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Abstract

The local power of many popular non-cointegration tests has recently been shown to de-

pend on a certain nuisance parameter. Depending on the value of that parameter, different

tests perform best. This paper suggests combination procedures with the aim of providing

meta tests that maintain high power across the range of the nuisance parameter.1 We demon-

strate the local power of the new meta tests to be in general almost as high as that of the most

powerful of the underlying tests. When the underlying tests have similar power, the meta tests

even appear more powerful than the best underlying test. At the same time, our new meta

tests avoid the arbitrary decision which test to use if individual test results conflict. Moreover

it avoids the size distortion inherent in separately applying multiple tests for cointegration to

the same data set. We use the new tests to investigate 286 data sets from published cointegra-

tion studies. There, in one third of all cases individual tests give conflicting results whereas

our meta tests provide an unambiguous test decision.
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conference and seminar participants in Neuchâtel, Bonn, Maastricht, Groningen, Amsterdam, Aachen, Münster

and Magdeburg for valuable comments and suggestions.
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1 Introduction

Cointegration testing is a standard tool in applied economics. Various tests have been suggested,

most of which are implemented in econometric software packages. Well-known examples include

the residual-based test of Engle and Granger (1987), or the system-based tests of Johansen (1988).

Boswijk (1994) and Banerjee et al. (1998) suggest error-correction-based tests. This regularly

forces the practitioner to select from various test decisions. This choice is difficult as there is no

uniformly most powerful test, even asymptotically (e.g. Elliott et al., 2005). Often one test rejects

while another test does not, complicating interpretation of test outcomes.

More generally, the p-values of the tests are not perfectly correlated (Gregory et al., 2004), which

rules out relying, e.g., on the test with the smallest p-value. Doing so would lead to an oversized

test as it ignores the multiple testing nature of such procedure. The imperfect correlation reflects

that the tests are not equivalent, which also has implications for their power: Pesavento (2004)

shows that the power ranking of cointegration tests depends crucially on the value of a nuisance

parameter, viz. the squared long-run correlations of error terms driving the variables, cf. Sec. 2.

This suggests that suitable combinations of tests might yield a more robust power performance,

and possibly even power gains, relative to individual tests. Combining the above individual tests

in the spirit of Fisher’s (1932) famous test, Section 3 develops such devices. As the individual

test statistics have nonstandard distributions and are correlated, the distribution function of the

combination statistic is analytically intractable. However, as is typical for individual cointegra-

tion statistics, we can simulate its asymptotic distribution, exploiting Pesavento’s (2004) results.

Similarly, Section 3 modifies the Union-of-Rejections (UR) approach of Harvey et al. (2009) and

apply the generalized UR test to the present testing problem.

Section 4 shows our Fisher-type test to perform well asymptotically. Its local power is close to that

of the best of the individual tests for different values of the nuisance parameter, and even exceeds

it when the individual tests have similar power. The UR test is most useful when the individual

tests have strongly different power; its power is always close to that of the better underlying test.

Section 5 proposes bootstrap analogs of our tests. Section 6 presents finite-sample experiments

of the asymptotic and bootstrap combination tests. The asymptotic results correctly predict the

finite-sample performance. The tests successfully control size and are powerful against general

types of alternatives. The bootstrap tests have slightly better size.

Section 7 employs the new tests to revisit the published studies that Gregory et al. (2004) examined

for ‘mixed signals’, i.e. conflicting cointegration tests. We furthermore update the dataset with

publications in the JAE from 2001 to 2010. In one third of all cases individual tests give conflicting

results. In these cases our meta tests are particularly useful, providing an unambiguous test

decision and therefore a solution to the ‘mixed signals’ problem. A web appendix (available from

our websites) gives additional results.
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2 Motivation and Setup

2.1 Motivation

Applied researchers regularly study whether several nonstationary time series are cointegrated,

but are unsure with which test to test the no-cointegration null. We purposely select some

examples from the literature (further discussed in Sec. 7) to show that all kinds of mixed signals

are possible—some tests rejecting, some tests not rejecting and no test always rejecting:2

Clements and Hendry (1995) consider a bivariate system of the inverse velocity of circulation

and an opportunity cost of holding money. They find cointegration using the Johansen (1988)

procedure (for some detail on the tests see Section 2.2), which we confirm with a λmax p-value of

0.0003. However, the Engle and Granger (1987) and Banerjee et al. (1998) p-values are 0.6843

and 0.0883, producing no and only weak evidence for cointegration. The Boswijk (1994) p-value

is 0.0001, such that the two rejections and two non-rejections produce a mixed signal.

Cooley and Ogaki (1996) examine the long-run relationship between the logs of real per capita non-

durables consumption and wages deflated by non-durables prices. Using the test of Park (1990),

they find little evidence against the null hypothesis of cointegration. The tests of Johansen (1988),

Banerjee et al. (1998) and Boswijk (1994) yield the opposite conclusion, not rejecting the null of

no cointegration with p-values of 0.0744, 0.5630 and 0.5302. The Engle and Granger (1987) test

is consistent with Park (1990), with a p-value of 0.0142. We hence again observe mixed signals.

Martens et al. (1998) study the cost-of-carry model which, via arbitrage, predicts cointegration

between index and index-futures prices. Using Engle and Granger (1987) and Johansen (1988)

tests, they find strong evidence for cointegration. For e.g. the May ’93 relationship, we also find

p-values close to zero. However, the Banerjee et al. (1998) and Boswijk (1994) p-values of 0.1301

and 0.0764 do not produce (strong) evidence for cointegration, again yielding a mixed signal.

Overall, mixed signals can easily arise in applications. Moreover, no uniformly most powerful

choice emerges from the studies, motivating the need for a combination procedure of the tests.

2.2 Model and Individual Tests

We work with Pesavento’s (2004) model:

∆xt = τ1 + v1t (1a)

yt = (µ2 − θ′µ1) + (τ2 − θ′τ1)t+ θ′xt + ut where ut = ρut−1 + v2t (1b)

Eq. (1a) defines the regressor dynamics, while (1b) describes the (single potential) cointegrating

vector. Write zt = (x′t, yt)
′. The observed sample is z0, . . . ,zT . Restrictions on µ′1, µ2, τ1 and

τ2 determine the deterministic components, see Pesavento (2004) for details. These amount to

no deterministics, a constant, or a constant plus trend. We refer to these as cases (i), (ii), and

(iii). Further, vt := (v′1t, v2t)
′ and let Ω the long-run covariance matrix of vt. Pesavento (2004)

maintains the following assumptions to derive the local power of the tests mentioned above:
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Assumption 1. {vt} satisfies a Functional CLT, i.e. T−1/2
∑[·T ]

t=1 vt ⇒ Ω1/2W (·), i.e. zt is I(1).

Assumption 2. There are no cointegrating relationships among the variables in xt.

The vector zt is cointegrated under Assumptions 1 and 2 if |ρ| < 1, such that we can state the

null hypothesis of no cointegration as

H0 : ρ = 1 and Assumptions 1 and 2 are true.

The literature has suggested many tests of H0, typically against one of the following alternatives,

which we list in ascending order of generality (Ha1 ⇒ Hb1 ⇒ Hc1):

Ha1 : |ρ| < 1 and Assumptions 1 and 2 are true.

Hb1 : |ρ| < 1 and Assumption 2 is true (Assumption 1 may or may not hold).

Hc1 : |ρ| < 1 (Assumptions 1 and 2 may or may not hold).

Practitioners may for instance wish to test against Hc1, aiming to establish a cointegrating rela-

tionship in zt, not necessarily excluding the possibility of more than one cointegrating relationship

(e.g. a second one not involving yt). Concretely, we consider the tests of Engle and Granger (1987),

Johansen (1988), Boswijk (1994) and Banerjee et al. (1998).

