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Abstract. We consider a class of stochastic evolutionary dynamics
in which a �nite, spatially structured population plays a symmetric 2-
player normal-form game with a �nite set of actions. The selection
process is stochastic: the higher the payo� of a player at a given location,
the higher the chance that some o�spring of that player will replace
players at other locations. In addition, each period, with probability ε
a player �mutates� and starts using a strategy that is randomly drawn
according to some �xed distribution λ.

In this standard framework, the long run properties of the dynamic
depend on the distribution λ, even if we restrict attention to λ with full
support and consider the limit as ε goes to zero. We therefore consider
an extended framework where there are many populations identical to
the one described above. Populations are isolated in the sense that
only with a tiny probability η a player from one population replaces a
player from another population. In this framework, we impose a natural
evolutionary requirement on λ. Theorem 1 states that a distribution λ
satisfying our criterion always exists.

For the case where selection is weak, Theorem 2 provides a precise
characterization of the strategies used in the long run if λ satis�es our
criterion. A single parameter captures population structure.

As an application, we consider the theory of �nitely repeated games
and obtain results that are in contrast with standard predictions based
on Nash Equilibrium and sub-game perfect equilibrium.
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1. Introduction

We consider a class of stochastic evolutionary dynamics in which a �nite,
spatially structured population P plays some symmetric 2-player game G
with a �nite set of strategies. Individuals who receive higher payo�s have
on average more o�spring. Each period, with some probability ε one of the
players in the population �mutates� and switches to a new strategy which is
randomly drawn according to some distribution λ.
The assumption that natural selection is stochastic is natural in a model

where the population is �nite. In general this, however, leads to a problem.
The long run behavior of the dynamic will depend on the distribution λ. If
natural selection is truly stochastic, this will unfortunately remain true even
if we consider the limit as ε goes to zero.1

As a result, a number of recent papers in evolutionary biology (see Tarnita
et al. 2009, Antal et al. 2009, Tarnita et al. 2011) just assumes that λ is
the uniform distribution which puts equal weight on each of the n strategies
of the game G and calls a strategy s favored by the evolutionary dynamic if,
in the long run, for this particular λ, the strategy s is used with probability
greater than 1

n .
We see three major reasons why this approach is problematic. Firstly,

the fact that a strategy is used by a fraction of the population which is
larger than 1

n has weak predictive power. For example, for the case of three
strategies, it could very well be that the �favored strategy� is used by 34%
of the population while the other two strategies are each used by 33% of
the population.2 Secondly, the whole approach is based on the idea that λ
puts exactly equal probabilities on all strategies, independently of the payo�
structure. This is hard to justfy.3 Thirdly, results may depend strongly on
modeling choices that in most game-theoretic models would be irrelevant.4

1This is di�erent than in models like those proposed by Young (1993), Kandori et al.
(1993), and Ellison (1993) in which the best response dynamic - which can be seen as the
analog of the selection process - is essentially deterministic.

2This is not just a theoretical possibility. As a matter of fact, under the limit where
selection gets weak, the long-run expected fraction of the population using a strategy s
will converge to λ(s), so for a λ which is uniform, each strategy in the limit will be played
with probability 1

n
.

3Tarnita et al. (2009) justify the fact that λ puts probability 1
2
on both strategies

(they consider 2x2 games) as follows: �Relabeling the two strategies and correspondingly
swapping the entries of the payo� matrix must yield symmetric dynamics. This assumption
is entirely natural. It means that the di�erence between A and B is fully captured by
the payo� matrix, while the population structure and update rule do not introduce and
additional di�erence between A and B.� We full-heartedly agree that a relabaling of
strategies and swapping the entries of the payo� matrix must yield symmetric dynamics.
However, this only implies that λ puts probability 1

2
on both strategies if λ is not allowed

to depend on the payo� matrix. Tarnita et al. (2009) provide no explanation why it is
natural to assume that λ does not depend on the payo� matrix.

4For example, if we substitute a strategy with two di�erent strategies that are absolutely
identical this may a�ect which strategy is favored.
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In this paper we explore a di�erent approach. We ask what distributions
λ will be selected by evolution if all λ are technologically feasible. To address
this question, we consider an extended model where our population is one out
of many similar. Populations are isolated in the sense that only with a small
probability η a player from one population replaces a player from another
population. In this framework we impose a natural evolutionary criterion on
λ for the case where the the mutation rate ε is small and the probability η
even smaller. We see this model as appropriate when thinking about evolu-
tion of species which live in isolated small populations. Examples would be
species who live in isolated sub-populations because of natural barriers, for
example, species living in lakes, puddles, islands, isolated patches of forest,
next to dispersed human settlements, etc. Perhaps the model could also ap-
ply to hunter-gatherer societies whose members live in small isolated groups
since larger groups are unsustainable in terms of food gathering technology.
Theorem 1, our �rst result, shows that strategies satisfying our require-

ment always exist for the broad class of natural selection processes and spa-
tially structured populations considered in this paper. From the literature
which assumes an exogenously given λ, it is well known that the spacial
structure can e�ect the strategies played in the long run. This is also the
case in our framework. To get sharp predictions we therefore consider the
case where selection is weak.5 In Theorem 2 we prove that in this case the
long run probability that a player uses strategy s does not depend on his
location and is given by a probability distribution ν ∈ ∆S such that that for
any strategy s′ ∈ S:∑

s∈S
ν(s) · (k · (u(s, s)− u(s′, s′)) + (u(s, s′)− u(s′, s))) > 0,

where u is the payo� function of the game and k > 0 is a constant that
depends on the local interaction structure of the population but not the
considered game. Note, that this result holds for arbitrary symmetric 2-
player games with a �nite set of strategies.
Since symmetric 2x2 games with two strict Nash equilibria have been

widely studied in the literature let us consider the implication of Theorem
2 for such games. Consider a �xed population structure and let k be the
constant from Theorem 2 for that population structure. If we denote the
two strategies in the symmetric 2x2 game by s1 and s2 then Thoerem 2
predicts that if

k · (u(s1, s1)− u(s2, s2)) + (u(s1, s2)− u(s2, s1))) > 0,

5Weak selection means that individuals have very similar �tness. See Wild and Traulsen
(2007) for a discussion of di�erent ways to introduce weak selection and conditions under
which these are equivalent. As we explain in section 4, in our framework weak selection
can also be seen as a provider of a link between evolutionary game theory in which payo�s
correspond to ��tness� and standard game theory in which a�ne transformations of payo�s
do not a�ect predictions.
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then strategy s1 is played with probability 1 as selection gets weak and the
mutation rate goes to zero. If the inequality goes in the other direction, i.e.
the left hand side is smaller than zero, then s2 is played with probability 1 as
selection gets weak and the mutation rate goes to zero. Let us contrast this
with Tarnita et al. (2009) who consider 2x2, also allow general population
structures, and also consider the limit as selection becomes weak, but assume
that λ is exogenously given and puts probability 1

