Given an expected shortfall of a successful hedge �, �nd a contin-

gent claim with payout HES at time T and minimal initial price HES
0 at time 0 so

that

E[(G�HES)+] = �

Again, following F�ollmer and Leukert, the solution in our case is given by a
success ratio  ES with

 ES = 1f dP
dP�

> 1

bES
g + 1f dP

dP�
= 1

bES
g

and again there exists a critical value for bES, namely

bESK =
C

G�
0

e��(��1)T =
1

G�
0

1

aESK

The theorem which provides a solution to this problem is similar to theorem
3.1.2:

3.2.4 Theorem For C 6= 0, there are two critical values �1; �2 for the expected

shortfall �,

�1 =

Z
D1f 1

bES
K

�he��(��1)�<1g dP
�; �2 = �1 + CP �[� > T ]

where

bESK =
C

G�
0

e��(��1)T =
1

G�
0

1

aESK

We have the following three cases:

1) � < �1: Here the optimal success ratio reduces to a success set given by

BES1 = f� > Tg [

��
�h

bES1

e��(��1)� < 1

�
\ f� � Tg

�

where bES1 is the solution to

� = E[H(1� 1BES1
)]
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2) � 2 [�1; �2]: The optimal success ratio is given by

BES2 =

�
�h

bES2

e��(��1)� < 1

�
\ f� � Tg

 ̂ES = 1BES2
+

�2 � �

CP �[� > T ]
1f�>Tg

We have bES2 = bESK .

3) � > �2: Again, the optimal success ratio reduces to a success set given by

BES3 = (f
�h

bES3

e��(��1)� < 1g \ f� � Tg)

and bES3 is the solution to

� = E[H(1� 1BES3
)]

For C = 0, the critical values for the expected shortfall do not exist, and the solution

reduces to case 1) above.

Proof: See appendix.

3.3 Example

In order to provide some explicit results, in this section we consider a speci�c ex-
ample and make the following additional assumptions:

3.3.1 Assumption � � > 1: This means that under the risk-neutral measure

P �, the jump intensity is higher (�� > �) than under the objective probability,

and therefore corresponds to a risk-averse investor.

� f = f � = 1[0;1]; h � 1: In the case of a jump, the payo� of the contingent claim

is uniformly distributed between zero and one, under the objective as well as

under the risk-neutral measure. This assumption implies that there is a zero

risk premium attached to the payout ratio. It simpli�es the calculations, while

the results can be easily adjusted for the case of a non-zero risk premium.

� C = 1: In the event of no jump, the contingent claimG pays out 1 at maturity.
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With these parameter settings, the contingent claim can be interpreted as a
defaultable bond. Default occurs when the Poisson process jumps, in which case
the bond pays out something between zero and one. If no default occurs, the bond
is worth one at maturity T . Its price at time zero is

E�[C1f�>Tg +D1f��Tg] =
1

2
(1 + e���T )

The result will be a hedge for a defaultable bond. This is potentially useful
for the enhancement of the risk structure of the defaultable bond which might be
required by the investors due to regulatory rules (see remark 3.0.3). Moreover,
preliminary analysis shows that the following theorems will be important for the
incomplete case, and they also provide some interesting insight into the structure of
shortfall hedging. Finally, once the results for the credit risky bond are established,
minor modi�cations yield the results for the credit default swap.

Let us consider �rst the strategy which minimizes the shortfall probability.

3.3.2 Theorem The critical values are given by

aQK = e�(��1)T ; � 6= 2 : �V Q
1 =

e�2�(��1)T � e�3��T

2�(2� �)
; � = 2 : �V Q

1 =
�T

4
e�2�T ;

�V Q
2 = �V Q

1 + e���T

As above for �V Q
1 , in the following formula there will occur apparent poles which can

be closed by using l'Hôspital's rule. Depending on the initial investment V0, the

following list contains the success set as well as probability and expected size of the

shortfall:

1) V0 < �V Q
1 :

Success Set:

(
� 2]0; T ];� 2 [0; 1] : � <

1

�

s
2V0�(2� �)

(1� e��(2��)T )
e�(��1)�

)

Prob. of Shortfall: 1�

s
2V0(1� e�(��2)T )

�(2� �)

Expected Shortfall:
1

2
(1 + e��T )�

V0(2� �)(1� e�(2��3)T )

�(3� 2�)(1� e�(��2)T )
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2) V0 2 [ �V Q
1 ; �V

Q
2 ]:

Success Set:

�
� <

1

�
e�(T��)(��1)�

�
and randomized

with probability (V0 � �V Q
1 )e��T on f� > Tg

Prob. of Shortfall: 1�
e�(1��)T � e��T

�(2� �)
� (V0 � �V Q

1 )e�(��1)T

Expected Shortfall:
1

2

�
1 + e��T �

e2�(1��)T � e��T

�2(3� 2�)

�
� (V0 � �V Q

1 )e�(��1)T

3) V0 > �V Q
2 : No closed formulae for the shortfall probability or for the expected

shortfall exist. In this segment, both have to be determined numerically.