The Engle and Granger (1987) test testsH0 against the alternative of at least one cointegrating re-

lationship. One first computes ût, the residual from a regression of yt on xt (and appropriate deter-

ministics dt), and then the t-statistic tADF
γ on γ in the regression ∆ût = γût−1+

∑P−1
p=1 νp∆ût−p+εt.

The system-based tests of Johansen (1988) test for h cointegrating relationships. In view of H0,

we consider h = 0. One estimates the Vector Error Correction Model (VECM)

∆zt = Πzt−1 +
P−1∑
p=1

Γp∆zt−p + dt + εt (2)

We employ the λmax (h) = −T ln (1− π̂1) test statistic. Here, π̂1 denotes the largest solution to

|πS11−S10S
−1
00 S01| = 0, where the Sij are moment matrices of reduced rank regression residuals.

Banerjee et al. (1998) and Boswijk (1994) develop error correction-based tests. One estimates (by

OLS) the equation ∆yt = dt + π′0x∆xt + ϕ0yt−1 + ϕ′1xt−1 +
∑P

p=1(π
′
px∆xt−p + πpy∆yt−p) + εt,

with P chosen such that εt is approximately white noise. Banerjee et al.’s test statistic tECR
γ is

the t-ratio for H0 : ϕ0 = 0, whereas Boswijk’s F̂ is the Wald statistic for H0 : (ϕ0, ϕ
′
1)
′ = 0.

Pesavento (2004) shows that, under (1), the local power of these tests against Ha1 only depends

on the local-to-unity parameter c := T (ρ − 1) and R2, the squared correlation of v1t with v2t.

Concretely, partition Ω conformably with (x′t, yt)
′,

Ω =

(
Ω11 ω12

ω′12 ω22

)
,

and define the squared correlation as R2 := ω′12Ω
−1
11 ω12/ω22.

3 Her Theorems 1, and 3-5 show all

limiting functionals to be driven by the same Wiener process W , such that her result allows us
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to consider the joint distribution of the statistics. They further show that the different statistics

are non-equivalent functionals of W , and differentially affected by the nuisance parameter R2 for

c < 0. Hence, as formalized by Pesavento (2004) and further discussed in Section 4, different tests

are powerful for different R2. This is the basis of the combination procedures presented next.

3 Combination Tests

Under H0, many of the above statistics are only weakly correlated, even asymptotically (Gregory

et al., 2004). Further, Pesavento (2004) shows that different tests are most powerful for different

R2. Thus, a more robust, and possibly even more powerful, combination test can in principle be

achieved. To this end, let ti be the test statistic of test i. Take ξi := ti (−ξi = ti) if test i rejects

for large (small) values. Also, with Ξi(x) := PrH0(ξi > x), the p-value of test i is pi := Ξi(ξi).

3.1 A Fisher-type test

To reach a joint test decision from the various ξi, we need a suitable aggregator. One such

aggregator is given by Fisher’s (1932) famous χ2 test. Let I the index set of the ξi to be aggregated.

We then have the following corollary from Pesavento (2004), whose proof follows directly using

the CMT (see also White (2000, Prop. 2.2), for a more detailed argument see Appendix A in the

extended online version).

Corollary 1. Consider the test statistic

χ̃2
I := −2

∑
i∈I

ln(pi). (3)

As T → ∞, (a) χ̃2
I →d FI under H0, with FI some random variable. Further, (b) χ̃2

I →p ∞
under H1, i.e. χ̃

2
I is consistent if at least one of the underlying tests is consistent.

Part (a) guarantees that the χ̃2
I have well-defined asymptotic null distributions, call them FFI .

These are nuisance-parameter free because of (i) the single ξi are nuisance parameter free (cf. e.g. Ap-

pendix A) and (ii) the FFI take the cross-relation between the ξi into account. The FFI depend

on which and how many tests are combined. Of course we cannot invoke the conventional χ2(2|I|)
(with |I| the cardinality of I) null distribution, as independence of the ξi would be necessary.

Moreover, part (a) allows to infer by simulation the joint null distribution of the ξi and hence the

distribution FFI of the continuous aggregator (3), exploiting e.g. Pesavento’s results.4 Table 1

reports 5%-critical values cv0.05I := F−1FI (0.95) for combinations relevant to us here (Tables B.2-B.3

in the online appendix report other α and test combinations).5 Reject if χ̃2
I > cvαI . Since the

distributions of the ξi depend on K − 1 as well as the deterministic case (i)-(iii), that of the χ̃2
I

will do so, too.

The theoretical upper bound for the cv0.05I for e.g. |I| = 2 is −2
∑

i∈I ln(0.05) = 11.983, which

obtains if tests are perfectly correlated (hence, equivalent). Ruling out negative correlation,
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Table 1: 5%-critical values cv0.05I for the χ̃2
I tests

K − 1 case: (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

tADF
γ and λmax F̂ and tECR

γ F̂ , λmax, tADF
γ , tECR

γ

1 11.071 11.229 11.269 11.606 11.803 11.862 21.352 21.931 22.215
2 10.838 10.895 10.858 11.556 11.716 11.795 20.776 21.106 21.342
3 10.640 10.637 10.711 11.554 11.683 11.731 20.237 20.486 20.788
4 10.516 10.576 10.532 11.491 11.611 11.696 19.951 20.143 20.440
5 10.406 10.419 10.448 11.478 11.621 11.639 19.747 19.888 20.170

5%-critical values for combination tests based on χ̃2
I . tADF

γ is from Engle and Granger (1987),

λmax from Johansen (1988), F̂ from Boswijk (1994) and tECR
γ from Banerjee et al. (1998).

a lower bound is 9.487, the 5% χ2(4) critical value of Fisher’s test under independence. The

actual cv0.05I are close to 11 for |I| = 2, vary little across cases and fall moderately in K. Also,

cv0.05I > 9.487, reflecting that the ξi correlate positively and using cv0.05I instead of 9.487 is

necessary for level-α tests. Moreover, χ̃2
I rejects when all ξi reject, as cv0.05I < −2

∑
i∈I ln(0.05).

The latter implies that χ̃2
I may reject even if no single ξi rejects: e.g., if K = 2, case (iii) and

p1 = . . . = p4 = 0.0622, χ̃2
I = −8 · ln(0.0622) = 22.215.

Pesavento’s results allow even to obtain the asymptotic distribution under Ha1, and hence the local

power of the χ̃2
I (cf. Sec. 4). In brief, we find χ̃2

I to generally be almost as powerful as the best

underlying test. This result is useful as it gives some theoretical guidelines for a quite broad class

of models. However, practitioners sometimes want to test against the more general alternatives

Hb1 and Hc1. Although we cannot derive the local power of the tests under Hb1 and Hc1, part (b) of

Corollary 1 ensures that χ̃2
I is at least consistent also against such alternatives. The investigation

of the tests in such scenarios in Section 6 shows that the ranking of the ξi found under Ha1 does

not carry over to alternatives Hb1 and Hc1. Yet, χ̃2
I continues to closely track the best single test.

Remark 1. We also tried alternative aggregators such as the inverse-normal one
∑

i∈I Φ−1(pi)/
√
|I|,

with Φ−1 the standard normal quantile function. It was however slightly inferior to that of the

χ̃2
I tests, reported below. The superiority of χ̃2

I is not surprising in that known optimality re-

sults under independence (Littell and Folks, 1971) appear to carry over to the dependent case.

Intuitively, aggregators such as the sum of the p-values are plausibly less powerful: small p-values

cause χ̃2
I to diverge via ln, and hence high power. This is not the case for the sum aggregator.

