
ON BARGAINING NORMS
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Abstract. This paper studies bargaining outcomes in economies in which agents

may be able to impose outcomes that deviate from the relevant social norm, but

incur costs when they decide to do so. It characterizes bargaining outcomes that are

easiest to sustain as a social norm to which everybody will want to adhere.

Depending on the nature of the costs, the approach yields concepts like the Nash

Bargaining solution, the Kalai-Smorodinsky solution, or – for coalitional games with

transferable payoffs – refinements of the core. Set-valued solution concepts are derived

that are relevant if one is unable or unwilling to make specific assumptions about the

costs.

1. Introduction

A bargaining situation is a situation in which participating individuals have the

opportunity to collaborate for mutual benefit and can divide the resulting surplus

in more than one way. Following Nash (1950, 1953) much of the modern theory on

bargaining can be divided into two branches. The axiomatic approach, born with

Nash (1950) makes predictions about bargaining outcomes based on assumptions

about how outcomes in different bargaining situations differ. The strategic approach,

initiated in Nash (1953), considers a single bargaining situation in isolation and uses

a non-cooperative game to model the strategic incentives players may face when

negotiating an agreement. Once an agreement is reached, the game typically ends.
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In contrast, this paper is concerned with bargaining outcomes in societies where

cooperation is governed by social norms. The idea that cooperation will be often

governed by social norms is not new. As a matter of fact, Kenneth Arrow (1971, p.

22) argued that a primary reason for the existence of social norms may be to facilitate

cooperation by creating environments in which individuals can trust each other:

It is a mistake to limit collective action to state action... I want to

[call] attention to a less visible form of social action: norms of social

behavior, including ethical, and moral ones. I suggest as one possible

interpretation that they are reactions of society to compensate for mar-

ket failure. It is useful for individuals to have some trust in each other’s

word. In the absence of trust, it would become very costly to arrange

for alternative sanctions and guarantees, and many opportunities for

mutual beneficial cooperation would have to be forgone.

In the above quote Arrow points out the potential benefits of norms in situations

where in absence of such norms (whether internalized or enforced through sanctions)

cooperation may be impossible or highly inefficient. It is clear that trust can be

very important in prolonged cooperations - efficient cooperation may, for instance,

be difficult if each of the participating parties has to constantly watch the other

knowing that the other party will steal the entire jointly produced surplus if given

the opportunity. Less obvious is perhaps that norms may also prevent inefficiencies in

situations where complete contracts specifying any division of surplus are available.

Consider, for instance, a buyer and a seller who can write down a legally binding

contract specifying the terms of delivery and the price for the sold good, knowing

that courts will if needed enforce both the delivery of the good and the payment. As

was pointed out by Crawford (1982), in such situations inefficiencies will often occur

if agents can imperfectly commit to bargaining positions before bargaining starts.

Of course, if individuals who deviate from the existing norm are sanctioned (and

sanctions are sufficiently high) than individuals will have no incentive to imperfectly

commit to alternative divisions of surplus and the inefficiency disappears.
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What allocation of surplus should we expect if norms are used to avoid inefficiencies

like those mentioned above? To understand the basic idea of the approach proposed

in this paper, consider the following extremely stylized example. Two risk-neutral

agents can engage in an activity that creates a monetary surplus of $1. Agents can

agree on any allocation of surplus (x1, x2) ∈ {[0, 1]2 : x1 + x2 = 1}, where x1 is the

surplus received by player 1 and x2 is the surplus received by player 2. However,

in the spirit of the inefficiencies mentioned by Arrow, assume such agreements are

not easily perfectly enforceable - before the cooperation is complete and the $1 can

be divided, each side will repeatedly have an opportunity to “steal” 90 cents of the

produced surplus and leave while the other party is taking a break. Note that no

matter what allocation of surplus of the $1 the two agents have agreed on, at least

one party will have an incentive to break the agreement if he or she can get away

with 90 cents. Perhaps, this problem can be overcome, for instance if both players

don’t make any breaks, or, if each player hires somebody to watch the other player

while he or she takes a break. However, it is not hard to imagine situations where,

as Arrow eloquently put it “in the absence of trust, it would become very costly to

arrange for alternative sanctions and guarantees”.

Imagine now, that a social norm is in place that mandates a division of surplus x,

if a player deviates from the norm and leaves with 90 cents, that player will incur

a “deviation cost” of m dollars. In case of an internalized norm, m could capture a

feeling of guilt or anxiety after breaking the norm. In case of a norm which is upheld

by sanctions, m could represent opportunity costs the agent incurs if he is shunned by

others or actual costs if, for example, individuals breaking the norm are later bullied

by others. It is clear that if m is sufficiently large, in the considered example at

least 90 cents, any allocation x can be sustained as a norm in the sense that neither

individual will find it advantageous to break the norm and leave with 90 cents, and

thus both individuals will be able to take their breaks, trusting the other agent not

to commit a theft.
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While any allocation of surplus can be sustained as a norm if m is sufficiently large,

the minimal m needed to sustain trust will depend on the allocation. Indeed, if player

i gets xi under the allocation x then for him not to be willing to break the norm and

leave with 90 cents it must be that 0.9 − m ≤ xi. Thus, an allocation x can be

sustained as a norm given deviation costs m (in the sense that neither player would

want to deviate and leave with 90 cents) if and only if m ≥ 0.9−min(x1, x2). In other

words, the minimal deviation costs needed to sustain an allocation x are given by

m(x) = 0.9−min(x1, x2).

It is trivial to see that for x1, x2 which add up to 1 dollar, m(x) is minimized for an

allocation x∗ where each player gets $0.5, i.e. where the dollar is split evenly.

In other words, in the above situation, x∗ is easier to sustain that any other allo-

cation of surplus in the sense that the range of parameters m for which x∗ can be

sustained is strictly larger than the range of parameters for which any other alloca-

tion can be sustained. In particular, this implies that if an allocation x 6= x∗ can be

sustained, so can x∗. Moreover, if maintaining a social system in which deviations

yielding a higher net benefit are offset by more severe punishments for deviators is

more costly for a society - see Remark 1 in Section 2 for a discussion why this may be

the case for the type of deviation costs considered here - then x∗ will be the allocation

which can be sustained at lowest cost for that society.

In this paper we only compare allocations of surplus in terms of how easy they are

to sustain as part of a social norm. The question when the benefits of a norm will be

sufficiently large for norms to form is not addressed in this paper. If an important role

of social norms is indeed to “compensate for market failures” then one would expect

that whether a social norm will form or not will crucially depend on assumptions

about how costly those “market failures” are for a society and how costly it is for

society to monitor and punish deviators. In contrast, in this paper we only analyse

how the allocation of surplus in a norm affects incentives of agents to deviate from

the norm and thus will require no assumptions about how other agents are affected
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by a deviation. Thus, in some sense, our results have a similar spirit as a result

describing the cheapest way in which an agent can be incentivized to incur “high

effort” in principal-agent problem with moral hazard, while ignoring the question

whether a principal would actually want to induce “high effort” as the answer to this

question would depend on assumptions on the preferences of the principal which are

orthogonal to the studied incentive problem of the agent.

The paper is organized as follows. Section 2 considers bargaining between two

players. We start by considering three concrete examples. The first is similar to the

one sketched above - norms are sustained because agents who deviate incur monetary

costs. In the other two examples norms are maintained because an attempt to deviate

from the norm may result in the cooperation being permanently abandoned. For

generic preferences over risk the allocation that is easiest to sustain as a norm is

different in each of the three examples: in the first it is the equal division, in the second

example Kalai-Smorodinsky solution, and in the third example the Nash Bargaining

solution. What can we said more generally if one is unable or unwilling to make very

specific assumptions about the underlying costs? Theorem 2 in Section 2 addresses

this question in the context of two-player bargaining between players who differ in

their attitude towards risk.

Section 3 considers bargaining between three or more individuals. Bargaining with

more than two players has an interesting aspect that is not present in two-player bar-

gaining. If subgroups can implement certain agreements even if others are unwilling

to participate, then the threat of such an agreement can affect bargaining outcomes.

In Section 3 we apply our approach to coalitional games with transferable payoffs to

analyze this aspect of bargaining. One nice feature of the proposed approach is that

one can immediately generalize solution concepts obtained for particular monitoring

technologies in Section 2 (like the Nash bargaining solution or the Kalai-Smorodinsky

solution) to the coalitional bargaining problems studied in Section 3, simply by con-

sidering the same monitoring technologies. For instance, the generalization of the
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Nash bargaining solution to the considered class of coalitional games yields a re-

finement of the core concept that is related to classical concepts like the nucleolus.

Solution concepts that yield sharp predictions when the core of a game is empty are

also derived.

Since this paper provides alternative foundations for concepts like the Nash bar-

gaining solution, the Kalai-Smorodinsky solution, refinements of the core, and more,

our work can be seen as part of a large body of literature discussing foundations for

those and related concepts. Our approach, however, differs from typical papers using

the axiomatic approach (see, for example, Nash (1950), Kalai-Smorodinsky (1975),

or Rubinstein et al. (1992)) as a single type of bargaining problem is considered in

isolation and no assumptions are made about how bargaining outcomes will change

if some aspects of the bargaining situation (like the set of alternatives or the pref-

erences of the players) are modified. Our approach also differs from papers using

the strategic approach (see, for example, Nash (1953), Rubinstein (1982), Abreu and

Gul (2000), Compte and Jehiel (2010), Perry and Reny (1994)) and, more generally,

papers using non-cooperative game theory, as we do not select outcomes based on

standard solution concepts used in non-cooperative game theory.

If one thinks about social norms that are internalized (i.e. part of the agents pref-

erences) the proposed approach seems related to a literature studying the evolution

of preferences in reduced models in which Nature designs preferences to avoid certain

inefficiencies as in Samuelson (2004) or Samuelson and Swinkels (2006). Papers that

use evolutionary game theory to select Nash equilibria in non-cooperative bargaining

games (see, for instance, Young (1993)) appear less related as the methodology is

again very different.

2. Bargaining between Two Individuals

Consider the problem of two agents who can engage in some activity that creates

a monetary surplus - for the sake of concreteness we will assume that the surplus is

equal to $1 - and have to decide how to divide the dollar.
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Let

X = {(x1, x2) ∈ [0, 1]2 : x1 + x2 = 1}

be the set of possible allocations of the monetary surplus, where (x1, x2) ∈ X is inter-

preted as an allocation where player 1 receives x1 and player 2 receives x2. We will

allow that players differ in their attitudes toward risk. More formally, if an allocation

of surplus x ∈ X is implemented, players receive von Neumann-Morgenstern utilities

u1(x1) and u2(x2) respectively, where ui for i = 1, 2 are differentiable functions satis-

fying u′i > 0 and u′′i ≤ 0. In the following three subsections we will assume that the

utility functions have been normalized so that u1(0) and u2(0) are both zero. In the

context of the general framework introduced later, Remark 2 points out that these

assumptions are without loss of generality.

We start by analyzing three simple ways in which norms can be sustained. In each

case, there will be a unique outcome that is easiest to sustain as a social norm. The

three outcomes obtained in this way correspond to the Nash bargaining solution, the

Kalai-Smorodinsky solution, and the equal division in which each player receives fifty

cents.

2.1. Example: Norms Sustained through Simple Monetary Sanctions. Let

us start by imagining that each time a player deviates from the social norm he or she

incurs a fixed monetary cost of m dollars.

A fixed monetary deviation cost allows a number of different interpretations. For

example, it could be that a player violates relevant norms or customs is later shunned

by others and incurs opportunity costs of m dollars in some unrelated interactions.

Alternatively, it could be that a players who violates the social norm is actively

punished by others and incurs actual losses that correspond to m dollars. In case

of internalized norms, m could represent the psychological pain or anxiety that an

individual feels after deviating from a norm. Finally, m could correspond to the costs

that an individual has to incur to avoid sanctions given the level of social monitoring

in the particular society - such costs will be discussed in Remark 3 after the general

framework has been introduced.
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Assume the relevant social norm dictates an allocation x ∈ X . Consider whether

a player i ∈ {1, 2} who expects to receive xi under the allocation x would want to

impose an alternative allocation of surplus x′ ∈ X if this would result in a fixed

monetary cost of m ∈ [0,∞).1 If the player receives xi his utility will be ui(xi). If he

imposes x′ and pays a cost of m his utility will be ui(x′i −m). Thus, player i would

have no incentive to impose the alternative allocation x′ if and only if

(1) ui(xi) ≥ ui(x
′
i −m).

We will say that an allocation x ∈ X can be sustained for deviation costs m if and

only if, for all players i ∈ {1, 2} and x′ ∈ X , inequality (1) holds. If an allocation

x can be sustained given deviation costs m that means that if the norm specifies a

division according to x and deviators face a monetary cost of m each individual can

trust that the other will not impose a different allocation of surplus even if given a

chance.

We will say that an allocation x ∈ X is easier to sustain as a norm than an

allocation x′ ∈ X if and only if it is the case that S(x′) ( S(x). An allocation x ∈ X

is said to be easiest to sustain as a norm if it is easier to sustain than any other

allocation x′ 6= x.

