Altruists, Egoists, and Hooligans in a Local Interaction Model

By ILAN ESHEL, LARRY SAMUELSON, AND AVNER SHAKED*

We study a population of agents, each of whom can be an Altruist or an Egoist.
Altruism is a strictly dominated strategy. Agents choose their actions by imitating
others who earn high payoffs. Interactions between agents are local, so that each
agent affects (and is affected by ) only his neighbors. Altruists can survive in such
a world if they are grouped together, so that the benefits of altruism are enjoyed
primarily by other Altruists, who then earn relatively high payoffs and are imi-
tated. Altruists continue to survive in the presence of mutations that continually
introduce Egoists into the population. (JEL C70, C78)

An act is altruistic if it confers a benefit on
someone else while imposing a cost on its per-
petrator. How does costly altruistic behavior
survive? Why doesn’t utility maximization in-
exorably eliminate such behavior?

One answer is immediately available: alleg-
edly altruistic acts are not really altruistic.
Upon closer examination, they confer net ben-
efits rather than costs. For example, charitable
donations may bring benefits such as public
recognition or a warm glow that overwhelm
the cost of the donation. If we push revealed
preference theory to its logical limit, this con-
clusion becomes as inescapable as it is tauto-
logical. If someone commits an *‘altruistic’’
act, then this reveals that he prefers doing so.'
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, Thf-l'e are many paralleis between discussions of al-
?lsm N economics and biology. Biologists frequendy
sugue that once the full effects of actions on reproductive

CCess are recognized, seemingly altrnistic acts are pri-
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A second answer is also available: the in-
teraction in which the altruistic act occurs
may be repeated. If the interaction is infinitely
repeated, then the folk theorem (Drew
Fudenberg and Eric Maskin, 1986) ensures
that there are equilibria in which Altruists
survive, though there are also equilibria in
which altruism does not appear.? David M.
Kreps et al. (1982) show that there are equi-
libria in which Altruists survive in finitely re-
peated games with incomplete information,
though once again a folk theorem result ap-
pears, including equilibria without altruism
(Fudenberg and Maskin, 1986).

We do not doubt that people often derive
benefits from seemingly altruistic acts, and
that many interactions are repeated. How-
ever, we also believe that altruistic acts occur
for which conventional models do not readily
account. Embellishing the models to encom-
pass such acts often leads to utility functions
that are uncomfortably exotic or to an uncom-
fortably strong faith in repetition.

This paper provides an alternative model of
altruistic behavior with two key properties.
First, we abandon the assumption that people

vately optimal. For example, there are now numerous ex-
planations for why it may be individually beneficial for a
bird to attract a predator’s attention by uttering a cry that
alerts the bird’s flock to the predator’s presence. Richard.
Dawkins (1976) discusses bird alarms as well as other
cases of apparent altruism.

? In biological contexts, explanations for altruism sim-
ilar to those that arise in repeated games appear in the
guise of reciprocal altruism (Robert L. Trivers, 1971).
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are rational agents choosing utility-
maximizing actions. Instead, we believe that
people must leam which actions work well,
and that an important force in learning is im-
itation. Second, interactions between agents in
our model are “‘local,”” meaning that altruistic
acts are more likely to affect nearby agents
than more distant neighbors and that agents are
more likely to imitate nearby than more distant
neighbors.

To see how these forces can allow altruism
to survive, suppose there are iwo kinds of
agents: Altruists, who provide a public good
to their neighbors at a cost to themselves, and
Egoists, who, do not do so. Suppose further
that Altruists tend to exist in concentrated
groups. Altruists can then eam higher payoffs
than Egoists, because Altruists are more likely
to enjoy the public goods provided by other
Altruists. The imitation-based learning process
now prompts other agents to become Altruists,
In addition, nearby agents are the ones most
likely to imitate the Altruists. This preserves
the tendency of Altruists to clump together in
groups and hence preserves the conditions
needed for altruism to survive.

This argument is unconvincing without
some stability analysis. We expect perturba-
tions to occasionally switch the behavior of
some agents from Altruist to Egoist or Egoist
to Altruist, perhaps because someone has an-
alyzed the model and deduced that it is utility
maximizing to be an Egoist, or has made a
mistake, or has simply experimented with a
new action. An Egoist thrust into the midst of
Altruists will thrive on the public goods pro-
vided by the latter and will be imitated, while
an Altruist thrust in the midst of Egoists will
fare poorly and will be ignored. Perturbations
or ‘mutations’’ that occasionally cause people
to switch strategies thus apparently produce a
force pushing toward egoism. An explanation
of altruistic behavior must demonstrate that al-
truism can withstand such mutations.?

3 Group selection models share many of the features of
our model of local interaction, but are now widely consid-
ered to be implausible as explanations for altruistic be-
havior, largely because of their inability to withstand
mutations. We discuss the relationship of our work 10
group sclection arguments in Section V.
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We find that only states composed primarily
of Altruists survive in the presence of rare mu-
tations. If a mutation introduces an Egoist in
the midst of Altruists, then the Egoist will sur-
vive and spread. However, the resulting group
of Egoists quickly confronts limits on its abil-
ity to expand, as each expansion causes the
public goods supplied by neighboring Altru-
ists to be shared among more and more Egoists
and hence reduces Egoists’ payoffs. Egoists
are thus readily introduced but cannot expand
beyond small, isolated groups. Isolated Altru-
jsts, in contrast, cannot even survive in the
midst of Egoists. However, mutations will oc-
casionally introduce a group of Altruists in the
midst of Egoists. Such a group of Altruists can
expand without bound. Mutations thus more
readily lead to large groups of Altruists than
Egoists, allowing the former to dominate.

Altruism is not the only type of externality
that can arise between agents. We extend the
model to consider Hooligans, or agents who
benefit from imposing damages on their
neighbors. The same forces that allow Altru-
ists to survive in the presence of Egoists also
allow Altruists to survive against Hooligans,
or Egoists to survive in the midst of Hooli-
gans, though Hooligans will typically not be
eliminated entirely. The analysis is then fur-
ther extended to general 2 X 2 games, allow-
ing us to examine games with two strict Nash
equilibria, one payoff dominant and one risk
dominant.

The work most closely related to ours in-
cludes Theodore C. Bergstrom and Oded Stark
(1993 ), Lawrence E. Blume (1993), and
Glenn Ellison (1993), and papers by Martin
A. Nowak and Robert M. May (1992, 1993)
and Nowak et al. (1994). Our spatial structure
matches one of the models considered by
Bergstrom and Stark as well as the simplest
case considered by Ellison, while Blume and
Nowak and May examine spatial models in
which agents are arranged in a plane rather
than along a line. We differ from Ellison and
Blume in taking imitation, rather than some
yariant of best-reply dynamics, to be the driv-
ing force behind strategy selections. This is
crucial, as altraism has no hope in a world of
best responders. We differ from Nowak and
May in relying on analytical techniques rather
than simulations, albeit for a very simple
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model, and especially in studying the effect of
mutations.

Section I presents the model. Section I ex-
amines equilibria of the imitation process.
There are many possible limiting outcomes,
depending upon the initial conditions of the
system, but Altruists comprise a significant
portion of the population in all but one of
these. We establish conditions under which the
probability of an initial condition leading to
the elimination of altruism shrinks to zero as
the population grows large. Section III shows
that only those limiting outcomes with a sig-
nificant proportion of Altruists survive muta-
tions. Section IV pursues a generalization of
the model in which agents interact in larger
neighborhoods. In doing so, we find that it can
be to Altruists’ advantage to have a relatively
high cost of altruism. A higher cost of altruism
ensures that if Altruists survive, then they must
do so in larger groups, because only then do
they share enough of the public good to com-
pensate for the high cost of being an Altruist.
This in turn ensures that if there are any Al-
truists at all, then there are relatively large
groups of Altruists. Section V concludes. Un-
less otherwise noted, proofs are contained in
the Appendix.

I. Altruists and Egoists

We consider a collection of N individuals,
where N is finite. Each individual can be either
an Altruist or an Egoist. An Altruist provides a
public good that contributes one unit of atility
to those who receive its benefits. The net cost
to the Altruist of providing the public good is
C > 0, so that the combination of enjoying the
benefits of his own public good and bearing the
costs of its provision reduces the Altruist’s util-
ity by C. Egoists provide no public goods and
bear no costs. Instead they simply enjoy the
benefits of the public goods provided by others.

Time is divided into discrete periods. At the
end of each period, after consuming any public
good that is available and bearing provision
costs_ (if an Altruist), each agent decides, ac-
cording to a learning rule, whether to be an
Altruist or Egoist in the next perod.

The nature of this learning rule is important.
One possibility is that the agents are fully ra-
tional, though myopic, and the learning rule
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leads them to adopt single-period, expected-
utility-maximizing actions. In this case, they
will realize they face a variant of the prisoner’s
dilemma and will play the strictly dominant
strategy, namely Egoist. Instead of choosing
best replies, however, our players imitate the
strategies of others whom they observe to be
earning high payoffs. '

At one level, this imitation seems prepos-
terous. How hard can it be to figure out that
being an Egoist (or defecting in a prisoner’s
dilemma) is a strictly dominant strategy? This
is indeed a trivial task for a game theorist fac-
ing the sterilized 2 X 2 games with which we
often work. However, these games are a sim-
plified representation of a much more compli-
cated reality. The agents who actually play the
game may not recognize that they are playing
a game, may not know who their opponents
are, may not know what strategies are avail-
able, and may not know what payoffs these
strategies bring. They may then be unable to
think like game theorists, or like the agents in
game-theoretic models. At the same time, we
believe that people are generally able to form
a good estimate of others’ payoffs, whether
these payoffs are measured in terms of money
or other units such as social status or prestige,
and that people tend to imitate the behavior of
those they observe earning high payoffs.