Proof: See appendix.

Note that the success set depends not only on the time of default � , but also on the
size of the payout ratio in the case of default, �. It can be seen that the later the
default happens, the bigger is the payout ratio � which is hedged by the claim, up
to the total amount of 1. The optimal hedge contract is of the knock-out type: If
the write-down is below a certain boundary, it is covered by the contract, but if it is
above the boundary, the hedge pays out nothing. The knock-out form of the hedge
is typical for shortfall hedging, compare F�ollmer and Leukert [1997,1998].

Figure 1 shows several boundaries depending on the initial investment into the
hedging strategy (in percent of the bond's price). Here, parameters are � = 2; � =
0:1; T = 10. The area below the boundary is the area secured by the hedging
strategy. The double dependence of the success set on the time of default as well
as the size of default is the main di�erence between the strategy minimizing the
shortfall probability and the strategy minimizing the expected shortfall. We see
that at later possible default dates, higher loss rates are insured by the optimal
hedging strategy. There is an intuitive reason for this shape of the success set:
Figure 5 shows that the density of default times under the martingale measure is
falling faster than the density under the historical measure. This implies that it
costs less to insure against the possibility of default at later dates, and therefore
a higher amount of the investment into the hedge can be used to insure against a
higher loss rate in the case of default.

Let us consider now the strategy which minimizes the expected shortfall.

3.3.3 Theorem The critical values are given by

aESK = e�(��1)T ; �V ES
1 = 0; �V ES

2 = e���T
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Depending on the initial investment, the success set, probability and expected size

of the shortfall are given by

V0 2 [ �V ES
1 ; �V ES

2 ] V0 > �V ES
2

Success Set Randomized on � > T T � � > �
log(2V0 � e���T )

��
with probability V0e

��T

Shortfall Prob. 1� V0e
��(1��)T (2V0 � e���T )�1=� � e��T

Expected Shortfall
1

2
(1 + e��T )� V0e

��(1��)T 1

2
((2V0 � e���T )�1=� � e��T )

Proof: See appendix.

3.3.4 Remark � First of all, note the di�erence in success sets between the
strategy minimizing the SP and the strategy minimizing the ES: In the latter,
the success set does not depend on the size of the default, but only on the
time of default. For a low investment into the hedging strategy, the risk of the
contingent claim is hedged �rst at the long end, and with rising investment the
success set covers dates nearer to the present. This is due to the same reasons
which inuence the shape of the success set in the case of the strategy which
minimizes the shortfall probability: The density of default times is falling
faster under the martingale measure than under the historical measure, and
therefore it is cheaper to hedge late default times �rst.

� Note that the initial investment enters in two di�erent ways depending whether
it is in the interval [0; �V ES

2 ] or greater than �V ES
2 : In the �rst case it enters

linearly, in the second case as the reciprocal of some root. It can be shown
that the derivative with respect to V0 is greater in absolute value in the �rst
case than in the second case. This means that a marginal increase in V0 for
V0 2 [0; �V ES

2 ] reduces shortfall probability and the expected size of the shortfall
more than for V0 > �V ES

2 .

The �gures 5 and 3 compare the strategies minimizing the probability of a short-
fall and the expected shortfall with respect to the resulting shortfall probability and
expected shortfall for a given initial investment in percent of the bond's price. Pa-
rameters are � = 2; � = 0:1; T = 10. We can see that, for example, investing 50%
of the bond's price into the strategy minimizing the SP results in a 10% smaller
SP, but 2.5% higher ES than when the same amount is invested into the strategy
minimizing the ES. Of course, the strategy minimizing the SP has a lower SP than
the strategy minimizing the ES, and vice versa.
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With the results for the credit risky bond, it is relatively easy to treat also the

case of a credit default swap. For this purpose, we modify assumption 3.3.1 in the

following way:

3.3.5 Assumption Let �; f; f � and h as before, and C = 0, i.e. if there is no

default, the claim G pays nothing.

The price of this instrument is

E�[D1f��Tg] =
1

2
(1� e���T )

The following theorem provides some results on the optimal shortfall hedging strate-
gies of the credit default swap.

3.3.6 Theorem As in the last case of theorem 3.3.2, the strategy which minimizes

the SP has to be determined numerically. For the strategy which minimizes the ES,

we have the following explicit results:

Success Set: � > �
1

��
log(2V0 + e���T )

Prob. of Shortfall: 1� (2V0 + e���T )1=�

Expected Shortfall:
1

2

�
1� (2V0 + e���T )1=�

�

Proof: See appendix.