For any x ∈ X , the set of all numbers m ∈ [0,∞) such that x can be sustained for

a given m will be denoted by S(x). Note that, since the functions ui are increasing

and m does not depend on x′i, an allocation x can be sustained for a given m (i.e.

m ∈ S(x)) if and only if, for each i ∈ {1, 2}, xi ≥ 1−m or, equivalently, m ≥ 1− xi.

Since x1 + x2 = 1, this means that

S(x) = [max(x1, 1− x1),∞).

In other words, the minimalm needed to sustain an allocation x is given by max(x1, 1−

x1).

1In this example we consider the case where m is fixed and does not depend on x′ and x - situations
where m can depend on x and x′ will be considered later.
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Clearly, max(x1, 1−x1) as a function of x1 has a unique minimum in x1 = 1
2
. Thus,

for any allocation x ∈ X such that x 6= (1
2
, 1

2
), it is the case that S(x) ( S((1

2
, 1

2
))

and we obtain the following result.

Proposition 1. For the deviation costs considered in this subsection, there exists an

allocation of surplus that is easier to sustain as a norm than any other allocation of

surplus and that allocation is (1
2
, 1

2
), the allocation in which each player receives 50

cents.

The proposition immediately implies that if we can sustain some allocation y 6=

(1
2
, 1

2
) can be sustained using sanctions corresponding tom dollars, we can also sustain

(1
2
, 1

2
) with m dollars. Thus, from a social point of view, sustaining (1

2
, 1

2
) as a norm

never has to be more costly than sustaining y.

In addition the proposition also implies that if an allocation y 6= (1
2
, 1

2
) can be

sustained using sanctions corresponding to m dollars, (1
2
, 1

2
) can be sustained with

with sanctions that are m′ = 1
2
and m′ < m. This implies that if a social system with

higher sanctions m is more costly to maintain then (1
2
, 1

2
) the costs needed to sustain

(1
2
, 1

2
) will actually be strictly lower than the costs needed to sustain y 6= (1

2
, 1

2
).

Remark 1. Why should it be more costly to maintain a social system in which there

are more profitable deviations but those are offset by more severe punishments for

deviators?

If m represents how deeply internalized a norm is (i.e. how much anxiety or guilt

an individual feels when breaking the norm) it appears natural to assume that inducing

higher m is more costly. Similarly, if m represents a cost that an individual needs to

incur to avoid that a deviation is later detected and sanctioned, higher m will corre-

spond to better monitoring and thus be more costly. What if m represents costs that

a deviator incurs as a result of actual social sanctions, say if deviators are shunned

or bullied by other members of the society and higher m correspond to more intense

bullying or a longer time period in which the individual is shunned after a deviation?

After all, if the norm is successfully sustained, no deviations will occur and, therefore,
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nobody will need to be bullied or shunned! Note that, even in this case, higher m will

typically require more monitoring as individuals doing the shunning or bullying need

to be monitored. Indeed, if shunning a deviator results in opportunity costs for other

members of society, those agents will need to monitored and incentivized to make sure

that they indeed do shun a deviator and the longer the time period in which a devia-

tor is excluded from interactions with others the more monitoring will be necessary.

Similarly, if, for example, bullying an individual is pleasurable for other members of

society2, monitoring will be required to make sure that only deviators get bullied - if

both deviators and non-deviators get bullied, bullying no longer would work as a sanc-

tion. Since higher levels of monitoring are required for higher m (and this monitoring

needs to take place even if nobody finds it optimal to deviate), also here it appears

natural that a social system with larger sanctions will require some additional costs.

Note that the fact that the allocation (1
2
, 1

2
) does not depend on the utility functions

is not surprising - since a constant monetary cost does not involve any uncertainty,

players attitude toward risk is irrelevant.

2.2. Example: Norms Sustained through Threat of Permanent Disagree-

ment. In this subsection we will assume that the cost a player incurs if he wants to

deviate from the prevailing standard is not monetary but rather is derived from the

fact that with an exogenous fixed positive probability p the bargaining process will

permanently terminate in disagreement. Again, p allows for a number of interpre-

tations. For instance, it could that if one player tries to impose an allocation that

deviates from the norm, especially if this involves an act which is seen as immoral

- like breaking a previously given promise - with probability p the other player has

internalized the norm so strongly that she will stop the cooperation even if it is costly

for her to do so. Alternatively, again if imposing a different allocation involves an act

like lying or committing a fraud, it could be that the other player will always respond

by terminating the cooperation but such acts are only detected with probability p

2For instance, “bullying” could involve a transfer of wealth or services from the bullied person to the
individual doing the bullying.
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given the level of monitoring in a given society. Finally, it could be that if a player

tries tries to impose an allocation that deviates from the norm, with probability p the

other player will stop cooperation as making a deal in which he accepts less than the

valid norm sometimes would make him loose face in front of others or expose himself

or herself to social sanctions.

Formally, assume that whenever a player i tries to impose an allocation x′ ∈ X

that allocation will be implemented with probability 1− p and with probability p the

outcome will be permanent disagreement giving i a payoff of ui(0) = 0. Thus, if player

i tries to impose an outcome x′ his expected payoff will be equal to (1 − p) · ui(x′i).

This means that a player i who expects to receive xi under some allocation x would

have no incentive to try to impose an alternative allocation x′ if and only if

(2) ui(xi) ≥ (1− p) · ui(x′i).

Analogously as in the last subsection, we will say that an allocation x ∈ X can be

sustained as a norm for a given p if and only if, for all players i ∈ {1, 2} and x′ ∈ X ,

inequality (2) holds. For any x ∈ X , the set of all numbers p ∈ [0, 1] such that x

can be sustained a norm will be denoted by S(x). Again, an allocation x ∈ X is said

to be easier to sustain than an allocation x′ ∈ X if and only if S(x′) ( S(x′). Like

in the last subsection, we will say that an allocation x ∈ X is said to be easiest to

sustain as a norm if it is easier to sustain than any other allocation x′ 6= x.

Note that, since p does not depend on x′, whenever inequality (2) is not satisfied

for some player i and x′ ∈ X , it will also not hold for that player i and a division x′

in which i gets the entire dollar. Thus, p ∈ S(x) if and only if

ui(xi) ≥ (1− p) · ui(1)

for i ∈ {1, 2}. This means that

S(x) = [1−min(
u1(x1)

u1(1)
,
u2(x2)

u2(1)
), 1].
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In other words, the minimal value of p needed to sustain an allocation x is given by

1−min(u1(x1)
u1(1)

, u2(x2)
u2(1)

).

It is straightforward to see that min(u1(x1)
u1(1)

, u2(x2)
u2(1)

) achieves its maximum for the

Kalai-Smorodinsky solution, i.e. the unique allocation xK.S. satisfying u1(x1)

uK.S.
1 (1)

=

u2(xK.S.
2 )

u2(1)
. We have shown the following result.

Proposition 2. For the deviation costs considered in this subsection, there exists

an allocation of surplus that is easier to sustain as a norm than any other alloca-

tion of surplus and that allocation is the Kalai-Smorodinsky solution, i.e. the unique

allocation xK.S. such that u1(xK.S
1 )

u1(1)
=

u2(xK.S.
2 )

u2(1)
.

Again, if it is more costly for a society to implement higher p, the Kalai-Smorodinsky

solution will be the unique allocation that is cheapest to sustain.

2.3. Example: Nash Punishments. In this subsection we will consider an exam-

ple where the probability of permanent disagreement p considered in the last section

does depend on how large the deviation from the norm is and more extreme deviations

result in a higher chance that cooperation breaks down permanently. The variable

probability p in this subsection can be interpreted similarly as the fixed probability

p from Subsection 2.2, except that the probability with which interactions are termi-

nated now depends on how large the deviation was. If, for instance, after a deviation

from a norm by one player there is a chance that the other player has internalized the

norm so strongly that he will stop all cooperation, this chance would now be higher

the more extreme the deviation is.

More formally, assume that if the norm is x and player i tries to impose an alter-

native allocation x′ with x′i > xi, permanent disagreement happens with probability

p(x′i − xi), where p : [0, 1] → [0, 1] is a differentiable function satisfying p(0) = 0,

p′ > 0, and p′′ ≥ 0. The conditions p(0) = 0, p′ > 0, and p′′ ≥ 0 capture the idea that

there is little cost of imposing an allocation “close to the norm x”, costs increase the

more excessive x′ becomes, and “marginal costs are increasing”. Let P be the set of

functions p : [0, 1]→ [0, 1] that satisfy the above three properties.
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Analogously as in the last two subsections, we will say that an allocation x ∈ X

can be sustained as a norm for a given p ∈ P if and only if

(3) ui(xi) ≥ (1− p(x′i − xi)) · ui(x′i),

holds for all players i ∈ {1, 2} and all allocations x′ ∈ X such that x′i > xi.3

Again, for any x ∈ X , the set of all p ∈ P such that x can be sustained a norm will

be denoted by S(x). Like in the last two subsections, an allocation x ∈ X is said to

be easier to sustain than an allocation x′ ∈ X if and only if S(x′) ( S(x′). Finally,

we will say that an allocation x ∈ X is said to be easiest to sustain as a norm if it is

easier to sustain than any other allocation x′ 6= x.

We claim that, for any allocation x ∈ X , the set S(x) satisfies

(4) S(x) = {p ∈ P : p′(0) · u1(x1) ≥ u′1(x1) and p′(0) · u2(x2) ≥ u′2(x2)}.

To see that (4) holds, consider any allocation x ∈ X and any function p ∈ P . For

i ∈ {1, 2}, define fi : [xi, 1]→ R by fi(x′i) = (1− p(x′i − xi)) · ui(x′i). Now inequality

(3) can be rewritten as

(5) ui(xi) ≥ fi(x
′
i).

Note that, since p(0) = 0 for any p ∈ P , inequality (5) holds with equality if x′i = xi.

Since the functions fi are concave,4 this implies that f ′(xi) ≤ 0 is a sufficient and

necessary condition for inequality (5) to hold for all x′i ∈ (xi, 1], whenever xi < 1.

Since f ′(xi) ≤ 0 is equivalent to p′(0) · ui(xi) ≥ u′i(xi), this proves (4) for the case

where x1 < 1 and x2 < 1. However, for the case where x1 = 1 or x2 = 1, equation (4)

holds since S(x) = ∅ and the right hand side of (4) is also equal to the empty set.5

3We only consider deviations to x′ which are more favorable for player i in the sense that x′i > xi. If
imposing an alternative allocation of surplus is related with additional costs, a player would never
have an incentive to impose an allocation x′ which gives him less than x.
4To see that fi is concave note that ui ≥ 0, u′i > 0, u′′i ≤ 0, p ≤ 1, p′ > 0, p′′ ≤ 0 imply that
f ′′i = −p′′ · ui − p′ · u′i + (1− p) · u′′i ≤ 0.
5Assume xi = 1 for some i ∈ {1, 2}. S(x) = ∅ must hold since for any p ∈ P , it will be the case
that (3) does not hold for player j with xj = 0 and positive x′j that are sufficiently close to zero. To
see that the right hand side of (4) is also equal to the empty set, note that, if xj = 0, then, for any
p ∈ P , p′(0) · uj(xj) = 0 < u′j(xj) as uj(0) = 0 and u′j > 0.
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Equation (4) implies that an allocation x ∈ X is easier to sustain as a norm than

an allocation y ∈ X if and only if

max(
u′1(x1)

u1(x1)
,
u′2(x2)

u2(x2)
) < max(

u′1(y1)

u1(y1)
,
u′2(y2)

u2(y2)
)

or, equivalently,

max(
u′1(x1)

u1(x1)
,
u′2(1− x1)

u2(1− x1)
) < max(

u′1(y1)

u1(y1)
,
u′2(1− y1)

u2(1− y1)
).

Consider

(6) max(
u′1(x1)

u1(x1)
,
u′2(1− x1)

u2(1− x1)
)

as a function of x1. Since the functions u1 and u2 are concave and increasing, u′1(x1)

u1(x1)

is decreasing in x1 and u′2(1−x1)

u2(1−x1)
is increasing in x1. Thus, there is a single allocation

for which (6) is minimized and that allocation is the unique solution of the equation

(7)
u′1(x1)

u1(x1)
=
u′2(1− x1)

u2(1− x1)
.

However, the unique allocation for which equation (7) holds is the symmetric Nash

Bargaining Solution.6 Therefore, we obtained the following result.

Proposition 3. For the deviation costs considered in this subsection, there exists an

allocation of surplus that is easier to sustain as a norm than any other allocation of

surplus and that allocation is the symmetric Nash Bargaining solution, i.e. the unique

solution to the problem maxx u1(x) · u2(x).

The reason for the name “Nash Punishments” in the title of this subsection is that

the deviation costs considered in this example had a very particular property. The set

S(x) depended only on the local properties of the utility functions u1 and u2 around

x and the disagreement payoff, which is reminiscent of Nash’s (1950) Independence

of Irrelevant Alternatives Axiom.

