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Abstract. We study how weak precommitments affect bargaining out-

comes. In the basic model, players can attempt to commit to a proposal

before negotiations start, but these precommitments are weak in the sense

that there is substantial uncertainty whether later a player will be actually

committed or free to seek compromise.

We show that perfect Bayesian equilibria exist and that outcomes of all

equilibria converge to the generalized Nash bargaining solution as the com-

mitment power of both players goes to zero. We then consider a broader

class of commitment technologies, to further understand what affects bar-

gaining power when players can make weak precommitments.

Schelling (1956, 1963) popularized the idea that the ability to publicly com-

mit to a course of action before a negotiation may matter and, in particular,

can result in better bargaining outcomes for the player with this ability.

When we say that an economic agent can publicly commit to a certain

course of action, we typically mean that the agent has access to a technology

which allows her to publicly announce an action and later ensures sufficiently

high costs of choosing different actions so that she will stick to the announced

action no matter what others do. In practice, negotiating parties often only

have access to commitment technologies of much lower quality. As an example,

consider the negotiations between the newly elected Greek government, the
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Euro zone countries, and the IMF that started in February 2015. On May 15

Alexis Tsipras, the Greek prime minister reconfirmed the most important “red

lines” his government had previously drawn up:

"The deal must close there is no doubt about it. However, some

cannot have in the back of their minds the idea that, as time

goes by, the Greek side’s resilience will be tested and its red

lines will fade out. [...] From this podium I want to assure

the Greek people that there is no possibility or chance that the

Greek government will back down on pension and labor issues.“1

On July 13, the Greek prime minister signed a preliminary agreement in which

in return for a 86 billion Euro rescue package he agreed to terms which violated

almost all of the “red lines” he had announced, including pension cuts and labor

market liberalization. Given that most observers believed that it is not very

likely that Greece will actually stick to its “red lines”, why did Alexis Tsipras

and his ministers repeatedly talk about them? Presumably, they thought that

their initial tough position may affect the starting point of later negotiations

and thereby lead to a better final compromise deal. What exactly though is

the role of announcements like the above? What are the relevant trade-offs?

How does the fact that agents can make them affect bargaining outcomes?

Those are the questions we will pursue in this paper. Note that while the

negotiations between the Greek government and its creditors had many specific

features, it is quite common in many negotiations for players to first make

incompatible proposals and to later settle on a compromise deal based on that

early proposals. Examples where such behavior can frequently be observed

1Translation by Reuters.
2



include bargaining between labor unions and employer organizations,2 out of

court settlements, bargaining over the price of an item in a bazaar, and so on.3

In this paper, we will consider a stylized model of distributional bargaining

in which players can attempt to commit before an interaction but their ability

to commit is poor in the sense that they only have access to very low-quality

commitment devices. What do we mean by “low quality commitment device”?

On an abstract level, a perfect commitment device is one which allows the

agent to publicly announce an action and later ensures that, whenever the

agent would choose a different action, she would face sufficiently high costs, so

that the agent will stick to the announced action no matter what. (The exact

nature of those costs, whether they are reputational, psychological, or related

to some contractual arrangements the agent can enter, is not important.) In

contrast, a low-quality commitment device is one which rarely works at all, in

the sense that the agent is usually totally free to choose whatever she wants

and does not face any additional costs if she does not follow the announced

course of action and, moreover, even if the device works and the agent faces

a cost of breaking her commitment that cost does not necessarily need to be

large. Those are the kind of commitment devices considered in this paper. We

will see that, despite their low-quality nature, the fact that agents have access

to such devices has a profound effect on bargaining outcomes.

In the basic model analyzed first, we consider a situation where players

have access to a particularly simple form of commitment device: one which

2In Germany for instance, regional negotiations between labor unions and employer organi-
zations usually take the form that, before actual negotiations start, both sides make initial
demands/proposals. For example, in 2015, IG Metal (the biggest German labor union in
terms of members) before the negotiations in the state of Baden-Würtemberg demanded a
wage increase of 5.5 percent while employers offered 2.2 percent. In the final compromise
deal both parties then settled on a wage increase of 3.4 percent.
3Often attempts to commit take less stark forms than in the above example. In section 2
we will propose a possible explanation why that might be the case.
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results in full commitment with probability ε and no commitment with prob-

ability 1 − ε. While the other player sees that her opponent attempted to

commit, she does not observe whether the other player is actually committed,

which corresponds to the idea that the the costs a player incurs if she breaks

her commitment are private information to that player.4 The main question

of this paper is how the availability of such low-quality commitment devices

affects bargaining outcomes. Our first result shows that if the commitment

probability ε is sufficiently small, i.e. players’ ability to commit is sufficiently

poor, players will attempt to commit in any equilibrium, all equilibria have

the same structure, and bargaining outcomes converge to the symmetric Nash

bargaining solution as ε goes to zero. For the case where the commitment

abilities of players are different or where players differ in terms of their hag-

gling/negotiating skills, the same result (Theorem 1) provides a foundation for

the asymmetric Nash bargaining solution and shows how bargaining outcomes

depend on commitment technology and haggling/negotiating skills.

In the basic model we assumed that whenever an agent attempts to commit,

she is later either fully committed or not committed at all. This corresponds

to a situation where the costs of breaking a commitment are either prohibitive

or zero. In the general model, we relax this assumption, assuming instead that

when the commitment attempt is successful with probability ε, the player can

break her commitment but faces a positive cost ci of doing so, where the cost ci

is randomly drawn according to some distribution Fi. Theorem 2 characterizes

equilibria in this case and shows that the distribution Fi does not affect the

limiting outcomes as long as high enough costs occur with positive probability.5

The extension considered in the general model is not just as a robustness check.

4The idea of imperfect commitment devices, where each player is not entirely to what extent
her opponent is actually committed appears already in Schelling (1956).
5We also assume that, for each player i, the distribution Fi has finite support.
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As we will see, it also suggests a possible explanation why in reality certain

forms of precommitments may be observed more often than others.

The model presented here can be seen as a perturbation of a bargaining

game without any commitment, in the sense that the case ε = 0 corresponds

to a situation where players can always agree to the other player’s proposal

without ever incurring any costs. As such, our model differs from a literature

starting with Nash (1953) that considers perturbations of the Nash Demand

game, which is often seen as epitomizing the essence of what is involved when

both sides can make binding commitments.6 Thus, while Nash (1953) (see

also Carlsson (1991), Muthoo (1996), Dutta (2012) and others) obtained the

Nash Bargaining solution using a perturbation of a simple framework in which

players can perfectly commit, we obtain the Nash bargaining solution using a

perturbation of a simple framework in which players cannot commit to their

initial demands at all.

Our model is also related to a literature started by Crawford (1982) and

later extended by Ellingsen and Miettinen (2008) and others. This literature

formalizes Schelling’s (1965) idea of imperfect commitment and investigates

the role of imperfect commitments as a source of inefficiencies. Crawford’s

model is in many ways similar to ours. The major difference, however, is that

Crawford (1982) assumes that a certain exogenously given division of surplus

is implemented when both players do not attempt to commit or both players

decide to back down from their commitments. As a result, in the class of

equilibria which Crawford identifies for the case where players’ commitment

ability goes to zero (he does not have uniqueness), the utility of both players

converges to that exogenously given division of surplus. This of course is not

a problem if the goal is an investigation of inefficiencies, but it means that the

model cannot be used to make interesting predictions about the way surplus
6See, for example, Binmore, Osborne, and Rubinstein (1992), p.197.
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is divided and what affects this division. The same is true for Ellingsen and

Miettinen (2008).7

Finally, we should mention an interesting connection to a literature started

by Abreu and Gul (2000) (see also Kambe (1999), Abreu and Pearce (2007),

Wolitzky (2012)) which perturbs Rubinstein’s (1982) model by introducing

behavioral types, thereby allowing for reputational effects in the spirit of Kreps

and Wilson (1982) and Milgrom and Roberts (1982). Despite the fact that

these models are quite different mathematically, a small probability of being a

certain behavioral type could be considered analogous to a small probability

of being committed to some strategy. Of course, the crucial force in these

models is different: in that literature, behavioral types can be mimicked over

long periods, resulting in strategic interactions similar to a game of attrition.

In contrast, in our model the possibility of long delays and opportunity costs

of waiting play no role. As a result, the predicted equilibria are very different.

Kambe (1999) shows that when players choose their potential behavioral types

(corresponding to initial demands in Kambe’s paper) endogenously8, they will

choose behavioral types that make compatible demands and therefore settle

immediately without inefficiencies.9 That is fundamentally different in our

model, where, in equilibrium, players first attempt to commit to somewhat

incompatible proposals (in the sense that the seller proposes a price that is

slightly higher than the price proposed by the buyer) and then later almost

7The work of Ellingsen and Miettinen (2008) is less related in the sense that both their
model and the derived equilibria are substantially different. Oversimplifying somewhat,
mathematically their model would be more similar to a modification of our model where
players who were not successful in their attempt to commit can only compromise and, if
both players compromise, an exogenously given division of surplus is implemented.
8In Kambe (1999) a player can choose an initial demand and then with some small prob-
ability becomes stubborn and insists on this initial demand. Chooosing an initial demand
in Kambe (1999) is thefore somewhat similar to attempting to commit to some proposal in
our model.
9See Propositions 1 and 2 in Kambe (1999).
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always reach some compromise deal. Thus, in terms of the actual economic

predictions, our model predicts that, say, in a negotiation between a labor

union leader and the management of a firm (or an industry representative) the

two sides may initially vigorously defend somewhat incompatible proposals and

then nevertheless negotiate some compromise deal that lies between the initial

proposals. In contrast, the equilibrium in Kambe’s paper seems to describe a

world where both sides propose the same deal – perhaps the equilibrium deal

is seen as an established social convention – and would engage in something

resembling a war of attrition if one side would ask for more.10

The paper is organized as follows. Section 1 introduces the basic model and

characterizes equilibria in Theorem 1. Section 2 presents the general model

and provides an equilibrium characterization in Theorem 2. Section 3 sketches

the ideas behind the proof of Theorem 1. Section 4 concludes.