3.2 Union-of-Rejections tests

Harvey et al. (2009) develop ‘Union-of-Rejections’ (UR) tests to combine standard Dickey-Fuller

(DF) and GLS-demeaned unit root tests. The UR test rejects when one test rejects, suitably

adjusting the critical values to ensure a level-α test. It has robust power as DF (GLS) is more

powerful when the series’ initial condition is large (small). This situation is analogous to ours, as

R2 determines the relative power of the ξi. We use and extend the UR approach to cointegration

testing.

Denote the individual level-α critical value of test i as cvαi , e.g., cv0.05i = |−2.763| for tADF
γ , K = 2
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Table 2: Critical values for the minimum p-value test

K − 1 case: (i) (ii) (iii) (i) (ii) (iii)

tADF
γ and λmax F̂ and tECR

γ

1 0.031 0.033 0.033 0.038 0.041 0.043
2 0.030 0.030 0.030 0.037 0.038 0.040
3 0.029 0.029 0.029 0.036 0.038 0.039
4 0.028 0.028 0.028 0.036 0.037 0.038
5 0.028 0.028 0.028 0.035 0.036 0.037

Critical values for the minimum p-value test when testing at α = 0.05.

and case (i). The ‘naive’ UR statistic test URn(ξ1, ξ2) := I{ξ1 > cvα1 }+ I{ξ1 6 cvα1 }I{ξ2 > cvα2 },
with I{A} the indicator function, rejects if URn(ξ1, ξ2) = 1. URn is oversized as it ignores

the multiple testing nature of the problem.6 Harvey et al. (2009) therefore suggest to reject if

URψ(ξ1, ξ2) = 1, where URψ(ξ1, ξ2) := I{ξ1 > ψcvα1 }+ I{ξ1 6 ψcvα1 }I{ξ2 > ψcvα2 } and ψ satisfies

Pr(
⋃2
i=1 ξi > ψcvαi ) = α. However, there is no need to apply the same ψ to both cvαi . Consider

the general UR statistic

URψI (ξ1, ξ2) := I{ξ1 > ψ1cv
α
1 }+ I{ξ1 6 ψ1cv

α
1 }I{ξ2 > ψ2cv

α
2 } (4)

An appealing selection rule for the ψi is to ensure the same null rejection probabilities for both

ξi. It takes into account that the Ξi, and thus the cvαi , can be defined on different scales:

Pr(ξ1 > ψ1cv
α
1 ) = Pr(ξ2 > ψ2cv

α
2 ) (5)

Under (5), the URψI test is equivalent to the ‘non-naive’ minimum p-value test mini∈I pi.
7 The

critical values of the non-naive mini∈I pi test, provided in Table 2, yield the level α′ < α at which

to test to avoid the oversizedness of URn (which, in turn, is the same as rejecting if mini∈I pi < α).

Note α′ � α/|I| so that mini∈I pi is more powerful than a Bonferroni-type multiple test.

4 Large Sample Results

We now report the large-sample power of the tests discussed in Sections 2 and 3. As for the single

tests, the local power functions of χ̃2
I and URψI (ξ1, ξ2) are not available in closed form. They are

hence simulated with 25,000 replications of the distributions given in Section 3, for T = 1, 000.

We consider c ∈ {0,−1, . . . ,−30}, R2 ∈ {0, 0.05, . . . , 0.95} and K ∈ {2, . . . , 6}.

Table 3 reports the local power of several combination and individual tests for case (iii) (cf. online

Appendix C for (i) and (ii)).8 Figure 1 plots power against R2, for c = −15 and K − 1 = 1;

tECR
γ is the best individual test for small R2 (Pesavento, 2004). The power of all tests but tADF

γ

increases in R2. The λmax system test benefits most from an increase in R2, fully exploiting

the information contained in the xt. The formal similarity of F̂ and tECR
γ translates into similar

power.

The combination tests perform very well, tracking the better test very closely. Their power is

sometimes even higher than that of all underlying tests; e.g. for R2 = 0.2, χ̃2
I(t

ADF
γ , λmax). Figure
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Table 3: Local asymptotic power

−c 0 5 10 15 20 0 5 10 15 20

R2 = 0 R2 = 0.25

χ̃2
I(F̂ , tECR

γ ) 0.050 0.073 0.148 0.290 0.487 0.048 0.081 0.191 0.405 0.668
χ̃2
I(tADF

γ , λmax) 0.050 0.069 0.132 0.253 0.423 0.050 0.072 0.127 0.267 0.495
χ̃2
I(4) 0.050 0.074 0.151 0.294 0.490 0.049 0.084 0.194 0.406 0.664
URψI (tADF

γ , λmax) 0.049 0.070 0.142 0.279 0.471 0.051 0.069 0.121 0.247 0.456

URψI (F̂ , tECR
γ ) 0.051 0.064 0.116 0.230 0.392 0.050 0.079 0.171 0.364 0.626

F̂ 0.050 0.070 0.138 0.271 0.457 0.047 0.083 0.199 0.412 0.668
tECR
γ 0.050 0.076 0.155 0.305 0.508 0.049 0.083 0.183 0.388 0.652
λmax 0.050 0.054 0.092 0.165 0.283 0.050 0.067 0.123 0.261 0.471
tADF
γ 0.050 0.074 0.150 0.290 0.486 0.050 0.070 0.115 0.222 0.398

R2 = 0.5 R2 = 0.75

χ̃2
I(F̂ , tECR

γ ) 0.049 0.089 0.285 0.621 0.874 0.051 0.134 0.596 0.923 0.993
χ̃2
I(tADF

γ , λmax) 0.050 0.063 0.146 0.386 0.699 0.054 0.069 0.356 0.811 0.983
χ̃2
I(4) 0.049 0.080 0.231 0.552 0.840 0.053 0.107 0.524 0.906 0.993
URψI (tADF

γ , λmax) 0.049 0.102 0.318 0.648 0.882 0.050 0.196 0.689 0.946 0.995

URψI (F̂ , tECR
γ ) 0.049 0.069 0.179 0.439 0.734 0.053 0.117 0.531 0.907 0.993

F̂ 0.048 0.108 0.339 0.669 0.891 0.052 0.216 0.714 0.952 0.996
tECR
γ 0.048 0.079 0.228 0.537 0.823 0.051 0.077 0.385 0.801 0.970
λmax 0.048 0.078 0.221 0.511 0.794 0.051 0.153 0.607 0.937 0.996
tADF
γ 0.050 0.052 0.077 0.151 0.292 0.054 0.029 0.035 0.071 0.166

Case (iii). χ̃2
I(F̂ , tECR

γ ) is (3) based on Boswijk’s and Banerjee et al.’s tests, and URψI (F̂ , tECR
γ ) is the UR

test (4). The other combination tests are defined analogously. See also notes to Table 1.

1 shows the power curves of tADF
γ and λmax to intersect at R2 ≈ 0.2. Thus, combination tests

may outperform the constituent tests when the latter are equally powerful. Intuitively, this is

because the ξi will then often be individually marginally too small to reject, but, , since they

imperfectly correlated, taken together they provide sufficient evidence to reject H0. The upper

panel shows that, unsurprisingly, the power of the combination tests differs less from that of the

underlying tests if these perform similarly. Yet, URψI (F̂ , t
ECR
γ ) and χ̃2

I(F̂ , t
ECR
γ ) are again closer

to the better underlying test (typically F̂ ) whenever there are discernible differences.

Of course, when the difference between the individual tests is large, as in the lower panel of Figure

1 for R2 ≈ 0.6, the power distance to the best individual test is somewhat larger—but still a lot

smaller than that to the worse individual test. Thus, the combination tests cheaply insure against

selecting an inferior test, in that one never sacrifices much power, and potentially gains a lot.