6The symmetric Nash Bargaining Solution is the unique allocation solving maxx u1(x1) · u2(1− x1).
It is straightforward to see that this problem has an interior solution. However, the first order
condition u′1(x1) · u2(1− x1)− u1(x1) · u′2(1− x2) = 0 is equivalent to equation (7).
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2.4. More General Framework. In this section we will consider a more general

framework in which norms can be sustained through a mixture of monetary sanctions

after deviations and threats of permanent disagreement. We will still assume that

players are symmetric in all aspects except their attitude towards risk.7

Let C be a set whose elements are pairs (p,m) where p : [0, 1] → [0, 1] and m :

[0, 1]→ [0,∞) are continuous functions. We call such a set C a deviation cost set and

interpret it as set of possible ways in which a society can make it costly for agents

to deviate from social norms. More precisely, a pairs (p,m) ∈ C corresponds to a

situation in which if, the social norm specifies x ∈ X and a player i deviates from the

norm attempting to impose an allocation in which he gets x′i ≥ xi, player i’s expected

payoff will be given by

(1− p(x′i − xi)) · ui(x′i −m(x′i − xi)) + p(x′i − x′i) · ui(0).

Here, mi(x
′
i − x′i) represents a monetary cost the agent has to incur and p(x′i − x′i)

the probability of permanent disagreement.8

As in subsections 2.1 - 2.3, we will say that an allocation can be sustained given

a cost c ∈ C if no player has an incentive to impose an alternative allocation if the

costs of doing so are given by c.

Definition 1. An allocation x ∈ X is can be sustained (as a norm) for given deviation

costs (p,m) ∈ C if and only if

(8) ui(xi) ≥ (1− p(x′i − xi)) · u(x′i −m(x′i − xi)) + p(x′i − xi) · ui(0)

7Considering the case where players are identical in all aspects except one seems like a natural start-
ing point. In addition, it makes it easier to compare our results with classic symmetric bargaining
concepts.
8Note that we assume that the monetary cost m(x′i−xi) does not have to be paid if bargaining ends
in permanent disagreement. This appears to be a natural assumption if only the final bargaining
outcome is observable to other individuals as in this case other individuals will not know why no
cooperation took place and who, if anybody, is to blame.
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for all players i ∈ {1, 2} and allocations x′ ∈ X such that x′i > xi.9 For any allocation

x ∈ X , denote the set of costs c ∈ C for which x can be sustained by SC(x).

As in Subsections 2.1 - 2.3, we will compare allocations based on the set of c ∈ C

for which they can be sustained as a norm.

Definition 2. Fix a deviation cost set C. An allocation x ∈ X , is easier to sustain

(as a norm) than y ∈ X (or x �C y) if and only if SC(y) ( SC(x).

The above definition immediately implies that the binary relation �C on X is

irreflexive (i.e. there is no x with x �C x) and transitive (i.e. for x, y, z ∈ X , y �C x

and z �C y implies z �C x). Thus, �C is a strict partial order on X .10 As in sections

2.1 - 2.3 we will say that an allocations x ∈ X is easiest to sustain if it is largest with

respect to that partial order.

It will be useful to introduce some more terminology to compare allocations.

Definition 3. Fix a deviation cost set C. An allocation x ∈ X is equally easy to

sustain (as a norm) as y if SC(x) = SC(y).

Similarly as before, we will say that an allocation is easiest to sustain as a norm if

and only if there is no allocation that is easier to sustain.

Definition 4. Fix a deviation cost set C. An allocation x ∈ X is easiest to sustain

(as a norm) if and only SC(x′) ( SC(x) for any x′ ∈ X such that x′ 6= x.

Note that the framework is rich enough to incorporate the settings of Subsections

2.1, 2.2, and 2.3. Of course, there are other natural generalizations of the three

settings presented in Subsections 2.1, 2.2, and 2.3 that could be used. An earlier

version of this paper derived very similar results as will be derived here for the case

where the functions p and m were allowed to depend both on x′i−xi and xi and both

functions were assumed to be monotonically non-decreasing in both x′i − xi and xi.
9We only consider deviations to x′ which are more favorable for player i in the sense that x′i > xi. If
imposing an alternative allocation of surplus is related with additional costs, a player would never
have an incentive to impose an allocation x′ which gives him less than x.
10A binary relation that is irreflexive and transitive is called a strict partial order.
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A crucial property that both frameworks have is that a player’s incentive to deviate

from the norm will be lower if he or she receives a higher fraction of the surplus.

Since, for general deviation cost sets C, it can be that there is no allocation that

is easiest to sustain11 we will often consider elements that are maximal rather than

largest with respect to the partial order �C.

Definition 5. An allocation x ∈ X is undominated if and only if there is no allo-

cation x′ ∈ X that is easier to sustain. For a given deviation cost set C, the set of

undominated allocations will be denoted by UC.

Note that, if for some deviation cost set C, there is an allocation x∗ that is easiest to

sustain, the fact that it is easier to sustain than any other allocation y implies that, for

that deviation cost set C it is also the unique allocation that is undominated. Thus,

in Subsections 2.1, 2.2, and 2.3, the three propositions characterizing the allocations

that are easiest to sustain would remain true if the words “there exists an allocation

of surplus that is easier to sustain as a norm than any other allocation of surplus”

would have been replaced by “there exists a unique allocation that is undominated”.

Remark 2. Note that the function SC defined in Definition 1 only depends the pref-

erences of both players over monetary lotteries and, therefore, does not depend on

which utility function is used to represent those preferences. In particular, SC will

not be affected if positive affine transformations are applied to the utility functions u1

and u2. As a result, the same is true for the derived concepts in Definitions 2, 4 and

5. Since positive affine transformations of utility functions will not affect UC, we can

without loss of generality assume that u1(0) = u2(0) = 0 and u1(1) = u2(1) = 1 when

proving statements about the set UC.

11Assume the utility functions u1 and u2 are such that the Nash bargaining solution does not coincide
with the allocation which gives each player 50 cents. Now let C be the deviation cost set which
includes both the deviation costs considered in Subsection 2.1 and the deviation costs considered
in Subsection 2.2. The results from Subsections 2.1 and 2.2 imply that both the allocation giving
each player 50 cents and the allocation corresponding to the Nash bargaining solution are maximal
with respect to the partial order �C . In particular, there is no allocation of surplus that is easier to
sustain than any other.
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Remark 3. We use the term “deviation cost set” for the set C and elements c ∈ C

“deviation costs” rather than “sanction set” for the cost C and “sanctions” for its

elements. A deviation from an existing norm can be costly because deviators face

sanctions. However, there can be other reasons why deviations from a norm requires

costs - in particular, it may be that c represents costs that the individual has to incur

to avoid sanctions.

Imagine, for example, that to gain a more beneficial allocation of surplus an action

like theft or fraud is required that, if detected, will result in very severe legal or social

consequences but will remain undetected (and unpunished) if the agent incurs a cost

of m, where m depends on the level of social monitoring in that society. If the pun-

ishments after a detected case of theft or fraud are sufficiently severe, stealing a part

of the surplus without incurring the cost m to keep the crime undetected will never be

optimal. Thus, in such a case, the agent will deviate from the norm if and only if m,

the cost he needs to incur to avoid sanctions is sufficiently low.

2.5. Existence. Our first theorem establishes the existence of undominated alloca-

tions.

Theorem 1. For any deviation cost set C, there exists an undominated allocation x∗,

i.e. the set UC is non-empty.

Proof. See Appendix. �

Despite the fact that the cost functions appearing in C are assumed to be continuous

functions, the partial order �C in general does not need to be a continuous binary

relation and, in particular, the lower contour sets L(y) = {x ∈ X : y �C x} do

not need to be open for all allocations y.12 As a result, the existence of a maximal
12Let us sketch some intuition why the sets L(y) = {x ∈ X : y �C x} do not need to be open in
general. In each of the examples in subsections 2.1 – 2.3, we had a set C and a unique element
in xC ∈ V ∗C , moreover, that xC had the property that there was a cost c ∈ C such that xC was
the unique allocation that can be sustained given costs c. (For example, for the case of constant
monetary costs, ( 1

2 ,
1
2 ) was the unique allocation that can be sustained for fixed monetary costs of

1
2 .) Imagine that, for some utility functions u1 and u2, there is a non-empty open set U ( X such
that for each x ∈ U there is a cost cx = (px,mx) such that x is the unique allocation that can be
sustained under costs cx. Let y, z ∈ U be two different allocations. Consider C = {cx : x ∈ F −{z}}
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element does not follow immediately from the compactness of X and the proof of

Theorem 1 has to rely on a more subtle argument that uses the Kuratowski-Zorn

lemma. The compactness of X and the fact that the functions appearing in C are

continuous nevertheless are important in the proof.

2.6. The sets X ∗ and X ∗∗. All three examples considered in Subsections 2.1 – 2.3

had the property that there was a single allocation x that is easiest to sustain. One

way to see “what is possible more generally” would be to ask what the set of allocations

x is such that there is some deviation cost set C such that x is easiest to sustain if

that deviation cost set C is considered.

Definition 6. Let X ∗ be the set of all allocations x∗ ∈ X such that there is a deviation

cost set C with the property that x∗ is easiest to sustain, i.e. such that SC(y) ( SC(x∗)

for any y ∈ X such that y 6= x∗.

Note that X ∗ can be seen as a lower solution (see Myerson (1991), p. 107-108) in

the sense that if x∗ ∈ X ∗ then there will be environment where the allocation x∗ is

easiest (and cheapest in terms of social costs) to sustain. Of course, environments

where there is an allocation that is easiest to sustain are rather specific. Can we

derive an upper solution (again in the sense of Myerson (1991), p. 107-108) to say

something about the possible allocations one should expect more generally?

The problem is that there are deviation cost sets C for which the set of undominated

allocations UC is quite large. Consider the case where the deviation cost set is C =

{(p0,m1)}, with p0 ≡ 0 and m1 ≡ 1. In this case, clearly SC(x) = C for any x ∈ X ,

i.e. all allocations are equally easy to sustain. The problem here is that C is not rich

enough to distinguish different allocations in X .

Let us think again about the case where the deviation cost set is C = {(p0,m1)},

with p0 ≡ 0 and m1 ≡ 1 a bit more. As was noted above, for this deviation cost

set, SC(x) = C for any x ∈ X , i.e. all allocations are equally easy to sustain. If it

would be guaranteed that the norm will only be used in situations where the cost

and note that, by construction, L(y) = {x ∈ X : y �C x} is equal to X −U ∪{z}. Since U was open
and z ∈ U , L(y) = X − U ∪ {z} is not open.
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set is C = {(p0,m1)}, indeed, the allocation (1
2
, 1

2
) would be as easy (and as costly)

to sustain as the allocation (1, 0) as the only way to sustain either uses (p0,m1).

However, if the is any chance that the same norm would also be used in situations

where the deviation cost set has the form considered in one of the examples from

subsections 2.1 – 2.1, using (1
2
, 1

2
) would be more efficient than using (1, 0) in the

sense that required sanctions/internalization would be smaller. Of course, the cost

sets corresponding to the examples in sections 2.1 – 2.1 where just three possible cost

sets. What if we found out, that also in any other cost set which is rich enough to that

it can distinguish between (1, 0) and (1
2
, 1

2
) the allocation (1

2
, 1

2
) is easier to sustain?

This motivates the following definition.

Definition 7. Let X ∗∗ be the set of all allocations x ∈ X such that there is no

allocation y ∈ X with the property that, for any cost set C, y is either easier or

equally easy to sustain as x and, for some deviation cost set C, y is easier to to

sustain than x.

2.7. Characterization of X ∗ and X ∗∗. A fundamental question that solution con-

cepts like the Nash bargaining solution or the Kalai-Smorodinsky solution try to

address is how different attitudes toward risk affect bargaining outcomes. A basic

intuition is that, if one player is more risk averse than the other player, he or she will

be more timid when making demands, allowing the player who is more aggressive in

his demands to achieve a more favorable outcome.

Our approach will predict that exactly those allocations x are possible bargaining

outcomes that are not unbalanced in the sense that, given the allocation x, one player

will be strictly more risk averse than the other when making demands.

Definition 8. Let i ∈ {1, 2} be a player and j his opponent. Define Di ⊂ X to be

the set of allocations x such that, for any q ∈ (0, 1) and ∆ ∈ (0, 1),

xi + ∆ ≤ 1 and ui(xi) < q · ui(xi + ∆) + (1− q) · ui(0)
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is implied by

xj + ∆ ≤ 1 and uj(xj) ≤ q · uj(xj + ∆) + (1− q) · uj(0).

To understand Definition 8,13 imagine that a player contemplates whether to accept

the allocation x or appeal against x and demand some x′ ∈ X which gives the player

∆ more, a demand which will be accepted only with some probability q and result

in disagreement with probability 1 − q. The set Di is the set of allocations that

are unbalanced in the sense that player i would have higher incentives to make such

demands than his opponent.

Note that, on an intuitive level, it seems natural that a player will be more willing

to appeal an allocation x and demand some x′ with x′i > xi if x is an allocation

that only gives player i a small share of the surplus. This suggests that if x ∈ Di,

then for any allocation y with yi < xi it must be that y ∈ Di. Lemma 3 in the

appendix formally shows that, for each player i ∈ {1, 2}, there exists a number

x̄i = supx∈Di
xi ∈ (0, 1

2
] such that the set Di either satisfies Di = {x ∈ X : xi < x̄i} or

satisfies Di = {x ∈ X : xi ≤ x̄i}.