Imitation alone appears to hold out no hope
for the survival of altruism. Egoists will enjoy
the same public goods as Altruists, while only
the latter bear costs. As a result, all Egoists
will earn higher payoffs than all Altruists and
imitation can only lead players to become
Egoists.

This argument is applicable only if the ben-
efits of the public good provided by each Al-
truist extend to every agent in the population.
The prospects for Altruists improve if the pub-
lic good is a local public good. To make this
precise, we introduce a neighborhood structure
taken from Bergstrom and Stark (1993) and
Ellison (1993). Agents in the model are lo-
cated around a circle., Each agent interacts

* A spatial interpretation is convenient, but local inter-
acuon structures may arise in other ways. In academia,
field of specialization is probably more important than lo-
cation in determining patterns of interaction.
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with his two immediate neighbors, i.e., with
one agent to his right and one to his left. If an
agent is an Altruist, then his immediate neigh-
bors enjoy the benefit of his public good pro-
vision. The payoff of agent i is then given by
N4 — Cif i is an Altruist and N? if i is an
Egoist, where N¥ € {0, 1, 2} is the number
of i’s Altruist neighbors (excluding himself).

In each period, each agent takes a draw from
an independent Bernoulli trial, causing the
agent to ‘‘learn’” with probability p € (0, 1]
and to retain her strategy with probability 1 —
. An agent who learns observes her own pay-
off and the payoff and strategy of each agent
in her neighborhood. She then chooses to be
an Egoist if the average payoff of the Egoists
in her sample exceeds that of Altruists, and
chooses to be an Altruist if the average payoff
of Altruists exceeds that of Egoists.” If an
agent and her two neighbors all play the same
strategy, be it Altruist or Egoist, then the agent
will continue to play that strategy.

We shall concentrate on the case of u = 1,
so that every agent learns in every period. This
gives a deterministic learning process which
simplifies the derivation and statement of the
results. However, Bernardo A. Huberman and
Natalie S. Glance (1993) have recently argued
that the outcomes of local interaction models
can be sensitive to whether all agents adjust
their strategies at the same time. We accord-
ingly comment on how each of our results
would be modified if 2 < 1.

A state is a specification of which agents are
Altruists and which are Egoists. Let S be the
set of possible states. For states { and j in S,
let P, be the probability that a single iteration
of the imitation process changes the system to
the state j given that the cument state is i.

Since the learning process is deterministic,

(with g = 1), P;is either 0 or 1. The collection

5 We simplify the analysis by choosing the cost € so
that payoff ties do not arise. There are many other plau-
sible learning rules. For example, an agent may simply
compare the best Egoist and best Altruist payoff among
those payoffs she observes, or may compare the sum of
the Egoist and Altruist payoffs, rather than considening
averages. Itzhak Gilboa and David Schmeidler (1995,
1996), in the context of their case-based decision theory,
examine the difference between considering the sums or
the averages of payoffs.
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{ Py} je s, along with a specification of the
initial state at time zero, is a Markov process
on the state space S. We refer to this Markoy
process as the ‘‘imitation dynamics.’” *

II. Equilibrium
A. Absorbing Sets

We are interested in the stationary distri-
butions of the imitation dynamics. We say that
a set of states is absorbing if it is a minimal
set of states with the property that the Markov
process can lead into this set but not out of it.
An absorbing set may contain only one state,
say i, in which case P; = 1 and i is a stationary
state of the Markov process. An absorbing set
may contain more than one state, in which case
P, = 0 if i is contained in the absorbing set
and j is not, while the Markov process cycles
between states in the absorbing set.

For each absorbing set of the Markov pro-
cess, there is a unique stationary distribution
the support of which consists of that absorbing
set. We can then learn much about the station-
ary distribution of the learning process by
studying absorbing sets.

We begin by compiling a description of the
imitation dynamics. We assume C < '5.° At
the end of each period, an agent may either
retain her strategy or choose a strategy played
by one of the two agents closest to her, de-
pending upon their payoffs. These payoffs in
turn depend on the strategies of the next two
neighbors. The fate of an individual is then
completely determined by the strategies of her
four nearest neighbors. _

An Egoist who learns by imitating his
neighbors can become an Altruist only if at
Jeast one of his two nearest neighbors is an
Altruist. However, if both of his immediate
neighbors are Altruists, then the Egoist earns

5 We can always vanquish altruistic behavior by mak-
ing it too expensive. If C > ', we find that the only
absorbing sets of the learning process are those consisting
of single states in which either all agents are Altruists 0f
all are Egoists. The former contains only itself in its basi
of attraction, while the latter attracts the remainder of the
state space. In the presence of mutations, only the latter
absorbing state survives. The case of C = '/; leads to in-
convenient payoff ties.
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a payoff of two, more than an Altruist ¢can ever
earn, causing the Egoist to retain his strategy.
An Egoist can therefore become an Altruist
only if exactly one of his neighbors is an Al-
truist, with the Altruist neighbor eaming a
higher payoff than the average payoffs of the
Egoist and his Egoist neighbor. This payoff
inequality holds only if the Altruist has an Al-
truist neighbor, since otherwise the Altruist re-
ceives the Jowest possible payoff of —C, and
if the other Egoist in the neighborhood faces
a neighborhood containing only Egoists, so as
to bring the average Egoist payoff below 1 —
C. Hence, an Egoist can become an Altruist
only if he faces either the following combi-
nation of strategies or its mirror image, where
“g’’ represents an Altruist and ‘“‘E’’ an
Egoist,

(1 aa E EE

and where it is the central Egoist who converts
to an Altruist.” In all other cases, Egoists re-
main Egoists.

A similar calculation shows that an Altruist
will remain an Altruist if and only if one of
the following combinations of strategies (or
their mirror images) occurs,

(2) xa a ax
aa a EE

where it is the central Altruist whose fate is in
question and where an *“x’’ holds the place of
an agent who may be either an Altruist or an
Egoist. In all other cases, Altruists change to
Egoists.

Conditions (1) —(2) provide a complete de-
scription of the individual imitation dynamics.
To illustrate some absorbing sets, we represent
the agents as being located on a line, where
we think of the ends of the line as being joined

" We find the displays easiest to read if we use a lower
“ase *'a"* 1o represent Altruists, and the text easiest to read
if we continue to use ““A."" We will also often separate
3Eenls in whom we are interested by spaces, as in the case
°_[ the centra] Egoist here, though these spaces have no

:‘ggﬂlﬁcance other than directing attention to particular
ents,

ESHEL ET AL.: ALTRUISTS, EGOISTS, AND HOOLIGANS 161

to form a circle. From (1)-(2), we easily ver-
ify that the following are absorbing sets:

* The state in which all are Altruists.

¢ The state in which all are Egoists.

¢ A state in which all are Altruists except two
adjacent Egoists:

- - - qaaaaaaaEEaaaaaaaa- - - .
* A set of two states, consisting of:

- - - gaqaaaaaaEaaaaaaaaa- - -

« - -gaaaaaaaEEEaaaaaaaa - - .

In this last case, the imitation dynamics cycle
between the two states in the absorbing set.
The lone Egoist initially earns the highest pos-
sible payoff of 2, inducing his two neighbors
to become Egoists and leading to the second
state in the cycle. Each of these new Egoists
finds himself in the situation described by (1),
where he has two Egoists on one side and two
Altruists on the other. This causes the new
Egoists to switch back to altruism, beginning
the cycle anew. We refer to such a cycle as a
blinker.

The two outside agents in the blinker face a
coordination problem. It is an equilibrium for
one but not for both to be an Egoist, and the
learning scheme causes them to cycle around
this equilibrium. We suspect that cycles in be-
havior do occur, though our simple model cap-
tures these cycles in a crude way. The presence
of blinkers is a product of setting = 1, forc-
ing all agents to assess their strategies in every
period. If 4 < 1, then blinkers are no longer
absorbing sets, since a period will eventually
arise in which only one of the two outside
agents in the blinker revises her strategy, lead-
g to a pair of adjacent Egoists. All absorbing
sets would then be singletons.

These examples, and combinations con-
structed from them, include all of the possi-
bilities for absorbing sets. Some terms will be
useful in making this precise. If agents « and
£ play the same strategy, either Altruist or
Egoist, and if all agents between « and g play
this strategy, then we will refer to agents a, 3,
and the intermediate agents as an interval of
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either Altruists or Egoists. We call a maximal
such interval a string. Notice that strings may
be of any length from 1 to &V, the Iength of the
circle. We then have (the proof is in the
Appendix):®

PROPOSITION 1: Let0 < C < 'hand p =
1. Then:

(1.1) Absorbing sets consist of (i) the state
in which all agents are Egoists, (ii) the state
in which all agents are Altruists, and (iii } sets
containing states in each of which Altruist
strings of length three or longer are separated
by Egoist strings of length less than four.
These sets are either singletons (in which case
all Egoist strings are of length two ) or contain
two states [in which case any string of length
one (three) in one of the states blinks to a
string of length three (one} in the other].