The success sets in this situation look very similar to the case of a defaultable
bond, and this is also apparent in the �gures 5 and 5. Consequently, an investor who
wants to save money on the hedging of the loss from holding a defaultable bond and
who is interested in minimizing the ES should take out an insurance against default
at the later dates and bear the risk of default at the earlier dates. On the other
hand,if the investor is interested in minimizing his SP, then his optimal hedge should
cover him against larger and larger losses from default, the later default happens.

3.4 Discussion

In the following, we want to show the advantages of our hedging strategies over
competing contracts. The discussion is based on the last speci�cation of the contract
in the preceding section. Thus, we consider a claim which pays a random amount
D uniformly distributed on [0; 1] if default � occurs before maturity T = 1 year,
where � is exponentially distributed with intensity � = 0:1, and the risk premium
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for the jump is � = 2. To explain our standard example, think about an investor
who owns a credit risky bond which pays 1 if default � occurs after maturity T of
the bond (� > T ) and which pays a random amount � 2 [0; 1] if default occurs
before maturity (� � T ). This investor faces a random loss of D = (1� �) in the
case of default. We can interpret this as a payment obligation of random size, which
also �ts the situation where a bank has sold credit protection for this bond to a
customer and might have to pay this amount in the case of default. Note that the
price of this payment obligation is 0:091, while its 5% VaR is 0:475. In other words,
the bank would have to hold this amount in order to be sure that in only 5% of
all possible cases, they have to pay more than that to their customer. Apart from
diversi�cation, which is a possibility we do not consider in this paper, the investor
or the bank could try to reduce the risk of the random loss by entering into a (re-
)insurance contract. Three possible types of contracts come to mind, which we will
explain below and compare the results with the optimal hedging strategies derived
before:

1) PER: Imagine �rst a contract which pays a certain percentage of the loss in
the case of default, V (T ) = cD1f��Tg. Because this contract pays always less
than the actual loss, the shortfall probability (SP) is 100% for all c < 1.

2) CON: Another possibility would be a contract which pays a �xed amount in
the case of default, V (T ) = c1f��Tg. For a SP of 5%, we calculate c = 0:475
and the price of this contract is 0:086.

3) MIN: Finally, consider a contract which pays, in the event of default, the
minimum of a constant c and the actual loss D, V (T ) = (c ^ D)1f��Tg. For
a SP of 5%, this contract costs 0:066 and is therefore cheaper than contract
number 2).

Although the last contract seems to be quite good, it is far outperformed by the
optimal strategies calculated by the application of the Neyman-Pearson lemma. The
strategy which minimizes the SP for this contract only costs 0:021 (about one third
of the best strategy in our list above) in order to guarantee a 5% SP.

We can also compare all strategies with respect to their expected shortfall (ES).
Here the di�erences are less pronounced, but it is still possible to save some percent
in hedging costs by using a strategy which minimizes the ES versus, for example,
the last contract in the list above. For example, to guarantee an ES of 0:01, the
contract number 3) above costs 0:072, while the strategy minimizing the ES costs
0:071, a saving of about 1.4%. The results (initial investment for required SP or
ES) are summarized in the table below.
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Strategy 5% Shortfall Probability 0:01 Expected Shortfall
VaR 0.475 0.542
PER 0.091 0.072
CON 0.087 0.099
MIN 0.066 0.072
MinShortProb 0.021 0.072
MinExpShort 0.042 0.071

4 Incomplete Markets

In this section, we analyze hedging strategies for a credit default swap (C = 0) in
incomplete markets. Thus, we consider a payment obligation of the form

G = D1f��Tg

with D uniformly distributed on [0; 1]. We look at the strategies which minimize,
for a given initial investment, the Sp or the ES, respectively. We do this in two
di�erent incomplete market setups:

� First, we assume that the default risk premium is unknown from the beginning.
This approach leads to an optimization over all possible martingale measures,
which results in the so-called "worst-case\ martingale measure.

� In our second setup, we assume that at a predetermined time t0 between 0
and T a rating change will occur, so that after time t0 the default intensity �
is distributed with the density g on R

+ . This setup is similar to the one used
in the papers by F�ollmer and Leukert [1997,1998], and the optimal hedging
strategies can be found in an analogous way.

In both cases, we can use results from the complete markets case, especially theorem
3.1.2. We will compare the results from both strategies.

4.1 Unknown Default Risk Premium

The markets where credit risk is traded, such as the corporate bond market, are
often very illiquid, and a large part of credit derivatives are traded over the counter,
so that it may often be diÆcult to obtain accurate information on current prices for
credit risky securities. These prices are often used to back out the risk premium from
a credit risk model, so that in the absence of price information this risk premium
is not known. However, the optimal strategies as well as the minimal shortfall
probability and expected shortfall may di�er quite a lot depending on the value of
�, as we can see in �gure 5.
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We substitute assumption 3.0.1 with the following:

4.1.1 Assumption � The constant �, which determines the default intensity

under the risk-neutral measure, is not unique, but lies somewhere in the in-

terval [�L; �H] with �L > 1.