2 on both strategies. In

their model, in the limit as selection gets weak, both strategies s1 and s2 are
used with probability 1

2 . This is true both for a �xed mutation rate ε and
ε → 0. Their main result is that, for any ε, if selection is su�ciently weak,
the strategy for which

σ · (u(s1, s1)− u(s2, s2)) + (u(s1, s2)− u(s2, s1))) > 0

(holds will be played with probability larger than 1
2 , where σ is a parameter

which plays an analogous role as the parameter k in our model.6 Note that
since, in their framework, in the limit as selection gets weak both strategies
are used with probability 1

2 and in our framework the probability with which

s1 is used converges either to 0 or 1 for generic games the two models yield
predictions which are very di�erent.
We use Theorem 2 to show how our model can be applied to the study

of �nitely repeated games. We �rst consider the �nitely repeated prisoner's
dilemma. The T -times repeated prisoner's dilemma is interesting since it is a
game where classic game theory is able to make a clear prediction: the only
outcome consistent with Nash equilibrium is one where both players deviate
in each of the T periods.
This clear cut prediction is in contrast with the prediction of our model.

Of course, the exact long run distribution will depend on the spatial structure
of the population which is captured by the parameter k. However, we show
that, for any �xed interaction structure, our model predicts that average
payo�s in the T -times repeated prisoner's dilemma as a fraction of payo�s
which players would achieve if they cooperated each period, converges to 1
as T goes to in�nity. Theorem 3 generalizes this observation to more general
games. Thus, also for �nitely repeated games where folk theorems (see, for
example, Benoit and Krishna 1986) predict that �all is possible� our model
predicts behavior that, in a sense7, is close to e�ciency.
The paper is organized as follows. In section 2 we introduce the model. In

section 3 we introduce the notion of an optimal mutation strategy and prove
existence. Section 4 considers the limit where selection is weak. Section 5
considers 2x2 games as an example. Section 6 applies the model to �nitely
repeated games. Section 7 concludes. All proofs are in the Appendix.

6Since they consider �xed mutation rates ε, their k will depends on the mutation rate
ε.

7While the average payo� as a fraction of the highest possible payo� goes to 1, the
average payo� is still bounded away from the highest possible payo�.
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2. Basic Model

Let G be a symmetric 2-player normal form game with a �nite strategy
set S and payo� function u.
There are N individuals living in locations numbered from 1 to N . In any

time period t the payo� of the individual living in location i is given by:

U ti =
∑
j

wij · u(sti, s
t
j),

where stj ∈ S is the strategy used by the individual in location j in time
period t and wij are weights that are non-negative and have the property
that for each location i ∈ {1, .., n} there are two other locations j and k such
that wij > 0 and wik > 0.
Each period t = 1, 2, 3, ..., the individual at location j is replaced with an

o�spring of the individual at location i with probability

pi,j(U
t
1, ..., U

t
N ),

where pi,j : Rn → [0, 1] are continuously di�erentiable functions such that

(i)
δpi,j
δUi

> 0, (ii)
δpi,j
δUj

< 0, and (iii)
δpi,j
δUk

6 0 for k 6= i, j,8 and, for any

(U1, .., UN ) ∈ Rn, ∑
i

pij(U1, .., UN ) = 1.

All o�spring of a player uses the same strategy as that player. Of course, we
can think about reproduction being either cultural or genetic. The assump-

tions (i)
δpi,j
δUi

> 0, (ii)
δpi,j
δUj

< 0, and (iii)
δpi,j
δUk
6 0 correspond to the idea that

an individual in location j is more likely to be replaced by the o�spring of
an individual at location i if (i) the payo� of the individual at location i is
high (ii) the payo� of the individual at location j low and (iii) the payo� of
other individuals competing for the spot is low.9

In addition, after reproduction took place, a coin is thrown and with
probability ε ∈ (0, 1) a player at a randomly drawn10 location �mutates�. A
player who �mutates� switches to a new strategy that is drawn according to
a �xed probability distribution λ ∈ ∆S. Since λ speci�es what strategies a
mutant chooses we will call it the mutant strategy. The probability ε will be
called the mutation rate.

8This requirement can be weakened. In particular, it is enough to assume that (i) for
any two locationsi 6= j, either pi,j ≡ 0 or pi,j : Rn → [0, 1] is continuously di�erentiable

with
δpi,j
δUi

> 0,
δpi,j
δUj

< 0,
δpi,j
δUk

6 0 and (ii) for any two locations i 6= j, there exists a

sequence k1, ..., kl with k1 = i and kl = j such that pkr,kr+1 6≡ 0 for r = 1, 2, .., l − 1.
9Note that the assumption that pij is strictly increasing in Ui implicitly implies that

pij > 0.
10We assume that the location is drawn according to some �xed distribution. We do

not need to assume that the distribution has full support or puts equal probability on all
locations.
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Consider a �xed mutant strategy λ and mutation rate ε. Clearly, the
pro�le of strategies st = (st1, ..., s

t
N ) follows a time-homogenous Markov chain

with state space SN . Since the strategy set S of the game G is �nite so is SN .
We will denote the transition matrix of this Markov chain by (P εss′)s,s′∈SN .