(1.2) Except for the state in which all
agents are Egoists, the proportion of Altruists
in an absorbing state, or the average propor-

tion over the two states in an absorbing set, is

at least 0.6.

Proposition 1 indicates that there are many
absorbing sets, each of which is the support of
a stationary distribution of the imitation pro-
cess. In all but one of these absorbing sets, the
majority of the population is Altruists. Hence,
there is no possibility for moderation in altru-
ism. If Altruists survive at all, they must be the
majority. _

To see what lies behind this result, we first
note that a string of Egoists in an absorbing
set can never be longer than three. If the length
of an Egoist string exceeds three, then the two
Egoists at its edges will each have two Egoists
on one side and two Altruists on the other, and
hence they will become Altruists [cf. (1)],
causing the string to shrink. Egoists can thus
survive only in strings of length two or strings
of length one (where the latter alternate with
strings of length three in a blinker). Altruist
strings must be at least length three in order to
survive, and surviving Altruist strings can €x-
pand, since doing so creates more and more
high-payoff Altruists. This allows us to

BIf u < 1, then this proposition continues to hold, ex-
cept that blinkers are no longer absorbing sets.

MARCH 1998

conclude that if there are any Altruists at all,
then Altruists will occur in strings of length at
least three while Egoists occur in strings of at
most two (or in blinkers the average léngth of
which is two), and hence there will be at least
60-percent Altruists.

B. Basins of Attraction

Because the state in which all agents are
Egoists is absorbing, the system may drive Al-
truists to extinction. To assess the likelihood
of such an event, we identify the initial con-
ditions from which the system converges to an
absorbing set containing Altruists.

The proof of Proposition 1 shows that any
string of Altruists either drops below length
three at some point, after which it disappears,
or persists forever. We refer to a string of Al-
truists whose fate is the latter as a ‘*persistent”’
string. The system will converge to a state in
which at least 60 percent of the agents are Al-
truists if and only if the initial condition con-
tains at Jeast one persistent string.

The following proposition first characterizes
persistent strings. We then suppose that
agents’ initial identities as either Altruists or
Egoists are randomly determined, and inves-
tigate the probability that this leads to an initial
state containing a persistent string of Altruists.
We have:’

PROPOSITION 2: Let0 < C < 'hand p =
1. Then:

(2.1) A string of Altruists is persistent if
and only if (i) the string contains at least five
Altruists, (ii) the string consists of four Altru-
ists bordered on at least one end by two Ego-
ists, or (iii) the string consists of three
Altruists bordered on each end by two Egoists
or bordered on at least one end by three Ego-
ists. All other strings of Altruists are elimi-
nated by period three.

(2.2) If agents’ initial identities as Altru-
ists or Egoists are determined by independent,
identically distributed random variables plac-

9 This result holds if z < 1, with the modification that
some strings of two Aliruists, as well as strings of the for™
aEaaaEEE, survive with a probability greater than zer0
but less than one.
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ing positive probability on Altruist, then as N
gets large, the probability of a persistent string
of Altruists in the initial state, and hence con-
vergence 10 an absorbing set containing at
Jeast 60-percent Altruists, approaches unity.

Under randomly determined initial condi-
tions and a large population, the probability
that Altruists survive is high because there will
almost certainly be an initial group of Altruists
large enough to ensure their survival, and
hence to ensure that most agents are eventually
Altruists. However, a great deal of growth may
be required before a single group of Altruists
¢an comprise an appreciable fraction of a large
population. How long must we wait before
most agents are Altruists?

By period three, any string of Altruists that
is not persistent will have been eliminated, and
the population will consist of persistent strings
of Altruists separated by strings of Egoists. If
a string of Egoists is not already of length two
or a blinker, then it will contract at a rate of
two agents per period, as the Egoists on the
two ends of the string switch to altruism. We
can accordingly pose our waiting-time ques-
tion as the following: how long do we expect
to wait until a string of agents lying between
two persistent Altruist strings has been re-
duced to length two or to a blinker? But since
this waiting time is half of the string’s length,
plus possibly three periods, we can equiva-
lently ask how long a string of agents we ex-
pect to find between two persistent strings of
Altruists. There is no reason why strings of
Egoists lying between surviving strings of Al-
truists should be longer in larger populations,
and hence no reason for expected waiting
times to increase as N increases. However, the
expected length of such a string is quite sen-
sitive to the probability that an agent in the

initial condition is an Altruist. We can
calculate:'°

PROPOSITION 3: Let 0 < C < ', and U=
1,_ and let agents’ identities in the initial con-
dition be randomly and independently deter-
Mined, with probability p attached to being an

“If p < 1, then agents leamn less frequently, and ex-
Pected waiting times will be longer.
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Altruist. Then, in the limit as the population
gets arbitrarily large, an upper bound on the
expected length of a string of agents between
two persistent Altruist strings is given by:

p Length
0.5 22

0.4 34

0.3 63

0.2 171

0.1 1140
0.05 8480
0.01 1.01 x 10°
0.001 1.00 x 10°.

Expected waiting times are thus relatively
moderate as long as there is a sufficiently high
initial probability that a randomly selected
agent is an Altruist. For example, a probability
of altruism of 10 percent gives an upper bound
of 573 on the expected waiting time (half of
the Egoist string’s expected length, plus
three}. On the other hand, persistent strings
will be extremely rare if Altruists are very rare,
and expected waiting times will be very long.""

C. Hooligans

Altruism, conferring a benefit on someone
else at a cost to oneself, is not the only way
that one agent’s actions may affect another. At
the opposite extreme we have Hooligans, who
benefit by imposing harmn on others. Notice
that hooliganism need not be limited to the
psychopathic. Those who litter in order to
avoid the cost of disposing of their refuse,

' We expect to wait longer until Altruists dominate the
population when Altruists are rare, but the resulting ab-
sorbing states are likely to have higher proportions of Al-
truists. This result holds because such initial conditions
will be characterized by relatively small numbers of long
strings of Egoists, who will be transformed into small
numbers of short strings of Egoists, When Aliruists are
more likely, there will be many short but distinct strings
of Egoists in the initial condition, leading to an absorbing
state with more strings of Egoists.
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those who pollute rather than take costly
abatement measures, and those who shirk in
group efforts are all Hooligans.

Our model is easily generalized to accom-
modate Hooligans. Let there be two types of
agents, denoted by 1 and 2. Let type 1 con-
wibute K, to the payoff of each of his neigh-
bors at a cost of C; to himself. Let type 2
contribute K, to each neighbor at a cost C, to
himself. There is no loss of generality in as-
suming that K, > K. Our model of Altruists
and Egoists is then the special case in which
K,=1C=CadK,=C= 0. The behavior
of the model depends only on a single
parameter: '?

PROPOSITION 4: Let K, > K,. Then any
variation in the values of Ky, K», C1, and C,
that preserves

Cl_C2
K- K,

3)

gives rise to the same imitation dynamics.

Hence, any two specifications of the payoffs
that preserve (C; — C)HY (K, — K,) give rise
to the same absorbing sets, basins of attraction,
and dynamic paths for the imitation dynamics,
and the same limiting distributions in the pres-
ence of mutations.

For the Altruist and Egoist model of the pre-
vious sections, the ratio (3) was C, which was
interpreted as the cost of altruism. Consider

12 The proof establishes this proposition for a wide
class of imitation dynamics including those of the current
section as a special case.
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the following pairs of types of players. In each
case, the first column identifies the effect an
agent of type 1 has on his two neighbors and
the cost to the agent of that effect, while the
second column provides analogous informa-
tion for an agent of type 2.

(& &)
(290 e0le o)
(6 Ze) (e )

The first specification is the familiar Altruist
and Egoist pair from previous sections. The
second pair of agents consists of an Egoist and
a Hooligan who enjoys (incurs a negative cost
from) causing damage of one unit to his neigh-
bors. In case this Hooligan seems too mali-
cious in his enjoyment of the harm he causes,
the third pair rewrites this situation as an agent
of type 1 who imposes no harm on others but
incurs a cost of C to avoid doing so, with a
type-2 agent who does not incur the cost and
imposes damage of one unit on his neighbors.
The fourth pair includes an Altruist and a Hoo-
ligan. The last pair has two Hooligans, one of
whom causes twice the damage and doubly
benefits from doing so. In each of these spec-
ifications, the ratio (C; — C2)/(Ky — K,) is
given by C, and hence these are equivalent
models. As long as C < ', it is always the
first type in each pair that will come to com-
prise the majority of a large population with a
randomly determined initial condition. Hooli-
gans will then be in the minority when facing
Egoists or Altruists, though some Hooligans
will survive, just as some Egoists survive
when paired against Altruists."