� As in our example in section 3.3, we assume that f = f � = 1[0;1] and h � 1.

The assumption implies that the risk premium for the default intensity is un-
known. Regarding the payout ratio after default, �, we keep the assumption from
the previous section that it has the same distribution (uniform on [0; 1]) under the
historical and under the martingale measure, which implies that the risk premium
for the payout ratio is zero. The results can be generalized to the case where there
is a positive risk premium for the payout ratio which may also be unknown. How-
ever, the assumptions can be justi�ed by the fact that the risk premium for the
default intensity plays a much bigger role in practice than the risk premium for the
payout ratio, as most models used in the industry still use a constant payout ratio.
Therefore, we consider the case of the unknown default risk premium.

Under this assumption, we face again the problem 3.1.1. The optimal hedge can be
written as before by H = 'G, where ' 2 R (see section 2.2). To �nd the optimal
function ', we introduce a family of probability measures fQ�jP � 2 Pg, where Q�

is de�ned by

dQ�

dP �
=

G

E�[G]

Because the P � are indexed by �, we also write Q� = Q�(�). The problem can now
be interpreted as testing the compound hypothesis fQ�jP � 2 Pg against the simple
alternative P in the SP case and against Q in the ES case, where

dQ

dP
=

H

E[H]

Witting [1985] gives a suÆcient condition for the optimal function ': There exists
a �nite measure L on [�L; �H ] so that

'Q =

(
1 if dP >

R �H
�L

dQ�(�) dLQ(�)

0 if dP <
R �H
�L

dQ�(�) dLQ(�)
; ~EQ[H'̂Q] = V0

or 'ES =

(
1 if dQ >

R �H
�L

dQ�(�) dLES(�)

0 if dQ <
R �H
�L

dQ�(�) dLES(�)
; ~EES[H'̂ES] = V0
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where ~E denotes the expectation under the optimal mixture of measures for the SP
or the ES case, respectively. Practically, it is nearly impossible to �nd the optimal
measure L̂ on the parameter interval [�L; �H ]. Only in the case that the mixture
of measures Q� above is again a member of the family fQ�jP � 2 Pg, as in F�ollmer
and Leukert [1997], there is some hope of a solution of this problem. Under these
circumstances, we know as in the complete case for C = 0, that the optimal success
ratio reduces to a success set

AQ(~�) = f� > Tg [ (faQD~�e��(~��1)� < 1g \ f� � Tg) (7)

AES(~�) = f� > Tg [ (faES ~�e��(~��1)� < 1g \ f� � Tg) (8)

Although in our setup the family fQ� : P � 2 Pg is not measure convex, we believe
that it is possible to �nd a nearly optimal solution by restricting our attention to
success sets of the form above.

Note that inside the success set, the parameter ~� is not �xed, as in the complete
case, but may vary in the interval [�L; �H ]. Similarly, due to incompleteness of the
market, there is a whole range of possible measures P �, which are associated to the
risk premium �� 2 [�L; �H ]. In contrast to the complete case, we have to determine
A in such a way that under all possible martingale measures, the price of the hedge
is less than or equal to our �xed initial investment V0,

sup
P �

E�[1AG] � V0

4.1.2 Theorem In the expected shortfall case, the worst case martingale measure

�̂ is given by

�̂ = argmin
�
(2V0 + e���T )(1=�)

In the shortfall probability case, the worst case martingale measure can only be

found numerically.

In both cases, success set, shortfall probability and expected shortfall of the optimal

hedge can be obtained as in the complete case by using the measure associated to

�̂ as the unique martingale measure P �.

Proof. We treat the strategy minimizing the expected shortfall �rst. Following
F�ollmer and Leukert [1997], we know that for the worst case martingale measure �̂
we have

E�̂[1AES(�̂)G] = V0

We use this condition together with our results from the complete case to �nd
possilbe combinations of worst case martingale measures �̂ and associated critical
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constants âES for a given initial investment V0. These are connected by

âES(�̂) =
1

�̂
(2V0 + e���̂T )(1��̂)=�̂

(see the proof of theorem 3.3.3). Together with equation (8) it is clear that the
success set AES depends on the parameter �̂. Now, �̂ has to be determined so
that under all alternative measures ~� 2 [�L; �H], the price of our hedge is less
than the initial investment, E ~�[1AES(�̂)G] � V0. Computing the expectation (same
calculations as in section 3), we �nd

E ~�[1AES(�̂)G] =
1

2
[e�

~�
�̂�1

log âES�̂ � e��~�T ]
!
� V0 8~� 2 [�L; �H ]

Substituting the expression for âES from above, we see that this condition is equiv-
alent to

(2V0 + e���̂T )(1=�̂) � (2V0 + e��~�T )(1=~�) 8~�

Therefore, we have to minimize the function

(2V0 + e���T )(1=�)

with respect to �, and the solution will give us the worst-case martingale measure
�̂.