From the fact that all the probabilities pi,j(U
t
1, ..., U

t
N ) are greater than zero

for any (U1, .., UN ) ∈ Rn and that the probability ε is also greater than
zero, we can conclude that the process has a single recurrent class equal
to Support(λ)N ⊂ SN . The restriction of the process to this recurrent
class is irreducible and aperiodic. Therefore the process possesses a unique
stationary distribution µελ.

Remark 1. Note that our environment is rather general. In particular, it
allows for situations where players live on some arbitrary graph and their
payo�s are only a�ected by the behavior of their neighbors. It also allows
for situations in which sending o�spring to locations k may be easier from
location j than from some other location i, for example, the birth-death
and death-birth processes on graphs considered in Ohtsuki et al. (2006) and
generalizations of the Moran process in the spirit of Taylor et al. (2004)
or Novak et al. (2004). Finally, it allows for di�erent locations to di�er in
quality. For example, it can be that one location i is better than location j
in the sense that pki > pkj for all k.

Remark 2. We introduced our dynamic as one involving natural selection
and mutations. An alternative interpretation is one where we thing about
players imitating each other (player j imitates i with a probability pij) and
occasionally experimenting in which case they choose a strategy drawn ran-
domly according to λ.

Consider a distribution λ with full support. The family of Markov chains
(P εss′)s,s′∈SN for di�erent mutation rates ε is a regular perturbed Markov pro-
cess in the sense, in which this term is used by Young (1998) and, therefore,
the limit

µλ = lim
ε→0

µελ

exists. The support of µλ can only contain states that are in a recurrent class
of the unperturbed dynamic (P 0

ss′)s,s′∈SN . Note that the recurrent classes of

(P 0
ss′)s,s′∈SN correspond exactly to singletons {(s, s, ..., s)} where the state

s ∈ S. Note that this means that the probability of a player at a given
location i playing a given strategy s ∈ S does not depend on the location i.
Since only a single mutation is needed to go from one such state to another,

standard tree-surgery methods (see Young (1993,1998)) immediately imply
that

Support(µλ) = {(a, ..., a) ∈ SN : a ∈ S}.
Indeed, this follows from the observation that only a single mutation is
needed to move from one recurrent class of the unperturbed process to an-
other.
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In other words, as long as λ has full support, all strategies a ∈ S will
be used in the long run with positive probabilities, even in the limit as ε
becomes small.11

Given that, for λ with full support, all strategies are used both for �xed ε
and ε > 0 some recent papers concerned with 2x2 games (see, for example,
Tarnita et al 2009) assume that λ puts equal weight on both strategies and a
strategy is said to be favored by the evolutionary dynamic if, in the long run,
it is used with probability greater 1

2 .
12 This approach has also been gener-

alized to the case of n > 2 strategies: λ is assumed to put equal probability
on each of the n strategies and a strategy is said to be favored by selection
if in the long run it is used by a random individual with probability greater
than 1

n and otherwise said to be opposed by selection (see Antal et al. 2009,
Tarnita et al. 2011).
We see three major reasons why this approach is problematic. Firstly,

the fact that a strategy is used by the majority of the population has weak
predictive power. Even for the case of two strategies it could very well be
that the �favored strategy� is used by 51% of the population while the other
strategy is used by 49% of the population. For more strategies predictions
become even weaker since the majority of the population may use di�erent
strategies than the favored one. Secondly, the whole approach is based on the
idea that λ puts equal probability on all strategies. This may be appearing
if the game is very symmetric in its structure but otherwise often appears
unnatural. Thirdly, results depend strongly on modeling choices that in most
game theoretic models are irrelevant. For example, if we substitute a strategy
with two di�erent strategies that are identical in terms of payo�s and e�ects
on others (but perhaps di�er in some characteristics which are natural to
include in a larger context) this may a�ect which strategy is favored.
This paper considers a fundamentally di�erent approach. The main idea is

to endogenize λ and thereby get clear cut predictions, in particular, obtain
the exact distribution of strategies that are used as the mutation rate ε
becomes small.

3. Extended Model

Consider the following extension of the basic model from the last section.
There is now a countable set of populations, each of which is identical to
the population P from the previous model. The set of all populations will
be denoted by P. In addition, the behavior of each player in period t is
now characterized by a pair (sti, λ

t
i) where s

t
i ∈ S is the strategy used when

interacting with others and λti ∈ ∆S is the distribution from which strategies
are drawn when mutating.

11A stronger statement can be easily shown: for any µ ∈ ∆S there is a λ ∈ ∆S such
that µ = µλ.

12For certain spatial structures, like for example players living on a circle and inter-
acting only with closest neighbours limits as the population size gets large can also be
naturally formed.
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As before, each period, the probabilities pij are used to determine whether
the player at location j gets replaced by an o�spring of player the player at
location i. An o�spring inherits both sti and λ

t
i from his parent. As before,

with probability ε a mutation takes place in which case a new strategy is
drawn, but now the individual at location i used his individual mutation
strategy λti. In addition, after that, each period a coin is thrown and with
probability η two populations P and P ′ are randomly drawn (both according
to some �xed distribution G ∈ ∆P with full support) and a randomly
selected player in population P ′ is replaced by the o�spring of a randomly
selected player from population P .13

Note that the above de�nes a time-homogenous Markov process with state
space (S ×∆S)P×N .
Fix ε and η and consider an initial state of the dynamic in which all

players use the same mutation strategy λ∗ ∈ ∆S except for one player who
uses some λ′ 6= λ∗. Let Eε,η be the probability that individuals using λ′

become extinct, i.e. that there exists a time period t in which all players use
λ∗.14

We will say that a mutation strategy λ∗ ∈ ∆S is evolutionary optimal or
evolutionary stable if and only if

lim
ε→0

lim
η→0

Eε,η = 1

for any λ′ 6= λ∗ and any initial state of the above form.

Remark 3. Note that the model presented here is quite di�erent from �haystack
models� of group selection in which individuals form groups, live in those
groups for a while, then are all mixed, then groups are formed again, and
so on. We consider a situation in which individuals living in di�erent pop-
ulations (perhaps on di�erent islands) rarely interact - there is no periodic
�mixing� and formation of new �haystacks�.