Table 3 shows that χ̃2
I(F̂ , t

ECR
γ , tADF

γ , λmax) =: χ̃2
I(4) outperforms χ̃2

I(t
ADF
γ , λmax), but is (slightly)

outperformed by χ̃2
I(F̂ , t

ECR
γ ). This is not surprising as F̂ and tECR

γ perform best under (1).

Section 6 studies other relevant DGPs and alternatives under which λmax and tADF
γ outperform

F̂ and tECR
γ . Consequently χ̃2

I(4) then outperforms χ̃2
I(F̂ , t

ECR
γ ). It would thus be wrong to

recommend routine use of F̂ , tECR
γ or χ̃2

I(F̂ , t
ECR
γ ). Overall, the transparent strategy to combine

all available tests can be recommended for practice. On the other hand, tADF
γ and λmax are still the

most widely used tests, such that studying their combination likely is relevant for practitioners.

The χ̃2
I are somewhat more powerful than the URψI when both constituent tests are relatively

powerful. The URψI outperform the χ̃2
I when there is a large power difference between the
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Figure 1: Local asymptotic power as a function of R2, c = −15
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Case (iii). χ2
BERC is our Fisher test (3) based on Boswijk’s and Banerjee et al.’s tests. χ2

EJ is based on
Engle and Granger’s and Johansen’s tests. χ2

BERCEJ combines all four tests. URasym
BERC and URasym

EJ are the
corresponding URψI tests (4). The individual tests’ curves are for comparison.

individual tests. This is intuitive as URψI looks for only one individual rejecting test, to then

effectively ignore the other. On the other hand, χ̃2
I combines evidence from both tests, such that

a test with low power can lead χ̃2
I to accept. If both tests are moderately powerful, χ̃2

I will reject.

An interesting issue raised by an anonymous referee is to relate these results to the power envelope

traced out by the Neyman-Pearson tests for model (1). This task has however proved analytically

challenging, and only results for the no deterministics case (Elliott and Pesavento, 2009, case

(i)) and the case of known cointegration vectors (Elliott et al., 2005) seem to be feasible. The

latter may be relevant in some applications where economic theory predicts specific cointegrating

relationships, and allows Elliott et al. (2005) to quantify the loss from having to estimate the

cointegration vector for several cointegration tests. For case (iii) considered here, they find the

power envelope to be 0.09, 0.27, 0.58 and 0.86 for c = 5, 10, 15 and 20 for R2 = 0 and 0.29, 0.77,

0.97 and 1 for R2 = 0.5, if the cointegration vector is known. Comparing these values to Table 3

we find that the best tests as well as the best-performing meta tests come close to this envelope

for small c, and, trivially, for c sufficiently large that the best single tests achieves asymptotic

power of 1. For intermediate c the need to estimate the cointegration vector in practice for both

single and meta tests translates into (expected) larger asymptotic power losses.

Remark 2. As discussed, some individual tests are most powerful when R2 is low, and others

when R2 is large. One might hence also consider a pretest strategy selecting the best test given

an estimate R̂2. However, as several quantities are not consistently estimable in the present

framework, such an estimator is likely not feasible (Pesavento, 2007). Moreover, the combination

tests are never much less powerful than the best individual test, and generally a lot more powerful

8



than the worst test. If an estimator was available, it would not, certainly not for T finite, estimate

R2 without error. Hence, a pretest would sometimes select the less powerful test and thus likely

have less power than the strategies advocated here. To illustrate, let q the probability to select

the inferior test. Consider e.g. from Table 3 λmax, tADF
γ and χ̃2

I(t
ADF
γ , λmax) for R2 = 0.75 and

c = −15. A pretest would need to select the worse test (tADF
γ ) in only q = (0.811−0.937)/(0.071−

0.937) ≈ 14.5% of the cases to be inferior to χ̃2
I(t

ADF
γ , λmax). Unreported calculations show

that, for e.g. χ̃2
I(t

ADF
γ , λmax), c = −15 and K = 2, q never exceeds 35%, and even q = 0 for

R2 ∈ [0.15, 0.25] ∪ (0.9, 1), reflecting that χ̃2
I then is more powerful than even a perfect pretest.

Moreover, as q � 0.5, χ̃2
I uniformly outperforms randomly selecting one underlying test.

5 Bootstrap Analogs

The previous results rely on asymptotic theory. The combination tests will also share small-sample

deficiencies of the underlying tests. Haug (1996) found the small-sample behavior of cointegration

tests to be somewhat sensitive to e.g. short-run dynamics. In particular, finite-sample sizes depend

on the estimation method for these and other nuisance parameters. The bootstrap has recently

been successfully used to improve the small-sample behavior of cointegration tests (Swensen, 2006;

Palm et al., 2010). We therefore now introduce bootstrap analogs of the combination tests to

provide potentially more reliable small sample inference.

To bootstrap χ̃2
I , we require a method to bootstrap cointegration tests. A suitable procedure has

recently been proposed by Swensen (2006). In brief, Swensen’s procedure resamples residuals from

an estimated VECM representation of the DGP to then generate integrated but non-cointegrated

time series. We propose the following algorithm to estimate the finite-sample distribution of χ̃2
I .

Algorithm 1.

1. Estimate the unrestricted VAR zt =
∑P

p=1Φpzt−p + dt + εt to obtain estimates d̂t, Φ̂p and

residuals ε̂t. Transform Φ̂p, p = 1, . . . , P , to Γ̂p, p = 1, . . . , P − 1, as in (2).9

2. Check that the system has no explosive root, i.e. ‖z‖ > 1, by solving det
{
B̂(z)

}
= 0, where

B̂(z) := IK − Γ̂1z − · · · − Γ̂P−1zP−1.10

3. If so, resample
{
ε∗t,b
}b=1,...,B

t=P,...,T
non-parametrically with replacement from {ε̂t}t=P,...,T .

4. With
{
ε∗t,b
}b=1,...,B

t=P,...,T
, construct B series of pseudo observations z∗t,b from ∆z∗t,b = d̂t +∑P−1

p=1 Γ̂p∆z
∗
t−p,b + ε∗t,b. For the initial observations, set z∗t,b = zt, t = 0, . . . , P − 1.11

5. Compute the vector of test statistics ξ∗b := (ξ∗1,b, . . . , ξ
∗
|I|,b)

′, for each b = 1, . . . , B.

6. Estimate the cdf of each statistic as B−1
∑B

h=1 I
{
ξ∗i,h ≤ x

}
=: 1 − Ξ∗i (x) and calculate

p-values p∗i,b := Ξ∗i (ξ
∗
i,b). Calculate the p-values of the ξi on the original data, p∗i := Ξ∗i (ξi).

7. Obtain the corresponding aggregate χ̃2
I test statistic χ̃2,∗

I,b = −2
∑|I|

i=1 ln
(
p∗i,b
)
.

8. Estimate the distribution function FF∗I of the χ̃2,∗
I,b by F̂F∗I (x) := B−1

∑B
h=1 I

{
χ̃2,∗
I,h ≤ x

}
.
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This yields a bootstrap version of χ̃2
I , χ̃

2,∗
I = −2

∑|I|
i=1 ln (p∗i ). Reject at level α if χ̃2,∗

I > F̂−1F∗I
(1−

α). Heuristically, the method can be expected to work as follows. Swensen (2006) proves that

his procedure (steps 1-4 in Algorithm 1) yield z∗t,b which have a representation asymptotically

equivalent to the true DGP. Moreover, he proves that steps 5 and 6 consistently estimate the

null distribution of the λtrace test, hence yielding consistent estimates of p-values. Therefore, we

can expect the proposition to carry over to the above cointegration tests, as these essentially also

rely on the availability of suitable z∗t,b. The CMT with ξ := (ξ1, . . . , ξ|I|)
′ as functions of the

observations zt, for which an invariance principle holds, ensures a well-defined joint distribution

of ξ. That joint distribution can be consistently estimated with Algorithm 1 under fairly weak

regularity conditions (Horowitz, 2001). Section 6 provides numerical support for this argument.