1. Basic Model

For ease of exposition, we will present our results in a framework where

a potential buyer and a potential seller bargain over a price p. However, the

model can also capture more general situations where two players bargain over

some parameter, have opposing preferences concerning this parameter, and are

risk averse or risk neutral. For example, in the context of two players deciding

10The two model also differ fundamentally in terms of predicted bargaining outcomes. Con-
sider our model for the case where buyer and sellers have different commitment probabilities:
εb = kb · ε and εs = ks · ε. By Theorem 1, as ε→ 0, the division of surplus converges to the
asymmetric Nash bargaining solution where the weights depend on the ratio kb/ks and the
share of surplis of each player i is increasing in her coefficient ki. In contrast, if in Kambe
(1999) the buyer is stubborn with probability εb = kb · ε and the seller is stubborn with
probability εs = ks · ε, then the parameters kb and ks do not affect the bargaining outcome
in the limit as ε goes to zero. Thus if, for instance, one player is three times more likely
to become stubborn than the other, then, if we consider the limit where the probability of
becoming stubborn gets small, we will get the same division of surplus as if both become
stubborn with the same probability.
Technically, the reason for this difference is that in the reputational models started by Abreu
and Gul (2000), what matters is not the ratio εb

εs
but the ratio ln εb

ln εs
.
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how to split a dollar, p could correspond to the fraction received by the first

player. Even more generally, the model can capture other situations where

two players need to decide on a point on the Pareto frontier of some regular

convex set of possible payoff profiles.

1.1. Framework. There are two players: a potential buyer (b) interested in

buying some indivisible object and a potential seller (s) interested in selling

that object. We will assume that each agent i ∈ {b, s} has a twice differ-

entiable utility function vi(p) which specifies that agent’s Bernoulli utility if

trade occurs at a price p. The fact that sellers prefer to trade at a higher

price and buyers prefer to trade at a lower price is formally captured by the

assumption that v′s > 0 and v′b < 0. We also assume that both players are

risk averse or risk neutral, formally v′′b , v′′s ≤ 0.

The utility of both players when no trade happens (and no money changes

hands) is normalized to zero. Since we are interested in voluntary trade, we

will furthrmore assume that the interval of prices (p, p̄) for which both players

prefer trade to no trade is non-empty.11

We want to study situations where players can attempt to commit to certain

proposals before negotiations start, but their ability to commit is poor in

the sense that their attempts are usually unsuccessful. We will model such

situations as a two stage game: in stage 1 players can attempt to commit to

some proposals, in stage 2 they engage in further negotiations whenever their

proposals were incompatible. Formally, we consider the following two stage

game where at stage 2 players observe the actions from stage 1:

Stage 1: Each player i proposes a price pi ∈ [p, p̄] and decides whether to

attempt to commit to that price or not.

11Note that the lowest price the seller is willing to accept is given by vs(p) = 0 and the
highest price the buyer is willing to accept is given by vb(p̄) = 0. We assume that there
exist prices p and p̄ solving those two equalities and p < p̄.
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Stage 2: Players observe the actions from stage 1., i.e. they see the proposal

of the opponent and learn whether the opponent attempted to commit.

If both players make the same proposal, i.e. pb = ps, then the game ends

here, trade occurs under the price both proposed, and payoff of player

i is vi(p) where p = pb = ps.

If players make compatible proposals in the sense that pb > ps, then

trade is conducted at some price p ∈ (ps, pb) and payoffs are vi(p),

where the price p = p(h) can depend on the stage 1 history h.

If players make incompatible proposals, i.e. pb < ps, then the game

proceeds as follows. If a player i ∈ {b, s} did not attempt to com-

mit, then she is always uncommitted and free to decide between two

actions: “insist” and “compromise”. If she did attempt to commit in

stage 1, then with an exogenously given probability 1− εi she is again

uncommitted and free to choose between “compromise” and “insist”,

but with probability εi she is committed and must play “insist”.12

Outcomes and payoffs in this case are now determined as follows. If

both players insist on their proposal, then no agreement is reached

and no trade conducted. If one player insists on her proposal and the

other compromises then trade is conducted at the price proposed by

the insisting party. If both players compromise then they “meet in the

middle” and trade at the compromise price pcomp = α · pb + (1−α) · ps,

where α is a fixed parameter between zero and one that captures the

relative haggling abilities of the two players.

In other words, if pb 6= ps payoffs are given by the game matrix

12When deciding on his or her action each player only observes the outcome of the earlier
stage. In particular, in stage 2, players observe whether their opponent attempted to commit
or not but not whether the commitment was successful or not.
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“insist” “compromise”

“insist” 0, 0 vs(ps), vb(ps)

“compromise” vs(pb), vb(pb), vs(pcomp), vb(pcomp)

where the seller’s actions correspond to rows, the buyer’s actions cor-

respond to columns, and pcomp = α · pb + (1− α) · ps.

The solution concept that we will consider is pure-strategy perfect Bayesian

Nash equilibrium.13 From now on, we will use the word equilibrium to denote

pure-strategy perfect Bayesian Nash equilibria.

Remark 1. As explained in the introduction, we are interested in situations

where players make certain proposals before actual negotiation start, not so

much because they expect the other party to agree to the initial proposal but

because they think that those proposals will likely serve as a starting point for

later negotiations and therefore affect the final compromise deal. Therefore,

in our model, it makes sense to assume that, after both players decide to

compromise, negotiations will end in a final price pcomp that depends on the

two initial proposals and lies somewhere between the two proposed prices pb

and ps. The assumption that the price pcomp is simply a convex combination of

the two proposed prices with fixed weights is convenient since it simplifies the

results14 and allows us to relate the weights in that convex combination to the

negotiating/haggling skills of the two players. Moreover, the case where α = 1
2

and both players "meet exactly in the middle" nicely captures bargaining
13The restriction to pure strategies appears natural if we think about bargaining norms.
From a technical point of view it allows us, among other things, to eliminate the unstable
mixed equilibria of stage 2 that exist if both players propose prices pb > ps, where pb is
sufficiently larger than ps.
14If instead we assume that pcomp is given by a twice continuously differentiable func-
tion pcomp : {(pb, ps) ∈ [p, p̄]2 : pb ≤ ps} → R, such that ∂

∂ps
pcomp,

∂
∂pb

pcomp > 0 and
pcomp(ps, pb) ∈ [pb, ps], then one can show a result analogous to theorem 1 where, as ε→ 0,
the sequence of equilibrium prices have the property that |ps − pb| converges to zero and

both prices converge to the set of prices p solving
vs(p)· ∂∂ps pcomp(p,p)

ks·v′s(p)
+
vb(p)· ∂∂pb pcomp(p,p)

kb·v′b(p)
= 0.
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situations where players have equal negotiating skills and that price may be

seen as a natural focal point.15

Remark 2. The fact that when making precommitments players only have

access to low quality commitment devices is modeled by assuming that, when-

ever player i attempts to commit, the player is only actually committed with

some small probability εi.16 The exact interpretation of the probability εi will

depend on the assumed source of commitment power. As in situations where

players have access to commitment devices of higher quality, the players ability

to commit could be based on a number of different factors:

(i) reputation (following a different action than the announced may damage

the reputation of the agent with a third party – a small εi could then

capture the idea that the agent’s commitment power is limited since

she is unlikely to engage in an activity with that third party where her

reputation will matter, a break of commitment only matters in rare cases

where the current interaction is observed by a relevant third party, or she

is likely to find some excuse or justification which will allow her to break

her word without damaging her reputation),

(ii) psychology (the agent may, for instance, dislike breaking her word be-

cause if this violates a moral norm – a small εi in this context could

capture that the agent’s commitment power is limited because she is un-

likely to be in a mental state where such concerns will be relevant to her)

or

15While natural in the context of bargaining over prices, there could be applications where
players with equal skills bargain over some other parameter and where it is more natural to
assume that whenever both players decide to compromise, a coin is tossed to decide which
proposal is implemented. If the coin is such that with probability α the proposal of the
buyer is implemented and with probability 1 − α the proposal of the seller is implemented
then Theorem 1 will still hold.
16Later, in section 2, we will consider a more general model.
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(iii) contracts (the agent could attempt to commit to an action by signing a

contract that results in costly contractual obligations if a different course

of action is chosen – a small εi then would capture that the agent’s com-

mitment power is limited by the fact that later most likely the contract

will not be enforceable before court as the agent will be able to find a

valid reason to renege on her contractual obligations).

As said before, in section 2 we will extend our results to a broader class of

commitment devices.

1.2. Benchmark ε = 0. Note that in the basic model from the last section

the probabilities εi can be seen as measuring the quality of the commitment

device available to player i. Indeed, if for some player i it is the case that

εi = 1, then that player can perfectly commit to a price. If εi = 0, player i

has no ability to commit whatsoever.

It is straightforward to check that for the case where εb and εs are both

equal to zero, for any price p∗ ∈ [p, p̄], there exists an equilibrium where both

players in stage 1 propose p∗ and attempt to commit to that proposal.17

To see this, note that after any price pair (ps, pb) with ps < pb, there are two

pure equilibria of the stage 2 game: one where the buyer insists and the seller

compromises and another where the buyer insists and the seller compromises.