In the case where the investor wants to minimize the shortfall probability, such
an explicit solution for the worst-case martingale measure is not available. This is
mainly due to the fact that the optimal parameter âQ can not be computed explicitly
as a function of �̂. This problem was already outlined in the proof of theorem
3.3.2, case 3). It is still possible to determine the worst case martingale measure
numerically. As in the expected shortfall case, the optimal success set depends on
the parameter �̂, while the expectation has to be taken under the measure which
corresponds to ~�. Thus,

E ~�[1AQ(�̂)G] = F (~�; �̂)
!
� V0 8~� 2 [�L; �H ]

We solve this problem by a grid search method: We discretize the interval [�L; �H ]
and on the resulting grid for ~�; �̂ we �nd the value of �̂ which ful�lls the condition
above. Of course, this method is not very sophisticated, and improvements are
possible. 2

Figures 5, 10 and 5 show the worst-case martingale measure, shortfall probability
and expected shortfall for various investments V0 into both hedging strategies. Here,
the interval [�L; �H ] was set to [1; 3]. We see that the parameter �̂ is a rising function
of the initial investment V0. This behaviour of the worst-case martingale measure
can be explained in the following way: Remember that from all possible martingale
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measures, the optimal hedge is most expensive under the worst case martingale
measure. We know from the complete markets case that the optimal success sets
for the expected shortfall case always start at the long end and hedge against late
default times �rst. The more money is invested into the hedge, the earlier default
times are insured. In the shortfall probability case, the loss from default which
is hedged is biggest at the long end. However, an increase in the risk premium
parameter �̂ prices default risk as if an earlier default was more probable, i.e. it
shifts more mass of the distribution of the default time � to earlier dates (compare
�gure 5), and this makes the hedge which covers the earlier dates more expensive.

The curves showing shortfall probability and expected shortfall of the optimal
hedge have the same form as in the complete case, although the di�erence in numbers
can be quite signi�cant (as we showed in �gure 5).

4.2 Rating Change

Rating changes are a common occurence in credit risk markets and have a strong

impact on the value of securities traded in these markets. In this section we consider

the case where a rating change takes place at a predetermined point in time, t0. For

this purpose, we introduce the

4.2.1 Assumption The intensity � governing the risk of default is known from time

0 up to time t0. At time t0, a rating change occurs, and the new default intensity

is distributed with density g on R
+ . Contracts on the new default intensity (except

the one under consideration) do not exist, and therefore the market after date t0 is

incomplete.

This assumption is analogous to the assumptions in F�ollmer and Leukert [1997,1998],
where they consider a volatility jump of the driving Brownian motion at time t0.
Our setup di�ers in two respects from theirs:

1) In F�ollmer and Leukert, it turns out only at the maturity T of the claim G
whether the hedge was successful or not, whereas in the present paper this
may be known before, namely at the time of default � .

2) Although the volatility � jumps, they keep the drift � of the stock price
constant. Therefore, the risk premium �=� jumps together with the volatility.
In our setup, the situation is di�erent: The default intensity � jumps, but
the risk premium parameter � stays constant. This seems to be a plausible
assumption for our credit risk setting.
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As before, we focus on a credit default swap, where the random payo� D at the
default time � is uniformly distributed on [0; 1]. We consider the shortfall probability
case �rst, the expected shortfall case can then be treated in an analogous fashion.
Before we present the optimal strategy, we introduce the following

4.2.2 De�nition For a given realization �2 of the default intensity � and an in-

vestment of Y into the hedging strategy at time t0, we denote by �
�2(Y ) its minimal

shortfall probability after time t0 if default has not happened before time t0.

Because for a given realization of �2 from time t0 onwards the market is complete,
we can use the methods developed in section 3 to calculate ��2(Y ).

4.2.3 Theorem With this de�nition, the optimal hedging strategy which mini-

mizes the probability of a shortfall for a given initial investment V0 at time 0 can

be obtained in two steps:

1) For a given amount Y at t0 and using the methods from section 3, compute

the average shortfall probability for times t > t0 given by

��2(Y ) :=

Z
��2(Y )g(�2) d�2

2) In a second step, compute the optimal hedge with initial investment V0 which

minimizes the shortfall probability �1(Y ) for the claim Y 1f�>t0g+D1f��t0g at

time t0.

The total shortfall probability for a given Y is then the (weighted) sum of the

shortfall probabilities from 1) and 2):

�(Y ) = �1(Y ) + ��2(Y ) � P [� > t0]

The total shortfall probability depends on the intermediate investment Y . The

intermediate investment Y which yields the lowest shortfall probability for a given

initial investment V0 can be found numerically.

The strategy which minimizes the expected shortfall can be obtained in a similar
way.

Proof Consider a hedge H with initial investment H0 and Ft-measurable value
process Ht.