Remark 3. Algorithm 1 is only about as computationally demanding as Swensen’s (2006). It also

requires resampling B pseudo-observations, and no double bootstrapping. The difference to his

algorithm is that |I| instead of one statistic (λtrace) need to be calculated for each b.

6 Monte Carlo Experiments

6.1 Setup

We now study the finite-sample properties of the tests in a series of Monte Carlo experiments.

We consider four different DGPs:

1. DGP(A): ∆xt = v1t, yt = xt + ut and ut = ρTut−1 + v2t

closely follows (1). The autoregressive coefficient ρT = 1 + c/T . H0 is obtained when c = 0.

Under the alternative c = −15, Ha1 holds. The (v1t, v2t)
′ are drawn from N (0,Ω), where

Ω =
(
1 R
R 1

)
. We take R2 = 0.25 (online Appendix E reports results for other R2 and c).

2. DGP(B): ∆zt = ΠTzt−1 + Γ∆zt−1 + ut where Γ = 0.2I2 and ut = (u1t, u2t)
′ iid∼ N (0, I2)

still fulfills Ha1 for c < 0, but introduces short-run dynamics. These are nuisance-parameters

that do not affect large-sample power, but may impact the tests’ finite-sample performance.

For (B) H0 is obtained when ΠT = 0. We parameterize H1 by ΠT = c
T (0 1)′ (1 − 1).12

3. DGP(C): ∆zt = 2
3

(
ρT−1

1
2
(ρT−1)

)
(1 1)zt−1 + ṽt, ṽt

iid∼ N
(
0, 19 ( 8 0

0 5 )
)

violates Ha1: DGP(C) does not impose that xt has an exact unit root under the local alterna-

tive and thus only satisfies Hb1. Therefore, Pesavento’s results and thus the local power curves

from Section 4 do not hold under (C). Notwithstanding, DGP(C), first considered by Engle

and Granger (1987) (the above representation is given by Elliott et al. (2005)), is a plausible

cointegration model: |ρT | < 1 implies the existence of a stationary equilibrium error a2t (note

that e.g. Johansen (1995) allows for non-I(1) variables in cointegrating relationships). Result-

ing from this somewhat unusual property under the alternative, DGP(C) has the advantage

10



of not imposing weak exogeneity, as DGP(A) does (given absence of short run dynamics, see

Elliott et al., 2005, p. 36).

4. DGP(D): zt =
(
x2t
x1t
yt

)
and ∆zt = c

T

(
0 0 0
−1 1 0
0 −1 1

)
zt−1 + 0.2I3∆zt−1 + ut, ut

iid∼ N (0, I3)

DGP(D) can be considered a trivariate extension of (B) where the researcher erroneously adds

to the regressions underlying tADF
γ , tECR

γ and F̂ a variable x2t that turns out to be redundant,

i.e. has a zero coefficient in the cointegrating vector. This variable, however, is cointegrated

with x1t, hence violates Assumption 2 and invalidates Ha1. Nonetheless, since x1t cointegrates

with yt, Hc1 still holds.

Recall that departures from Ha1 do not affect the validity of our combination procedure. First,

the critical values of URψI and χ̃2
I obviously derive from the properties of the system under H0,

where ρT = 1 and the above considerations do not apply. Second, the consistency of the tests

only requires at least one diverging test statistic (cf. Corollary 1(b)). Divergence of individual

test statistics for |ρT | < 1 is shown by e.g. Phillips and Ouliaris (1990, Thm. 5.1).13

The above DGPs are widely used in Monte Carlo studies. See e.g. Pesavento (2004, 2007) for (A),

Swensen (2006) for (B), or Engle and Granger (1987), Haug (1996) and Gregory et al. (2004) for

(C).14 The DGPs are local, such that power ought to be roughly constant in T . We use 5,000

replications. We choose T ∈ {50, 100, 150, 200}, corresponding to typical sample sizes encountered

in applied work. To mitigate the effect of initial conditions under H1, we simulate for T + 30

periods and discard the first 30 observations. The bootstrap tests use B = 10, 000 resamples.

We mainly consider χ̃2
I(4) and compare it to the single tADF

γ , λmax, tECR
γ and F̂ tests,15 as well

as to bootstrap versions tADF,∗
γ , λ∗max, tECR,∗

γ and F̂ ∗ (these are by-products of Algorithm 1). We

also compute the ‘naive’ URn test which reveals the size distortion incurred by selecting the most

rejective from a set of tests.

The tests require choosing a lag length P̂ . We initially impose the correct lag order (i.e. P = 0

in (A) and (C) and P = 1 in (B) and (D)) in order to focus on size distortions resulting from

multiple testing and return to the practically more relevant case of unknown P below. For tADF
γ ,

we select P = 1 under (B) too, as this yields a sufficiently accurate approximation for Γ = 0.2I2.

All results are for case (iii).

6.2 Results

Table 4 reports size at α = 0.05.16 As expected, the ‘naive’ tests are oversized. Their sizes

exceed that of the individual tests by up to 4 percentage points. Both the URψI and, to a

lesser extent, the χ̃2
I are slightly upward size distorted for small T , due to distortions of the

underlying tests. However, this distortion quickly vanishes for larger T . The single bootstrap,

and hence combination, tests are slightly better sized, as the F̂F∗I more accurately approximate

the finite-sample distributions than the asymptotic distributions FFI .
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Table 4: Small-sample size

λmax and tADF
γ F̂ and tECR

γ

I. Bootstrap

DGP T λ∗max tADF,∗
γ naive∗ χ̃2,∗

I UR∗ψI F̂ ∗ tECR,∗
γ naive∗ χ̃2,∗

I UR∗ψI χ̃2,∗
I (4)

(A) 50 0.050 0.052 0.087 0.049 0.048 0.049 0.048 0.058 0.049 0.049 0.050
100 0.053 0.054 0.090 0.052 0.054 0.055 0.053 0.063 0.054 0.055 0.057
150 0.048 0.053 0.085 0.055 0.053 0.054 0.057 0.064 0.056 0.055 0.054
200 0.051 0.052 0.086 0.053 0.050 0.045 0.046 0.053 0.045 0.044 0.048

(B) 50 0.054 0.055 0.087 0.051 0.053 0.053 0.057 0.066 0.055 0.055 0.055
100 0.049 0.051 0.077 0.049 0.049 0.048 0.053 0.059 0.051 0.051 0.052
150 0.050 0.049 0.078 0.049 0.050 0.049 0.049 0.057 0.049 0.050 0.048
200 0.048 0.049 0.074 0.047 0.047 0.046 0.048 0.055 0.046 0.046 0.047

(C) 50 0.049 0.048 0.083 0.048 0.046 0.050 0.050 0.060 0.050 0.052 0.048
100 0.054 0.054 0.089 0.055 0.053 0.054 0.052 0.060 0.051 0.054 0.055
150 0.047 0.051 0.082 0.048 0.049 0.051 0.048 0.057 0.049 0.050 0.048
200 0.050 0.050 0.084 0.052 0.049 0.049 0.049 0.059 0.050 0.051 0.049