Similar insights can be used to extend the
analysis to general 2 X 2 symmetric games.
Suppose each agent must choose a single strat-
egy to use when playing the game shown in
Figure 1 with each of his neighbors. Without

3 The final specification shows that Hooligans will be
in the majority if paired with even worse Hoeoligans.
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sacrificing generality, we can assume g > d.
we will then further concentrate on the case
in which a > b. This latter assumption ex-
cludes some games but retains the common
examples of 2 X 2 games. Then an argument
analogous to the proof of Proposition 4 shows
that the imitation dynamics depends only upon
the two numbers:

c—b d—b>b
4) o= —

a—-b’ h a-b’
In light of this, we can transform the payoffs
in Figure 1 by subtracting b from each payoff
and dividing by @ — b to obtain the equivalent
representation of the game given in Figure 2,
wherea = (c ~ b)/(a—b)and B =(d — b)/
(a - b).

We can now classify games according to the
values of @ and 3, where # < 1 (because we
have assumed a > d). We have:

1l < a.
a <1,

o Prisoner’s Dilemma: 0 < 8 < 1,

* Coordination Game: 0 < 8 < 1,

» Chicken: 8 < 0, l < a.

* Efficient Dominant Strategy: 8 < 0,
a <1, :

This classification is illustrated in Figure 3.
An “‘efficient dominant strategy’’ game is
one in which X is a strictly dominant strategy
and the outcome (X, X) is efficient, unlike
the prisoner’s dilemma. A coordination
game has two strict Nash equilibria, given
by (X, X) and (Y, Y). Chicken has one
mixed-strategy Nash equilibrium and two
asymmetric pure strategy equilibria.'® In the
case of a coordination game, (X, X) is the
payoff-dominant equilibrium (because a >
d and hence 8 < 1), and is also risk domi-
nant if @« + g < 1, while the equilibrium (Y,
Y) is risk dominant if « + 8 > 1. The inter-
val in which « = 1 + '4,C, 8 = '4C, and
C <4, shown in Figure 3, describes the range
of Altruist and Egoist games that was analyzed
1l subsections A and B of this section.

14 . . .
_The asymmetric pure strategy equilibria of this sym-
;"c'-ﬂc game become relevant if agents can condition their
rategies on some asymmetry, such as location.
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X Y
I X|1,1]0,c
Y |a0] 8,08

FIGURE 2. TRANSFORMATION OF GAME IN FIGURE 1

The methods developed in the previous sec-
tions to examine Altruists and Egoists can be
applied to any other game in this classification.
For example, consider coordination games.
Let o + § > I so that (X, X) is the payofi-
dominant equilibrium but (Y, Y) is the risk-
dominant equilibrium. Now  consider a
boundary between a group of agents playing
strategy X and a group playing strategy Y, or°

The only agents at risk of changing their strat-
egies are the two agents, one playing X and
one playing Y, at the ends of their respective
strings. Each faces a neighborhood with one X
and one Y agent, in addition to themselves. In
Ellison’s (1993) model, each chooses a best
response o his two neighbors. By assumption,
Y is risk dominant and hence is a best reply
when one neighbor plays X and one plays Y.
Hence, the agent playing Y retains his strategy
while the agent playing X switches to Y. The
string of Y’s thus grows while the string of
X’s shrinks, ensuring that best-reply learning
leads to the selection of the risk-dominant
equilibrium.

In our imitation model, the X player on the
boundary earns a payoff of 1, while the adja-
cent X player eamns 2. The Y player on the
boundary earns a« + A while the adjacent Y
player earns 283. Comparing the average pay-
offs, we find that the boundary player Y retains
his strategy if a + 34 > 2, while a boundary

'* As with Altruists and Egoists, we find the displays
easier to read if we use a lower case x to represent the
strategy X .
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X will turn into Y if & + 8 > *,. Hence, there
are three subregions of (a, 8) values within
the region of coordination games in which risk
dominance and payoff dominance conflict. In
the first region, & + 38 >2anda + 8 > s,
and hence both players will play Y in the fol-
lowing period. In the second region, a +
38 <2 and a + 8 < *,, and hence both will
play X in the following period. In the third
region, a + 38> 2anda + f < 3f,, and both
will retain their strategy. In the first region, the
string playing the risk-dominant action will
grow, in the second it will shrink while the
string playing the payoff-dominant action
grows, and in the third region each string
maintains its length.

If a string of agents playing the risk-
dominant action Y is to expand, its payoffs
must provide a premium over that required for
risk dominance (ie., a + § > k). This is
necessary because an agent at the end of a
string of X agents compares not whether X or
Y is a best reply, but whether the X or Y players
in his neighborhood are earning higher aver-
age payoffs. One of the X players in his neigh-
borhood is bordered by two other X players,
and hence receives an exceptionally high pay-
off. Risk dominance alone is not enough to
overcome this payoff.

If a string of agents playing the payoff-
dominant action X is to expand (while ¥ is risk
dominant), then we must have ¢ + 38 < 2
and @ + 8 < %, In conjunction with the re-
quirement that & + 8 > 1, these inequalities
require & > 8. Hence, the payoff to playing
strategy ¥ must be greatest if the opponent
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plays X, even though (Y, ¥) is an equilibrium.
This occurs because the neighborhood of an
agent who plays Y, and who is located on the
end of a string of Y agents, contains a Y player
who faces two Y opponents and hence earns a
relatively high payoff. The average payoff to
X can be highest only if the payoff in equilib-
rivm (Y, Y) is relatively small. This is in turn
compatible with risk dominance only if
a > B

Given that strategy Y must receive a pre-
mium over risk dominance in order to expand,
and given that strategy X can expand in the
absence of this premium only if the additional
condition a > B holds, then it is no surprise
that there are some cases in which neither
string will expand. Imitation can then yield
peaceful coexistence of the two strategies, un-
like best-response behavior. Imitation allows
the coordination failures created by coexis-
tence to persist because agents on the bound-
ary of a string, and hence experiencing
coordination failures, are most likely to ob-
serve other agents with the same strategies
who are not facing coordination failures and
to observe agents with the other strategy who
are plagued by such failures. This introduces
a force against changing strategies, and builds
sufficient inertia into the system to support
coexistence.

II1. Mutations

‘We now ask how altruism fares in the pres-
ence of mutations. We assume that at the end
of each period, and after imitation has oc-
curred, each agent takes a draw from an in-
dependent, identically distributed Bernoulli
random variable. With probability A, this agent
is a mutant and changes his type, either from
Altruist to Egoist or from Egoist to Altruist.
With probability 1 — X, this agent experiences
no mutation. We will be interested in the case
in which A is small, so that imitation is the
primary force driving strategy revisions. We
study this by examining the limiting case as
the mutation probability A goes to zero.'

16 In economics, the common practice is to follow the
lead of Michihiro Kandori et al. (1993) and H. Peytol
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Let T'; be the probability that the combina-
tion of imitation and mutation changes the
state to j given that the current state is i.'” Then
(Fylijes is again a Markov process on the
state space S, which we refer to as the
«jmitation-and-mutation dynamics.”’ Notice
that I'; > 0 for all i and §, which is to say that
for any two states / and j, there is some com-
bination of mutations capable of changing the
system from i to j. Hence, for each fixed mu-
tation rate, the imitation-and-mutation dynam-
jcs has a unique stationary distribution. The
proportions of states reached along any sample
path approach this distribution almost surely,
and the distribution of states at time 7 ap-
proaches this distribution as ¢ gets large. (John
G. Kemeny and J. Laurie Snell {1960 Theo-
rems 4.1.4, 4.1.6, and 4.2.1].)

We study the limit of these stationary dis-
tributions as the probability of a mutation A
gets small, which we refer to as the limiting
distribution.

PROPOSITION 5: Let0 < C < 'h. IfN >
30, then the limiting distribution places posi-
tive probability only on states contained in ab-
sorbing sets of the imitation process in which
the proportion of Altruists is at least 0.6.

The techniques involved in establishing this
result, which holds for 4 € (0, 1], were de-
veloped by M. L. Freidlin and A. D. Wentzell
(1984) and were introduced into economics
by Kandori et al. (1993) and Young (1993).
The argument begins by observing that when
the mutation rate is small, the system spends
virtually all of its time in absorbing sets of the
imitation dynamics, and hence the limiting dis-
tribution allocates all of its probability to such
sets. Movements between absorbing sets of the
Imitation dynamics can be accomplished only
by mutations. The system will allocate most of
its probability to absorbing sets of the imita-

YO_Ung (1993) in concentrating on arbitrarily small mu-
falion rates. In biology, the concept of an evolutionarily
stable strategy (John Maynard Smith [1982]) is built
around the presumption that mutations are arbitrarily im-
PTOEable compared to the forces of selection.

_ IF Dy is the probability that mutations change the state
10, given that the current state is i ythen T'; = £, PuGh;.
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tion process that are easy to reach, in the sense
that it requires relatively few mutations to
reach their basin of attraction from other ab-
sorbing sets. The proof involves showing that
as long as the population is sufficiently large,
it is much easier for mutations to introduce
Altruists into a world of Egoists than for mu-
tations to eradicate Altruists from a purely al-
truistic or mixed world.