28



At time t0, due to the structure of the underlying probability space, the value of
the hedge can be written as

Ht0 = �H11f�>t0g + �H2(�;D)1f��t0g;

where �H1 is a constant and �H2 is a function of the time of default, � , and the mark
space variable D. Given that no default has happened up to time t0, it is optimal
to use the value �H1 to implement a hedging strategy which minimizes the shortfall
probability from time t0 onwards. This can be done as in section 3, because the new
value �2 of the default intensity is now known.

In the case that default happens before time t0, the shortfall probability is surely
minimized by implementing a shortfall probability minimizing hedge for the claim

~Ht0 = �H11f�>t0g + (1��)1f��t0g

Note that for a given initial investment H0, the optimal shortfall hedge in this �rst
segment is fully determined by the payo� H1 at time t0. Finally, �H1 has to be chosen
such that the overall shortfall probability is minimized. 2

5 Conclusion

We show how the results of F�ollmer and Leukert [1997,1998] can be applied to
credit risky securities. We show how an investor can save money by using hedging
strategies which minimize the shortfall probability or the expected shortfall instead
of a perfect hedge in complete markets. General theorems for credit risky securities
are derived, and we provide explicit results for the optimal hedges of a defaultable
bond and a credit default swap. The hedges are compared with respect to their
shortfall probability and expected shortfall. We show that in the case of an investor
who wants to minimize the shortfall probability, it is optimal to hedge only losses
below a certain, time dependent boundary, while for the strategy which minimizes
the expected shortfall it is optimal to hedge the whole possible loss, starting at a
certain point in time which is determined by the initial investment into the hedging
strategy.

In an incomplete markets setup, we compute optimal hedges for both objectives
in the cases where the risk premium for default is unknown or a future rating event
will change the default intensity randomly.
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Proofs

Proof of theorem 3.1.2 We treat the Quantile case (minimization of shortfall
probability) �rst. According to the results of F�ollmer and Leukert [1997], the opti-
mal success ratio has the form

'̂Q = 1AQ(âQ) + Q1f dP
dP�

=âQHg (9)

where the set AQ(a) and the two constants âQ and Q are given by

AQ(a) = f
dP

dP �
> aGg (10)

âQ = inffa :

Z
1AQ(a)GdP

� � V0g (11)

Q =
V0 �

R
1fAQ(âQ)gGdP

�R
1f dP

dP�
=âQGgGdP

�

For a given initial investment V0, the success set is fully described through the
constants âQ and Q, which in turn depend on the initial investment into the hedging
strategy, V0. Note that through equation 10 the function P �[AQ(a)] is decreasing in
a. In return, through equation 11 the optimal parameter âQ is weakly decreasing in
the initial investment V0: Increasing V0 means that AQ(a) increases weakly, so that
âQ decreases weakly.

In a �rst step, we determine the values of âQ for which the success ratio reduces
to a success set. Thus, we study the condition

P [
dP

dP �
= aH] = 0

To analyze this condition, we decompose the set into�
dP

dP �
= aH

�
=

�
aH

dP �

dP
= 1

�
= (faCe��(�

��1)T = 1g \ f� > Tg) [ (faD��h�e��(��1)� = 1g \ f� � Tg)

While the second partition (for � � T ) has measure zero for any a, the �rst partition
has positive mass for the parameter

aQK =
1

C
e�(�

��1)T

Consequently, for âQ 6= aQK , the optimal success ratio reduces to the success set
AQ(âQ). For âQ = aQK , randomization occurs on the set f� > Tg (and on a subset
of f� � Tg, which has measure zero and is therefore irrelevant).
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As we argued above, âQ is a decreasing function of V0. Thus, for small values
of V0, we have âQ > aQK , while for large values of V0, we have âQ < aQK . In these
cases, the success set is solely determined through the value of the parameter âQ,
the parameter Q does not occur. As we can see from the decomposition of the
success set AQ,

AQ =

�
aH

dP �

dP
< 1

�
= (faCe��(�

��1)T < 1g \ f� > Tg) [ (faD��h�e��(��1)� < 1g \ f� � Tg)

for âQ > aQK, A
Q consists only of a subset of f� � Tg, while for âQ < aQK the success

set also comprises the set f� > Tg. Of course, in the case C = 0 the set f� > Tg is
always part of the success set, and the following computations simplify accordingly.
The relationship between initial investment V0 and the parameter âQ in the case
âQ > aQK is given by

V Q
1 (âQ) =

Z
D1fDâQ�he��(��1)�<1g dP

�

and in the case âQ > aQK by

V Q
2 (âQ) =

Z
D1fDâQ�he��(��1)�<1g dP

� + CP �[� > T ]

For âQ = aQK , the optimal solution is given by the success ratio '̂Q as de�ned in
equation 9. Consequently, this parameter value is obtained in a range of initial
investments [V Q

1 ; V
Q
2 ], which correspond to the interval Q 2 [0; 1].