Theorem 2. X ∗ = X ∗∗ = {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}, where x̄i = supx∈Di
xi > 0

for i = 1, 2.14

Proof. See Appendix. �

In particular, X ∗ = X ∗∗ is a set valued solution concept that generalizes the equal

division from Subsection 2.1, the Kalai-Smorodinsky solution from Subsection 2.2,

the Nash Bargaining solution from Subsection 2.3, as well as any other single-valued

bargaining solution which for the considered bargaining problem returns an allocation

that is easiest to sustain for some deviation cost set C.

The proof of Theorem 2 is in the appendix, here we just mention some basic ideas

used in the proof. The definition of the sets X ∗ and X ∗∗ immediately implies that

13See Rubinstein, Safra, and Thomson (1992) for a characterization of the Nash Bargaining solution
in similar terms.
14The sets Di were defined in Definition 8.
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X ∗ ⊂ X ∗∗. Define x̄1 and x̄1 as in the theorem. Since X ∗ ⊂ X ∗∗, to prove Theorem

2, it is enough to show that: (1) X ∗∗ ⊂ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} and (2)

{x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} ⊂ X ∗.

To provide some intuition for the result, let us sketch why (1) holds. To prove (1)

it is enough to show that for any allocation x ∈ X such that xi < x̄i for some player

i, it is the case that x /∈ X ∗. Now, note that if x is an allocation such that xi < x̄i

then there is an allocation y such that xi < yi < x̄i. Since xi < x̄i and yi < x̄i, both

x and y lie in Di. But Di was the set of allocations z, such that, given z, player i has

strictly higher incentives to make demands than the other player j. This suggests

that for the allocations x and y the sets SC(x) and SC(y) will be equal to the set of

costs c ∈ C such that player i would not want to impose some alternative allocation

– if i does not want to impose an alternative the same is true for the other player

j as he has strictly weaker incentives to make demands.15 But if SC(x) and SC(y)

are both determined only by player i’s incentives than we expect that since xi < yi,

player i will more satisfied under y than under x and will have weaker incentives to

make demands, and, therefore, SC(x) ⊂ SC(y) for any C and SC(x) ( SC(y) if C is

sufficiently rich. This, however, implies x /∈ X ∗∗. To prove statement (2) for each

x ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} a cost set C is constructed such that x is easiest

to sustain for the cost set C.

The set X ∗ = X ∗∗ defined in Theorem 2 in general depends on the risk preferences

of the two players. For instance, it is straightforward to show that, for the case where

both players have the same preferences over lotteries, X ∗ = X ∗∗ = {(1
2
, 1

2
)} holds.

From Theorem 2 and the examples considered in Subsections 2.1 – 2.3 we know that,

in general, the set X ∗ = X ∗∗ is convex and contains the Nash bargaining solution, the

Kalai-Smorodinsky solution, and the equal division (1
2
, 1

2
). The reader might wonder

how much larger X ∗ = X ∗∗ is compared to the convex hull of those three allocations.

The following proposition addresses this question.

15See Lemma 4 in the appendix for a formal statement.
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Proposition 4. For i = 1, 2, let ȳi ∈ [0, 1] be the unique solution of

ui(2ȳi)−ui(ȳi)
ȳi

ui(ȳi)− ui(0)
=

u′j(1− ȳi)
uj(1− ȳi)− uj(0)

,

where j stands for the other player. Define Y∗∗ ⊂ X by

Y∗∗ = {x ∈ X : x1 ≥ min(ȳ1,
1

2
) and x2 ≥ min(ȳ2,

1

2
).}

Then, X ∗ = X ∗∗ ⊂ Y∗∗.

Proof. See Appendix. �

Consider the equation defining ȳi. Note that if we replace ui(2ȳi)−ui(ȳi)
ȳi

with u′i(ȳi) ≥
ui(2ȳi)−ui(ȳi)

ȳi
we obtain an equation which characterizes the payoff of player i under the

Nash bargaining solution.16 Thus with Y∗∗ we have an outer solution concept whose

extreme points can be directly related to the Nash bargaining solution.

One can show that for the case where one of the players is risk neutral the set Y∗∗

defined in Proposition 4 actually coincides with X ∗ = X ∗∗. This implies that if player

i is risk neutral then X ∗ = X ∗∗ = {x ∈ X : xj ∈ [ȳi,
1
2
]} where ȳi is defined as in

Proposition 4.

2.8. Comparative Statics. By Theorem 2, X ∗ = X ∗∗ = {x ∈ X : x1 ≥ x̄1 and x2 ≥

x̄2}, where x̄i = supx∈Di
xi for i = 1, 2. The definition of the sets Di implies some

immediate comparative statics results.

Consider, for instance, how the set X ∗ = X ∗∗ changes if player 1 would became

more risk averse in the sense that his preference over risk is no longer given by u1 but

instead û1 = v ◦u1, where v is an increasing, strictly concave function. The definition

of the sets Di together with Jensen’s inequality immediately implies that x̄1 would

weakly decrease and x̄2 would weakly increase. Thus, X ∗ = X ∗∗ would “shift” in

player 2’s favor.

16The Nash bargaining is the allocation x that maximizes (u1(x1) − u1(0)) · (u2(x2) − u2(0). It
therefore satisfies the first order condition u′

1(x1)
u1(x1)−u1(0) =

u′
2(x2)

u2(x2)−u2(0)) . Replacing xj with 1− xi we
obtain the equation.
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3. Bargaining Between More than Two Individuals

3.1. Coalitional Games. When bargaining involves three or more individuals, a

fundamentally new aspect may appear that is not present in bargaining between two

individuals. It can be the case that there are some subgroups of players which can

collaborate for mutual benefit among themselves, even if others choose not to partic-

ipate. In this section, the focus will be on this aspect of multi-player bargaining.17

A coalitional game with transferable payoffs consists of a set of players N = {1, .., n}

and a function v : 2N → [0,∞) such that v(∅) = 0.18 The function v is called the

value function. A non-empty subset of the set of players N will be called a coalition.

While coalitional games with transferable payoffs allow for a number of possible

interpretations, we will for now narrowly interpret the value v(S) for a coalition

S ⊂ N as the monetary surplus coalition S can achieve when acting on its own.

Since the set N can be reconstructed from the value function v we will often identify

a coalitional game with its value function.

We will restrict attention to games v such that, for any non-empty coalition S ⊂ N ,

(9) v(S) + v(N − S) ≤ v(N).

This captures the idea that the grand coalition N can achieve at least the same

monetary surplus as the sum of what S and N − S could achieve on their own.

Note that, unlike in Section 2, we have not specified attitudes towards risk. In the

following we will assume that players are risk neutral. This is so that we can focus our

analysis on one single aspect (in this case coalitional bargaining) without introducing

other factors. It will also make our results more easily comparable with other results

obtained for coalitional games with transferable payoffs.

17It is possible to generalize the results from Section 2, to address the question how individual
attitudes toward risk affect bargaining outcome if n players have to unanimously decide how to
divide a dollar. However, that generalization does not involve anything conceptually new and the
same methods can be applied that have been used to prove the results of Section 2.
18Here 2N denotes the set of all subsets of N .
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3.2. Allocations. Fix a game v. An allocation x is a vector in [0,∞)N such that∑
i∈N xi = v(N). An allocation describes a possible division of the surplus v(N)

among the players in the game v. The set of all allocations will be denoted X .

Whenever x is an allocation we will write xS for
∑

i∈S xi.

Let C be a deviation cost set as defined in Section 2. The next definition is a

straightforward generalizations of Definition 1.

Definition 9. An allocation x ∈ X can be sustained given costs (p,m) ∈ C if and

only if

(10) xS ≥ (1− p(x′S − xS)) · (x′S −m(x′S − xS)) + p(x′S − xS) · v(S)

holds for all non-empty S ⊂ N and all allocations x ∈ X such that x′S ∈ (xS, v(N)−

v(N − S)]. For any allocation x ∈ X , denote the set of costs c ∈ C for which x can

be sustained by SC(x).

Note that Definition 9 the cost of a deviation by a coalition does not depend on the

size of the coalition. We think about this case as a very natural benchmark which,

in particular, allows meaningful comparisons with solution concepts that implicitly

assume that larger coalitions are not per se more or less effective in negotiations

than smaller ones. At the same time, we would like to point out that, of course, the

approach proposed in this paper can also be easily applied if the costs appearing in

Definition 9 do, for instance, depend on the size of the coalition S.19

After having defined SC in Definition 9, we can apply Definitions 2 to 5 from Section

2 without any changes. In particular, we will say that an allocation x ∈ X is easier

to sustain than an allocation x′ ∈ X if and only if SC(x′) ( SC(x) and say that an

allocation x ∈ X is undominated if and only if there is no allocation x′ ∈ X that is

easier to sustain. As in Section 2, the set of undominated allocations will be denoted

by UC.

19As an illustration, it is straightforward to generalize the arguments and results that follow to
address the case where the chance of permanent disagreement does not depend on the size of the
coalition S but the monetary costs are linear in the number of players that are in S.
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3.3. Nash Punishments. Let CNash be the deviation cost set containing all pairs

(p,m) such that p : [0, 1]→ [0, 1] is differentiable with p(0) = 0, p′ > 0, and p′′ > 0 and

m : [0, 1]→ [0,∞) satisfies m ≡ 0. This is the deviation cost set that was considered

in Subsection 2.3 in which we obtained the symmetric Nash Bargaining solution as

a unique prediction. The set UCNash can, therefore, be seen as the “analogue” of the

Nash bargaining solution for coalitional games with transferable payoffs in the sense

that the monitoring and sanctioning technology is the same as those that yielded the

Nash bargaining solution in Subsection 2.3.

To characterize UCNash , recall that the core of a coalitional game v is defined as

Core(v) = {x ∈ X : xS ≥ v(S) for all S ⊂ N}.

On an intuitive level, an allocation is in the core if and only if there is no coalition

that could achieve a higher payoff on its own.

Proposition 5. If Core(v) is empty, then UCNash = X . If Core(v) is non-empty,

then the set UCNash consists of exactly those allocations x ∈ Core(v) that solve the

problem

max
x∈Core(X )

min
S
xS − v(S),

where the minimum is over all coalitions S ⊂ N such that v(S) + v(N − S) < v(N).

Proof. See Appendix. �

Remark 4. The set UCNash always contains the nucleolus of the game v.20 In par-

ticular, whenever UCNash is a singleton, the unique element of UCNash must be the

nucleolus.

The fact that UCNash = X if the core of the game v is empty, is due to the fact that

all the costs in CNash are non-monetary in the sense that for any (p,m) ∈ CNash, it is

the case that m ≡ 0. To see this more generally, let C be an arbitrary non-monetary

deviation cost set, i.e. a deviation cost set such that, for every (p,m) ∈ C, it is the case
20See Schmeidler (1969) for a definition of the nucleolus of a coalitional game with transferable
payoffs.
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thatm ≡ 0. Now, think about a coalition S that, for a given (p,m) ∈ C, contemplates

whether it prefers to receive xS with certainty or prefers to try to impose an allocation

x′ with x′S > xS. Since m ≡ 0, the only “downside” of trying to impose such an x′ is

that sometimes the coalition will receive v(S) instead of x′S. But this means that, if

it happens to be that xS < v(S), coalition S w will always find it in its interest to try

to impose such an x′.21 Thus SC(x) = ∅ whenever x /∈ Core(v). This immediately

implies that UC = X if the game v has an empty core.

To get a sense of the above result for the case where the core is non-empty, consider

the following factory game as an example. A capitalist owning a factory and n workers

are bargaining how to divide a surplus that they can jointly create. A coalition

consisting of the capitalist and k workers, can on its own produce a surplus of k · θ,

where θ > 0 is the marginal product of an additional worker. A coalition that does

not include the capitalist can not produce any surplus. To define a formal coalitional

game, let N fact = {1, 2, ..., n, n + 1} be the set of players, where we think of players

1, 2, ..., n as workers and player n+ 1 as the capitalist, and let vfact : 2N → [0,∞) be

given by vfact(S) = (|S| − 1) · θ if n + 1 ∈ S and vfact(S) = 0 if n + 1 /∈ S. For this

game, the core is given by

Core(vfact) = {x ∈ X : xi ≤ θ for i ∈ {1, 2, ..., n}}.

In contrast, UCNash yields a much sharper prediction as

(11) UCNash (vfact) = {x∗}

where x∗ ∈ X is the allocation in which each worker i ∈ {1, .., n} receives a payoff of

w∗ = θ
2
and the capitalist receives f(n)− n · w∗. To prove (11) note first that

min
S:v(S)+v(N−S)<v(N)

x∗S − v(S) = w∗.

21Note that, if x(S) < v(S), then x(S) < v(N)− v(N −S) by (9) and thus there will exist x′S in the
required interval (xS , v(N)− v(N − S)].
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Therefore, (11) will follow from Proposition 5 if we show that for each x 6= x∗

(12) min
S:v(S)+v(N−S)<v(N)

xS − v(S) < w∗.