Theorem 1. The set of evolutionary optimal mutation strategies is non-
empty.

Proof. See appendix. �

Now, that we have a reasonable criterion to select mutation strategies we
can return once more to the basic model and ask what happens for λ which
are evolutionary optimal.
Let Λ(G) be the set of evolutionary optimal mutation strategies for a given

game G and let

Π(G) = {µλ∗ : λ∗ ∈ Λ(G)}

13The probability distribution used to select a player in populations P and P ′ does not
have to be uniform but the same distribution must be used in both populations.

14Note that if in some time period t all players use λ∗ then also in all t′ > t all players
will use λ∗.
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be the set of stationary distributions for λ ∈ Λ(G). Unfortunately, the set
Π(G) depends in a non-trivial way both on the population structure (the
functions pi,j) and the payo�s of the game G.15 However, in the following
section, we will obtain a very simple characterization under an additional
limit.

4. Characterization for the Case where Selection is Weak

Given the generality of the model, it seems impossible to characterize
evolutionary optimal λ (and the corresponding stationary distributions over
strategies employed depending on location) for general games in a way which
would not depend strongly on the parameters of the model.
We will therefore consider the case where selection becomes weak, i.e.

where evolutionary forces are small. Weak selection has been considered
as a natural limit in evolutionary biology in situations where the decision
have only a small e�ect on overall �tness. Here, it is also a natural way to
connect evolutionary game theory where payo�s correspond to �tness and
where results may be a�ected by a�ne transformations with standard game
theory where payo�s correspond to expected utilities and where predictions
are una�ected by a�ne transformations.
For any game G and γ > 0 let γ ·G be the game in which all payo�s are

multiplied by γ.

Theorem 2. There exists a parameter k > 0 that does not depend on payo�s
of the game G such that\

lim sup
γ→0

Π(γ ·G)

is contained in the set of probability distributions µ ∈ ∆S such that the
support of µ contains only strategy pro�les in which all players use the same
strategy s and∑

s∈S
µ(s, s, .., s) · (k · (u(s, s)− u(s′, s′)) + (u(s, s′)− u(s′, s))) > 0

for any s′ ∈ S.

Proof. See appendix. �

Remark 4. Note that the characterization in Theorem 2 is invariant under
a�ne transformations of the payo�s of the game G.

Remark 5. Theorem 2 characterizes the stationary distributions (which also
describe the long run behavior of the dynamics) for λ which satisfy our
criterion. The reader might ask what the evolutionary optimal mutation
strategies are. Note that, under the weak selection limit, µλ((s, s, ...s)) con-
verges to λ(s) in this sense, under that limit, Theorem 2 also characterizes
the evolutionary optimal λ.

15Lemma 2 in the Appendix describes this dependence.
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Given that the parameter depends on the interaction structure one may
wonder whether the above result can be used to make interesting predictions
independently of the population structure. In section 6 we will apply our
theory to �nitely repeated games and show that this is indeed the case.
Before we do so, however, we will quickly consider the implications of our
theory for a class of games which has been studied a lot in evolutionary
biology.

5. Example: 2x2 Games

Since symmetric 2x2 games with two strict Nash equilibria have been
widely studied in the literature we will brie�y look at the implications of
Theorem 2 for such games. Let G be the symmetric game given by the
payo� matrix

A B

A a c
B d b

Consider a �xed population structure. Theorem 2 immediately predicts
that if

k · (a− b) + (c− d) > 0

then strategy A is played with probability 1 as selection gets weak and
the mutation rate goes to zero. If

k · (a− b) + (c− d) < 0

then B is played with probability 1 under the same limit.
This allows us to make predicitions which hold for all k and thus for all

population structures. For example, for �xed a and b, strategy A will be
selected whenever B is �su�ciently more risky than A� in the sense that
c−d is su�ciently large. In particular, if a is equal to b and one equilibrium
strictly risk dominates the other, then the risk dominant equilibrium will be
played with probability 1.
Note also that, for generic a, b, c, d, one strategy will be played with prob-

ability 1 under the limit where selection gets weak and the mutation rate
goes to zero.
Let us contrast this with Tarnita et al. (2009) who consider 2x2 games,

also allow general population structures, and also consider the limit as se-
lection becomes weak, but assume that λ is exogenously given and puts
probability 1

2 on both strategies. In their model, in the limit as selection

gets weak, both strategies A and B are used with probability 1
2 , indepen-

dently of the values a, b, c, and d. This is true both for a �xed mutation rate
ε and ε → 0. Their main result is that, for any ε, if selection is su�ciently
weak, strategy A will be played with probability larger than 1

2 if

σ · (a− b) + (c− d) > 0
10



and strategy B will be played with probability larger than 1
2 if

σ · (a− b) + (c− d) < 0,

where σ is a parameter which plays an analogous role as the parameter k in
our model.16 Note that since, in their framework, in the limit as selection gets
weak both strategies are used with probability 1

2 independently of a, b, c, d

and in our framework the probability with which s1 is used converges either
to 0 or 1 for generic games as selection gets weak the two models yield very
di�erent predictions that could be tested empirically.

6. Application: Finitely Repeated Games

Let us �rst look at GT , the T -times repeated prisoners dilemma where the
stage game is given by

C D

C 1 -1
D 2 0

This game is an interesting benchmark since the only outcome consistent
with Nash equilibrium is (D,D) in each period.
Let sgrim be the �grim-trigger� strategy in the T -times repeated PD, i.e.

sgrim prescribes C if nobody so far played D and D otherwise. Clearly,
u(sgrim, sgrim) = 1 · T and, for any s, u(s, sgrim)− u(sgrim, s) 6 3.
The condition from Theorem 2 was that for any s′ ∈ S:∑

s∈S
µ((s, ..., s)) · (k · (u(s, s)− u(s′, s′)) + (u(s, s′)− u(s′, s))) > 0

Therefore, for s′ = sgrim:∑
s∈S

µ((s, .., s)) · k · (u(s, s)− T ) + 3) > 0.