The optimal success ratio in the Expected Shortfall case is

'̂ES = 1AES(âES) + 1f dP
dP�

=âESg

where AES(a); âES and ES are given by

AES(a) = f
dP

dP �
> ag

âES = inffa :

Z
1AES(âES)HdP

� � V0g

ES =
V0 �

R
1fAES(âES)gH dP �R

1f dP
dP�

=âESgH dP �

The success ratio reduces to a success set under the condition

P [
dP

dP �
= a] = 0
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so that the critical parameter for the Expected Shortfall case is given by

aESK = e�(��1)T

Consequently, for âES 6= aESK , the optimal success ratio reduces to the success set
AES(âES). For âES > aESK , the success sets consist only of a subset of f� � Tg, while
for â < aK the success sets also comprise the set f� > Tg. The initial investment
for a hedging strategy of the �rst kind is given by

V ES
1 (âES) =

Z
D1fâES�he��(��1)�<1g dP

�

and for the second kind by

V ES
2 (âES) =

Z
D1fâES�he��(��1)�<1g dP

� + CP �[� > T ]

For âES = aESK , the critical values V ES
1 and V ES

2 can be found as in the Quantile
case. 2

Proof of theorem 3.2.2 De�ne the set

BQ(b) =

�
dP

dP �
>

G

bE�[G]

�

According to F�ollmer and Leukert [1997], the optimal success ratio has the form

 ̂Q = 1BQ(b̂Q) + ÆQ1f dP
dP�

= G

b̂QE�[G]
g

where

b̂Q = inf

�
b : P

�
dP

dP �
<

G

bE�[G]

�
� �

�

ÆQ =
(1� �)� P [B(b̂Q)]

P [ dP
dP �

= G
bE�[G]

]

The rest of the proof is along the same lines as the proof to theorem 3.1.2. 2

Proof of theorem 3.2.4 De�ne the set

BES(b) =

�
dP �

dP
< b

�

According to F�ollmer and Leukert [1998], the optimal success ratio has the form

 ̂ES = 1BES(b̂ES) + ÆES1f dP�
dP

=b̂ESg
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where

b̂ES = inffb :

Z
(1� 1BES(b̂ES))GdP � �g

ÆES = 1�
� �

R
(1� 1BES(b̂ES))GdPR
1f dP

dP�
=b̂ESgGdP

The rest of the proof is along the same lines as the proof to theorem 3.1.2. 2

Proof of theorem 3.3.2 We start with the observation that

aQKz�e
��(��1)� < 1, z <

1

�
e�(T��)(��1)�

where aQK = expf�(� � 1)Tg from theorem 3.1.2 and the far right side is smaller
than one for � < T + log �

�(��1)
. With this, the double integral reduces to

�V Q
1 =

Z T

0

Z 1

0

z1fz�e�(��1)(T��)g dz��e
���� d� =

1

2

Z T

0

�
1

�
e��(��1)(T��)

�2

��e���� d�

Integration gives the value of �V Q
1 , while we know from theorem 3.1.2 that

�V Q
2 = �V Q

1 + CP �[� > T ] = �V Q
1 + e���T

The optimal solution for the three cases in the theorem is obtained as follows:

1) V0 < �V Q
1 : Here we have âQ > aQK and therefore

Z
z1fâQz�e��(��1)�<1g dP

� =
1

2

Z T

0

�
1

aQ�
e�(��1)�

�2

��e���� d�
!
= V0

This equation determines the optimal value âQ. The success set is then given
by

fâQz� exp(��(�� 1)�) < 1g

where � must lie between zero and T , and z between zero and one. The
probability of a shortfall is one minus the probability of the success set under
the measure P . The expected shortfall can be computed asZ

z1fâQz� exp(��(��1)�)<�1g dP + P [� > T ]
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2) V0 2 [ �V Q
1 ; �V

Q
2 ]: The optimal value âQ is equal to aQK . In this segment, ran-

domization occurs. On the set f� � Tg, the success set is given by

fz < expf��(�� 1)(T � �)g=�g

For f� > Tg, success is randomized with (V0 � �V Q
1 )=P �[� > T ]. On f� � Tg,

shortfall probability and expected shortfall have to be determined by inte-
gration as in the �rst segment. On f� > Tg, both are given by P [� >
T ]� (V0 � �V Q

1 )P [� > T ]=P �[� > T ].

3) V0 > �V Q
2 : Here we have âQ < aQK and the credit risky bond is completely

hedged on the set f� > Tg.

On f� � Tg, the situation is more complicated: We have to determine âQ

such that Z T

0

Z 1

0

z1fâQz�e��(��1)�<1g dz��e
���� d� = V0 � P �[� > T ]

We solve the inequality in the indicator set for z,

z <
1

âQ�
e�(��1)�

and this is smaller than one only for

� <
log(âQ�)

(�� 1)�
=: ~T

Hence, for ~T � T , the integral is equal to

1

2

Z T

0

�
1

âQ�
e�(��1)�

�2

��e���� d�

On the other hand, if ~T < T , we split up the integral into

1

2

Z ~T

0

�
1

âQ�
e�(��1)�

�2

��e���� d� +
1

2

Z T

~T

��e���� d�

These integrals can be computed explicitly, but result in complicated functions
of âQ (note that âQ enters not only inside the integral, but also through the
boundaries of the integral). The optimal value of âQ in this situation for given
V0 can only be found numerically.