Consider an allocation x 6= x∗. Note that there must be a worker i such that xi 6= w∗.22

However, if there is a worker i who receives xi < w∗ then for S = {i} we have

xS−v(S) = xi < w∗ which implies (12). If, on the other hand, there is a worker i who

receives xi > w∗, then for S = N−{i} we have xS−v(S) = (n·θ−xi)−(n−1)·θ < w∗

which again implies (12). Since we have shown that (12) holds for any allocation

x 6= x∗, (11) follows from Proposition 5.

In this example, our approach yielded much sharper predictions than the core

concept, predicting that all workers will receive the same wage and pinning down

the exact size of this wage. Of course, the reader may wonder to what extend that

prediction depended on the nature of the assumed costs. The next two subsections

address this question.

3.4. The sets X ∗(v) and X ∗∗(v). The definition of the sets X ∗ and X ∗∗ from Sub-

section 2.6 can be immediately extended to the current setting.

Definition 10. Fix a coalitional game v. Let X ∗(v) be the set of all allocations

x∗ ∈ X such that there is a deviation cost set C with the property that x∗ is easiest to

sustain, i.e. such that SC(y) ( SC(x∗) for any y ∈ X such that y 6= x∗.

Definition 11. Fix a coalitional game v. Let X ∗∗(v) be the set of all allocations

x ∈ X such that there is no allocation y ∈ X with the property that, for any cost set

C, y is either easier or equally easy to sustain as x and, for some deviation cost set

C, y is easier to to sustain than x.

In the following subsection we will characterize the set X ∗∗(v). In the context of

general coalitional games X ∗(v) is a less interesting object than for the bargaining

problem considered in Section 2 because for many natural deviation cost sets there

22If all workers would receive the same payoff as in x∗ then also the capitalist would receive the
same payoff as in x∗ as payoffs must add up to v(N) = f(n).
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will be no unique allocation that is easiest to sustain. This is not only the case for

the Nash Punishments considered in the last subsection. As a matter of fact, there

are games v for which X ∗∗(v) is empty, i.e. there is no deviation cost set C for which

there is an allocation that is easiest to sustain.23 For this reason, we will focus our

attention on the set X ∗∗(v).

3.5. Characterization of X ∗∗(v). Before we can state Theorem 3 that provides a

characterization of the set X ∗∗(v) we need to introduce some notation.

Definition 12. We will say that an allocation x ∈ X is weakly less extreme than

an allocation y ∈ X if and only if for any coalition S such that xS − v(S) < xN−S −

v(N − S) there exists a coalition S ′ ⊂ N such that

yS′ − v(S ′) ≤ xS − v(S) and xN−S − v(N − S) ≤ yN−S′ − v(N − S ′).

An allocation x ∈ X is equally extreme as y ∈ X if and only if x is weakly less

extreme than y and y is weakly less extreme than x. An allocation x ∈ X is strictly

less extreme than y ∈ X if and only if x is weakly less extreme than y and not equally

extreme as y.

To understand Definition 12, it is worthwhile to think about a game v as repre-

senting a framework where any coalition S can bargain with coalition N − S on how

to divide the surplus v(N) − v(N − S) − v(S) which remains if S receives v(S) and

N − S receives v(N − S). Then, xS − v(S) < xN−S − v(N − S) means that, under

allocation x, the surplus xS − v(S) received by coalition S is strictly smaller than

the surplus xN−S − v(N − S) received by coalition N − S. An allocation x is weakly

less extreme than an allocation y if, for any case where the division between S and

N − S under x is “unfair”, i.e. xS − v(S) < xN−S − v(N − S) we can find a coalition
23An example of such a game is the 4 player game with set of players N = {1, 2, 3, 4} and valuation
function v given by:

v(S) =


1 if S = {1}, S = {2, 3}, or S = {1, 2, 3, 4},
0 if S = ∅, S = {1, 4}, or S = {2, 3, 4}
1
2 otherwise.

The proof that X ∗(v) = ∅ is left as a fun exercise for the reader.
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S ′ such that under y the division between S ′ and N − S ′ is “equally or more unfair”

in the sense that that coalition S ′ under y gets even less surplus than S under x (i.e.

yS′−v(S ′) ≤ xS−v(S)) and N−S ′ gets even more surplus under y than N−S under

x (i.e. xN−S−v(N−S) ≤ yN−S′−v(N−S ′)). An allocation x is strictly less extreme

than y if and only if the above holds and in addition there are coalitions S ′ such that

yS′ − v(S ′) < yN−S′ − v(N − S ′) but there is no coalition S for which the division

under x would be “equally or more unfair”, i.e. for which xS − v(S) ≤ yS′ − v(S ′) and

yN−S′ − v(N − S ′) ≤ xN−S − v(N − S) both hold.

Theorem 3. The set X ∗∗(v) is equal to set of allocations x ∈ X such that there exist

no y ∈ X that is strictly less extreme than x.

Proof. The proof is in the appendix. �

The proof of the theorem is in the appendix. Two key observations are Lemma 8

and Lemma 9. Together, those to lemmas imply that, for any allocations x, y ∈ X , x

is weakly less extreme than y if and only if SC(y) ⊂ SC(x) holds for all deviation cost

sets C.

It is interesting to consider the set X ∗∗(v) for the case where the core of a game

is empty. An allocation that is not in the core is usually regarded as “unstable”.24

The monetary components in the deviation cost sets allow us to quantify exactly how

“unstable” allocations outside the core are and, in particular, Theorem 3 can yield

tight predictions also for games that have an empty core.

As a trivial illustration consider a “majority game” between 5 political parties

active in a parliament with 100 seats, where party 1 controls 40 seats in parliament

and parties 2, 3, 4, and 5 control 15 seats each. Let N = {1, 2, 3, 4, 5} and define the

value function vmaj by vmaj(S) = 1 if the sum of the seats controlled by parties in S

is larger than 50 and vmaj(S) = 0 otherwise. Since, for any coalition S the number

of controlled seats is either larger or smaller than 50, for any coalition S we have

24See, for instance, Perry and Reny (1994).
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vmaj(S) + vmaj(N − S) = vmaj(N) and, therefore,

xS − vmaj(S) = vmaj(N)− xN−S − vmaj(S) = −(xN−S − vmaj(N − S)).

This means that for the game vmaj, the set of allocations x such that there is no y

that is strictly less extreme than x (which, by Theorem 3 is equal to X ∗∗(v)) is equal

to the set of allocations x ∈ X that maximize

min
S
xS − vmaj(S).

It is straightforward to check that, for the concrete numbers of seats given above, this

problem has a unique solution in which party 1 receives 3
7
and each of the smaller

parties receives 1
7
.

3.6. Purely Monetary Costs. The reader may wonder what results can be obtained

for the case where the deviation cost set C is purely monetary in the sense that any

(p,m) ∈ C satisfies p ≡ 0.

For any coalitional game v, the dual game v∗ : 2N → [0,∞) is defined by

v∗(S) = v(N)− v(N − S).

Note that the above definition together with (9) implies that, for any coalition S,

v∗(S) ≥ v(S). In particular, Core(v∗) ⊂ Core(v) must hold.

Given that we already derived a number of similar results, it is not hard to verify

the following.

Proposition 6. Let Cmon be the set of pairs (p,m) where p : [0, 1] → [0, 1] satisfies

p ≡ 0 and m : [0, 1]→ [0,∞) is a continuous function.

If Core(v∗) 6= ∅, then UCmon = Core(v∗) ⊂ Core(v). If Core(v∗) = ∅ then UCmon is

equal to the set of allocations maximizing minS⊂N xS − v∗(S).

Proof. Straightforward. �

As an example, consider again the “majority game” from the last subsection. Note

that, for that game we have (vmaj)∗(S) = vmaj(S), and thus Proposition 6 implies that
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UCmon is equal to the set of allocations maximizing minS⊂N xS−vmaj(S). In particular,

for the concrete numbers considered in the last subsection, UCmon is a singleton and

consists of the allocation in which party 1 receives 3
7
and all other parties receive 1

7
.

4. Conclusion

This paper studied bargaining outcomes in societies where cooperation is governed

by social norms. It proposed a new approach in which bargaining outcomes were

analyzed based on how difficult they are to sustain as part of a social norm. It

then used two classes of bargaining problems – bargaining between two players which

differed in their attitude towards risk in Section 2 and the coalitional bargaining

problems between many risk neutral players in Section 3 – to explore the link between

the way social norms are sustained and the type of bargaining outcomes that can be

expected.

Understanding the relationship between bargaining outcomes when cooperation is

governed by social norms and the way in which social norms are sustained is not

only interesting when one knows something about how social norms are enforced

and wants to make predictions about bargaining outcomes. By their very nature,

mechanisms sustaining a social norm may be very hard to observe. This is clear

if norms are internalized. However, also if norms are sustained through sanctions,

it typically will be difficult to observe those sanctions directly, given that nobody

will be actually sanctioned if everybody adheres to the norm. Thus, understanding

the relationship between bargaining outcomes and the way social norms are enforced

may also be helpful if one can observe bargaining outcomes that are part of a social

norm and wishes to understand better how the underlying social norm is sustained

through sanctions. Finally, note that understanding this relationship may allow us

to link behavior in bargaining situations that a priori appear very different like the

two-player bargaining problems considered in Section 2 and the coalitional bargaining

problems considered in Section 3 if the norms governing those situations are sustained

in a similar way. As a matter of fact, we saw this when we derived “the analogues” of
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the Nash Bargaining solution, the Kalai-Smorodinsky solution, or the equal monetary

split for coalitional games with transferable payoffs.

It has been observed by a number of authors that social norms play a less important

role in the economic literature than in some of the other social sciences. For example,

Elster (1989) writes:

One of the most persistent cleavages in the social sciences is the op-

position between two lines of thought conveniently associated with

Adam Smith and Emilie Durkheim, between homo economicus and

homo sociologicus. Of these, the former is supposed to be guided by

instrumental rationality, while the behavior of the latter is dictated

by social norms. The former is “pulled” by the prospect of future re-

wards, whereas the latter is “pushed” from behind by quasi-inertial

forces (Gambetta, 1987). [...] The former is easily caricatured as a

self-contained, asocial atom, and the latter as the mindless plaything

of social forces.

This paper is motivated by the idea, eloquently expressed by Arrow (1971) in the

quote given in in the introduction, that many norms may be a “reaction of society to

compensate for market failure”, i.e. that the function of social norms is to overcome

inefficiencies that would occur given that agents are individually rational.25 Thus, in

the language of Elster, here norms – whether internalized or enforced through outside

sanctions – are used to turn the ingenious homo economicus who at every turn is

cleverly looking which action may be most advantageous into a homo sociologicus

who just mindlessly follows the social norm and has given up any hope that doing

something unorthodox may be to his or her advantage. Nevertheless, the approach

proposed in this paper shows how the norms that govern the homo sociologicus may

be related to the individual incentive problems as we ask for which allocations it is

25This is not a function that is typically assigned to social norms in the modern economic literature
where social norms - if studied at all - are often analyzed as equilibrium selection problems of
non-cooperative games. For instance, in the first sentence of the entry on social norms in the New
Palgrave Dictionary of Economics, Young (2008) says “The function of a social norm is to coordinate
people’s expectations in interactions that possess multiple equilibria”.
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easiest to turn that homo economicus into a homo sociologicus. Thus it may allow us

economists to say something about the norms the homo sociologicus follows despite

the fact that he or she may very much look like a “mindless plaything of social forces”.

Mathematical Appendix

4.1. Proof of Theorem 1. By Remark 2 it is enough to prove the theorem for the

case where ui(0) = 0 for i ∈ {1, 2}.

For any player i ∈ {1, 2} and allocation x ∈ X , let S iC(x) be the set of cost

parameters (p,m) ∈ C such that

(13) ui(xi) ≥ (1− p(x′i − xi)) · ui(x′i −m(x′i − xi))

holds for all allocations x′ ∈ X with x′i > xi. On an intuitive level, S iC(x) is exactly

equal to the set of cost parameters for which player i would not want to impose

some alternative outcome x′ ∈ X . The definition of SC(x) immediately implies that

SC(x) = S1
C(x) ∩ S2

C(x).

Lemma 1. For any c ∈ C, the set {x ∈ X : c /∈ S iC(x)} is an open subset of X .

Proof of Lemma 1. Let c = (p,m) ∈ C and x ∈ X . c /∈ S iC(x) means that there is an

x′ ∈ X with x′i > xi such that

ui(xi) < (1− p(x′i − xi)) · ui(x′i −m(x′i − xi)).

Consider the above expression if we replace xi with some other value x̂i that is close

enough to xi so that x′i > x̂i. Note that since the functions ui, p, and m are all

continuous, if the above inequality does hold for some x it will also hold if we replace

x with any allocation x̂i that is sufficiently close to x. �

The next lemma formalizes the intuition that a player who receives more will have

smaller incentives to impose an alternative allocation.

Lemma 2. Let i ∈ {1, 2}. If x, y ∈ X satisfy xi < yi then S iC(x) ⊂ S iC(y).
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Proof of Lemma 2. Let x, y ∈ X such that xi < yi. We need to show that S iC(x) ⊂

S iC(y). Assume that this is not the case, i.e. there exists a c = (m, p) ∈ C such that

c ∈ S iC(x) and c /∈ S iC(y). Since c /∈ Ri(y), there exists an y′ ∈ X with y′i > yi such

that

ui(yi) < (1− p(y′i − yi)) · ui(y′i −m(y′i − yi))

or, equivalently,26

(14) p(y′i − yi) <
ui(y

′
i −m(y′i − yi))− ui(yi)
ui(y′i −m(y′i − yi))

.