(D) 50 0.052 0.054 0.091 0.055 0.053 0.056 0.060 0.074 0.058 0.057 0.061
100 0.050 0.053 0.086 0.052 0.050 0.054 0.053 0.065 0.056 0.054 0.054
150 0.050 0.049 0.083 0.050 0.050 0.053 0.054 0.066 0.057 0.055 0.055
200 0.049 0.046 0.079 0.049 0.049 0.049 0.049 0.063 0.051 0.051 0.049

II. Asymptotic

DGP T λmax tADF
γ naive χ̃2

I URψI F̂ tECR
γ naive χ̃2

I URψI χ̃2
I(4)

(A) 50 0.054 0.079 0.112 0.057 0.081 0.081 0.076 0.090 0.080 0.082 0.072
100 0.050 0.060 0.094 0.042 0.061 0.065 0.063 0.075 0.062 0.064 0.055
150 0.054 0.060 0.094 0.048 0.063 0.055 0.053 0.061 0.054 0.053 0.050
200 0.051 0.055 0.089 0.042 0.058 0.058 0.058 0.068 0.058 0.059 0.052

(B) 50 0.065 0.074 0.110 0.067 0.078 0.077 0.072 0.087 0.075 0.078 0.071
100 0.056 0.063 0.093 0.061 0.066 0.060 0.061 0.070 0.059 0.060 0.060
150 0.057 0.061 0.091 0.057 0.060 0.058 0.058 0.066 0.057 0.058 0.057
200 0.051 0.053 0.081 0.050 0.052 0.050 0.050 0.057 0.051 0.051 0.049

(C) 50 0.054 0.078 0.111 0.059 0.080 0.084 0.077 0.093 0.078 0.082 0.073
100 0.050 0.058 0.091 0.043 0.061 0.061 0.060 0.071 0.060 0.061 0.052
150 0.054 0.059 0.095 0.050 0.066 0.058 0.059 0.068 0.060 0.060 0.054
200 0.051 0.055 0.089 0.040 0.058 0.055 0.054 0.063 0.054 0.054 0.047

(D) 50 0.100 0.074 0.147 0.082 0.097 0.089 0.072 0.098 0.078 0.084 0.083
100 0.077 0.063 0.113 0.068 0.074 0.074 0.064 0.085 0.068 0.070 0.070
150 0.065 0.064 0.107 0.067 0.069 0.062 0.060 0.074 0.061 0.061 0.067
200 0.059 0.055 0.093 0.058 0.057 0.056 0.052 0.066 0.055 0.055 0.055

Rejection rates at nominal level of 5%. 5,000 replications and 10,000 bootstrap replications. tADF
γ and λmax

refer to Engle and Granger (1987) and Johansen (1988) tests. F̂ and tECR
γ are from Boswijk (1994) and

Banerjee et al. (1998). naive rejects when tADF,∗
γ or λ∗max or both reject. URψI is the test defined by (4)

and (5). χ̃2
I is the Fisher test (3). Starred tests are bootstrap counterparts. UR∗ and χ̃2,∗

I are described in
Algorithm 1. χ̃2

I(4) combines all four tests.

Table 5 reports size-adjusted small sample power of the asymptotic tests.17 As one might have

expected, for DGP(A), the results from Section 4 predict the finite-sample results well, in that

tADF
γ , λmax and χ̃2

I(t
ADF
γ , λmax) again have similar power for this R2. Further, F̂ and tECR

γ are

the most powerful single tests. The rightmost column of Table 4 shows that χ̃2
I(4) outperforms

χ̃2
I(t

ADF
γ , λmax) rather markedly. Noticeably, χ̃2

I(4) is only slightly outperformed by F̂ , tECR
γ and
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Table 5: Small-sample power

λmax and tADF
γ F̂ and tECR

γ

DGP T λmax tADF
γ χ̃2

I URψI F̂ tECR
γ χ̃2

I URψI χ̃2
I(4)

(A) 50 0.274 0.257 0.326 0.269 0.433 0.413 0.433 0.428 0.421
100 0.271 0.257 0.341 0.254 0.422 0.398 0.411 0.416 0.398
150 0.251 0.234 0.300 0.246 0.455 0.425 0.446 0.447 0.413
200 0.275 0.240 0.319 0.264 0.429 0.382 0.407 0.413 0.396

(B) 50 0.380 0.309 0.402 0.383 0.270 0.237 0.253 0.257 0.330
100 0.554 0.347 0.517 0.508 0.378 0.326 0.356 0.368 0.436
150 0.596 0.374 0.574 0.567 0.437 0.368 0.408 0.421 0.516
200 0.636 0.377 0.619 0.607 0.455 0.386 0.418 0.434 0.560

(C) 50 0.174 0.275 0.272 0.217 0.207 0.240 0.229 0.210 0.257
100 0.168 0.285 0.281 0.223 0.213 0.240 0.231 0.217 0.261
150 0.162 0.258 0.247 0.201 0.214 0.238 0.231 0.220 0.254
200 0.176 0.258 0.276 0.218 0.216 0.239 0.233 0.227 0.277

(D) 50 0.377 0.385 0.488 0.431 0.190 0.150 0.169 0.186 0.306
100 0.564 0.451 0.619 0.576 0.246 0.212 0.228 0.236 0.416
150 0.644 0.465 0.670 0.624 0.322 0.257 0.289 0.305 0.513
200 0.688 0.509 0.724 0.690 0.339 0.276 0.303 0.315 0.574

See notes to Table 4. R2 = 0.25 (for DGP(A)) and c = −15.

χ̃2
I(F̂ , t

ECR
γ ) even under (A).

For DGP(B) we find λmax to be the most powerful individual test, followed by the meta tests

involving λmax. Noteworthy again, the decrease in power by moving from the most powerful to

the meta test is small, while the power gain from the least powerful test (tECR
γ ) is large. E.g., for

T = 200, χ̃2
I(4) loses 7.5 percentage points to λmax but gains over 17 points to tECR

γ .

For DGP(C), tADF
γ is the most powerful individual test. Again, χ̃2

I(4) is a close second, and even

the best for T = 200. Hence, when testing against Hb1, the ranking of local power curves from

Section 4 no longer holds. Consequently, it would be premature to recommend routine application

of either F̂ or tECR
γ provided the researcher is interested in testing against alternatives such as

Hb1.

The results for DGP(D) should be compared to those for (B). Again, λmax is the most powerful

individual test and even gains power relative to (B). This is not surprising as there are now

two cointegration relationships in the system, and λmax rejects if it detects at least one of them.

Likewise, tADF
γ gains power. On the other hand, F̂ and tECR

γ lose power. Apparently, violation of

Assumption 2 is detrimental for the power of the error-correction based tests. Nonetheless, χ̃2
I(4)

outperforms all individual tests except λmax, and is much closer to λmax than to either F̂ or tECR
γ .

For each DGP, there is always a meta test combining two tests that slightly outperforms χ̃2
I(4).

However, there is always another DGP for which χ̃2
I(4) clearly outperforms that meta test. Over-

all, the other meta tests hence sometimes have higher power, but are less robust than χ̃2
I(4).