Average per-period payo�s in the T -times repeated PD thus satisfy:∑
s∈S

µ((s, ..., s)) · u(s, s)

T
> 1− 3

k · T
.

In particular, as T becomes large the average per-period payo�s converge
to 1, the cooperative payo� of the prisoner's dillemma.
The above reasoning generalizes giving the following result.

Theorem 3. Assume that, for each location i, there exist two locations j
and k such that j 6= k and both wij and wik are positive. Let G be any sym-
metric 2-player stage game with a �nite action space A and payo� function
g. Consider the �nitely repeated game GT with perfect monitoring consisting
of T repetitions of G where payo� of each player is the undiscounted sum of
payo�s from the T stages. Then, for the case where selection is weak and

16Since they consider �xed mutation rates ε, their σ will, however, depends on the
mutation rate ε.
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mutations rare, the long run behavior consistent with maximization of evolu-
tionary success by mutants has the property that the average per-period-payo�
in the game GT converges to maxa∈A g(a, a), as the number of repetitions T
goes to in�nity.

Proof. Straightforward generalization of the argument that was made for the
T -times repeated prisoner's dilemma.17 �

Of course, a similar argument could be used to show that, no matter
what the population structure and the corresponding value of k, our model
predicts signi�cant cooperation in the centipede game as long as that game
is su�ciently large. In that sense, the model could also potentially be helpful
explaining experimental results for such games (see, for example, McKelvey
and Palfrey (1992)), the traveling salesman dilemma (see , for example,
Rubinstein (2005), Goree and Holt (2001)) and other games with a similar
structure. Note that, if in reality, di�erent players are part of di�erent sub-
populations with di�erent population structures and di�erent corresponding
parameters k that could be helpful in explaining the observed heterogeneity
in games like the traveling salesman dilemma where in experimental settings
part of the participants chooses the Nash equilibrium outcome (consistent
with small k close to zero) and part uses high strategies (consistent with a
su�ciently large k).

7. Conclusion

In this paper, we motivate endogenizing λ with the fact that a currently
fashionable approach to deal with models where the population is �nite and
natural selection is stochastic, su�ers from many problems. We then propose
a natural criterion of evolutionary optimality and show that this criterion
leads to sharp predictions in a large class of models and for arbitrary symmet-
ric n-strategy games. (The fact that even under weak selection we require
a parameter k is not surprising, it is well understood that local structure
matters. ) As an application, we show that evolution - or at least our model
- favors signi�cant cooperation in �nitely repeated games if the number of
repetition is large.
We would like to end this paper by pointing out a di�erent way of looking

at the approach proposed in this paper. Most evolutionary papers deal-
ing with �nite populations introduce some kind of persistent shocks which,
depending on the framework are usually called mutations or experiments.
Mathematically, this is convenient since it gives the process ergodic proper-
ties. However, the source leading to those mutations or experiments is not
studied, they are just assumed and their exact form exogenously given. This
is done, even though it is often clear, that - in the considered model - it

17Fis a a ∈ arg maxa∈A g(a, a) . Use as s′ a strategy that requires a player to play a
after histories in which only a was played in the past and after all other histories play
a strategy that maximizes the expected value of g(b, c) − g(c, b) given the distribution of
actions c the opponent will use after that history.

12



would be extremely hard to argue that the assumed form of experimentation
and mutation is in the interest of the individuals who do it. (Consider for
example the in�uential class of models started by Young (1993), Kandori et
al. (1993) and Ellison (1993) applied to 2x2 games with a risk dominant
equilibrium. There it is quite clear that experimenting players would hardly
have a reason to experiment with the riskdominated strategy, but the model
still requires them to randomize over both strategies when �experimenting�.)
As a result, mutations and experiments have sometimes been interpreted
as errors (see, for example, van Damme and Weibull (2002)). Note how-
ever, that there is a huge di�erence between a trembling hand leading to
occasional mistakes (which we view as a natural concept) and occasional
permanent switches to another strategy. All of this suggests that it would
be interesting to better understand why players experiment or mutate and
how exactly they do it. We hope that the approach proposed in this paper
may perhaps help shed some additional light on this issue.
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Appendix

Proof of Theorem 1. Consider �rst the base model for some λ and ε = 0.
For any s′, s′′ ∈ S de�ne rs′s′′ > 0 to be the probability that the dynamic
reaches a state where all players use s′′ from a state where all but one player
use s′ and one player uses s′′, where the location of the player using s′′

was drawn randomly with the same probability distribution that is used to
determine at which location a mutation will occur. Note that, since the
mutation rate ε is equal zero, this de�nition will not depend on λ.

Lemma 1. Let λ ∈ ∆S. Then the support of µλ is equal to {(s, s, ..., s) ∈
SN : s ∈ Support(λ)N} ⊂ SN . Moreover, µλ satis�es

µλ((s, ..., s)) =
∑
s′∈S

µλ((s′, ..., s′)) · λ(s) · rs′s.

Proof. Note that, for ε > 0, the Markov chain P ε has a unique recurrent class
equal to Support(λ)N ⊂ SN . The restriction of the chain to that recurrent
class is a regular Markov process in the sense, in which this term is used by
Young (1998) and, therefore, the limit

µλ = lim
ε→0

µελ

exists and the support of µλ can only contain states that are in a recur-
rent class of the unperturbed dynamic (P 0

ss′)s,s′∈SN . Since the recurrent

classes of (P 0
ss′)s,s′∈SN correspond exactly to singletons {(s, s, ..., s)} where

the state s ∈ S the statement it follows that the support of µλ is contained
in {(s, s, ..., s) ∈ SN : s ∈ Support(λ)N} ⊂ SN . Then, standard tree-surgery
methods (see Young (1993,1998)) immediately imply that

Support(µλ) = {(a, ..., a) ∈ SN : a ∈ S}
since moving between any two recurrent classes of the unperturbed Markov
chain requires only a single mutation. The formula