Let x′ ∈ X be given by x′i − xi = y′i − yi.27 Note that, the fact that ui is increasing

implies that ui(x′ −m(x′i − xi)) < ui(y
′ −m(y′i − yi)) and the fact that ui is concave

implies ui(y′i −m(y′i − yi)) − ui(yi) < ui(x
′
i −m(x′i − xi)) − ui(xi). Thus, inequality

(14) implies

p(x′i − xi) <
ui(x

′
i −m(x′i − xi))− ui(xi)
ui(x′i −m(x′i − xi))

.

or, equivalently,

ui(xi) < (1− p(x′i − xi)) · ui(x′i −m(x′i − xi))

which contradicts c ∈ Ri(x). �

Define the binary relation �C on X by the requirement that, for any x, y ∈ X ,

x �C y if and only if either x �C y or x = y. The fact that �C is a strict partial order

immediately implies that �C is a partial order.

To prove the theorem it is enough to show that �C has a maximal element. By the

Kuratowski-Zorn lemma, this will be the case if every subset A ⊂ X that is totally

ordered with respect to �C has an upper bound.

Let A ⊂ X be a totally ordered subset of X , i.e. a set such that for any x, y ∈ A

either x �C y or y �C x. We will show that the set A has an upper bound, i.e. there

exists an allocation z ∈ X such that z �C x for all x ∈ A. Since the case where A is

empty is trivial, consider the case where A is non-empty.

26Note that the last inequality implies ui(y
′
i −m(y′i − yi)) > 0.

27Such x′ exists since we xi < yi.
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Define R = ∪x∈AS(x). If A contains an element z with SC(z) = R this element z

is an upper bound for A.28 Assume, therefore, that this is not the case, i.e.

(15) R(x) ( R for all x ∈ A.

For i = 1, 2 define29

x̄i = inf{xi : x ∈ X and R ⊂ S iC(x)}.

Note that by Lemma 1, for i ∈ {1, 2} and x ∈ X , xi = x̄i implies R ⊂ S iC(xi).30

Lemma 2 (together with the definition of x̄i) now implies that for i ∈ {1, 2} and

x ∈ X , R ⊂ S iC(x) if and only if xi ≥ x̄i.

Note next that

x̄1 + x̄2 ≤ 1.

To see that this is indeed the case, assume x̄1 + x̄2 > 1 and let ε = x̄1+x̄2−1
2

. Then, for

any x ∈ X it is either the case that x1 ≤ x̄1 − ε or x2 ≤ x̄2 − ε. The definition of x̄1

implies that there exists a c1 ∈ R such that c1 /∈ S1
C((x̄1− ε, 1− (x̄1− ε))). Similarly,

definition of x̄2 implies that there exists a c2 ∈ R such that c2 /∈ S2
C((1− (x̄2−ε), x̄2−

ε))). Now, since c1, c2 ∈ R and R was defined as R = ∪x∈AS(x), there must exist an

x1 ∈ A with c1 ∈ SC(x1) and there must exist an x2 ∈ A with c2 ∈ SC(x2). Since A

is a totally ordered subset of X , it must be the case that either SC(x1) ⊂ SC(x2) or

SC(x2) ⊂ SC(x2). Assume SC(x1) ⊂ SC(x2) holds. (The argument if SC(x2) ⊂ SC(x2)

holds is analogous.) SC(x1) ⊂ SC(x2) together with c1 ∈ SC(x1) and c2 ∈ SC(x2)

implies that {c1, c2} ⊂ SC(x2). This, however, is not possible as, for any x ∈ X , it is

either the case that x1 ≤ x̄1 − ε or x2 ≤ x̄2 − ε and, therefore (by Lemma 2) for any

28Since A is totally ordered and z ∈ A, for any x ∈ A it has to be the case that either x �C z or
z �C x. Since R = ∪x∈AS(x) and SC(z) = R, x �C z can never be true for x ∈ A − {z}. Thus, it
must be that z �C x for all x ∈ A.
29To see that the set {xi : x ∈ X and R ⊂ SiC(x)} is nonempty and, therefore, the infimum is well
defined note that S1((1, 0)) = S2((0, 1)) = X which means that, for any R ⊂ X , 1 ∈ {xi : x ∈
X and R ⊂ SiC(x)}.
30Indeed, if there was a c ∈ R such that c /∈ SiC(xi), then by Lemma 1 there is a neighbourhood V of
x such that, for y ∈ V , c /∈ SiC(y) and, therefore, R 6⊂ SiC(y). This would contradict the definition
of x̄i as inf{xi : x ∈ X and R ⊂ SiC(x)}.
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x ∈ X either c1 /∈ S1
C(x) (and thus c1 /∈ SC(x) = S1

C(x) ∩ S2
C(x)) or c2 /∈ S2

C(x) (and

thus c2 /∈ SC(x) = S1
C(x) ∩ S2

C(x)).

Let z ∈ X be any allocation such that z1 ≥ x̄1 and z2 ≥ x̄2. Since, R ⊂ S iC(xi) if

and only if xi ≥ x̄i, we can conclude that R ⊂ S(z). Then (15) yields that z �C x for

all x ∈ A.

Since we have shown that every chain has an upper bound, the Kuratowski-Zorn

Lemma implies that �C (and therefore also �C) has a maximal element.

4.2. Proof of Theorem 2. As noted in the main part of the paper, the definition

of the sets X ∗ and X ∗∗ immediately implies that X ∗ ⊂ X ∗∗. Define x̄1 and x̄1 as in

the statement of the theorem. Since X ∗ ⊂ X ∗∗, to prove Theorem 2, it is enough to

show that:

(1) X ∗∗ ⊂ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} and

(2) {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} ⊂ X ∗.

By Remark 2 it is enough to prove (1) and (2) for the case where ui(0) = 0 for

i ∈ {1, 2}. We start with a lemma that characterizes the sets Di for i = 1, 2.

Lemma 3. Let i ∈ {1, 2}. There exists a number x̄i ∈ (0, 1
2
] such that either

Di = {x ∈ X : xi < x̄i}

or

Di = {x ∈ X : xi ≤ x̄i}.

In particular, the set Di is non-empty.

Proof of Lemma 3. Let i ∈ {1, 2}. We will organize the argument in several steps.

Step 1: Note that the definition of the set Di immediately implies that Di contains

the allocation x with xi = 0. Since Di ⊂ X is non-empty, we can define x̄i by

x̄i = supx∈Di
xi.

Step 2: Note that if x ∈ Di, then also x′ ∈ Di for any x′ ∈ X with x′i < xi. To see

that this is the case, consider the definition of the set Di and note that, for q ∈ (0, 1)
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and ∆ ∈ [0, 1],

ui(xi) < q · ui(xi + ∆) + (1− q) · ui(0)

is equivalent to
ui(xi)− ui(0)

ui(xi + ∆)− ui(xi)
< q

and

uj(xj) ≤ q · uj(xj + ∆) + (1− q) · uj(0)

is equivalent to
uj(xj)− uj(0)

uj(xj + ∆)− uj(xj)
≤ q

Our claim now follows immediately from the observation that, since the utility func-

tions of both players are increasing and concave, for k ∈ {1, 2}, uk(xk + ∆)− uk(xk)

is non-increasing in xk and uk(xk)− uk(0) is increasing in xk.

Steps 1 and 2 together imply that for x̄i = supx∈Di
xi either Di = {x ∈ X : xi < x̄i}

or Di = {x ∈ X : xi ≤ x̄i} and x̄i ≥ 0. All that remains to be shown is that

0 < x̄i ≤ 1
2
.

Step 3: To show that x̄i ≤ 1
2
, assume that is not the case and let x ∈ Di be

an allocation with xi >
1
2
. Let j ∈ {1, 2} with j 6= i. Note that for ∆ = xi and

q = uj(xj)/uj(xj + ∆) we have xj + ∆ = 1 ≤ 1 and uj(xj) = q · uj(xj + ∆). Since

x ∈ Di, this implies that xi + ∆ = 2 · xi ≤ 1. This, however, contradicts xi > 1
2
.

Step 4: To show that x̄i > 0, note that for any allocation x such that xi < 1
2
and

ui(xi)− ui(0) <
u′i(1)

u′j(0)
· (uj(1)− uj(0)) it will be the case that x ∈ Di.

�

For any deviation cost set C, define S1
C and S2

C as in the proof of Theorem 1. The

next lemma relates the sets Di to S1
C and S2

C . This lemma is the key observation in

the proof of statement (1).

Lemma 4. Fix a deviation cost set C. Let i, j ∈ {1, 2} with i 6= j. For any x ∈ Di it

is the case that

S iC(x) ⊂ SjC(x).
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Proof of Lemma 4. We will prove the statement in the lemma for the case where i = 1

and j = 2. The argument for the case where j = 1 and i = 2 is analogous. To show

that for any x ∈ D1 it is the case that

S1
C(x) ⊂ S2

C(x)

it is enough to show that (p,m) /∈ S2(y) implies (p,m) /∈ S1(y). Assume, therefore,

(p,m) /∈ S2(x).

Since, (p,m) /∈ S2(x) there must exist a x′2 ∈ (x2, 1] such that

(16) u2(x2) < (1− p(x′2 − x2)) · u2(x′2 −m(x′2 − x2)).

Note that (16) implies that x′2−m(x′2− x2) > x2. Set ∆ = x′2−m(x′2− x2)− x2 and

q = 1− p(x′2 − x2). Note that x′2 −m(x′2 − x2) ≤ 1 implies x2 + ∆ ≤ 1. We can now

rewrite (16) as

u2(x2) < q · u2(x2 + ∆).

Since x ∈ D1, the last inequality together with x2 + ∆ ≤ 1 implies that x1 + ∆ ≤ 1

and

(17) u1(x1) < q · u1(x1 + ∆).

Let x′′ be the allocation characterized by x′′1 − x1 = x′2 − x2. Note that such an

allocation does indeed exist as x1 ≤ x2 follows from Lemma 3 given that x ∈ Di. Note

that x′′1 −x1 = x′2−x2 implies that ∆ = x′2−m(x′2−x2)−x2 = x′1−m(x′′1 −x1)−x1

and q = 1− p(x′2 − x2) = 1− p(x′′1 − x1). Thus inequality (17) can be rewritten as

u1(x1) < (1− p(x′′1 − x1)) · u1(x′′1 −m(x′1 − x1)).

Since x′′1 − x1 = x′2 − x2 > 0 and x′′1 = x1 + x′2 − x2 ≤ x′2 ≤ 1, this proves that

(p,m) /∈ S1(y), which is what we wanted to show.

�

Proof of Statement (1). To prove that (1) holds, assume (1) is not true, i.e. assume

there exists an allocation x ∈ X ∗∗ such that such that either x1 < x̄1 or x2 < x̄2.
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We will obtain a contradiction for the case where x1 < x̄1. The argument for the

case where x2 < x̄2 is analogous. Assume, therefore, x1 < x̄1 and let y ∈ X be an

allocation such that x1 < y1 < x̄1.

Let C be the cost set consisting of all pairs (p,m) such that p : [0, 1] → [0, 1] and

m : [0, 1]→ [0,∞) are continuous functions. Note that x ∈ X ∗∗ implies that it cannot

be that SC(x) ( SC(y).31

By Lemma 3, x, y ∈ D1. Therefore , by Lemma 4,

S1
C(y) ⊂ S2

C(y)

and

S1
C(x) ⊂ S2

C(x).

Note that by Lemma 2, S1
C(x) ⊂ S1

C(y) and S2
C(y) ⊂ S2

C(x). Thus,

SC(x) = S1
C(x) ∩ S2

C(x) = S1(x) ⊂ S1(y) = S1
C(y) ∩ S2

C(y) = SC(y).

We have shown that SC(x) ⊂ SC(y).

Let (p,m) ∈ C be the pair given by p : [0, 1] → [0, 1] satisfying p ≡ 0 and m :

[0, 1]→ [0,∞) satisfyingm ≡ y2. Since x̄1 ≤ 1
2
by Lemma 3, x1 < y1 < x̄1 implies that

max(x1, 1 − x1) > max(y1, 1 − y1) = y2 and thus (p,m) /∈ SC(x) and (p,m) ∈ SC(y).

Given that we have already shown that SC(x) ⊂ SC(y), this means that SC(x) ( SC(y).

However, we have already noted that this cannot be if x ∈ X ∗∗. The contradiction

proves that statement (1) holds. �

The next lemma characterizes the elements of the set {x ∈ X : x1 ≥ x̄1 and x2 ≥

x̄2}. It will be used to prove the that statement (2) holds.