2
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Proof of theorem 3.3.3 First observe that

� > 1, �� 1 > 0

and aESK = expf�(�� 1)Tg, which comes directly from theorem 3.1.2. The success
set is given by

AES
K := faESK �e��(��1)� < 1g \ f� � Tg

Substituting aESK , we see

f�e�(��1)(T��) < 1g = f� > T +
log�

(�� 1)�
g

Because of log�=(��1)� > 0, the success set AES
K is empty. Consequently, we have

�V ES
1 = 0 and �V ES

2 = expf���Tg.
For an investment of V0 in the interval [0; expf���Tg], the probability of a shortfall
is given by

P [faESK �e��(��1)� � 1g \ f� � Tg] + (1� )P [� > T ]

The set inside the �rst probability reduces to f� � Tg because

aESK �e��(��1)� � 1

,�e�(��1)(T��) � 1 (12)

and this is true for all � � T because � > 1. The second term of the sum is equal
to P [� > T ] + V0P [� > T ]=P �[� > T ] according to theorem 3.1.2, and this gives us
the result in the table. The expected shortfall is given byZ T

0

Z 1

0

z1faESK �e��(��1)��1g dz�e
��� d� + (1� )P [� > T ]

Due to the same argument as in (12), the double integral reduces to (1�expf��Tg)=2,
and together with the second part this is equal to the formula in the table.
If the initial investment V0 is greater than �V ES

2 , we �rst have to determine the
optimal success set via its parameter âES. The success set is given by

AES
3 = f� > Tg [ (fâES�e��(��1)� < 1g \ f� � Tg)

Therefore, we calculateZ T

0

Z 1

0

z1fâES�e��(��1)�<1g dz��e
���� d� =

1

2
P �[� 2 [

log(âES�)

(�� 1)�
;T ]]

=V0 � e���T
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and solve this equation for âES

, âES =
1

�
(2V0 � e���T )

1
�
�1

Therefore, the probability of a shortfall for this investment is

P [fâES�e��(��1)� � 1g \ f� � Tg]

=(2V0 � e���T )�1=� � e��T

and the expected shortfall is exactly one half that number. 2

Proof of theorem 3.3.6 As we saw already in theorem 3.1.2, in the case C = 0
the critical values do not exist and the success sets have the form

AQ = f� > Tg [ (fâQD�e��(��1)� < 1g \ f� � Tg)

AES = f� > Tg [ (fâES�e��(��1)� < 1g \ f� � Tg)

Minimizing the shortfall probability, we have to solveZ T

0

Z 1

0

z1fâQz�e��(��1)�<1g dz��e
���� d� = V0

for âQ. This has to be done numerically, compare the proof for theorem 3.3.2. For
the expected shortfall, we have to solveZ T

0

Z 1

0

z1fâES�e��(��1)�<1g dz��e
���� d� =

1

2
P �[� 2 [

log(âES�)

(�� 1)�
;T ]]

!
= V0

for âES:

, âES =
1

�
(2V0 + e���T )1�

1
�

Therefore, the probability of a shortfall for this investment is

P [fâES�e��(��1)� � 1g \ f� � Tg]

=1� (2V0 + e���T )1=�

and the expected shortfall is again one half that number. 2
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Dichte der Exponentialverteilung; Lambda=0.1
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Figure 1: Density of Default Times
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Figure 2: Credit Risky Bond: Success Set
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Figure 3: Credit Risky Bond: Shortfall Probability
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Figure 4: Credit Risky Bond: Expected Shortfall
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Figure 5: Credit Default Swap: Success Set
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CDS: Minimizing Shortfall Probability. SP for various values of Mu.
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CDS: Minimizing Expected Shortfall. ES for various values of Mu.
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Figure 9: Credit Default Swap, Minimizing Expected Shortfall: ES for various values of

Mu



Worst Case Martingale Measure
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Figure 10: Incomplete Market: Worst Case Martingale Measure

Shortfall Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4

Investment (Absolute Value)

MinExpShort

MinShortProb

Figure 11: Incomplete Market, Credit Default Swap: Shortfall Probability



Expected Shortfall
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Figure 12: Incomplete Market, Credit Default Swap: Expected Shortfall



CDS, Rating Change: Intermediate Investment Y
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Figure 13: Incomplete Market, Rating Change: Intermediate Investment

CDS, Rating Change: Shortfall Probability
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Figure 14: Incomplete Market, Rating Change: Shortfall Probability