µλ((s, ..., s)) =
∑
s′∈S

µλ((s′, ..., s′)) · λ(s) · rs′s

now simply follows from the observation that, as ε→ 0 the probability that
a mutation occurs while the dynamic is in a state in Support(µλ) converges
to one and that the probability of another mutation occuring before the dy-
namic goes to a state where again all players use the same strategy converges
to zero. �

Lemma 2. De�ne rs′s′′ for s
′, s′′ ∈ S as above. Consider an initial state

where all players use λ∗ ∈ ∆S except for a single player in some population
P who uses λ′ ∈ ∆S. Then

(7.1)
∑
s,s′∈S

µλ∗((s, s, ..., s))·µλ′((s′, .., s′))·rss′ 6
∑
s,s′∈S

µλ′((s, .., s)·µλ∗((s′, s′, ..., s′))·rss′

implies
limε→0limη→0E

ε,η = 1.
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Proof. Consider a �xed ε and η for a moment. Let T1, T2, ... be the random
times in which players were transfered between populations. Let Ck be the
set of populations at time Tk − 1 in which at least one player used λ′. We
will now inductively characterize

Pr(Ck+1 = B|Ck = A)

under the considered double limit for �nite A ⊂P.
Since the transfer between populations at time Tk is the only transfer that

occured between periods Tk − 1 and Tk+1 − 1, it is clear that

Pr(Ck+1 = B|Ck = A)

converges to zero under our double limit if B none of the following is true:
(i) A = B , (ii) B contains exactly one more population then A, (iii) A
contains exactly one more population than A. Trivially, if A = ∅, then
Pr(Ck+1 = ∅|Ck = A) = 1. Let us now consider the case where A is non-
empty.
For A 6= ∅ and P ′ /∈ A, consider

Pr(Ck+1 = A ∪ {P ′}|Ck = A).

This is the probability that the strategy λ′ is used by populations in A and
population P ′ at time Tk+1 − 1 if it was used by populations in A at time
Tk. Note that, for that to be possible, the only transfer between populations
that happened between times Tk − 1 and Tk+1 − 1 had to involve a player
from some population in A who used λ′ being transfered to the population
P ′ and then surviving there rather than being dying out before time Tk+1.
This probability under the considered limit therefore converges to

G(A) ·G(P ′) ·
∑
s,s′∈S

µλ′(s) · µλ∗(s′) · rss′ .

Note that the speed of convergence is the same for all P ′. Suming up the
above over all P ′ we get that

Pr(|Ck+1| = |Ck|+ 1|Ck = A)

converges to

G(A) · (1−G(A)) ·
∑
s,s′∈S

µλ∗(s) · µλ′(s) · rss′ .

Now consider the probability

Pr(Ck+1 = A− {P ′}|Ck = A)

where P ′ ∈ A. Using an analogous reasoning as above this probability
converges to

(1−G(A)) ·G(P ′) ·
∑
s,s′∈S

µλ′(s) · µλ∗(s′) · rss′ .
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Summing up over all P ′ we obtain that

Pr(|Ck+1| = |Ck| − 1|Ck = A)

converges to

(1−G(A)) ·G(A) ·
∑
s,s′∈S

µλ′(s) · µλ∗(s′) · rss′ .

Now let kl be the random sequence of values k for which Ck changed.
Formally, kl is de�ned inductively by

k1 = 1

and

kl+1 = min{k|k > kl, |Ck| 6= |Ckl |}.
Note that, immediately from the de�nition of kl

Pr(|Ckl+1 | = |Ckl |+ 1|Ckl = B) = Pr(|Ckl+1 | = |Ckl+1−1|+ 1 | |Ckl+1 | 6= |Ckl+1−1|, Ckl+1−1
= B)

Thus the above probability under our double limit to

G(B) · (1−G(B)) ·
∑
s,s′∈S µλ∗ (s) · µλ′ (s) · rss′

(1−G(B)) ·G(B) ·
∑
s,s′∈S µλ∗ (s) · µλ′ (s′) · rss′ +G(B) · (1−G(B)) ·

∑
s,s′∈S µλ′ (s) · µλ∗ (s′) · rss′

=

=

∑
s,s′∈S µλ∗(s) · µλ′(s) · rss′ .∑

s,s′∈S µλ∗(s) · µλ′(s′) · rss′ +
∑

s,s′∈S µλ′(s) · µλ∗(s′) · rss′
,

which does not depend on B. Let

α =

∑
s,s′∈S µλ∗(s) · µλ′(s) · rss′ .∑

s,s′∈S µλ∗(s) · µλ′(s′) · rss′ +
∑

s,s′∈S µλ′(s) · µλ∗(s′) · rss′
.

Note that (7.1) implies that α 6 1
2 .

Note that for �xed L:

Pr(CkL = B|Ck1 = {P}) =
∑ L−1∏

i=2

Pr(Cki = Ai|Cki−1 = Ai−1),

where the sum is over all sequences A1, A2, ..., Al of length l, such A1, ..., Al

are sets of populations, that A1 = {P}, Al = B and ||Aj+1| − |Aj || = 1 for
j = 1, 2, ..., l − 1. Since the sum is �nite and we showed that each of the
terms appeaaring in th product converges under our double limit it is also
the case that Pr(Ckl = B) converges to some value under our double limit.
In particular, for any �xed l, Pr(Ckl = ∅) converges to some value under our
double limit.
Let Sl = 1+

∑l
i=1Xi be a random walk where Xi are iid random variables

with support {−1, 1} such that Pr(Xi = 1) = α. De�ne ql be the probability
that the random walk returns to zero at time k or earlier. Since for each
l′ Pr(Ckl′+1 = |Ckl′ | + 1|Ckl = B) converges to α independently of B and
Pr(Ckl+1 = |Ckl | − 1|Ckl = B) converges to 1 − α independently of B it
follows that, for any �xed l, Pr(Ckl = ∅) converges to ql.
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We want to show that

limε→0limη→0E
ε,η = 1.

Assume that this is not the case, i.e.