Now, consider a strategy profile such that: both players propose the price

p∗; in stage 2 strategies only depend on proposed prices but not on whether

players attempted to commit or not; after a price pair (ps, p
∗) with ps > p∗ the

buyer insists and the seller compromises; after a price pair (p∗, pb) with pb < p∗

the seller insists and the buyer compromises; and after any other price pair

(ps, pb) with ps < pb one player compromises and the other insists.

17The same is true for the case where εb and εs are both equal to one. However, in that case,
the set of equilibrium outcomes remains large if we perturb the game slightly and consider
εb and εs that are close to one.
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In the following we will be interested how the set of equilibria of the above

game looks like, if both players’ ability to commit is poor, i.e. εb and εs are

both small but positive.

1.3. Equilibrium Characterization and Comparative Statics. Consider

the case where player i who attempts to commit is actually committed with

commitment probability εi = ki · ε where ki > 0 are fixed constants.18

Theorem 1. There exists ε̄ > 0 such that for ε ∈ (0, ε̄) an equilibrium exists

and any equilibrium has the property that: players attempt to commit to prices

pb < ps; are indifferent between compromising and insisting on the equilibrium

path; and on the equilibrium path compromise whenever not committed.

As ε→ 0, ps and pb both converge to the generalized Nash bargaining solu-

tion, formally, the unique price p∗ maximizing vb(p)
kb
α · vs(p)

ks
1−α .

Proof. See Appendix. �

Corollary. For the special case where both players have access to the same

commitment technology (i.e. εb = εs) and have the same haggling ability (i.e.

α = 1
2
), as ε becomes small, the proposed prices pb and ps both converge to the

symmetric Nash bargaining solution, i.e. the price p∗ maximizing vb(p) · vs(p).

Theorem 1 tells us that players will in equilibrium always use their commit-

ment devices and attempt to commit. Moreover, what commitment devices

are at their disposal has an effect on bargaining outcomes. In particular, as

the commitment power of both players goes to zero, trade will occur with

probability converging to 1 at prices that converge to p∗, the price maximizing

18For the case where only one player has a positive commitment probability the structure
of equilibria is different. In particular, if one introduces an appropriare refinement based on
trembles in stage 2, one obtains that in all equilibria both players propose the price that
maximizes the payoffs of the player whose commitment probability is positive.
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the Nash product

vb(p)
kb
α · vs(p)

ks
1−α .

Thus, Theorem 1 gives us a new foundation for the Nash bargaining solution

and a new interpretation of the weights corresponding to the bargaining power

of both players.

Note that this has several implications in terms of comparative statics. Since

vs(p) is increasing in p and vb(p) is decreasing in p, the price p∗ maximizing

the Nash Product will be increasing in ks, decreasing in kb, and increasing in

α. This means that the prices are higher if the seller has more commitment

power, lower if the buyer has more commitment power, and higher if the buyer

has a relatively higher haggling ability. The first two of those comparative

statics results appear natural, they correspond to the general intuition that

higher commitment ability corresponds to more bargaining power. The third

comparative statics result may seem counter-intuitive at first glance. After all,

for any given history where both players compromise, the buyer would prefer

a higher α since it would mean that the final price will be closer to her own

proposal pb. Similarly, the seller would prefer a lower α since it would mean

that the final price will be closer to her own proposal ps. Thus, one could

expect that a higher α also in equilibrium leads to prices that are better for

the buyer and worse for the seller.

To understand those comparative statics results, consider the fundamental

trade-off players face in the studied game. For the sake of concreteness, con-

sider a seller who is thinking whether to propose a higher price ps. For the

seller the advantage of proposing a higher price is that if the buyer finds that

price still acceptable and decides to compromise, trade will be conducted at

a higher price. Potentially, however, there is a second, negative effect of a

higher price. The buyer may be more likely to insist on her own price when

14



facing a proposal by the seller that is less attractive for her. A buyer who

insists on her own price is always bad news for the seller, since it means that

either trade is more likely to be conducted at the lower price proposed by the

buyer (if the seller was planning to compromise) or there is a higher probabil-

ity of disagreement and no trade happening at all (if the seller was planning

to insist).

Given that trade-off, it is easy to give a crude intuition for our comparative

statics results. A higher commitment probability εs is good for the seller since

it makes the other player less likely to insist if the seller attempts to commit to

a higher price, reducing the negative effect of a high price in the above trade-off

and therefore allowing the seller to propose higher prices. Similarly, a higher

commitment probability εb for the buyer means that the seller will be less

likely to insist if the buyer attempts to commit to a lower price and therefore

allows the buyer to ask for lower prices more aggressively. In consequence, it

is intuitive that a higher εs leads to higher prices and a lower εb leads to lower

prices.

Why is a higher α good for the seller in the sense that it leads to higher

equilibrium prices? Consider again the fundamental trade-off described above.

A higher α means that if the seller asks for a higher price, the buyer is less

likely to insist since the compromise outcome is more attractive for her. Thus

the second, negative effect of a price increase will be smaller if α is large

than if α is small. As a result, the seller should be able to choose prices

more aggressively. Similarly, a buyer who considers proposing a lower price,

will be more worried that the seller will insist on her own price if α is high

and therefore the compromise outcome is less attractive for the seller. This

intuition suggests that the seller will be more aggressive when considering a

higher price and the buyer will be less agressive when considering asking for a
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lower price. As a result of both of those effects one would expect equilibrium

prices to be higher if α is higher which is what our theorem tells us.

Remark 3. It is worth pointing out that the weights α and 1−α in our model

play a very different role than the weights in the partitioning rule of Carlsson

(1991). Indeed, the weights in Carlsson determine how surplus is divided when

prices are compatible. In our model, we allowed that whenever pb < ps trade

is conducted at an arbitrary price between pb and ps - what the price was had

no effect on our results. So, in contrast to Carlsson (1991), in our model it

is irrelevant how surplus is divided when prices are compatible. The weights

α and 1 − α capture how surplus is divided when players make incompatible

initial demands but then decide to compromise.

Remark 4. In this subsection we saw that each player’s share of surplus is

increasing in her commitment probability εi. This means that, if a player i

could choose a commitment device before the entire game is played and her

opponent would observe this choice, the player would prefer a commitment

device with a higher commitment probability εi. However, this does not im-

mediately imply that the agent would make the same choice when allowed to

choose between devices at stage 1 since, in this case, her opponent would not

observe her choice before choosing her own price.

Nevertheless, it is possible to show that, if we modify our model by (i) letting

agents in stage 1 choose any commitment probability that is smaller equal to

the numbers εi from our model and (ii) assume that this choice is observed

in stage 2, then under the limit considered in Theorem 1, in equilibrium each

player i chooses a commitment probability equal to εi and equilibria have the

exact structure and convergence properties described in Theorem 1.
16



2. General Model

The commitment device of each player i in the basic model had the property

that, whenever the player attempted commitmemt, with probability εi she was

fully committed and with the remaining probability 1−εi she was not commit-

ted at all. This corresponds to a situation where a player’s cost of breaking

her commitment takes only two values: it is prohibitive with probability εi

and zero with probability 1− εi. In this section we will extend the analysis by

allowing costs of breaking commitment to take more than two values.

Given the results for the basic model, the analysis in this section serves

not only as a robustness check, it may also offer a possible explanation why

in reality certain forms of precommitments may be observed more often than

others.

2.1. Extended Framework. Consider the following modification of the ba-

sic model from section 1. If an agent i attempts to commit in stage 1 and the

proposed prices are incompatible in the sense that pb < ps then, as before, with

probability 1− εi she is uncommitted and free to choose to insist or compro-

mise without any penalties. Now, however, when her commitment attempt is

successful with the complimentary probability εi, the agent is no longer forced

to insist. Instead, in that case, a cost ci > 0 is randomly drawn19 according to

a cumulative distribution function Fi with a finite support that contains high

enough cost values.20 Whenever the player breaks her commitment and agrees

to compromise she has to incur the cost ci. Formally, the payoffs of a player i

are then given by the following table

19The draws for both players are independent.
20Formally, Fi(maxp∈[p,p̄] vi(p)) < 1. The assumption that Fi(maxp∈[p,p̄] vi(p)) < 1 simply
means that there is a positive probability of costs that are prohibitive in the sense that the
player will insist no matter what.
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“insist” “compromise”

“insist” 0 vi(pi)

“compromise” vi(pj)− ci vi(pcomp)− ci

where rows correspond to actions of player i, columns correspond to actions of

the other player j, and pcomp is again the compromise price given by pcomp =

α · pb + (1− α) · ps.

2.2. Equilibrium Characterization. Assume again εi = ki · ε, where ki for

each player i is fixed.

Theorem 2. There exists ε̄ > 0 such that for ε ∈ (0, ε̄) the following is true.

All equilibria have one of the following three structures:

(i) Both players attempt to commit, pb < ps, on the equilibrium path both

players are indifferent between compromising and insisting when uncom-

mitted, and compromise on the equilibrium path if and only if uncommit-

ted. As ε → 0, the prices proposed in those equilibria converge to the

unique price pNBS maximizing vb(p)
kb
α · vs(p)

ks
1−α .

(ii) Only the buyer attempts to commit, pb < ps, on the equilibrium path the

buyer always insists and the seller always compromises. As ε → 0, the

prices proposed in those equilibria converge to p̄.