One’s initial impression might be that muta-
tions should be inimical to Altruists, because a
mutant Egoist will thrive and grow when intro-
duced into a collection of Altruists while a lone
Altruist will wither and die when introduced into
a collection of Egoists. Notice, however, that a
small clump of Altruists in the midst of Egoists
will not only survive, but will grow. It takes only
three adjacent Altruists in a2 world that is other-
wise completely Egoists to ensure that the imi-
tation dynamics lead to an absorbing set
containing at least 60-percent Altruists.

It takes only a single mutation to introduce
an Egoist into a world of Altruists. However,
the resulting Egoist string can grow no longer
than three. In light of this, consider an initial
state that consists only of Altruists. A mutation
creating an Egoist or a clump of Egoists will
prompt imitation dynamics leading to an ab-
sorbing state with no more than three Egoists.
To get additional Egoists, additional mutations
are required. These mutations can lead to
states where there are many small clumps of
Egoists. As these clumps become more nu-
merous, and hence closer together, additional
mutations join together previously separated
clumps of Egoists. But as long as there are still
some strings of Altruists, these newly joined
strings of Egoists will shrink, replacing two
original strings with a new, shorter string (of
length three or less) and ultimately decreasing
the proportion of Egoists. In order to further
increase the proportion of Egoists, mutations
must simultaneously eliminate all strings of
Altruists. But this requires a large number of
mutations, if N is large, and hence is extraor-
dinanly unlikely. If N exceeds 30, then it takes
at least four mutations to eliminate all Altru-
ists, which suffices for the result.

Altruists can thus invade a world of Egoists
with only a local burst of mutation that creates
a small string of Altruists, which will then
subsequently grow to a large number of



s can be arbitrarily close to one.'
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Altruists. Mutations can create small pockets
of egoism, but these pockets destroy one another
if they are placed too close together, placing
an upper bound on the number of Egoists that
can appear. The only possibility for surpassing
this bound lies in a ‘‘global’’ mutation com-
bination that simultaneously attacks all strings
of Altruists. Mutations thus lead much more
readily to absorbing sets with Altruists than
absorbing sets without them, and the limiting
distribution concentrates all of its probability
on the former. This reinforces our finding that
absorbing sets containing Altruists are the lim-
iting outcomes in the absence of mutations, as
long as there is some initial probability of al-
truism in a large population. Our model thus
differs from many mutation-counting analy-
ses, in that our limiting distribution does not
depend critically on highly improbable se-
quences of mutations and hence need not in-
volve extraordinarily long waiting times.

If we consider large populations, mutations
will ensure that there are more than 60-percent
Altruists in the population, though less than 100
percent. The exact calculation of the limiting dis-
tribution is tedious, but we can establish some
bounds. The calculation of these bounds is sig-
nificantly simpler for the case of p < 1, though

The argument proceeds by noting that if the
number of Egoist strings is too small, then the
Egoist strings will be far apart and most Al-
truist strings will be long. A mutation will then
tend to strike in the midst of Altruists and cre-
ate a new string of Egoists, increasing the
number of Egoists. If there are many Egoists
strings, then these strings will be relatively
close together, separated by short Altruist
strings. Mutations will then often strike suffi-
ciently close to two Egoist strings as to give
rise to imitation dynamics that merge the two
Egoist strings, thereby reducing the number of
Egoists. We thus expect a centralizing ten-
dency in the number of Egoists. We have:

18 The advantage of u < 1 is that all of the absorbing
sets under the random imitation dynamics are then single-
tons. This makes it easier to do the necessary calculations
(and reduces the number of calculations ) of the probabil-
ities that mutations transform a given absorbing set into
the basin of attraction of another.

MARCH 1993

PROPOSITION 6: Let p < 1. Then the limit
of the limiting distribution, as the population
size gets large, restricts probability to absorb-
ing sets in which the proportion of Altruists is
between 70 percent and 87 percent.

IV. Larger Neighborhoods

We have assumed that agents interact only
with their immediate neighbors. This section
examines an extension of the model that al-
lows us to make the following point: decreas-
ing the cost of altruism can be bad for
Altruists.

We consider the case where each Altruist
contributes one unit of the public good to each
of his four closest neighbors. Each agent ob-
serves his own payoff and that of his four clos-
est neighbors, and then chooses the strategy
from those played by this group with the high-
est average payoff. We say that nei ghborhoods
are of “‘radius two’’ in this case.

As in the previous case, the cost of altruism
plays a crucial role in shaping the results. We
study two intervals for the parameter C,
namely (Y, ) and (s, 1).'" Changing the
value of C within such an interval does not
affect the outcome, while we shall see that the
two intervals give different behavior.” We let
g = 1 throughout.

The investigation of the model with neigh-
borhoods of radius two and costs C € (%, 1)
begins with a calculation of transition rules.
The nontrivial conditions under which an Al-
traist will remain an Altruist are the following
cases and their mirror images, where the Al-
truist in the center is the agent in question and

1 When agents interacted only with their immediate
neighbors, the only relevant cost consideration was
whether C was larger or smaller than ‘.

2 [f C > %,, then altruism is so costly that only Egoists
survive. The results for 1 < C < %, are qualitatively sim-
ilar to those for 55 < C < 1, with one quantitative differ-
ence noted below. Cost levels ', < € < 3, give results
similar to those of ¥, < € < . Costs C < '/, give no-
ticeably different and more complicated behavior that we
do not investigate here, Cost levels that lie at the bound-
aries between these various intervals create complications
arising out of cases in which the average payoffs to Alru-
ists and Egoists are equal.
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x stands for a strategy that could be either A
or E:

xEEE
EEEx

aaaa a agEEE.

(5) Eaaa a

aaaa da

The cases in which an Egoist will become an
Altruist are the following, as well as their mir-
ror images:

(6) aaaE E EFEEx
Faaa E EEEE
aaaa E EEEx.

These allow us to prove:?!

PROPOSITION 7: Ler neighborhoods be of
radius two and let *l¢ < C < 1. Then absorbing
sets generically consist of (i) the state in which
all agents are Egoists and the state in which
all agents are Altruists, and (ii) sets coniain-
ing states in which strings of Altruists of length
five or more are separated by either strings of
three E’'s or blinkers, where blinkers consist
alternately of one E and five E’s or consist
alternately of two E's and six E’s. With the
exception of the state in which all agents are

;S'gaists, the proportion of Altruists is at least
.

The proof mimics that of Proposition (1) and
is omitted. To obtain the minimal proportion
of Altruists in the stable sets that contain Al-
truists, we note that we can pack blinkers that
alternate between two and six E’s next to each
other with five A’s between them, in the fol-
lowing way:

(1) ---aaaaaEEaaaaaEEEEEEaaaaa- - -

-~ aaaFEEFEEEaaaaaEEaaaaaaa - - .

* The *‘generically’” in this statement allows us to avoid
values of C within the interval (¥, 1) that create payoff ties
between Altruists and Egoists. For | < C < %, (C # ),
We have the same characterization of absorbing sets, ex-
Cept that blinkers must be separated by at least six Altru-
1815, making the minimal percentage of Altruists 0.6.
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This guarantees a maximum of Egoists, and
here we have a proportion of 10/18 = %,
Altruists.

For costs in the interval (%, %), we have
the following:

PROPOSITION 8: Let neighborhoods be of
radius 2 and let ¥y < C < °l. Then generi-
cally, absorbing sets include (i) the state in
which all agents are Egoists and all are Altru-
ists, and (ii) sets containing states in which
strings of three or more Altruists are separated
by strings of exactly three Egoists, or by blink-
ers which alternate between one and five or
between two and six Egoists.® Except for the
state in which all agents are Egoists, the pro-
portion of Altruists in an absorbing set is a
least '},.

The proof again mimics that of Proposition
(1). To obtain the lower bound on the number
of Altruists, note that it is possible to arrange
blinkers in the following way:

(8 ) -+ ~agaEaaaEEEEEaanEanaEEEEEanaEaaana- - -
- ~aEEEEFaaaFuaaEEEFEaaafuaaEEEEFaaa- - - |

This has ', of the population as Altruists.
There is no denser way to arrange blinkers.

In each case a result analogous to Proposi-
tion 2 holds, establishing that if agents’ initial
identities are independently determined and
may be altruistic, then as the population
grows, the probability of convergence to a
state in which altruism survives approaches
unity. ‘

The lower bound on Altruists is lower for
C € (4, %) than in the case of higher costs,
being '/, rather than . In this sense, it can be
disadvantageous for Altruists to have their al-
truism come too cheaply. The forces behind
this result are revealed by comparing (7) and
(8). Example (7) reflects the fact that when

2 If two one/five blinkers are separated by a string of
only three Altruists, then the blinkers must be out of phase,
so that the state in which one of the blinkers has five Ego-
ists is the state in which the other blinker has only one
Egoist. A two/six blinker requires at least five Aluuists
on each side.



170 THE AMERICAN ECONCGMIC REVIEW

costs are relatively high, strings of Altruists
must be at least five Altruists long in order for
Altruists to receive payoffs high enough to
survive. Example (8) reflects the fact that for
lower costs, Altruists’ payoffs are higher and
shorter strings (of length three) of Altruists
can survive. The imitation dynamics can then
lead to outcomes in which islands of Egoists
are separated by strings of only three rather
than five Altruists, and hence a smaller pro-
portion of Altruists.