31To prove that SC(x) ( SC(y) cannot hold for x ∈ X ∗∗, it is enough to show that SC(x) ( SC(y)
implies x /∈ X ∗∗.
Assume SC(x) ( SC(y). Since any deviation cost set C′ satisfies C′ ⊂ C, it is the case that SC′(x) =
SC(x) ∩ C′ and SC′(y) = SC(y) ∩ C′. Thus SC(x) ( SC(y) implies SC′(x) ⊂ SC′(y) for all deviation
cost sets C′. Thus, y is easier or equally easy to sustain as x for any cost set C′ and there is a cost
set (namely C) for which y is easier to sustain. Thus, x /∈ X∗∗.
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Lemma 5. Assume the utility functions are normalized such that u1(0) = u2(0) = 0.32

For any x∗ ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} at least one of the following statements

is true:

(a) x∗ satisfies x∗1 = x∗2 = 1
2
.

(b) There exist i, j ∈ {1, 2} such that x∗i < x∗j and

(18)
ui(x

∗
i )

ui(x∗i + ∆)
≥

uj(x
∗
j)

uj(x∗j + ∆)

for some ∆ ∈ (0, 1− x∗j ].

(c) x∗ is the symmetric Nash bargaining solution.

Proof of Lemma 5. Let x∗ ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}. Clearly, the statement

of the lemma is true if x∗ = (1
2
, 1

2
). We will prove the lemma for the case where

x∗1 < x∗2. The argument for the case where x∗2 < x∗1 is analogous.

Since x∗ ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} implies that x∗1 ≥ x̄1, it must be that

either x∗1 > x̄1 or x∗1 = x̄1.

Consider first the case where x∗1 > x̄1. Note that in this case, by Lemma 3, x∗ /∈ D1.

However, x∗ /∈ D1 implies that there must exist q ∈ (0, 1) and ∆ ∈ (0, 1) such that

the statement

(19) x∗2 + ∆ ≤ 1 and u2(x∗2) ≤ q · u2(x∗2 + ∆)

holds but the statement

(20) x∗1 + ∆ ≤ 1 and u1(x∗1) < q · u1(x∗1 + ∆)

does not hold. Note now that, since we assumed x∗1 < x∗2, the inequality x∗2 + ∆ ≤ 1

from (19) implies x∗1 + ∆ ≤ 1 from (20). Thus, if (20) does not hold it must be that

u1(x∗1) ≥ q · u1(x∗1 + ∆)

32If this was not the case, the formula in statement (b) would need to be adjusted.
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Combining the last inequality with the second inequality from (19) we obtain that

u1(x∗1)

u1(x∗1 + ∆)
≥ u2(x∗2)

u2(x∗2 + ∆)
.

Thus, in this case, x∗ satisfies condition (b) in the statement of the lemma.

All that remains is to prove the lemma for the case where x∗1 = x̄1. To this end, let

xn be a sequence of allocations such that 1
2
> xn1 > x̄1 and xn → x̄1. Note that since

xn1 > x̄1, the same reasoning that yielded (18) for x∗ with 1
2
> x∗1 > x̄1 will yield that

for each n there exists ∆n ∈ (0, xn1 ] such that

(21)
u1(xn1 )

u1(xn1 + ∆n)
≥ u2(xn2 )

u2(xn2 + ∆n)

Since ∆n ∈ [0, 1] for all n and [0, 1] is compact there exists a convergent sub-sequence

∆nk . Let ∆ = limk→∞∆nk ∈ [0, x̄1].

If ∆ > 0, inequalities (21) together with the fact that u1 and u2 are continuous

implies that, in the limit,

u1(x∗1)

u1(x∗1 + ∆)
≥ u2(x∗2)

u2(x∗2 + ∆)

Thus, in this case, x∗ satisfies condition (b) in the statement of the lemma.

If ∆ = 0, then (21) implies that

u1(x∗1)

u′1(x∗1)
≥ u2(x∗2)

u′2(x∗2)
.

Note that if the last inequality is binding, then x∗ satisfies condition (c) in the state-

ment of the lemma.33 On the other hand if the last inequality is strict then for all

sufficiently small positive h, it will be the case that

u1(x∗1)

u1(x∗1 + h)
≥ u2(x∗2)

u2(x∗2 + h)
.

Thus, in this case x∗ satisfies condition (b) in the statement of the lemma.

33The unique allocation satisfying
u1(x∗1)

u′1(x∗1)
=

u2(1− x∗1)

u′2(1− x∗1)
.

is the Nash bargaining solution as the above equation is the first order condition for the problem
maxx1∈[0,1] u1(x1) · u2(1− x1).
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�

Proof of Statement (2). We will now show that for any x∗ ∈ {x ∈ X : x1 ≥

x̄1 and x2 ≥ x̄2}, there exists a non-monetary deviation cost set C such that x∗ is

easiest to sustain as a norm. Recall that, by Remark 2, we can without loss of

generality restrict attention to the case where ui(0) = 0 for i ∈ {1, 2}.

Let x∗ ∈ {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2}. Note that x∗ must then satisfy (a), (b),

or (c) in Lemma 5. We will consider the three cases separately.

Step 1: Consider first the case where x∗ = (1
2
, 1

2
), i.e. condition (a) in Lemma 5 is

satisfied. For ε ∈ (0, 1
2
), define pε : [0, 1]→ [0, 1] by

pε(h) =


1 for h ∈ [0, 1

2
]

1− h− 1
2

ε
for h ∈ [1

2
, 1

2
+ ε]

0 for h ∈ [1
2

+ ε,∞).

Furthermore, let mo : [0, 1]→ (0,∞) be defined by

mo(h) = 0

for all h ∈ [0,∞) and let C be the deviation cost set given by

C = {(pε,mo) : ε ∈ (0,
1

2
)}.

The fact that, for all ε ∈ (0, 1
2
), p(h) = 1 for h ∈ [0, 1

2
], implies that SC((1

2
, 1

2
)) = C.

On the other hand, for any, x′ ∈ X − (1
2
, 1

2
), it will be the case that (pε,mo) /∈ SC(x′)

for ε < |x′1−x′2|
2

. Thus, for any such x′, SC(x′) ( S(x). We have shown that, for the

deviation cost set C, x∗ = (1
2
, 1

2
) is easiest to sustain.

Step 2: Next, consider the case where condition (b) in Lemma 5 is satisfied for

i = 1 and j = 2. The argument in the case where condition (b) in Lemma 5 is

satisfied for i = 2 and j = 1 is analogous.

Let mo : [0, 1]→ (0,∞) again be defined by

mo(h) = 0
43



for all h ∈ [0,∞), define pA : [0, 1]→ [0, 1] by

pA(h) = 1−min(
u1(x∗1)

u1(x∗1 + h)
,

u2(x∗2)

u2(x∗2 + h)
)

and define pεB : [0, 1]→ [0, 1] for ε ∈ (0, 1
2
) by

pεB(h) =


1 for h ∈ [0, 1− x∗1]

1− h−1−x∗1
ε

for h ∈ [1− x∗1, 1− x∗1 + ε]

0 for h ∈ [1− x∗1 + ε,∞).

Now, consider the deviation cost set C defined by

C = {(pA,mo)} ∪ {(pεB,mo) : ε ∈ (0,
1

2
)}.

Note that SC(x∗) = C as

(1− (pA(x′i − x∗i )) · ui(x′i) =

= min(
u1(x∗1)

u1(x∗1 + x′i − x∗i )
,

u2(x∗2)

u2(x∗2 + x′i − x∗i )
) · ui(x′i) ≤

≤ ui(x
∗
i )

ui(x′i)
· ui(x′i) = ui(x

∗
i ),

implies that (pA,m) ∈ SC(x∗) and pεB(h) = 1 for h ∈ [0, 1− x∗1] and ε ∈ (0, 1
2
) implies

that (pεB,m) ∈ SC(x∗).

We will now show that SC(x∗) ( C for x 6= x∗. For any x with x1 < x∗1 this is the

case as (pεB,m) /∈ SC(x) for ε < x∗1 − x1. We will show that, on the other hand, for

any x with x1 > x∗1 (and therefore x2 < x∗2), it is the case that (pA,m) /∈ SC(x).

To see that this is the case, recall that in this step we have assumed that x∗ satisfies

(b) in Lemma 5. Let ∆ ∈ (0, 1− x∗2] be such that equation (18) from Statement (b)

in Lemma 5 is satisfied. Note that for x′ = (x1 −∆, x2 + ∆) we have

(1− pA(x′2 − x2)) · u2(x′2) =

= min(
u1(x∗1)

u1(x∗1 + ∆)
,

u2(x∗2)

u2(x∗2 + ∆)
) · u2(x′2) =
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u2(x∗2)

u2(x∗2 + ∆)
· u2(x′2) =

u2(x∗2)

u2(x∗2 + ∆)
· u2(x2 + ∆) > u2(x2).

where the second equality follows from inequality (18) and the last inequality holds

as u2(z2)
u2(z2+∆)

is increasing in z2.34 Since SC(x∗) = C and SC(x) ( C for x 6= x∗, we have

shown that x∗ is easiest to sustain for the cost set C.

Step 3: Next, consider the case where x∗ satisfies condition (c) in Lemma 5, i.e.

x∗ is the Nash bargaining solution. For this case, we have already seen in Subsection

2.3 that there exists a non-monetary deviation cost set C such that x∗ is easiest to

sustain.

4.3. Proof of Proposition 4. Let us start by noticing that the values ȳ1 and ȳ2 are

indeed well defined.

Lemma 6. Let i, j ∈ {1, 2} such that i 6= j. Then the equation

ui(2ȳi)−ui(ȳi)
ȳi

ui(ȳi)− ui(0)
=

u′j(1− ȳi)
uj(1− ȳi)− uj(0)

,

has a unique solution ȳi. Moreover, if xNBS is the Nash bargaining solution, ȳi ≤

xNBSi holds.

Proof of Lemma 6. Consider the equation in the statement of the lemma. Note that,

for ȳi → 0, the left hand side goes to infinity35 and the left hand converges to

u′j(1)/(uj(1) − uj(0)). Similarly, for ȳi → 1, the right hand side converges to in-

finity and the left hand side converges to some real number. Since the left hand side

and the right hand side are continuous in ȳi for ȳi ∈ (0, 1), this implies that the

equation in the lemma has a solution.

The uniqueness of the solution follows from the fact that the right hand side of the

equation in the lemma is increasing in ȳi and the left hand side is decreasing in ȳi.

Indeed, the fact that the right hand side is increasing follows immediately from the

34To prove that u2(z2)
u2(z2+∆) is increasing in z2 it is enough to show that u2(z2+∆)

u2(z2) is decreasing in z2 but
u2(z2+∆)
u2(z2) = 1 + u2(z2+∆)−u2(z2)

u2(z2) , u2(z2 + ∆)− u2(z2) is decreasing in z2 (as u2 is a concave function)
and u2(z2) is increasing in z2 (as u2 is an increasing function).
35This follows from the observation that ui(2ȳi)−ui(ȳi)

ȳi
converges to u′i(0) as ȳi → 0.
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fact that uj is increasing and concave. The fact that the left hand side is decreasing

in ȳi follows from the observation that ui(2ȳi)−ui(ȳi)
ui(ȳi)−ui(0)

is decreasing, which is the case as

d

dx2

ui(2ȳi)− ui(ȳi)
ui(ȳi)− ui(0)

=
d

dx2

ui(2ȳi)− ui(0)

ui(ȳi)− ui(0)
=

=
u′i(2 · ȳi) · (ui(ȳi)− ui(0))− (ui(2 · ȳi)− ui(0)) · u′i(ȳi))

(ui(ȳi)− ui(0))2
< 0

where the last inequality follows from ui(ȳi)−ui(0) < ui(2 · ȳi)−ui(0) and u′i(2 · ȳi) ≤

u′i(ȳi).

The fact that ȳi ≤ xNBSi follows from the above monotonicity results together with

the observation that ui(2ȳi)−ui(ȳi)
ȳi

< u′i(ȳi) and the fact that xNBSi solves

u′i(x
NBS
i )

ui(xNBSi )− ui(0)
=

u′j(1− xNBSi )

uj(1− xNBSi )− uj(0)
.

�

Proof of Proposition 4. The fact that X ∗ = X ∗∗ = {x ∈ X : x1 ≥ x̄1 and x2 ≥ x̄2} is

a subset of Y ∗∗ now follows from Lemma 5 and Lemma 6. To see that this is indeed

the case, assume without loss of generality that u1 and u2 have been normalized so

that u1(0) = u2(0) = 0 and u1(1) = u2 = 1.36 Let x∗ ∈ X ∗∗. Since x∗ ∈ X ∗∗,

Lemma 5 tells us that x∗ must satisfy at least one of the conditions (a), (b), or (c) in

Lemma 5. Note that if x∗ satisfies conditions (a) or (c), Lemma 6 immediately implies

x∗ ∈ Y∗∗. Consider therefore the case where x∗ satisfies condition (b), i.e. there exists

i, j ∈ {1, 2} such that x∗i < x∗j and (18) holds for some ∆ ∈ (0, 1 − x∗j ] = (0, x∗i ].

Rearranging terms and subtracting 1 from both sides of the inequality note that (18)

is equivalent to
ui(x

∗
i + ∆)− ui(x∗i )
ui(x∗i )

≤
uj(x

∗
j + ∆)− uj(x∗j)
uj(x∗j)

.

The fact that ui is concave and ∆ ≤ x∗i implies that

ui(2 · x∗i )− ui(x∗i )
x∗i

≤ ui(x
∗
i + ∆)− ui(x∗i )

∆
.