(iii) Only the seller attempts to commit, pb < ps, on the equilibrium path the

seller always insists and the buyer always compromises. As ε → 0, the

prices proposed in those equilibria converge to p.

Moreover, equilibria with the structure described in (i) exist.

Proof. See Appendix. �

Note that while the theorem tells us that equilibria of type (i) always exist,

equilibria of type (ii) and (iii) need not, as we have seen in the special case

covered in Theorem 1. Even in cases where equilibria of the type (ii) or
18



(iii) do exist, there are a number of reasons why they could be perceived as

not appealing. Imagine, for example, that there are some infinitesimal costs

of going through the haggling process that occurs in stage 2 whenever players

propose different prices. To capture this formally, assume that the agents have

lexicographic preferences: they choose their strategy to maximize payoffs (as

defined before) but, if they have several strategies yielding the same payoffs,

they choose one that minimizes the probability of going through the haggling

process.21 Since players still maximize payoffs, assuming such preferences leads

to a refinement of the equilibrium set. From the proof of Theorem 2 – see

remark 5 in the appendix – it is clear that equilibria of type (i) constructed in

that proof will survive the refinement. On the other hand, equilibria of type (ii)

and (iii) will not survive since the player who does not attempt commitment

would prefer to propose the price proposed by her opponent in equilibrium.

The theorem, therefore, suggests that if players have access to more general

commitment devices, then what matters in terms of bargaining power is how

often players achieve partial commitment (in the sense that they face some

positive costs of breaking their commitment), while higher costs often yield no

additional benefit.

This last observation has an interesting implication. If it is the case that

it is harder to gain access to commitment devices with larger costs ci (or

there is a chance of an exogenous event that will force the player to break

her commitment and suffer those costs), then we should expect players to use

commitment devices where the costs of breaking the commitment are usually

not that high.

21Such preferences could be due to a tiny delay whenever players go through the haggling
process or a tiny chance of miscommunication during the haggling.
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3. Sketch of the Proof of Theorem 1

Logically, the statement of Theorem 1 can be divided into three parts: (i)

equilibria of the described form exist, (ii) in those equilibria prices converge

to the asymmetric Nash bargaining solution as ε goes to zero, and (iii) any

equilibrium has the described form for small ε.

A formal and detailed proof of Theorem 1 is in the appendix. In the re-

mainder of this section we will quickly and somewhat informally sketch the

main ideas behind the proof. In the following we will assume that players are

identical in terms of commitment and haggling power, i.e. εb = εs (we will

therefore drop the subscript) and α = 1
2
.

Note first that if both players attempt to commit and are indifferent between

compromising and insisting on the equilibrium path, then the proposed pair

of prices pb and ps has to satisfy the system of equations

(1− ε) · vs(ps) = ε · vs(pb) + (1− ε) · vs(
pb + ps

2
)

(1− ε) · vb(pb) = ε · vb(ps) + (1− ε) · vb(
pb + ps

2
).

To prove existence of the equilibria described in the theorem, we first use

Brouwer’s fixed point theorem to show that this system has a solution (Lemma

1) and then explicitly construct a strategy profile that has the structure de-

scribed in the theorem and is an equilibrium. This strategy profile has the

property that if the buyer deviates to a lower price or the seller deviates to a

higher price than in stage 2, the player who deviated will compromise whenever

uncommitted and the other player will always insist. (This can be done since,

for the prices proposed in our equilibrium candidate, both players were exactly

indifferent between insisting and compromising if the other player compromises

whenever uncommitted.)
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To see why the convergence statement in the theorem holds, note that

(1− ε) · vb(pb) = ε · vb(ps) + (1− ε) · vb(
pb + ps

2
)

implies that |pb − ps| → 0 as ε → 0. Indeed, imagine there is a sub-sequence

such that pb converges to some p∗b and ps converges to some p∗s as ε goes to

zero where p∗b 6= p∗s. Then the above equality in the limit yields

vb(p
∗
b) = vb(

p∗b + p∗s
2

)

which, given the fact that vb is strictly increasing implies p∗b = p∗s.

To show that both prices converge to pNBS it is enough to show that when-

ever pi, pj converge to some price p∗ it must be that p∗ = pNBS.22 However,

using the fact that

vi(
pi + pj

2
)− vi(pi) ≈ v′(pi) ·

pj − pi
2

for small ε since then |pb − ps| is small, we get that

ε

1− ε
≈ v′i(pi)

vi(pi)
· pj − pi

2
.

Since this holds for both players, we obtain that in the limit

−v
′
i(p
∗)

vi(p∗)
=
v′j(p

∗)

vj(p∗)
,

which is the first order condition for the maximization problem defining the

symmetric NBS.

Before we sketch the arguments used to show that any equilibrium has the

structure described in the theorem, let us make a simple preliminary observa-

tion.

22The fact that this is sufficient follows from the fact that [p, p̄] is compact.
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Imagine the strategy of the buyer is to propose some price pb < p̄ (either

attempting to commit or not). What happens if the seller attempts to commit

to a price p′s just slightly above pb? Since the buyer knows that the seller will

insist with probability ε, she will compromise even if she expects the seller

to compromise whenever not committed. It is straightforward to check that

compromising is strictly dominant as long as

(1− ε) · vb(pb) < ε · vb(pb) + (1− ε) · vb(
pb + ps

2
).

Note that this means that, as long as prices are bounded away from p̄, the

buyer will compromise if the seller attempts to commit to a price p′s slightly

higher than pb, where ∆p = p′s − pb can be chosen to be of the same order

of magnitude as the commitment probability ε - as long as all the proposed

prices are bounded away from p and p̄.

The argument that any equilibrium has the structure described in the theo-

rem consists of a number of steps, which we will sketch under the simplifying

assumption that all the proposed prices are bounded away from p and p̄:

(i) For sufficiently small ε, it cannot be that pb = ps. This is formally proven

in Lemma 6. The idea is to consider a deviation where the seller slightly

increases the price so that it is still dominant for the buyer to compromise

if uncommitted and then have the seller compromise herself in stage 2.

The advantage of doing so is that trade will often be conducted at a

better price for the seller, an advantage which is of order of magnitude

∆p, i.e. the order of magnitude of ε. The disadvantage of doing this is

that both players will be committed at the same time with probability ε2

in which case they will both insist which will result in low payoffs. Since

the disadvantages are of order of magnitude ε2 and the advantages are of

order of magnitude ε the advantages will dominate for small ε.
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(ii) There are no equilibria in which pb < ps and neither players attempts

commitment. This is formally proven in Lemma 7. If neither player

attempts commitment, there are two potential stage 2 equilibria: buyer

insists and seller compromises or buyer compromises and seller insists.

So in the end, trade is conducted with probability 1 at price pb or with

probability 1 at price ps. If, for example, trade is conducted at pb, the

seller would benefit from attempting to commit to a price slightly below

pb and then insisting.

(iii) For sufficiently small ε, there are no equilibria in which pb < ps, one player

attempts commitment, and the other does not. This is formally proven

in Lemma 8. Imagine only the buyer attempts commitment. Note that

on the equilibrium path the seller compromises. (If seller would insist,

it must be that the buyer compromises. This means trade occurs at ps.

But then the buyer would prefer to attempt to a price slightly below

ps.) Since the seller compromises (and did not attempt commitment) the

buyer will insist given that pb > ps. This means trade always occurs at

pb. Consider a deviation as in the second step.

(iv) In any equilibrium pb < ps, both players attempt commitment, and they

both compromise on the equilibrium path. Given the previous steps we

only need to show that both players compromise on the equilibrium path.

To see that this is the case, assume, for example, that the seller insists

on the equilibrium path. Then the buyer would be better off just offering

the price ps.

(v) Since both players compromise on the equilibrium path, in stage 2 the

payoff from compromising must be at least as high as the payoff from

insisting. If one player would not be indifferent between compromising

and insisting on the equilibrium path, the other player could just propose

a price that is slightly better for her (slightly higher for the seller and
23



slightly lower for the buyer) and be sure that the other player will still

compromise whenever uncommitted. Since this would increase the payoff

of the player considering the deviation both players have to be indifferent

between compromising and insisting on the equilibrium path.

This completes the sketch of the proof that the equilibria have the form de-

scribed in the theorem. Let us emphasize once more that in the above sketch

we ignored the fact that proposed prices could be close or equal to p and p̄,

which leads to complications and more subtle comparisons of the advantages

and disadvantages of the considered deviations. This is also the reason why

step (iii) does not fully generalize if we consider the extended framework from

section 2 and, in that framework, there may exist equilibria in which one player

attempts commitment and the other does not.

4. Conclusion

In this paper we propose an alternative non-cooperative foundation for the

Nash bargaining solution in a model in which each player can attempt to

precommit to his or her proposal but the precommitment abilities of both

players are extremely weak. In Theorem 1 we then showed that, in all equilib-

ria, players will initially attempt to commit to slightly incompatible proposals

and later seek a compromise whenever not actually committed. Moreover, we

proved that as player’s ability to commit disappears, outcomes converge to

those selected by the asymmetric Nash bargaining solution. Finally, we also

derived some comparative statics results, in particular, showed that a player’s

bargaining power increases with the quality of his commitment device and de-

creases with his haggling ability. In Theorem 2 we then extended our analysis

by considering more general commitment devices to see what features of a

commitment device do affect bargaining power and which do not.
24



Following Nash (1950), a number of non-cooperative foundations for the

Nash bargaining solution have been proposed, most notably perturbations of

the Nash demand game (starting with the “smoothed” Nash demand game

considered in Nash (1953)) and models building on Rubinstein’s (1982) alter-

nating offer game. We think that one of the reasons why the “Nash Program” is

interesting is that it allows us to gain a better sense of the different factors that

can influence bargaining outcomes and thereby gives us a better understanding

of the “weights” in the asymmetric Nash bargaining solution and how they re-

late to the various trade-offs players may face when bargaining. For example,

Rubinstein (1982) sheds light on how bargaining outcomes may be related to

opportunity costs of waiting (either due to impatience or an exogenous chance

of termination). We hope that, similarly, our results shed more light on how

access to low-quality precommitment devices may affect bargaining outcomes.