V. Conclusion

We have shown that if players choose their
strategies in games by imitating successful
players, and if there is a local or neighborhood
structure to both the interaction between
agents and their learning, then altruistic be-
havior can survive.

Imitation and the local nature of the inter-
actions are both important to this result. Best-
response learning would immediately lead
agents to adopt the dominant strategy of Ego-
ist. Agents who choose their strategies by im-
itating others will imitate Altruists, but only if
the latter happen to be earning relatively high
payoffs. The role of the local interaction struc-
ture is to allow Altruists to huddle together in
concentrated groups. The benefits of the public
goods supplied by Altruists are then enjoyed
primarily by Altruists, leading to higher pay-
offs than those of Egoists, who tend to be sur-
rounded by other Egoists.

A group of Altruists is always a ripe target
for invasion by a mutant Egoist, who will
thrive on the public goods provided by the Al-
truists. For this reason Altruists can survive,
but they generally cannot conquer. Instead, the
Altruists will be riddled with pockets of Ego-
ists. However, there are limits to the expansion
of egoism. As more and more Egoists try to
free ride on nearby Altruists, the payoffs of
Egoists fall and imitators become Altruists.
The result is the preservation of altruism in
coexistence with egoism. We can hope for al-
truism, but not for a perfect world of altruism.

Attention is drawn to the importance of the
mutations in a local interaction model by re-
sults from biological studies of group selec-
tion. Group selection models typically assume
that agents are arranged in isolated groups cre-
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ated by either spatial separation or kinship re-
lationships.* Payoffs are measured in terms of
expected numbers of offspring, arrd the pro-
portion of the population playing a relatively
high-payoff strategy increases because the
agents playing that strategy have relatively
large numbers of offspring. As in our model
of learning by imitation, the important prop-
erty of this reproduction-based dynamic pro-
cess is that if the agents in a location tend to
be predominately Altruists, then altruism can
spread to nearby locations, as the concentrated
Altruists earn high payoffs and hence produce
many offspring that spill over into neighboring
locations. :

Kin selection theories are now widely ac-
cepted as explanations for some seemingly al-
truistic behavior.** However, group selection
models that are not based on kinship relation-
ships have been criticized [e.g., Williams
(1966); Dawkins (1976)], initially because
the mechanism that caused some groups to
grow faster than others was not specified, and
subsequently because the combination of
small groups, rare mutations, and infrequent
migration required to support altruism is
thought to be implausible.?

# See, for example, Vero Copner Wynne-Edwards
(1962, 1986), W. D. Hamilton (1964, 1972), George C.
Williams (1966), Eshel (1972), David Sloan Wilson
(1975, 1987), Dan Cohen and Eshel (1976), C. Matessi
and S. D. Jayakar (1976), Maynard Smith (1976}, and
Eshel and L. L. Cavalli-Sforza (1982).

% For example, kin selection arguments have been used
to explain the behavior of several species of tropical but-
terflies, some of which incur a cost to develop a bitter taste
that discourages birds from preying on others [Lincoln
Pierson Brower and Yane Van Zandt Brower (1964),
Brower (1969), Woodruff W, Benson (1971), and Eshel
(1972)]. Kinship relationships play an especially impor-
tant role in explaining the behavior of the social insects.

# Robert Boyd and Peter I. Richerson (1985) suggest
that group selection arguments may be applicable in ex-
plaining the evolution of altruistic behavior among hu-
mans. They examine a model in which people have a taste
for conformity, 5o that altruism is a strict best response as
long as sufficiently many other people cooperate. In bi-
ology, group selection arguments are often invoked to ex-
plain the inefficiency of weapons used in competition for
mates, such as excessively branched or curved homs
(Konrad Lorenz, 1963), and are used to explain seff-

- imposed limits on reproductive ability when a population

is threatened by overpopulation. Wynne-Edwards ( 1962)
suggests examples of the latter phenomenon, and evidence
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Our model differs from a typical biological
model of group selection in that our agents are
arranged in overlapping rather than isolated
groups. This overlapping-neighborhoods
structure opens the possibility that mutations
introducing Egoists into our model can favor
Altruists while being detrimental to Egoists,
by disrupting and eliminating strings of Altru-
ists and hence causing two groups of Egoists
to join and then shrink to a single, small group.
This contrasts with typical biological group se-
jection models, where migration and espe-
cially mutation work relentlessly against
altruism and one must struggle to find a plau-
sible explanation for why the migration and
mutation rates are sufficiently small to allow
altruism to survive. In addition, mutations in
our mode! can introduce Altruists in the midst
of Egoists. In biological models with isolated
groups, such a possibility is thought to involve
mutation rates that are unrealistically high and
group sizes that are unrealistically small. In the
presence of overlapping groups, relatively
small numbers of mutations allow Altruists to
gain a Jocal foothold from which they can spill
over into nearby locations. We could thus re-
interpret our analysis as a biological model
with local interactions and dynamics based on
reproduction and emigration, providing a new
explanation for altruism that exploits the over-
lapping group structure.

Our mode!l of agents occupying locations
around a circle is very simple. What happens
if they are placed in a plane, or in a higher-
dimension structure? To gain some insight into
these cases, recall that Altruists fare poorly
when exposed to many Egoists, while Egoists
fare well when exposed to many Altruists.
Taking agents to be arranged along a circle
ensures that any group of A’s cannot have too
many Altruists who are on the boundary and
hence are exposed to Egoists, and ensures that
any group of Egoists cannot have too many
members exposed to Altruists. This in tumn
produces conditions under which Altruists are
likely to thrive. Moving to the plane or to

15 provided by Frank Fenner (1965) (Mixoma viruses,
Which infect rabbits), John J. Christian (1970) (rodents
and small mammals), and Frank M. Stewart and Bruce R.
Levin (1984) (bacterial viruses).

ESHEL ET AL: ALTRUISTS, EGOISTS, AND HOOLIGANS 171

richer spaces raises the possibility that groups
of Altruists will appear that are irregularly
shaped and that expose virtually all of their
members to Egoists. These Altruists may then
not survive, and the persistence of altruism ap-
pears to be less certain.

The extensive simulations of Nowak and
May (1992, 1993) and Nowak et al. (1994)
suggest that in the absence of mutations, there
are many initial conditions from which a sig-
nificant proportion of Altruists persist. Once
again, Egoists in their model do well in the
midst of Altruists while Altruists do poorly in
the midst of Egoists, and concentrated groups
of Altruists can then expand. The dynamics are
much more complicated than in our simple
model, but altruistic behavior typically
survives.

What if the game contains more than two
strategies? Altruists can survive in our model
because the Altruists near the end of a long
string of Altruists earn higher payoffs than do
the Egoists near the end of long strings of Ego-
ists. When we extended the argument to gen-
eral 2 X 2 games, the criterion for expansion
turned out to be a mixture of efficiency and
risk dominance. In games with more than two
strategies, the criteria for whether strategy x
can expand at the expense of y, i.e., for
whether agents on the boundary between
strings of x and y will switch to x, involve
pairwise efficiency and risk-dominance con-
siderations. If there is a strategy that is rela-
tively efficient and does not fare too badly in
pairwise risk-dominance comparisons with all
other strategies, then the system can converge
to states featuring primarily that strategy.
However, cyclic behavior can also appear in
which strategy x expands at the expense of y,
y expands at the expense of z, and z expands
at the expense of x.

Imitation may often be important, but adopt-
ing the strategy observed to eamn the highest
average payoff is a very simple decision pro-
cess. What about imitation rules other than
simply comparing average payoffs? For ex-
ample, agents may base their choices not only
on average payoffs but also on the number of
agents they observe playing each strategy.
This introduces elements familiar from the lit-
erature on strategies for the infinitely repeated
prisoner’s dilemma. Tit for tat, for example,
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simply adopts the previous strategy it has ob-
served. The implications once again depend
upon the behavior of an agent located at the
end of a string of similar agents. An Altruist
at the boundary between sufficiently long
strings of Altruists and Egoists observes equal
numbers of Altruists and Egoists among her
opponents, as does the adjacent Egoist. If ob-
serving the Altruists in this sample makes
agents more likely to cooperate by being Al-
truists, then our results are reinforced. If ob-
serving the Egoists makes the agents more
likely to retaliate by being Egoists, and if this
is sufficient to overcome the average payoff
advantages of Altruists, then our results will
be reversed and altruism will vanish. The suc-
cess of altruism then depends upon whether
agents facing both Altruists and Egoists tend
to see their glasses as half full or half empty.

A great deal of work remains to be done in

extending the analysis to larger games as well

as more complicated spatial structures and
learning rules. It is clear, however, that dy-
narnics driven by imitation can differ signifi-
cantly from the familiar best-reply dynamics
and that imitation coupled with local interac-
tions opens the possibility for altruistic behav-
ior to survive.

APPENDIX

PROOF OF PROPOSITION 1:

It is immediate that the states in which all
agents are Altruists or all agents are Egoists
are absorbing states, because imitation cannot
introduce Egoists into a world in which there
are only Altruists, or vice versa.