(7.2) limε→0limη→0E
ε,η < a < 1

for some number a < 1. For any l, ε, and η it is the case that whenever
players using λ′ are extinct at time Tkl − 1 they will stay forever extinct.
Therefore, for any l, ε, and η it is the case that

Pr(Ckl = ∅) 6 Eε,η.
Togethere with (7.2) this implies that, for any l,

limε→0limη→0 Pr(Ckl = ∅) < a < 1.

Since ql converges to 1 we can �nd an l such that ql > a. For this l, however,
it cannot be that Pr(Ckl = ∅) under the double limit converges to ql > a
and stays below a. The contradiction shows that

limε→0limη→0E
ε,η = 1.

QED. �

Lemma 3. De�ne rs′s′′ for s
′, s′′ ∈ S as above. Consider an initial state

where all players use λ∗ ∈ ∆S except for a single player in some population
P who uses λ′ ∈ ∆S. Then

(7.3) limε→0limη→0E
ε,η = 1

implies
(7.4)∑
s,s′∈S

µλ∗((s, s, ..., s))·µλ′((s′, .., s′))·rss′ 6
∑
s,s′∈S

µλ′((s, .., s)·µλ∗((s′, s′, ..., s′))·rss′

Proof. We will prove the result by contradiction. Assume that (7.4) is not
true. Since (7.3) holds there exists a sequence (εm, ηm) → (0, 0) such that
ηm
εm
→ 0 and

Eεm,ηm → 1.

De�ne Tk as in the previous lemma. Let Dk be the set of populations
at time Tk − 1 in which at all players used λ′. In addition let Pk be the
population from which an o�spring is transfered in period Tk and P

′
k be the

population to which the o�spring is transfered in period Tk. For any state z,
let Dz be the set of population in z for which it is the case that all players
play λ′.
Fix m for a moment and consider the dynamic for (εm, ηm). Fix P 6= P ′

and consider

Pr(D2 = ∅|D1 = {P ′}, P ′1 = P ′, P1 = P, z0 = z)

for a state z such that all players not in P use λ∗ and everybody in P
uses either λ′ or λ∗. Note that, for any such state z the above probability
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converges as m→∞. Note also, that for each such state z the limit must be
smaller equal to

∑
s,s′∈S µλ′(s) ·µλ∗(s′) · rss′ . Finally note that, as far as the

state z is concerned the above probabiliuty only depends on what players in
P and P ′ do in the state z - what z prescribes in all other populations is
irrelevant. For �xed m and parameters (εm, ηm) let

qm = sup
z

Pr(D2 = ∅|D1 = {P ′}, P ′1 = P ′, P1 = P, z0 = z)

where the supremum is taken over all states z of the above form. The last
two observations imply that qm →

∑
s,s′∈S µλ′(s) · µλ∗(s′) · rss′ . Note also

that the above de�nition of qm does not depend on the initial choice of the
populations P and P ′ as long as P 6= P ′.
Note that, whenever P, P ′ are both in Dk or P, P ′ are both not in Dk,

then with probability 1 it is the case that Dk ⊂ Dk+1. The only possibility
for Dk+1 not to contain Dk is if P is not in Dk but P ′ is in Dk. In this case,
note that |Dk+1| − |Dk| > −1. The above de�nition of qm implies that for
any k, populations P, P ′ such that P 6= P ′ and subset of populations A:
(7.5)

qm > Pr(|Dk+1| − |Dk| = −1|P ′ ∈ Dk, P /∈ Dk, Pk = P, P ′k = P ′, Dk = A)

if we consider our dynamic for (εm, ηm). Using an analogous construction
we conclude that there exists a sequence rm such thatrm →

∑
s,s′∈S µλ∗(s) ·

µλ′(s
′) · rss′ and for any k, populations P, P ′ such that P 6= P ′ and subset

of populations A:
(7.6)
rm 6 Pr(|Dk+1| − |Dk| > 1|P ∈ Dk, P

′ /∈ Dk, Pk = P, P ′k = P ′, Dk = A)

if we consider our dynamic for (εm, ηm).
If (7.4) is not true, then

∑
s,s′∈S µλ∗(s) · µλ′(s′) · rss′ >

∑
s,s′∈S µλ′(s) ·

µλ∗(s
′) · rss′ and, therefore, rm > qm for all su�ciently large m. Fix an M

large enough so that for m > M it is the case that rm/qm > α/(1 − α) for
some α > 1

2 . De�ne kl as in lemma 2. Comparing |Dkl | with an asymmetric
random walk as in lemma 2 we obtain from Inequalities (7.5) and (7.6) that
|Dk| will have a probability of never returning to zero which is at least as

much as that of the assymetric random walk Sl = 1 +
∑l

i=1Xi where Xi

are iid random variables with support {−1, 1} such that Pr(Xi = 1) = α.
However it cannot be that the probability that |Dk| never returns to zero
is bounded away for all m > M given that Eεm,ηm → 1. The contradiction
proves that our assumption that (7.4) is not true was incorrect and therefore
(7.4) holds. QED �

Note that lemmas 2 and 3 imply that

limε→0limη→0E
ε,η = 1

is equivalent to∑
s,s′∈S

µλ∗((s, s, ..., s))·µλ′((s′, .., s′))·rss′ 6
∑
s,s′∈S

µλ′((s, .., s)·µλ∗((s′, s′, ..., s′))·rss′
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Theorem 1 therefore follows immediately from the following lemma.

Lemma 4. De�ne rs′s′′ for s
′, s′′ ∈ S as above. There exists λ such that µλ∑

s∈S
µλ∗((s, s, ..., s)) · rss′ 6

∑
s∈S

µλ∗((s, s, ..., s)) · rs′s

for s′ ∈ S and for s′ is in the support of λ∗∑
s∈S

µλ∗((s, s, ..., s)) · rss′ =
∑
s∈S

µλ∗((s, s, ..., s)) · rs′s.

Proof. Consider a symmetric 2-player zero-sum game with strategy space S
and payo� function

g(s, s′) = rs′s − rss′ .