Mathematical Appendix

Notation. To be able to fully utilize the symmetry between buyers and sellers,

it is convenient to define αb = α and αs = (1 − α). This means that the

compromise price at which trade is conducted whenever both players propose

prices pb and ps such that pb < ps and then both compromise in stage 2 is

given by

pcomp = αb · pb + αs · ps.

Trivially, the above definition implies that αb, αs ∈ (0, 1), αb = 1 − αs, and

αs = 1− αb.

Proof of Theorem 1. The condition from the theorem that equilibrium

prices pb and ps have the property that on the equilibrium path both players

are indifferent between compromising and insisting in stage 2 means that for
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the seller:

(1) (1− εb) · vs(ps) = εb · vs(pb) + (1− εb) · vs(αb · pb + αs · ps)

and for the buyer:

(2) (1− εs) · vb(pb) = εs · vb(ps) + (1− εs) · vb(αb · pb + αs · ps).

We first note that for any εs = ks · ε and εb = kb · ε there is a pair of prices ps

and pb solving the above system of equations.

Lemma 1. For any ε ∈ (0, 1), there exists a pair of prices ps and pb with

pb < ps such that (1) and (2) both hold.

Proof. Note first that if pb ≥ ps then the fact that vs is strictly increasing

implies that the right hand side in (1) is strictly larger than the left hand side.

Thus, any pair of prices that solves the considered system of equations must

have the property that pb < ps.

Note next that, for any fixed ps ∈ [p, p̄], there is a unique pb that solves

equation (1). Indeed, consider the right hand side of (1). The expression on

the right hand side of (1) is clearly continuous and strictly increasing as a

function of pb, is strictly smaller than the left hand side for pb equal to p, and

strictly larger than the left hand side for pb equal to ps. Thus, for any ps, there

exists a unique pb ∈ (p, ps) such that (1) holds with equality.

For any ps ∈ [p, p̄] let us denote the unique pb that solves (1) by p̃b(ps).

Note next that the function p̃b : [p, p̄]→ [p, p̄] is continuous. Indeed, to prove

continuity we need to show that for any sequence pns ∈ [p, p̄] converging to

some ps ∈ [p, p̄] it is the case that p̃b(pns ) converges to p̃b(ps). Assume that

this is not the case. Since the interval [p, p̄] is clearly compact, there exists a

sub-sequence pnks such that p̃b(pnks ) converges to some pb 6= p̃b(ps). However,
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the definition of p̃b implies that

(1− εb) · vs(pnks ) = εb · vs(p̃b(pnks )) + (1− εb) · vs(αb · p̃b(pnks ) + αs · pnks )

and therefore - since vb and vs are both continuous - it must be that in the

limit

(1− εb) · vs(ps) = εb · vs(pb) + (1− εb) · vs(αb · pb + αs · ps).

Since we have already shown above that for any ps ∈ [p, p̄] there is a unique

pb that solves equation (1) the last equation implies that pb = p̃b(ps). We

obtained a contradiction. Thus, p̃b must be continuous.

An analogous reasoning shows that for any pb ∈ [p, p̄] there is a unique ps

that solves equation (2) and the function p̃s : [p, p̄] → [p, p̄] which for each

pb ∈ [p, p̄] returns the unique ps that solves equation (2) is continuous.

Let F : [p, p̄]2 → [p, p̄]2 be given by F (ps, pb) = (p̃s(pb), p̃b(ps)). Clearly,

the continuity of the functions p̃s and p̃b implies that F is continuous as well.

Thus, by Brouwer’s fixed point theorem, there exists a pair (ps, pb) such that

F (ps, pb) = (ps, pb). Note that F (ps, pb) = (ps, pb) means that for those ps and

pb, equations (1) and (2) both hold. �

Lemma 2. As ε → 0, any pair of prices ps and pb satisfying (1) and (2) for

εb = kb · ε and εs = ks · ε both converge to the price pNBS maximizing

vb(p)
kb
αb · vs(p)

ks
αs

over the set of all prices p ∈ [p, p̄].

Proof. As a preliminary observation note first that the price pNBS maximizing

vb(p)
kb
αb · vs(p)

ks
αs
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over p ∈ [p, p̄] is also the unique price p ∈ [p, p̄] for which the first order

condition

(3)
kb
αb
· v
′
b(p)

vb(p)
+
ks
αs
· v
′
s(p)

vs(p)
= 0

holds.23

Imagine now, that we have a sequence of positive probabilities εn converging

to zero and a corresponding sequence of prices pnb and pns satisfying equations

(1) and (2). We want to show that it must be the case that both pnb and pns
converge to pNBS. Assume that is not the case. Choosing a subsequence if

necessary, we can assume that pnb converges to some limn→∞ p
n
b , pns converges

to some limn→∞ p
n
b , and at least one of those limits is not equal to pNBS.

Taking the limit εn → 0 in equation (2) and using the fact that vb is a

continuous function we obtain

vb( lim
k→∞

pnb ) = vb(αb · lim
k→∞

pnb + αs · lim
k→∞

pns ).

Since vb was assumed to be strictly increasing this immediately implies that

lim
k→∞

pnb = αb · lim
k→∞

pnb + αs · lim
k→∞

pns

but since αb + αs = 1 this immediately implies

lim
k→∞

pnb = lim
k→∞

pns .

23Note that since for p = p and p = p̄ the objective function is equal to zero, the maximum
must be an interior one, i.e. pNBS ∈ (p, p̄). Since a monotone transformation will not

affect the location of the maximum, pNBS must also be an interior maximum of ln(vb(p)
kb
αb ·

vs(p)
ks
αs ) = kb

αb
· ln vb(p) + ks

αs
· ln vs(p). Calculating the first order condition, we see that

as an interior maximum pNBS must satisfy kb
αb
· v

′
b(p

NBS)
vb(pNBS)

+ ks
αs
· v

′
s(p

NBS)
vs(pNBS)

= 0. Since kb
αb
·

ln vb(p) + ks
αs
· ln vs(p) is clearly concave in p as the sum of two concave functions, there is

only one point satisfying the first order condition. (The functions ln vs(p) and ln vb(p) are
concave since the ln function is increasing and concave and vb and vs are concave.)
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Let us denote the value to which both pnb and pns converge by p∗. To obtain the

desired contradiction and thereby complete the proof, it is therefore enough

to show that p∗ = pNBS.

Note that, by the mean value theorem, there exist ζns ∈ [αb · pnb +αs · pns , pns ]

such that

v′s(ζ
n
s ) =

vs(p
n
s )− vs(αb · pnb + αs · pns )

pns − (αb · pnb + αs · pns )

and ζkb ∈ [pnb , αb · pnb + αs · pns ] such that

v′b(ζ
n
b ) =

vb(αb · pnb + αs · pns )− vb(pnb )

αb · pnb + αs · pns − pnb
.

Rearranging terms, we see that the last two equations are equivalent to

vs(αb · pnb + αs · pns ) = vs(p
n
s )− v′s(ζns ) · αb · (pns − pnb )

vb(αb · pnb + αs · pns ) = vb(p
n
b ) + v′b(ζ

n
b ) · αs · (pns − pnb ).

Plugging in from those two equations into (1) and (2) and rearranging terms

we obtain:

εnb · vs(pnb ) = (1− εnb ) · v′s(ζns ) · αb · (pns − pnb )

εns · vb(pns ) = −(1− εns ) · v′b(ζnb ) · αs · (pns − pnb ).

Together the last two equalities imply that:

εnb · vs(pnb )

εns · vb(pns )
= −(1− εnb ) · v′s(ζns ) · αb

(1− εns ) · v′b(ζnb ) · αs
.

Recalling now that pnb ≤ ζnb ≤ ζns ≤ pns and both pnb and pns converge to the

same value p∗ as n→∞ and that εnb
εns

converge to kb
ks

as n→∞ we obtain that

in the limit
kb
ks
· vs(p

∗)

vb(p∗)
= −v

′
s(p
∗)

v′b(p
∗)
· αb
αs
.
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Rearranging terms, we see that the last equation means that p∗ satisfies (3).

Given our preliminary observation at the beginning of this proof, this implies

that p∗ = pNBS. �

Consider a pair of prices satisfying equations (1) and (2). We want to

construct an equilibrium where whenever the seller deviates and attempts to

commit to a higher price p′s, in stage 2 the buyer will insist and the seller

compromise (whenever uncommitted). Note that, since vb is strictly decreasing

in prices, equation (2) immediately implies that for p′s > ps:

(1− εs) · vb(pb) > εs · vb(p′s) + (1− εs) · vb(αb · pb + αs · p′s).

That however, means that the buyer would prefer to insist if she would know

that the seller will compromise whenever uncommitted and, therefore, that

there will indeed be an equilibrium of the stage 2 game where the buyer insists

and the seller compromises.

What if the seller deviates and attempts to commit to a price p′s < p′s?

We want to construct an equilibrium where, after such a deviation, in stage

2 both players compromise whenever uncommitted. (This, of course, implies

that offering a lower price will never be appealing for the seller.) The next

lemma shows that this can be done, if ε is small enough.