To find the remaining absorbing sets, con-
sider what happens to a string of A’s as the
imitation dynamics proceed. From (2}, any A
string of length one immediately disappears.
Similarly, if we have an A string of length two,
the two A’s in this string immediately become
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E’s. In the process, however, the adjacent E’s
may switch to A’s. What happens to these ad-
jacent E’s? There are four possibilities. The
following transitions describe the fate of the E
(the center agent in each case) that initially
sits just to the left of the string of two A’s. A
similar analysis holds for the E on the right.
An ““x™ holds the place of an agent whose
type we do not have sufficient information to
ascertain (see below).

Moreover, the x's in the final line canbe A's
only if there existed a string of three or more
A’s to the left of our segment, to which these
agents have now become attached. Hence, any
A string of length two disappears after two pe-
riods without creating any new A strings.

What of A strings that are of length three or
longer? From (1)—(2), the A’s at the end of
such string are the only potential candidates
for becoming E’s, and the only way that such
a string can increase in length is for a single
adjacent E at an end to change to A. Hence,
such a string may undergo a change in length
of {-2, —1,0, 1, 2}. Because the string can
increase in length only if it borders a segment
of three E's [from (1)], the string cannot
merge with any other A strings of length three
or more. There are then only two possible fates
for such a string. It can persist forever as a
distinct string, perhaps varying in length, or its
length can fall below three at some point, caus-
ing it to be eliminated within the next two pe-
riods without giving birth to new strings. We
thus have that strings of A’s can be destroyed
but cannot be created.

Together, these results give: There exists a
time T such that the number of A strings at
time T is less than or equal to the number of
A strings of length three or more at time zero;
the number of A strings in any subsequent pe-
riod is equal to the number at time 7; and all
A strings in subsequent periods are length
three or longer.

EE FE aa aE E aa
xE a EE xE E EE
EE E EE xx E EE

Ea E aa aa E aa
EE E EE xE E EE
EE E EE xx E EE
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‘What can we say about E strings? First, no-
tice that the number of A and E strings must
be equal. Next, suppose that time 7 has been
reached, so that all A strings have length at
least three. Then from (1), any E string the
length of which is more than two declines in
Jength by two, a string of length two retains
its length, and a string of length one increases
in length by two. Hence, we will eventually
have Egoist strings of length two or blinkers,
alternating between lengths one and three, but
no longer strings, giving: There exists a time
' after which the number of E strings is less
than the number of E strings in the initial state
and is constant, and E strings either remain at
length two or alternate between lengths one
and three. This gives Proposition 1.1. It is now
an easy calculation to check that since A
strings occur in lengths at least three, and since
E strings occur in either length two or alter-
nations between length one and three, that the
proportion of A’s, if there are to be any A’s at
all, must be at least 0.6.

PROOF OF PROPOSITION 2:

It is immediate that the system must con-
verge to a state containing Altruists, and hence
a state containing at least 60-percent Altruists
(by Proposition 1) if there exists a persistent
string, and that the probability of a persistent
string approaches unity as N gets large if initial
identities are randomly, independently deter-
mined, with positive probability on Altruist. It
then remains to verify the characterization of
persistent strings. We examine the case of a
string containing at least five adjacent A’s.
Showing that the remaining strings identified
in (2.1) are persistent, and that any other string
is eliminated by period three, involves
straightforward variations on this argument.
(Proposition 1 has already shown that every
string of length two or less is eliminated within
two periods.)

We show that a string of A’s, the length of
which is at least five, cannot disappear. In par-
ticular, we show that if there exists a string of
five A’s at time ¢, then either all five of these
agents must also be Altruists at time ¢ + 1 or
they must all be Altruists at time ¢ + 2. This
holds regardless of the strategies played by
other agents in the system.
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Suppose we have a string of five or more
A’s bordered on each end by an E. Each of
these two E’s must have either an A or E on
its other side. This gives us four possibilities
to consider. First, suppose each E has an A on
its other side. Then from (1) — (2), the system
proceeds as follows:

---aE aaaaa Ea---

-+-EE EaaaE EE---

---xE aaaaa Ex--:

As usual, an x holds the place of an agent who
may be either an Altruist or an Egoist. For con-
venience, the original string of five A’s is sepa-
rated by spaces. A similar result clearly holds if
the original string contains more than five A’s.
Alternatively, one of the E’s on the end of
the string of A’s may have an E on its other
side while the other may have an A on its other
side. This gives us the following case and its .
mirror image:

---aE aaaaa EE---
---EE Eaaaa xE--:
-«-xE aaaaa xx---.

Finally, the E’s on both ends of the string
of A’s may be bordered by E’s. Then we have:

--+EE aaaaa EE---
---Ex aaaaa xE--- .

In each case, the result is that any string of at
least five Altruists persists.

PROOF OF PROPOSITION 3:

Let there be countably many agents, de-
noted by the integers. Consider the initial state,
and suppose that, in this state, agent O is the
rightmost agent of one of the following se-
quences of agents:

aaaaaE EEaaaaE EEEaaak
aaaaEE EFaaaFkE
aaaEEE.
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Let such a string be called a ‘‘persistent-string-
with-right-boundary.’” Then we know that
contained within agents {—6, ~, —1} is a
persistent Altruist string.

We now let 7 be an integer with the property
that, in the initial state, the set of agents (0,

, T} contains a persistent string. Our task is
to calculate an upper bound on the expected
value of 7.2 Becausc the identities of the
agents in {0, 1, -} are determined indepen-
dently, each with probablhty p of being an Al-
truist, we can describe the initial condition,
and hence the expected value of 7, by defining
a new Markov process as follows. Let there be
17 states, denoted by {1, 2, ..., 16, T'}, where
we think of the first 16 of these states as being
associated with the following sequences:

ak 7. aEaa 13: aEaaaE
: EE 8: EEaa 14: aEaaaa
15: aEaaaEE

: aEa 10: aEaaa 16;: aEaaaaE.
: EEa 11; EEaaa

6: EEEa 12: EEaaaFE

We define the state at step O as being one of
states 1, 2, or 3, depending upon whether
agents —2, —1, and 0 are characterized by xaE
(x € {a, E}), aEE, or EEE. We define the
state at step £ > O to be state T if any agent
from the set {0, ..., ¢} is the rightmost agent
in one of the following sequences:

1
2
3. EEE 9: EEEaa
4
5

aaaaa EEaaaa EEEaaa
aaaaEE EEaaaEE
aaaEEE .

If the state at step ¢ is not 7, then the state is
givenby i € {1, ..., 16} if agent ¢ is the right-
most agent in the sequence corresponding to
state i, and the same is true of no other i € {1,

6 The assumption that N s infinite makes its appear-
ance here. It allows us to calculate the expected value of
7 while ignoring the possibility that the set of agents is
exhausted before encountering another persistent string,
with our search for such a string having taken us around
the circle and back to our poinl of departure at agent 0.
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, 16} with a longer sequence. Intuitively,
the system begins at step zero in one of states
1, 2, or 3, which are the sequences of.Altruists
and Egoists that must lie at the right end of a
persistent-string-with-right-boundary. We
then examine individuals 1, 2, 3, and so on, in
each case using that individual’s identity as
either Egoist or Altruist to define a transition
of the new Markov process. The latter enters
state T (for ‘‘terminal’’ ) whenever an individ-
ual has been encountered who allows us to
confirm the existence of a persistent string.
States 1 through 16 are fragments of persistent
strings.

The transition probabilities for this new
Markov process are calculated on the basis of
the assumption that agents in the initial state
are independently chosen to be Altruists with
probability p and Egoists with probability 1 —
p. It is then straightforward to calculate the
expected number of steps to absorption in state
T from each of states 1, 2, and 3 (see E. Seneta,
1981 Theorem 4.5). Numerical calculations
produce a table matching that given in Prop—
osition 3, where these numbers are the maxi-
mum of the expected number of steps from the
three initial conditions given by states 1, 2, and
3.%7 These figures are upper bounds on the ex-
pected number of agents bétween the end of 2
per31stent-stnng-wnh-nght—boundary and the
end of the next persistent string to the right.
The boundary of the persistent-string-with-
right-boundary may contain up to three Ego-
ists, but a persistent string must contain at least
three Altruists, so these numbers are also up-
per bounds on the number of agents between
two persistent strings of Altruists.

PROOF OF PROPOSITION 4:

Let the types of players be denoted by 1 and
2. Let each player i have a set of players whom
he potentially imitates, called his learning
neighborhood, and a set of players with whom
he interacts, called his interaction neighbor-
hood. In particular, player #'s imitation rule is

21 The details of these calculations are avaiable on re-
quest. Differences in the expected number of steps fof
these three initial conditions are small. The maximum
such difference appears for large values of p, and is 2.1
for p = 0.5 but only 0.3 for p = 0.1.
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to adopt the strategy that receives the highest
average payoff of the strategies represented in
his learning neighborhood.” In our mode] of
Altruists and Egoists, the interaction neigh-
porhood of player ¢ included his two nearest
neighbors, while his learning neighborhood in-
cluded these two nearest neighbors and him-
self. Let Ni' and N7 be the sets of type-1 and
type-2 players in agent i’s learning neighbor-
hood. Let N{' and N7 be the sets of type-1
and type-2 players in agent {’s interaction
neighborhood. Let n{', ni?, ni', and n? be
the numbers of players in the sets N', NP,
N{', and N7*. Let P; be player i’s payoff, and
letn!' + nf = n’ be the size of the interaction
neighborhood. According to the imitation rule,
player i will become type 1 if and only if:

1 1
- 2 P>—F X P

I jent i jeNB

(A1)

When player j is of type s, then his payoff is
given by

Pj = K|n}| + Kzﬂ? - C_g

= (K[ - Kz)n_fl + Kzﬂf - Cs,
and the imitation rule (Al) becomes:

K] - K2
nH

3 nf

i £l
JEN;

K -K
nl2 Z ".F-

i jenp?