Let µ ∈ ∆S be a symmetric NE of this game. Note that since the game is
zero-sum the value of the game is well de�ned and since it is symmetric the
value must be zero. Thus,∑

s∈S
µ(s) · rss′ 6

∑
s∈S

µ(s) · rs′s

for s′ ∈ S and for s′ is in the support of µ∑
s∈S

µ(s) · rss′ =
∑
s∈S

µ(s) · rs′s.

De�ne λ ∈ ∆S by

λ(s) =
µ(s)∑

s′∈S µ(s′) · rs′s
.

Note that, therefore, by lemma 1 it is the case that µλ((s, ...s)) = µ(s). Note
that, the formula de�ning λ implies that µ and λ have identical supports.
From the above inequalities and equalities for µ we therefore obtain that∑

s∈S
µλ∗((s, s, ..., s)) · rss′ 6

∑
s∈S

µλ∗((s, s, ..., s)) · rs′s

for s′ ∈ S and for s′ is in the support of λ∗∑
s∈S

µλ∗((s, s, ..., s)) · rss′ =
∑
s∈S

µλ∗((s, s, ..., s)) · rs′s.

QED �

Proof of Theorem 2.

Lemma 5. De�ne rs′s′′ for s
′, s′′ ∈ S as at the beginning of this appen-

dix. Then rs′s′′ as a function of the payo�s of the game are continuously
di�erentiable.
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Proof. Consider the de�nition of rs′s′′ in the base model for some λ and
ε = 0. rs′s′′ is a �nite weighted sum of ris′s′′ where r

i
s′s′′ is de�ned to be the

probability that the dynamic reaches a state where all players use s′′ from
a state where all except the player at location i uses s′ and the player at
location i uses s′′. It is therefore enough to show that ris′s′′ are continuously
di�erentiable.
Let Z be the set of states in which only the strategies s′ and s′′ are

used. For any state z ∈ Z de�ne az to be the probability that the dynamic
eventually reaches a state where all players play s′′ . Notice that to show
that ris′s′′ are continuously- di�erentiable it is enough to show that az are.
Note that az is a solution to the system:

az =
∑
z′∈Z

Pzz′ · az′

for all z ∈ Z − {(s′, ..., s′), (s′′, ..., s′′)},
a(s′,s′,...,s′) = 0

a(s′′,s′′,...,s′′) = 1.

Clearly, since pij > 0 for all i, j ∈ {1, 2, ..., N} it has to be the case that for
any z 6= (s′, ..., s′), (s′′, ..., s′′), z′ ∈ Z the probability of the dynamic moving
from z to z′ in a fnite number of periods is positive. It follows that az > 0
for all z ∈ Z − {(s′, ..., s′), (s′′, ..., s′′)}.
We will now argue, that az is the unique solution to the above system.

Indeed, assume bz is a di�erent solution solving the same system of equations.
Then a+ α · (b− a) also solves the same system of equations for any real α.
Since a 6= b, there either exists a z so that bz − az < 0 or there exists a z so
that bz−az > 0. Assume �rst there exists a z so that bz−az < 0 for some z,
we will deal with the second case in a moment. Let α be the largest value for
which az+α ·(bz−a) are non-negative for all z ∈ Z−{(s′, ..., s′), (s′′, ..., s′′)}.
Since α is the largest such value, az + α · (bz − az) must be equal to zero
for some state z ∈ Z − {(s′, ..., s′), (s′′, ..., s′′)}. Given that for any z 6=
(s′, ..., s′), (s′′, ..., s′′), z′ ∈ Z the probability of the dynamic moving from z
to z′ in a fnite number of periods is positive this cannot be the case. For the
case where there exists a z so that bz − az > 0 the argument is analogous
except that the vector a+ α · (a− b) is considered.
We have shown that our system of |S|N equations with |S|N unknowns has

exactly one solution. Rewrite this system as A · a = b. Since the system has
exactly one solution the determinant of A is not equal to zero. Note that the
above reasoning did not rely on the payo�s of the stage game and therefore
holds for all games G. Using Cramer's rule we obtain a representation of
az in terms of Pzz′ which shows that az are continuously di�erentiable for
states z ∈ Z. (Cramer's rule represents the solutions as rational functions
as long as the determinant of A is not equal to zero.) Since ris′s′′ = az for

a particular state z it follows that ris′s′′ are continuously di�erentiable as a
function of the game payo�s. �
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From lemma 3 we know that if λ∗ ∈ ∆S is an evolutionary optimal mu-
tation strategy then∑

s∈S
µλ∗((s, s, ..., s)) · rss′ 6

∑
s∈S

µλ∗((s, s, ..., s)) · rs′s

for all s′ ∈ S and for s′ is in the support of λ∗∑
s∈S

µλ∗((s, s, ..., s)) · rss′ =
∑
s∈S

µλ∗((s, s, ..., s)) · rs′s.

Rewrite the above as∑
s∈S

µλ∗((s, s, ..., s)) · (rss′ − rs′s) 6 0

for all s′ ∈ S and for s′ is in the support of λ∗∑
s∈S

µλ∗((s, s, ..., s)) · (rss′ − rs′s) = 0.

Note that rss′ only depends on the payo�s u(s, s′), u(s′, s), u(s, s), u(s′, s′).
Since the function rss′ is di�erentiable according to lemma 5

rss′ = A · u(s′, s′) · γ −B · u(s, s) · γ +C · u(s′, s) · γ −D · u(s, s′) · γ +O(γ2)

moreover the assumptions we made on pij imply that B,C > 0 and A,D > 0.
(To see A,D > 0 consider states where exactly one player uses s′.) Plugging
into the above equations and taking the limes as γ goes to zero we get∑
s∈S

µλ∗((s, s, ..., s))·((A+B)·(u(s′′, s′)−u(s, s′′))+(C+D)·(u(s′′, s′′)−u(s, s))) 6 0

for all s′ ∈ S. Since D > 0 and C > 0 we can divide by C +D obtaining∑
s∈S

µλ∗((s, s, ..., s)) · (k · (u(s′′, s′)− u(s, s′′)) + (u(s′′, s′′)− u(s, s))) 6 0

for k = A+B
C+D .
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