Lemma 3. For any sufficiently small ε, any pair of prices ps and pb satisfying

equations (1) and (2) has the following property.

For for any p′b ∈ [pb, ps] it is the case that:

(1− εb) · vs(ps) < εb · vs(p′b) + (1− εb) · vs(αb · p′b + αs · ps)

(1− εs) · vb(p′b) < εs · vb(ps) + (1− εs) · vb(αb · p′b + αs · ps)
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and for any p′s ∈ [pb, ps] it is the case that:

(1− εs) · vb(pb) < εs · vb(p′s) + (1− εs) · vb(αb · pb + αs · p′s)

(1− εb) · vs(p′s) < εb · vs(pb) + (1− εb) · vs(αb · pb + αs · p′s).

Proof. Note that, since vb is strictly decreasing in prices, equation (2) imme-

diately implies that for p′b ∈ [pb, ps] the first inequality from the lemma holds

for any ε.

Since vb is continuously differentiable, v′b < 0 on [p, p̄], and αb < 1, Lemma

2 implies that, for sufficiently small ε, it will be the case that, for any p′b ∈

[pb, ps],

|v′b(p′b)| > αb · |v′b(αb · p′b + αs · ps)|.

The second inequality in the lemma now follows immediately from the above

bound and equation (1).

We have proven that, for sufficiently small ε, the first two inequalities from

the lemma have to hold for p′b ∈ [pb, ps]. The proof that the last two inequalities

hold for p′s ∈ [pb, ps] is analogous. �

We will now prove the existence part of Theorem 1. Let ε be small enough

so that Lemma 3 can be applied and let p∗s and p∗b be a pair of prices such

that equations (1) and (2) both hold for this ε. Now, consider the following

strategy profile. In stage 1 the seller proposes p∗s, the buyer proposes p∗b and

both attempt to commit. Behavior in stage 2 is as follows:

• After any history with pb < ps, where neither player attempted to

commit, the buyer insists and the seller compromises.

• After any history with pb < ps, where one player attempted to commit

and the other did not, the player who attempted to commit insists and

the other compromises.
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• After any history with pb < ps, where both players attempted to com-

mit and pb = p∗b , behavior in stage 2 is as follows:

– both players compromise if ps ≤ p∗s

– the buyer insists and the seller compromises if ps > p∗s.

• After any history with pb < ps, where both players attempted to com-

mit and ps = p∗s, behavior in stage 2 is as follows:

– both players compromise if pb ≥ p∗b

– the seller insists and the buyer compromises if pb < p∗s.

• After any other history behavior in stage 2 is as follows:

– if it is the case that for the seller

(1− εb) · vs(ps) ≤ εb · vs(pb) + (1− εb) · vs(αb · pb + αs · ps)

and for the buyer

(1− εs) · vb(pb) ≤ εs · vb(ps) + (1− εs) · vb(αb · pb + αs · ps)

then both players compromise.

– if one of the last two inequalities does not hold then one player

insists and the other player compromises where the insisting player

is the one for which the above inequality did not hold.24

It is straightforward to verify that the above strategy profile is indeed an

equilibrium. Since perhaps the most non-obvious part in this verification is

that neither player i has a beneficial deviation in which she simply proposes

the price pj proposed in equilibrium by her opponent, let us check this property

for the seller.25

Note that, since the prices pb and ps in the constructed strategy profile

satisfy quations (1) and (2), the seller will be indifferent between insisting and

compromising in stage 2 if both players follow the strategy profile. Therefore,

the payoff of the seller if he follows the strategy profile is the same as if he

24If both inequalities do not hold, just select one of the two equilibria.
25The calculation for the buyer is analogous.
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would alsways insist in stage 2, i.e. equal to (1− εb) · vs(ps). If, on the other

hand, the seller would deviate and simply propose a price equal to pb, her

payoff clearly would be vs(pb). Thus, to show that the considered deviation is

not profitable, it is enough to show that

(4) (1− εb) · vs(ps) ≥ vs(pb).

Now, note that equation (1) together with the concavity of vs implies that

(1− εb) · vs(ps) ≥ εb · vs(pb) + (1− εb) · (αb · vs(pb) + αs · vs(ps))

or, equivalently,

(1− εb) · (1− αs) · vs(ps) ≥ (εb + αb · (1− εb)) · vs(pb).

Dividing both sides by εb+αb · (1−εb) and plugging in αb for 1−αs we obtain

(1− εb) ·
αb

εb + αb · (1− εb)
· vs(ps) ≥ vs(pb).

Finally, using αb < εb + αb · (1− εb) we see that (4) actually holds with strict

inequality and therefore the considered deviation is not profitable.

We showed that equilibria having the structure described in the theorem

exist and for all equilibria with that structure it is the case that the prices

pb and ps converge to the generalized Nash bargaining solution as ε becomes

small.

Remark 5. Note also that the constructed equilibrium has the property that,

for any player, any deviation in stage 1 by that player results in a strictly lower

payoff.

All that remains is for us to show that, for small enough ε, all equilibria

must have the properties described in the theorem.
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Lemma 4. Consider any history in which player i proposes some pi (either

attempting commitment or not) and the other player j attempts to commit to

a pj ∈ (p, p̄) such that

vi(pi)− vi(pj) <
εj

αj + εj · αi
· vi(pi)

and pb ≤ ps.

In any equilibrium, after such a history, player i will compromise whenever

uncommitted.

Proof. Clearly, the inequality in the lemma is equivalent to

vi(pi) ·
αj + εj · αi − εj
αj + εj · αi

< vi(pj).

Plugging in 1−αi for αj in the numerator and 1−αj for αi in the denominator

and rearranging terms yields

vi(pi) ·
(1− εj) · (1− αi)
εj + αj · (1− εj)

< vi(pj).

Now, multiplying both sides with εj + αj · (1− εj) and rearranging terms we

obtain

(1− εj) · vi(pi) < εj · vi(pj) + (1− εj) · (αi · vi(pi) + αj · vi(pj)).

Note that since vi is concave it must be that vi(αi · pi + αj · pj) ≥ αi · vi(pi) +

αj · vi(pj) and therefore the last inequality implies that

(1− εj) · vi(pi) < εj · vi(pj) + (1− εj) · vi(αi · pi + αj · pj).

This, however, means that if player j compromises whenever uncommitted,

player i will strictly prefer to compromise. Since pj ∈ (p, p̄) player i also

strictly prefers to compromise when player j always insists. Thus, after such

a history, compromising always yields strictly higher payoffs for player i than
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insisting and, therefore, player i must be compromising after that history in

equilibrium. �

As an immediate corollary we get the following result.

Lemma 5. In any equilibrium, the expected payoff of each player is positive.

Proof. We will show that the expected equilibrium payoff of the buyer is pos-

itive. The argument for the seller is analogous.

Note that if ps < p̄ the buyer’s payoff must be positive since she could

deviate and propose the price ps herself thereby guaranteeing herself a payoff

of vb(ps), but vb(ps) > 0 since ps < p̄.

However, if ps = p̄, then, by Lemma 4, the buyer could achieve a positive

payoff by proposing a price slightly below ps. �

Lemma 6. Fix kb, ks > 0. For sufficiently small ε , in any equilibrium players

propose different prices and the proposed prices satisfy pb > ps.

Proof. Note first that, for any ε > 0, it cannot be the case that pb < ps.

Indeed, if pb < ps, either player would be better off proposing the opponents

price instead of her own.

Thus it must be the case that pb ≥ ps. To prove the lemma, we just need

to show that, for sufficiently small ε there are no equilibria such that pb = ps.

Assume the last statement is not true. Then, there exists a sequence

(εn1 , ε
n
2 ) = εn · (ks, kb) such that εn converges to zero and a corresponding se-

quence of equilibria in which both players propose the same price pn. Choosing

a sub-sequence if necessary, we can assume without loss of generality that pn

converges to some p∗ ∈ [p, p̄].

Consider first the case where p∗ 6= p̄. For any n, define p̂ns by

p̂ns = pn − 1

2

εns · vb(p∗)
v′b(p

∗)
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and note that p̂ns ∈ (pn, p̄) for large n.26

By the mean value theorem, for any n, there exists ζn ∈ [pn, p̂ns ] such that

vb(p
n)− vb(p̂ns ) = v′b(ζ

n) · (pn − p̂ns ).

Since, by construction, p̂ns − pn = −1
2
εns ·vb(p∗)
v′b(p

∗)
, we obtain

vb(p
n)− vb(p̂ns ) = v′b(ζ

n) · 1

2

εns · vb(p∗)
v′b(p

∗)

or, equivalently,
vb(p

n)− vb(p̂ns )

εns
= v′b(ζ

n) · 1

2
· vb(p

∗)

v′b(p
∗)
.

Note that since ζn ∈ [pn, p̂ns ] and both pn and p̂ns converges to p∗ the right hand

side of the last equality converges to 1
2
· vb(p∗). Since p∗ < p̄ we know that

vb(p
∗) > 0 and, therefore, vb(p∗) > 1

2
· vb(p∗). Thus, for sufficiently large n it

will be the case that
vb(p

n)− vb(p̂ns )

εns
< vb(p

∗)

or, equivalently,

vb(p
n)− vb(p̂ns ) < εns · vi(pi).