>(C,— CG) +

It is now obvious that when X, — K, > 0, the
dynamics will be identical for all pairs of types
(K, C,) for which (C, — C,)/(K, — K,) is the
same.

PROOF OF PROPOSITION 5:
Let E denote the state in which all agents
are Egoists. Let A be the state in which all

u Player i is excluded from his interaction neighbor-
hood and included in his learning neighborhood. In the
Case of Altruists and Egoists, this simply reflects our
choice to measure the costs of altruism as the net costs,

affer any benefits of one’s own public good provision have
T realized,
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agents are Altruists. Let X(n, m) denote the
collection of absorbing sets with the property
that in any state contained in such an absorbing
set, at least some agents are Altruists and all
agents are Altruists except n strings of Egoists
of length two and m blinkers, where n = 0 and
m = 0. We define X(n, m) only for values of
(n, m) for which X(n, m) is nonempty. Then
A is the unique element in X(0, 0) and every
absorbing set other than Z is contained in
some X(n, m).

It suffices to show that D(A) < D(ZE),
where D is defined in Lemma 3 of Samuelson
(1994). For this, it suffices to show that:

¢ Three mutations suffice to transform F into
a state in the basin of attraction, under the
imitation process, of a state in X(n, m) for
some (n, m).

e Given any absorbing set in X(n, m) with
(n, m) = (0, 0), there exists a state in the
absorbing set which a single mutation can
transform into a state in the basin of attrac-
tion, under the imitation process, of an ab-
sorbing set in X(n', m') with n’ + m' <
n+morwithn' <nandm' =m+ 1.

» Given any state in any absorbing setin X(n,
m) for any (n, m), it takes at least N/10
mutations to reach a state in the basin of
attraction, under the imitation process, of .

A state is in the basin of attraction, under the
imitation process, of an absorbing set, if the
deterministic imitation process (without mu-
tations) leads from the state to the absorbing
set.

To establish the first condition, we need
only note that if three mutations introduce
three adjacent Altruists into state E, then Prop-
osition 2 ensures that we then have a state in
the basin of attraction X(n, m) for some (n,
m). To establish the second condition, con-
sider an absorbing set S* in X(n, m). If m >
0, then we need only choose a state in S’
which at least one blinker has only one Egoist.
A mutation switching this Egoist to an Altruist
then produces a state in absorbing set in X(n,
m — 1). Hence, consider an absorbing set in
X(n, 0). Now let a mutation switch an Egoist
to an Altruist. The result is an isolated Egoist
(that was adjacent to the Egoist affected by the
mutation ). The next iteration of the imitation



5
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process will produce a string of three Egoists.
If all Altruist strings are still of length at least
three, then we have a blinker and a state in an
absorbing set contained in X(n - 1, 1). If
instead at least one Altruist string is now of
length only two, then (from the proof of Prop-
osition 1) that string of Altruists will disap-
pear, while no new string can appear, yielding
a state in an absorbing set in X(n', m") with
n' +m <n.

Finally, we calculate a lower bound on the
number of mutations required to convert a
state in an absorbing set in X(n, m) into a state
in the basin of attraction of . The mutations
must eliminate all of the strings of Altruists in
the original state. We first notice that in order
to eliminate a string of A's of length k, we
must have at least [k/5] —the integral value
of k/5—mutations.”® A lower bound on the
number of mutations needed to eliminate all
string of A’s is then N/10, which arises in the
case in which there are strings of A’s of length
nine (which are the longest that can still be
eliminated by a single mutation) with blinkers
at the end of the string, where the blinkers are
in phase and there are nine Altruists in the
string when each blinker consists of a single
Egoist. For sufficiently large N, and in partic-
ular for N exceeding 30, this number exceeds
three, giving the result.

PROOF OF PROPOSITION 6:

Fix the population size N. Let the Markov
process induced by the imitation dynamics be
(S, P), where S is the state space and P is the
transition matrix, and let the Markov process
induced by the imitation-and-mutation dynam-
ics by (S, I'), where I is the transition matrix.
We say that an agent chosen to assess her strat-
egy, under the random imitation dynamics, has
“received the learn draw.”

¥ This number is calculated by observing that if an
Egoist is placed in the midst of a string of Altruists, the
result is a blinker, with three Egoists in the next period.
In order to eliminate a string of A's, enough Egoists must
be inserted so that after a pericd has passed and each Ego-
ist given rise to a string of three Egoists, with blinkers
possibly also converting the A’s at each end of the soing
into E's, all remaining strings of A of the original string
must be at most of length two. This requires at least [k/
5] mutations.
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Step 1: This step shows that instead of ex-
amining (S, I'), we can work with a simpler
Markov process (K, A). To construct this
simpler process, we let [N/5] denote the in-
tegral value of N/5 and let the state space
K=1{0,1, .., [N/5]}. We interpret a state
k € K as identifying the number of Egoist
strings in an absorbing state of (S, P).* The
transition matrix is A, where A; is the prob-
ability that a single mutation in (S, I'), fol-
lowed by the imitation dynamics, leads from
an absorbing set with i Egoist strings to an
absorbing set with j Egoist strings. Notice that
a mutation can create at most one new Egoist
string or can destroy at most one string, and
hence can cause the number of Egoist strings
to change by at most one. The proportion of
Altruists in the limiting distribution of (X, A)
matches the proportion in the limiting distci-
bution of (S, I).

Step 2: We now examine (K, A). Thisisa
birth-death process, since from state k, there
is positive probability of moving only to states
k — 1, k, and k + 1. The stationary distribution
&* of a birth-death process must satisfy the de-
tailed balance condition:

(k)  _ Aiiig

(A2)  BE+ D Deer”

To complete the proof, it suffices to show that
there is £ > 0 such that for any N, if 2k/N =
0.13 (recall that each Egoist string contains
two Egoists), then A, (/A 15 > 1 + ¢,
and if 2k/N = 0.30, then A, 41/ 8411 <
1 — . In particular, this ensures (from A2)
that the ratio §*(k)/6*(k + 1) is bounded be-
low one when 2k/N = 0.13 and bounded
above one when 2k/N = 0.30. As N grows,
the number of pairs (k, k + 1) with 2k/N =
0.13 and 2k/N = 0.30, and hence the number
of pairs for which these bounds on the station-
ary distribution hold, approaches infinity. This
can occur only if the probability attached by

* The details of this construction, as well as the cal-
culations from Step 3, are available on request. Since any
such string must contain at least two Egoists and must be
separated from other Egoist strings by at least three Altru-
ists, there can be at most [N/5] such strings.
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&* to states k such that 2k/N € (0.13, 0.30)
approaches unity.?

Step 3: This step verifies the required in-
equalities. Recall that absorbing states consist
of strings of two Egoists separated by strings
of three or more Altruists. We first calculate a
lower bound on A, , ;. A mutation creates a
new string of Egoists with probability one if it
converts to egoism an Altruist who is bordered
by at least four Altruists on each side; with
probability between zero and one if the Altru-
ist is bordered by three Altruists on one side
and at least four on the other; and otherwise
with probability zero. In light of this, we can
find a lower bound on the probability of increas-
ing the number of Egoist strings by arranging
agents so that there are eight Altruists between
each Egoist string, leaving one longer string of
leftover Altruists, and assuming that a mutation
inserting an Egoist between three Altruists on
one side and four on the other never creates a
new string of Altruists. The probability of intro-
ducing a new Egoist string is then bounded be-
low by the probability that a mutation strikes an
agent more than four Altruists away from the
end of the long string of Altruists, or

1
(A3) Biser = (N = 10k).

A similar calculation shows that the proba-
bility of introducing a new Egoist string is
maximized if strings of Egoists are separated
by strings of only three Altruists, giving an
upper bound of:*

(AD) By, = %(N— Sk — 3).

~ We now turn to the probability of eliminat-
ing Egoist strings. An upper bound on the
Probability of eliminating such a string is:

- 1
(AS) Ak.k—l =XISk.

_"''See Ken Binmore and Samuelson ( 1997) for a sim-
llafjiil'gument.

The “*—3" reflects a three-Altruist buffer at both
ends of any long string of A’s in which a mutation cannot
treate a new string of Egoists.
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A lower bound on the probability of eliminat-
ing Egoist strings is given by:

18
A,y =—=2k.
(A6) Bri-1= 3y
We use these calculations to obtain:

ék.k+l _ N" IOk
Aprrx S(k+1)

if k/N = 0.065 (and hence there are no more
than 13-percent Egoists), N is sufficiently
large, and e < 0.075. Similarly,

AYTTS _

JAVIRY

N-5k—39
2k+1) 8

<1—s‘

if k/N = 0.15 (and hence there are at least 30-
percent Egoists), N is sufficiently large, and
g < 0.06. This gives the result. '
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