As stated above, the lag length P is not known in practice, and it would be a severe limitation

of our procedures if it one needed to know P for them to work. We therefore now provide some

results when P is chosen with the BIC. Table 6 shows that the above qualitative findings remain
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Table 6: Rejection rates under lag-length selection

λmax and tADF
γ F̂ and tECR

γ

(a) Size

Bootstrap T λ∗max tADF,∗
γ naive∗ χ̃2,∗

I UR∗ψI F̂ ∗ tECR,∗
γ naive∗ χ̃2,∗

I UR∗ψI χ̃2,∗
I (4)

50 0.101 0.070 0.140 0.083 0.090 0.108 0.110 0.129 0.110 0.111 0.105
100 0.076 0.063 0.108 0.070 0.073 0.074 0.073 0.086 0.075 0.072 0.077
150 0.061 0.052 0.088 0.057 0.057 0.058 0.057 0.069 0.059 0.060 0.058
200 0.059 0.055 0.089 0.055 0.055 0.054 0.057 0.065 0.056 0.055 0.055

Asymptotic T λmax tADF
γ naive χ̃2

I URψI F̂ tECR
γ naive χ̃2

I URψI χ̃2
I(4)

50 0.146 0.085 0.184 0.107 0.137 0.108 0.094 0.119 0.098 0.107 0.101
100 0.092 0.073 0.128 0.080 0.094 0.076 0.073 0.085 0.072 0.076 0.076
150 0.080 0.065 0.109 0.071 0.078 0.068 0.064 0.076 0.064 0.066 0.067
200 0.061 0.055 0.089 0.056 0.059 0.054 0.055 0.061 0.055 0.055 0.056

(b) Power

Bootstrap T λ∗max tADF,∗
γ naive∗ χ̃2,∗

I UR∗ψI F̂ ∗ tECR,∗
γ naive∗ χ̃2,∗

I UR∗ψI χ̃2,∗
I (4)

50 0.193 0.206 0.461 0.245 0.223 0.147 0.126 0.313 0.134 0.135 0.163
100 0.404 0.311 0.594 0.408 0.402 0.283 0.258 0.397 0.268 0.280 0.341
150 0.539 0.349 0.651 0.523 0.516 0.379 0.323 0.433 0.352 0.355 0.454
200 0.592 0.353 0.692 0.576 0.564 0.427 0.353 0.464 0.390 0.408 0.504

Asymptotic T λmax tADF
γ naive χ̃2

I URψI F̂ tECR
γ naive χ̃2

I URψI χ̃2
I(4)

50 0.200 0.233 0.547 0.269 0.232 0.200 0.171 0.334 0.188 0.190 0.218
100 0.418 0.292 0.655 0.434 0.416 0.318 0.266 0.430 0.289 0.306 0.366
150 0.509 0.339 0.696 0.503 0.492 0.397 0.343 0.477 0.370 0.383 0.461
200 0.595 0.357 0.699 0.591 0.578 0.439 0.360 0.470 0.399 0.410 0.511

This DGP studies DGP(B) where the number of lags is chosen with the BIC. To avoid trivial duplication with
URψI , the power of the naive test is not size-adjusted. See also notes to Table 4.

intact. Unsurprisingly, size is somewhat worse for small T . Size-adjusted power is similar to what

we found above. As expected, the bootstrap tests exhibit slightly better size behavior overall.18

In summary, we find our meta tests, in particular χ̃2
I(4), to be attractive because they are ro-

bust and offer cheap insurance when the researcher is interested in testing against more general

alternatives such as Hb1 and Hc1, not knowing whether Assumptions 1 and 2 hold for data under

study.19 Yet, such knowledge about the DGP will rarely be available in practice (cf. Remark 2).

Indeed, it seems implausible that one wishes to conduct inference about a key feature of the time

series—cointegration—whilst having accurate knowledge about e.g. the processes generating xt.

7 Mixed Signals Revisited

7.1 Setup

We revisit the studies Gregory et al. (2004) investigated for ‘mixed signals’, i.e. conflicting coin-

tegration tests. They analyze 34 studies published in the Journal of Applied Econometrics from

1994 to March/April 2001. We perform an analogous exercise for the issues from May/June 2001

to papers scheduled for publication as of August 2010.20 In total, we construct 286 data sets. Of
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these, 127 are from after April 2001. Thus, cointegration continues to receive unabated attention.

When necessary, we perform some preliminary data transformations such as removal of seasonal

patterns. We have many more tests than studies because, e.g., we can calculate several time-series

tests from panel data studies. The data sets show large differences in sample size, ranging from

24 to 7693. The number of variables K ranges from 2 to 11.

We document the extent to which mixed signals arise in applications and how our meta tests

can heal this problem. We do not suggest that the authors of the studies have been strategic in

choosing which test to report. The original studies employ different specifications. To make results

comparable, we follow Gregory et al. (2004) in imposing a unifying but standard methodology. If

a test requires a dependent variable yt, we follow the choice of the original paper if possible. If

there is no obvious yt, we choose it based on the highest coefficient of determination of first-stage

regressions. We also need to allow for variation in lag lengths P̂ across data sets. We determine

P̂ using the BIC as described e.g. in Lütkepohl (2005, Sec. 4.3.2). We search over 1 ≤ P̂ ≤
min

(
8
(
T
100

)1/5
, T−2
2(K+2)

)
, and impose the same P̂ for all tests. Our qualitative conclusions would

be the same for other selection methods for P̂ . All tests include a constant and a trend.

7.2 Results

We compare the results of individually using λmax, tADF
γ , tECR

γ and F̂ with χ̃2
I(4). First reconsider

the noteworthy patterns of rejections from Section 2.1. For Clements and Hendry (1995), λmax

and F̂ rejected, showing that the related tECR
γ and F̂ may not agree for the same samples. Only

tADF
γ rejected in Cooley and Ogaki (1996), showing that tADF

γ , often thought to be less powerful,

rejects while the system- and error-correction based tests do not. In Martens et al. (1998), λmax

and tADF
γ rejected, showing that tECR

γ and F̂ may not reject although λmax does. Overall, they

show that mixed signals do not stem from a single test always or never rejecting.

How does χ̃2
I(4) resolve these mixed signals? For example one, χ̃2

I(4) = 39.870 exceeds the 5%

critical value of 22.215, hence agreeing with λmax and F̂ . On the other hand, χ̃2
I(4) = 16.126 for

example two, i.e. χ̃2
I(4) joins the non-rejecting λmax, tECR

γ and F̂ . Apparently, the p-value of tADF
γ

is not small enough to have χ̃2
I(4) reject. The very small p-values in example three produce a large,

and thus rejecting, meta statistic. Hence, χ̃2
I(4) aggregates the single tests such that, depending

on the relative strengths of rejection and acceptance, either aggregate result can obtain.

More generally, we check whether all individual tests from the Gregory et al. (2004) data and the

updated set agree or not in their decision, see left panel of Table 7. If there are conflicts we check

which result the test used in the original paper had suggested (more precisely what would have

been the outcome of our version with e.g. the chosen lag-length criterion), see the right panel of

Table 7.21 We then compare the results to that of χ̃2
I(4).

Table 7 thus reports the frequencies for all possible outcomes.22 When all tests do or do not reject,

the meta test does so too. However, agreeing tests make up only 65% (= (56 + 131)/286) of all
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Table 7: Test results in applied studies and the χ̃2
I test

number of cases in which...

...individual test results... ...in case of conflicting

agree conflict results: ‘preferred’ test†

r ¬ r
∑

r ¬ r
∑

χ̃2
I(4) : r 56 0 46 102 χ̃2

I(4) : r 25 12 37
χ̃2
I(4) : ¬ r 0 131 53 184 χ̃2

I(4) : ¬ r 26 14 40∑
56 131 99 286

∑
51 26 77

r: test rejects; ¬ r: test does not reject (at α = 0.05). †: Test type on which conclusions in the original
study were based (see fn. 21). Absolute frequencies of cointegration-test results. Individual tests are
Engle and Granger (1987), Boswijk (1994), Banerjee et al. (1998) and Johansen (1988) tests. The
χ̃2
I(4) abbreviates χ̃2

I(λmax, t
ADF
γ , tECR

γ , F̂ ) and combines these tests as described in Sec. 3.

data sets. For the remaining 35% of conflicting results χ̃2
I(4) is most useful, yielding a definite

conclusion. In 54% (= 53/99) of the cases χ̃2
I(4) accepts. In the remaining cases χ̃2

I(4) rejects.