Thus, for all sufficiently large n, we can apply Lemma 4 to conclude that the

buyer will compromise in stage 2 if she proposes pn and the seller attempts to

commit to p̂ns .
27

Consider now, for all n that are sufficiently large so that Lemma 4 can

be applied, a deviation where the seller instead of proposing pn proposes p̂ns
and after a proposal of the buyer of pn compromises in stage 2 whenever not

committed. Note that, for all such n, it cannot be the case that the buyer

does not attempt to commit in stage 1. Indeed, if the buyer proposed pn

26p̂ns > pn follows from v′b < 0 and vb(p
∗) > 0′, where vb(p∗) > 0′ in turn follows from

p∗ < p̄. p̂ns < p̄ for large n follows from pn → p∗, p∗ < p̄ and εns → 0.
27The inequality required in Lemma 4 follows from the last inequality since αj + εj ·αi < 1,
where αj + εj · αi < 1 is a direct consequence of αj = 1− αi and ε ∈ (0, 1).
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without attempting to commit, then the considered deviation would give the

seller payoff of εs · vs(p̂ns ) + (1− εs) · vs(αs · p̂ns +αb · pn) which clearly is bigger

than the equilibrium payoff of vs(pn).28 Thus it must be that, for all such n,

the buyer does attempt to commit. But then the seller’s expected payoff from

the deviation is

Sn = εns ·(1−εnb )·vs(p̂ns )+(1−εns )·εb ·vs(pnb )+(1−εns )·(1−εnb )·vs(αs ·p̂ns +αb ·pnb ).

To obtain a contradiction it is enough to show that Sn−vs(pn)
εns

> 0 for sufficiently

large n, since this would mean that there exists a number n for which the payoff

from the deviation is bigger than the equilibrium payoff. Note, however, that

since p̂ns = pn − 1
2
εns ·vb(p∗)
v′b(p

∗)
the expression Sn−vs(pn)

εns
converges to

−αs ·
v′s(p

∗)

2
· vb(p

∗)

v′b(p
∗)
,

as n goes to infinity. Since vb(p∗) > 029, v′s > 0, and v′b < 0, the last expres-

sion is positive. Of course, if Sn−vs(pn)
εns

converges to a positive number as n

goes to infinity, it must be positive for some sufficiently large n, which is the

contradiction we have been looking for.

The argument for the case p∗ = p̄ is analogous to the above argument (which

included the case p∗ = p) except that an analogous deviation for the buyer is

considered. �

Lemma 7. Fix kb, ks > 0. For sufficiently small ε, there are no equilibria in

which neither player attempts to commit.

Proof. Assume there is a sequence of equilibria in which neither player at-

tempts to commit for a sequence (εns , ε
n
b ) such that both εns and εnb converge

to zero. Based on Lemma 6 we know that for sufficiently large n it is the case
28This follows trivially from p̂ns > pn and the fact that vs is increasing.
29This follows from the fact that p∗ was assumed to be strictly smaller than p̄
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that the equilibrium prices satisfy pnb < pns . Without loss of generality assume

pnb < pns for all n.30

Note next that for any n, it cannot be that on the equilibrium path both

players insist. Indeed, if that was the case, both players would receive a

payoff of zero which would contradict Lemma 5. Also, it cannot be that on

the equilibrium path both players compromise. Indeed, if that was the case,

then pnb < pns implies that either player would be better off insisting instead.

Therefore, it must be the case that on the equilibrium path exactly one player

insists and one player compromises. This means that for each n either trade

occurs with probability 1 at the price pb or trade occurs with probability 1 at

the price ps. Let pn be the price at which trade occurs.

Consider a fixed n. For the sake of concreteness assume that it is the

buyer who proposes pn; the argument for the case where it is the seller is

analogous. Since, by Lemma 5, payoffs in equilibrium have to be positive for

both players, pn < p̄. Then, however, Lemma 4 implies that the seller could

achieve a higher payoff by attempting to commit to a price p′s slightly above

the price pn proposed by the seller. �

Lemma 8. Fix kb, ks > 0. For sufficiently small ε, in any equilibrium both

players attempt to commit.

Proof. By the last lemma, for sufficiently small ε, there are no equilibria in

which neither player attempts to commit. It therefore remains to be shown,

that for sufficiently small ε, there are no equilibria in which exactly one player

does not attempt to commit. We will show that, for sufficiently small ε, there

are no equilibria in which the buyer attempts to commit and the seller does

not. The argument that there are no equilibria in which the seller attempts

to commit and the buyer does not is analogous.
30If that is not the case, just choose an appropriate sub-sequence.
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Assume there is a sequence of such equilibria for a sequence (εns , ε
n
b ) =

εn · (ks, kb) where εn converges to zero. By Lemma 6 we can without loss

of generality assume that the prices for the corresponding equilibria satisfy

pns > pnb .

Note first that, for any n, it has to be that on the equilibrium path the

seller compromises. Indeed, assume this is not true, i.e. assume that the

seller insists. Since by Lemma 5, the equilibrium payoff of the buyer must be

positive, it must be the case that the buyer compromises whenever she is not

committed. That means that with probability 1 − εns trade is conducted at

the price proposed by the seller and with probability εns both players get a

payoff of zero. Now, since by Lemma 5 the expected payoffs of both players

are non-negative, it must be that vb(pns ) > 0. Then, however, the buyer would

be better off off just proposing pns and getting an expected payoff of vb(pns )

instead of an expected payoff of (1− εnb ) · vb(pns ).

Note next that, the fact that the seller compromises on the equilibrium

path implies that the buyer will also insist on the equilibrium path when not

committed. Therefore, trade occurs with probability 1 at price pn = pnb .

Choosing a sub-sequence if necessary we can without loss of generality as-

sume that limn→∞ p
n exists and denote this limit by p∗.

For the case where p∗ < p̄, we can now simply complete the proof by ob-

taining a contradiction using an analogous deviation strategy for the seller as

in the proof of Lemma 6.

However, for the case where p∗ = p̄, we need a more subtle argument. To

derive this argument, let us first understand a bit better how equilibria have

to look like for a fixed n. Note first that, by Lemma 4 it must be that

vs(p
n
s )− vs(pnb ) ≥ εnb

αb + εnb · αs
· vs(pns )
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since otherwise the seller would also compromise if the buyer would propose a

slightly lower price which would mean that such a slightly lower price would

constitute a profitable deviation. Since the function vs is concave it must be

that

vs(p
n
s )− vs(pnb ) ≤ (pns − pnb ) · v′s(pnb ).

Combining the last two inequalities we obtain

(pns − pnb ) · v′s(pnb ) ≥ εnb
αb + εnb · αs

· vs(pns )

or, equivalently,

(5) (pns − pnb ) ≥ εnb
αb + εnb · αs

· vs(p
n
s )

v′s(pnb )
.

Since pns ≤ p̄ and vb(p̄) = 0 the above bound on pns − pnb together with the

concavity of vb yields that

(6) vb(p
n
b ) ≥ −v′b(pnb ) · (pns − pnb ) ≥ −v′b(pns ) · εnb

αb + εnb · αs
· vs(p

n
s )

v′s(pnb )
.

Now, fix a constant γ ∈ (αb, 1) and let

(7) p̃ns = pnb + γ · εns
αs + εns · αb

· εnb
αb + εnb · αs

· vs(p
n
s )

v′s(pnb )
.

Note that, for sufficiently large n, p̃ns ∈ (pnb , p̄). Indeed, p̃ns > pnb follows

immediately from the definition. Inequality (5), on the other hand, implies

that, for sufficiently large n, it must be that p̃ns < pns and, therefore, p̃ns < p̄.31

Next, note that

vb(pb)− vb(p̃ns ) ≤ −v′b(p̃ns ) · (pns − pnb ) ≤

≤ −v′b(p̃ns ) · γ · εns
αs + εns · αb

· εnb
αb + εnb · αs

· vs(p
n
s )

v′s(pnb )
≤

31This follows immediately from equation (7) and inequality (5), given that εns goes to zero
as n→∞.
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≤ v′b(p̃
n
s )

v′b(p
n
b )
· γ · εns

αs + εns · αb
· vb(pnb ).

where the first inequality follows from the concavity of vb, the second from the

definition of p̃ns (equation (7)), and the third from inequality (6).

Finally, note that, since v′b(p̃
n
s )

v′b(p
n
b )

converges to 1 as n goes to infinity and γ < 1,

the above implies that

vb(pb)− vb(p̃ns ) <
εns

αs + εns · αb
· vb(pnb )

for sufficiently large n. Thus, by Lemma 4, for those large n, if the seller

attempts to commit to p̃ns , the buyer will compromise whenever uncommitted.

As a result, if the seller attempts to commit to p̃ns and then compromises in

stage 2, her payoff is equal to

Sn = εns ·(1−εnb )·vs(p̂ns )+(1−εns )·εb ·vs(pnb )+(1−εns )·(1−εnb )·vs(αs ·p̂ns +αb ·pnb ).

Of course, in equilibrium, it must be that the payoff from the above deviation is

lower or equal then the equilibrium payoff of vs(pnb ) and therefore Sn−vs(pnb )
εnb ·εns

≤ 0.

Note, however, that equation (7) immediately implies that

lim
n→∞

Sn − vs(pnb )

εnb · εns
=

= lim
n→∞

(1− εns ) · (1− εnb ) · (vs(αs · p̂ns + αb · pnb )− vs(pnb ))− εnb · εns · vs(pnb )

εnb · εns
=

= αs ·
γ

αs · αb
· vs(p∗)− vs(p∗)

Since γ > αb, this means that limn→∞
Sn−vs(pnb )
εnb ·εns

= ( γ
αb
− 1) · vs(p∗) > 0, which

of course yields the desired contradiction since, as we saw above, it must be

that Sn−vs(pnb )
εnb ·εns

≤ 0 for all n. �

Lemma 9. For sufficiently small ε, in any equilibrium players attempt to

commit to prices pb < ps, are indifferent between compromising and insisting
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on the equilibrium path, and compromise on the equilibrium path whenever

uncommitted.