36This is without loss of generality as neither the set X ∗∗ nor the definition of ȳ1 and ȳ2 are affected
by positive affine transformations of the utility functions.
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The fact that uj is concave implies that

uj(x
∗
j + ∆)− uj(x∗j)

∆
≤ u′j(xj).

Combining the last three inequalities and using x∗j = 1− x∗i yields

ui(2·x∗i )−ui(x∗i )

x∗i

ui(x∗i )
≤
u′j(1− x∗i )
uj(1− x∗i )

.

In the proof of Lemma 6 we already argued that the left hand side of the above

inequality is decreasing in x∗i and the right hand side is increasing in x∗i . This implies

x∗i ≥ ȳi. But x∗i < x∗j implies x∗j ≥ 1
2
. Thus, x∗i ≥ min(1

2
, ȳi) and x∗j ≥ min(1

2
, ȳj)

which means that x∗ ∈ Y∗∗.

�

4.4. Proof of Proposition 5. An analogous reasoning as in Subsection 2.3 yields

that

S(x) = {p ∈ P : p′(0) · (xS − v(S)) ≥ 1 for all nonempty

S ⊂ N such that xS < v(N)− v(N − S)}.

Since xS < v(N) − v(N − S) is equivalent to xS − v(S) < v(N) − v(N − S) − v(S)

we obtain

S(x) = {p ∈ P : ∀S⊂N,S 6=∅ (xS − v(S)) ≥ min(
1

p′(0)
, v(N)− v(N − S)− v(S))}.

Note that if x is an allocation that does not lie in the core of the game v there exists

a coalition S such that xS − v(S) < 0. Since p′(0) > 0 for all (p,m) ∈ CNash and

v(N)− v(N − S)− v(S) ≥ 0 for any S ⊂ N by (9), this means that, for x /∈ Core(v)

it is the case that SCNash(x) = ∅. This implies that if Core(v) is empty, UCNash = X .

We have shown the statement of the proposition for the case where the core is empty.

Now, consider the case where the core of the game v is non-empty and consider an

x ∈ Core(v), i.e. an x such that xS − v(S) ≥ 0 for all coalitions S. Note that, for
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such an x,

(xS − v(S)) ≥ min(
1

p′(0)
, v(N)− v(N − S)− v(S))

is always satisfied if v(N)−v(N−S)−v(S) = 0. On the other hand, if v(N)−v(N−

S)−v(S) > 0 then either xS−v(S) < v(N)−v(N −S)−v(S) or xN−S−v(N −S) <

v(N) − v(N − S) − v(S).37 This means that, if v(N) − v(N − S) − v(S) > 0, then

min(xS − v(S), xN−S − v(N − S)) < v(N)− v(N − S)− v(S). But this implies that,

for x ∈ Core(v),

S(x) = {p ∈ P : min
S:S⊂N,v(N)−v(N−S)−v(S)>0

xS − v(S) ≥ 1

p′(0)
}.

Thus, for the case where the core is non-empty UCNash is equal to exactly those

allocations for which

min
S:S⊂N,v(N)−v(N−S)−v(S)>0

xS − vS

is largest.

4.5. Proof of Theorem 3. We start with a lemma that gives a more convenient

characterization of the sets SC(x).

Lemma 7. Let C be a deviation cost set and x an allocation in X . The set SC(x) is

exactly equal to the set of (p,m) ∈ C such that, for each non-empty S ⊂ N ,

(22) p(∆) · (xS − v(S)) ≥ (1− p(∆)) · (∆−m(∆))

for all ∆ ∈ (0, xN−S − V (N − S)].

Proof of Lemma 7. This follows immediately from Definition 9. Indeed, we defined

SC(x) to be the set of (p,m) ∈ C such that inequality (10) holds for all coalitions S

and x′S ∈ [xS, v(N)− v(N − S)]. Subtracting v(S) from both sides of inequality (10)

and substituting x′S with xS + ∆, we see that inequality (10) holds for all coalitions

37As xS + xN−S = v(N), xS − v(S) ≥ v(N) − v(N − S) − v(S) and xN−S − v(N − S) ≥ v(N) −
v(N − S) − v(S)) together would imply v(N) − v(N − S) − v(S) ≥ 2 · (v(N) − v(N − S) − v(S))
which cannot hold if v(N)− v(N − S)− v(S) > 0.
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S and x′S ∈ [xS, v(N)− v(N − S)] if and only if

(xS − v(S)) ≥ (1− p(∆)) · (xS + ∆− v(S)−m(∆))

holds for all coalitions S and ∆ ∈ [0, V (N)−V (N −S)−xS] = [0, xN−S−V (N −S)].

Rearranging the terms in the last inequality, yields the inequality in the lemma. �

The next two lemmas concern the relationship between SC(x) and SC(x) if x is

weakly less extreme than y.

Lemma 8. If an allocation x ∈ X is weakly less extreme than an allocation y ∈ X ,

then, for any deviation cost set C, SC(y) ⊂ SC(x).

Proof of Lemma 8. This follows immediately from Lemma 7 as the conditions in

Lemma 7 depend only on xS − v(S) and xN−S − v(N − S) and are easier to sat-

isfy if the value xN−S − v(N − S) is smaller or the value xS − v(S) is larger. �

Lemma 9. Let x, y ∈ X . If x not weakly less extreme than y, then there exists a

deviation cost set C such that SC(y) 6⊂ SC(x).

Proof of Lemma 9. Let x, y ∈ X be such that x is not weakly less extreme than y.

The fact that x is not weakly less extreme than y implies that there exists a coalition

S with

(23) xS − v(S) < xN−S − v(N − S)

such that for all coalitions S ′ ⊂ N

yS′ − v(S ′) > xS − v(S) or yN−S′ − v(N − S ′) < xN−S − v(N − S).

Since the set of all coalitions S ′ ⊂ N is finite, there exists an ε > 0 such that

(24) yS′ − v(S ′) > xS − v(S) + ε or yN−S′ − v(N − S ′) < xN−S − v(N − S)− ε

holds for all coalitions S ′ ⊂ N .
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Note that (9) together with xS + xN−S = v(N) and (23) implies38

xN−S − v(N − S) > 0.

Let C = {(p,m)}, where p : [0, 1]→ [0, 1] is given by p(h) = 1
2
and m : [0, 1]→ [0,∞)

is given by

m(h) =


v(N) + h if h ≤ xN−S − v(N − S)− ε

−xS + v(S)− ε+ h if h ≥ xN−S − v(N − S)

v(N) + h+ (h−(xN−S−v(N−S)−ε))·(−xS+v(S)−ε−v(N))

ε
otherwise

Note that, by Lemma 7, (p,m) /∈ S(x). Indeed, for coalition S and ∆ = xN−S −

v(N − S) inequality (22) does not hold as

1

2
· (xS − v(S)) <

1

2
· (xS − v(S) + ε).

On the other hand, by Lemma 7, (p,m) ∈ S(y). To see that this is so, consider again

inequality (22). By (24), for any coalition S ′ it is the case that either yS′ − v(S ′) >

xS − v(S) + ε or yN−S′ − v(N − S ′) < xN−S − v(N − S)− ε. If yN−S′ − v(N − S ′) <

xN−S − v(N − S)− ε, then

(25) p(∆) · (yS′ − v(S ′)) ≥ (1− p(∆)) · (∆−m(∆))

holds for any ∆ ∈ (0, yN−S − v(N − S)] as, for those ∆, p(∆) = 1
2
and m(∆) =

v(N) + ∆. If, yS′ − v(S ′) > xS − v(S) + ε then (25) follows from the fact that

p(∆) = 1
2
and m(∆) ≥ −xS + v(S) − ε + ∆. We have constructed a deviation cost

set C such that SC(y) 6⊂ SC(x).

�

38If xN−S − v(N − S) ≤ 0 then xS − v(N − S) < 0 by (23). But this would mean xN−S − v(N −
S) +xS − v(N −S) < 0 or, given xS +xN−S = v(N), v(N)− v(N −S)− v(N −S) < 0 which would
contradict (9).
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We are now ready to prove Theorem 3. Let Z be the set of allocations x such that

there exists no allocation y that is strictly less extreme. To prove Theorem 3 it is

enough to show that

(1) X ∗∗(v) ⊂ Z and

(2) Z ⊂ X ∗∗(v).

To prove (1) we will assume x /∈ Z and show that x /∈ X ∗∗. Assume, therefore,

x /∈ Z. This means there is an allocation y that is strictly less extreme than x, i.e.

an allocation y such that y is weakly less extreme than x and x is not weakly less

extreme than x. Since y is weakly less extreme than x then, by Lemma 8, for any

cost set C it is the case that SC(x) ⊂ SC(y). Since x is not equally extreme as y,

by Lemma 9, it is not the case that SC(x) = SC(y) for all cost sets C. Thus, we can

conclude that, for all cost sets C it is the case that SC(x) ⊂ SC(y) and there must be

at least one cost set C such that SC(x) ( SC(y). We conclude x /∈ X ∗∗ holds which

proves (1).

To prove (2) we will assume x /∈ X∗∗ and show that x /∈ Z. Assume, therefore,

x /∈ X∗∗. This means there exists an allocation y such that, for all cost sets C,

SC(x) ⊂ SC(y) and at least for one cost set C it is the case that SC(x) ( SC(y).

Lemma 8 together with the fact that SC(x) ⊂ SC(y) holds for all deviation cost sets

C implies that y is weakly less extreme than x. Lemma 9 together with the fact that

at least for one cost set C it is the case that SC(x) ( SC(y) implies that it cannot be

that x is weakly less extreme than x. Thus, y is strictly less extreme than x. This

implies x /∈ Z holds which proves (2).

References

[1] Abreu, D. and F. Gul (2000) “Bargaining and Reputation,” Econometrica, 68, 85 – 117

[2] Arrow, K. (1971) “Political and Economic Evaluation of Social Effects and Externalities,” Fron-

tiers of Quantitative Economics., Amsterdam: North-Holland, p. 3-25

[3] Crawford, V (1982) “A Theory of Disagreement in Bargaining” Econometrica, 50:3, 607 – 637

[4] Compte, O. and P. Jehiel (2010) “The coalitional Nash Bargaining Solution,” Econometrica, 78,

1593 – 1623
51



[5] Crawford, O. and P. Jehiel (2010) “The coalitional Nash Bargaining Solution,” Econometrica,

78, 1593 – 1623

[6] Elster, J. (1989) “Social Norms and Economic Theory,” Journal of Economic Perspectives 3:4,

99-117

[7] Kalai, E. and M. Smorodinsky (1975) “Other Solutions to Nash’s Bargaining Problem,” Econo-

metrica, 43, 513 – 518

[8] Myerson, R. (1991) “Game Theory: Analysis of Conflict,” Harvard University Press

[9] Perry, M. and P. Reny (1994) “A Nooncooperative View of Coalition Formation and the Core,”

Econometrica, 62, 795 – 817

[10] Nash, J. (1950) “The Bargaining Problem,” Econometrica, 18, 155 – 162

[11] Nash, J. (1953) “Two-Person Cooperative Games,” Econometrica, 21, 128 – 140

[12] Rubinstein, A. (1982) “Perfect Equilibrium in a Bargaining Model,” Econometrica, 50, 97 – 109

[13] Rubinstein, A., Z. Safra, and W. Thomson (1992) “On the Interpretation of the Nash Bargaining

Solution and Its Extensions to Non-Expected Utility Preferences,” Econometrica, 60, 1171 –

1186

[14] Samuelson, L. (2004): “Information-Based Relative Consumption Effects,” Econometrica 72:1,

93-118.

[15] Samuelson, L. and Swinkels, J. (2006): “Information, evolution, and utility,” Theoretical Eco-

nomics 1, 119-142.

[16] Schmeidler, D. (1969), "The nucleolus of a characteristic function game", SIAM Journal on

Applied Mathematics, 17, 1163 – 1170

[17] Young, P. (1993): “An Evolutionary Model of Bargaining,” Journal of Economic Theory 59:1,

145-168.

[18] Young, P. (2008): “Social Norms,” in The New Palgrave Dictionary of Economics, Second

Edition, Steven N. Durlauf and Lawrence E. Blume, eds., London, Macmillan

52


	Abstract
	1. Introduction
	2. Bargaining between Two Individuals 
	2.1. Example: Norms Sustained through Simple Monetary Sanctions
	2.2. Example: Norms Sustained through Threat of Permanent Disagreement
	2.3. Example: Nash Punishments
	2.4. More General Framework
	2.5. Existence
	2.6. The sets X* and X**
	2.7. Characterization of X* and X**
	2.8. Comparative Statics

	3. Bargaining Between More than Two Individuals
	3.1. Coalitional Games
	3.2. Allocations
	3.3. Nash Punishments
	3.4. The sets X*(v) and X**(v)
	3.5. Characterization of X**(v)
	3.6. Purely Monetary Costs

	4. Conclusion
	Mathematical Appendix
	4.1. Proof of Theorem 1
	4.2. Proof of Theorem 2
	4.3. Proof of Proposition 4
	4.4. Proof of Proposition 5
	4.5. Proof of Theorem 3

	References