Moreover, rejecting whenever at least one (but not all) of the tests rejected would have lead to a

substantial overstatement of cointegration (99 vs. 46 cases). Similarly, the conservative strategy

of only rejecting when all tests reject would have understated the pervasiveness of cointegration.

Also, the tests that have been ‘preferred’ in the studies are more rejective than our meta test (51

vs. 37 rejections in 77 tests). Hence, evidence for cointegration would have been less pronounced

if the studies could have relied on a suitable meta test.23 Finally, whether or not the preferred test

rejected is not informative on whether or not χ̃2
I rejects conditional on observing ‘mixed signals’.

This is reflected by similar conditional probabilities: 53/99 ' 26/51 ' 14/26 ≈ 1/2. Thus, we

cannot infer from a published result what the χ̃2
I test would indicate, conditional on a further

individual test leading to a conflicting test result.

8 Conclusion

This paper proposes meta tests that combine information from individual cointegration tests. The

tests take into account the multiple testing nature of running several individual tests and hence

control size. The meta tests find and employ the distribution of aggregators of the underlying

tests (e.g., Fisher’s), by appropriately modifying the critical values of the underlying tests, as well

as by bootstrap methods. By contrast, running more than one test and drawing inferences from

the most rejective test yields an oversized test. Asymptotic and Monte Carlo results establish

attractive power properties. An application to a large and up-to-date set of studies confirms our

tests’ practical value, yielding an unambiguous test decision in cases of conflicting individual tests.

The setup we put forward is fairly general and hence can be adopted to other testing problems for

which several (imperfectly correlated) tests exist. Essentially, only the distribution of a suitable

aggregator or an appropriate bootstrap method are needed. Examples include testing for unit

roots or heteroscedasticity, for which the sieve and wild bootstrap would be suitable.
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A major practical advantage of our proposed tests is that they relieve the applied researcher from

the discretionary and often arbitrary choice between cointegration tests to reach a decision.

Notes

1STATA and MATLAB code implementing the procedures suggested in this paper is available at www.rug.nl/

staff/c.h.hanck/research.

2We do not suggest that the authors of the studies have been in any way strategic in their choice of which

cointegration test to report. In fact, since we impose (see Section 7 for details) a common selection procedure

regarding e.g. trend and lag length selection, our results could possibly differ from what the authors would have

found. Also, cointegration testing may or may not have been a key concern in any of the applied work studied here.

3Kremers et al.’s (1992) ‘common factor restriction’ is an example for R2 = 0.

4Clearly, it would be nice to express the limiting random variable of χ̃2
I as an explicit functional of W . We

think this is difficult analytically, as it is complicated and possible in special cases only even for sums of standard

and independent random variables. Here, the ξi are nonstandard and dependent in a complicated way.

5We obtain these from 100,000 draws from the FFI , approximating W with suitably normalized Gaussian

random walks of length T = 1, 000.

6The null rejection probability of test i is Pr(ξi > cvαi ) = α. The size of URn(ξ1, ξ2) therefore is Pr(
⋃2
i=1 ξi >

cvαi ) =
∑2
i=1 Pr(ξi > cvαi ) − Pr(

⋂2
i=1 ξi > cvαi ) = 2α − Pr(

⋂2
i=1 ξi > cvαi ) > α, as Pr(

⋂2
i=1 ξi > cvαi ) 6 Pr(ξi >

cvαi ) = α.

7Appendix A gives a formal argument. One can further show that (5) minimizes the instances where both ξi

reject under H0, i.e. the tests are made as ‘uncorrelated’ as possible. A detailed argument is available, see also B.4.

8We simulate critical values for R2 = 0. Thus, the deviations from α for R2 6= 0 are due to simulation variability.

9See e.g. Lütkepohl (2005, p. 247) for the procedure. One could also estimate a VAR for ∆zt, imposing H0 (cf.

Swensen, 2006). However, as Paparoditis and Politis (2003) show for unit-root tests, this may lead to lower power.

10See Swensen (2006, Remark 1) and Johansen (1995, p. 71) for a discussion of this condition. Note that under

h = 0, α̂β̂′ = 0 in Swensen’s notation, such that we have Â(z) = (1− z)B̂(z), with the l.h.s. in Swensen’s notation

again. Thus his condition (iii) is equivalent to step 2 of our algorithm.

11Since we require pseudo observations that are integrated but non-cointegrated, Π = 0 is imposed.

12Elliott et al. (2005) show that variants of DGP(A) and (B) are closely related, yet they differ in how short-run

dynamics enter the DGPs. DGP(B) can be written as

[(I − ΓL)(1− L)− (ρT − 1)ΠTL]zt = ut (6)

whereas an equivalent way of writing (1) for the corresponding case of a VAR(2) is

[(I −ΦL)(1− L)− (I −ΦL)(ρT − 1)ΠTL]zt = ut (7)

(see Pesavento’s eq. (2.1)). As I − ΦL also affects the error-correction term in (7) one cannot find a Φ such that

(6) and (7) imply the same dynamics in our parametrization. This also implies that it is no longer directly possible

to infer the R2s for DGP(B).

13They e.g. show that tADF
γ = Op(T 1/2) under cointegration in a triangular system like (1). This readily extends

to (C), as divergence follows from stationarity of the residuals, which is clearly also given if the series are not I(1).
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14Appendix E demonstrates that all qualitative findings remain intact when generating (B) and (C) with an

unrestricted Ω as in (A). Moreover, we show that non-diagonality of neither Π nor Γ affects the conclusions.

15For tADF
γ we use response surface critical values. We also studied Phillips and Ouliaris (1990) and λtrace tests.

Since these are very strongly correlated with tADF
γ and λmax resp. (Gregory et al., 2004), adding these to χ̃2

I or

URψI barely affects the latters’ performance.

16Furthermore, we ran all simulations at the 1% and 10% level. We also get similar results with a version of (C)

with AR(1) error terms instead of white noise ut.

17Power results of the bootstrap tests were very similar. The largest power difference over all DGPs, tests and T

was 4.4 percentage points, and the mean absolute difference just over one point. See online Table E.7 for details.

18Online Table E.6 offers additional results for DGP(D).

19DGP(B) and Table E.4 show that the meta tests also provide insurance against nuisance parameters (short-run

dynamics and R2).

20We searched for ‘cointegration’ and ‘cointegrated’ on the Wiley webpage. Of the 34 hits, we excluded 5,

e.g. an editorial for a special issue, Monte Carlo papers or those using data already considered by Gregory

et al. (2004). The modified 2001-2010 data are available upon request. The raw 1994-2001 data are available

at http://qed.econ.queensu.ca/jae/2004-v19.1/gregory-haug-lomuto/.

21For this purpose, we categorize the studies according to whether they use a residual- (i.e. those by Engle

and Granger, 1987, or Phillips and Ouliaris, 1990) or system-based Johansen (1988) test. That is, we identify all

Johansen tests with λmax and all residual-based tests with tADF
γ . Given the highly positive correlation within classes

of tests (Gregory et al., 2004), this approximation is accurate. In 22 (99− 77) cases of conflicting test results, the

original studies do not report a cointegration test, being concerned with e.g. estimating cointegration vectors.

22Online Appendix F reports results for χ̃2
I(λmax, t

ADF
γ ); results for other (bootstrap) combination tests are

available.

23That the preferred test is more rejective than χ̃2
I here does not contradict the favorable power properties of

χ̃2
I found in Section 6, as χ̃2

I can, and should, of course only be shown to be powerful in a class of level-α tests.

Whether the way researchers identify their ‘preferred’ test leads to a level-α test or suffers from data-mining is

impossible to say without knowledge of the decision process.
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