Proof. The fact that players must attempt to commit to prices pb < ps has

been shown in the previous lemmas. Note that it cannot be that a player

insists whenever uncommitted on the equilibrium path since then the other

player would be better off proposing the price of her opponent.

Thus, both players must compromise on the equilibrium path whenever

uncommitted and, therefore, compromising must yield a payoff that is at least

as high as insisting. The only thing that is left is to show that the payoff

of compromising is not strictly higher than the payoff from insisting. Note,

however, that if that was the case, the other player could increase her payoff

by attempting to commit to a slightly lower or slightly higher price, since her

opponent would still compromise after that.

Thus, on the equilibrium path, each player must be indifferent between

insisting and compromising. �

We have proven that, for ε small enough, all equilibria have the structure

described in Theorem 1. This concludes the proof of Theorem 1.

Proof of Theorem 2. Note first that Lemmas 1 and 2 are still true since

they have nothing do with the considered modification of the basic model.

Lemma 10. Assume ε is sufficiently small. For any stage 1 history where both

players attempted to commit to prices pb < ps, consider the stage 2 sub-game

after that history. If for some player i

(8) (1− εj) · vi(pi) > εj · vi(pj) + (1− εj) · vi(αi · pi + αj · pj)
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where j stands for player i′s opponent, then there exists a pure-strategy Bayesian

equilibrium of the stage 2 game in which player i always insists and player j

insists if and only if she is committed and cj > vj(pi).

Moreover, if (8) does not hold for both players, then there is a pure-strategy

Bayesian equilibrium of the stage 2 game in which both players compromise

whenever uncommitted and insist whenever committed (i.e. when they face

some positive cost of breaking their commitment).

Proof. Let c > 0 be such that all points in the support of Fb and Fs are bigger

than c. Since the supports of Fb and Fs are finite such a c always exists.

Assume ε is small enough so that

(9) ε < min(
c

ks · vb(p)
,

c

kb · vs(p̄)
).

To prove the first part of the lemma, assume that for some player i inequality

(8) holds. Let q = 1− Fi(vi(pj)). Note that (8) implies

(1− q · εj) · vi(pi) > q · εj · vi(pj) + (1− q · εj) · vi(αi · pi + αj · pj).

Indeed, mathematically, this follows trivially from vi(pi) ≥ −vi(pj) + vi(αi ·

pi + αj · pj).32 On a more intuitive level, this corresponds to the observation

that if player i prefers to insist if his opponent insists with a given probability,

she will also prefer to insist if her opponent insists with a lower probability.

Consider the strategy profile in which player i always insists and player j

insists if and only if she is committed and cj > vj(pi). Note that the last

inequality guarantees that player i’s payoff from insisting when she is uncom-

mitted is higher than her payoff from compromising. Since for a committed

type of player i compromising is associated with an additional cost this implies

that insisting is strictly optimal whenever player i is committed.
32vi(pi) ≥ −vi(pj) + vi(αi · pi + αj · pj) in turn follows immediately from vi(pj) ≥ 0 and
pb > ps (the latter implies vi(pi) > vi(αi · pi + αj · pj)).
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Now consider player j. Since player i always insists, compromising is clearly

a best response for the uncommitted type of player j. For the committed

type of player j insisting is strictly better than compromising if and only

if cj > vj(pi). Thus, those types of player j, also do not have a beneficial

deviation.

We have proven the first part of the lemma.

To prove the second part of the lemma, assume that for both players in-

equality (8) does not hold, i.e.

(1− εb) · vs(ps) ≤ εb · vs(pb) + (1− εb) · vs(αb · pb + αs · ps)

and

(1− εs) · vb(pb) ≤ εs · vb(ps) + (1− εs) · vb(αb · pb + αs · ps).

Consider a strategy profile in which the seller and buyer compromise if and

only if they are uncommitted. Note that the above two inequalities imply that

compromising is indeed optimal for the uncommitted types of both buyer and

seller.

To check that committed seller types cannot achieve higher payoffs by com-

promising it is enough to verify that

(1− εb) · vs(ps) ≥ εb · vs(pb) + (1− εb) · vs(αb · pb + αs · ps)− c.

Note, however, that the above inequality is equivalent to

c ≥ εb · vs(pb) + (1− εb) · (vs(αb · pb + αs · ps)− vs(ps)).

This inequality, however, follows from vs(ps) > vs(αb · pb + αs · ps), εb = kb · ε

and inequality (9).

An analogous argument shows the committed buyer types cannot achieve

higher payoffs by compromising. This means the considered strategy profile is

44



a pure-strategy Bayesian equilibrium. We have proven the second part of the

lemma. �

Consider any ε small enough so that Lemma 3 and 10 can both be applied.

Let p∗s and p∗b be a pair of prices such that equations (1) and (2) both hold

and consider the following strategy profile. In stage 1 the seller attempts to

commit to p∗s and the buyer attempts to commit to p∗b . Behavior in stage 2 is

as follows:

• After any history with pb < ps where neither player attempted to com-

mit, the buyer insists and the seller compromises.

• After any history with pb < ps where one player attempted to commit

and the other did not, the player who attempted to commit always

insists and the other compromises.

• After any history where the buyer attempts to commit to p∗b and the

seller attempts to commit to some ps > p∗b use

– the equilibrium from Lemma 10 in which the buyer always insists

if ps > p∗s (and, therefore, inequality (8) from Lemma 10 holds for

the buyer)

– the second equilibrium from Lemma 10 if ps ≤ p∗s (and, therefore,

by Lemma 3, inequality (8) does not hold for both players)

• After any history where the seller attempts to commit to p∗s and the

buyer attempts to commit to some pb < p∗s use

– the equilibrium from Lemma 10 in which the seller always insists

if pb < p∗b (and, therefore, the inequality (8) from Lemma 10 holds

for the seller)

– the second equilibrium from Lemma 10 if pb ∈ [p∗b , p
∗
s] (and, there-

fore, by Lemma 3, inequality (8) does not hold for both players)
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• After any other history with pb < ps where both players attempted

to commit using some commitment devices use any equilibrium from

Lemma 10. Note that since either (8) holds for at least one player or

does not hold for both, it is always the case that at least one of the

three equilibria described in Lemma 10 exists.

It is again straightforward to check that the above strategy profile is indeed a

perfect Bayesian equilibrium of the sub-game starting with stage 1.

To prove the second part of the theorem, define

q = min(1− Fb(vb(p)), 1− Fs(vs(p̄)))

and note that given the assumptions on Fb and Fs it has to be that q > 0.

The proof of the second part of Theorem 2 follows the corresponding part

of the proof of Theorem 1. Let us start by observing that while Lemma 4 does

not hold in the modified framework, the following lemma does hold.

Lemma 11. Consider any history in which player i proposes some pi (either

attempting commitment or not) and the other player j attempts to commit to

a pj ∈ (p, p̄) such that

vi(pi)− vi(pj) <
q · εj

αj + q · εj · αi
· vi(pi)

and pb > ps.

In any equilibrium, after such a history, player i will compromise whenever

uncommitted.

Proof. The proof is essentially identical to the proof of Lemma 4 for the basic

model. �
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Using Lemma 11 instead of Lemma 4 the same arguments as in the proof

of Lemmas 5, 6, 7, and 8 show that those lemmas still hold, the only excep-

tion being the calculation at the end of Lemma 8 used to exclude equilibria

described in Theorem 2 under (ii) and (iii).

We can therefore conlude that, for sufficiently small ε, any equilibrium that

does not have the structure described in (ii) or (iii) has the property that

players attempt to commit to prices pb < ps.

Note now that, in such an equilibrium, it cannot be that one of the players

insists on the equilibrium path when she is uncommitted. Indeed, if a player

would find it optimal to insist when she is uncommitted, she would also find

it optimal to insist when facing an additional cost of ci > 0 whenever she

compromises. However, if one player always insists, then the other player

would have a profitable deviation: instead of attempting to commit to her own

price, she could just propose the same price that the other player is proposing

in equilibrium.33

Thus, both players must compromise on the equilibrium path whenever

uncommitted. Since each player compromises on the equilibrium path when

uncommitted, compromising must yield a payoff that is at least as high as the

payoff from insisting. The only thing that is left for us to show, therefore, is

that, on the equilibrium path, for small ε, uncommitted players do not have

a strict preference for compromising, i.e. the payoff of compromising is not

strictly higher than the payoff from insisting.

33If player i attempts to commit to pi and then always insists, the best expected payoff the
other player can get given that she attempted to commit to some other price is bounded
from above by (1 − q · εj) · vj(pi). Since both players have positive expected payoffs in
equilibrium (see Lemma 5) it must be that vj(pi) > 0. In that case, however, player j would
be strictly better off just proposing pi and receiving an expected payoff of vj(pi).
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To see that this cannot be the case, notice that, for small ε, all the commit-

ted types with ci > 0 have a strict preference for insisting.34 Now, if it was

the case that, for those small enough ε, some player i when uncommitted has

a strict preference for compromising then her opponent could change the price

slightly and increase her profits since if the change was small enough player i

would still compromise whenever committed and insist whenever uncommit-

ted. We can therefore conclude that, for small enough ε on the equilibrium

path uncommitted types are indifferent between compromising and insisting,

uncommitted types compromise, and committed types insist. This completes

our proof that equilibria have the desired structure.
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