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Abstract

We analyze undiscounted continuous-time games of strategic experimentation

with two-armed bandits. The risky arm generates payoffs according to a Lévy

process with an unknown average payoff per unit of time which nature draws from

an arbitrary finite set. Observing all actions and realized payoffs, players use Markov

strategies with the common posterior belief about the unknown parameter as the

state variable. We show that the unique symmetric Markov perfect equilibrium can

be computed in a simple closed form involving only the payoff of the safe arm, the

expected current payoff of the risky arm, and the expected full-information payoff,

given the current belief. In particular, the equilibrium does not depend on the

precise specification of the payoff-generating processes.
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1 Introduction

We analyze a class of continuous-time two-armed bandit models in which a number of

players act non-cooperatively, trying to learn an unknown state of the world that gov-

erns the risky arm’s expected payoff per unit of time. Actual payoffs are given by Lévy

processes, that is, processes with independent and stationary increments. In addition,

players receive free background information in the form of a process of the same type

as the payoff processes. Rather than discounting future payoffs, players evaluate their

payoff streams according to the strong long-run average criterion.1 Assuming that all

actions and payoffs are public information, we restrict players to Markov strategies with

the common posterior belief about the unknown parameter as the natural state variable,

and we look for Markov perfect equilibria.

This setting allows us to handle a much larger class of priors and payoff-generating

processes than the existing literature on bandit-based multi-agent learning in continuous

time. First, the unknown state of the world can be drawn from an arbitrary finite set,

whereas the literature assumes a binary state. Second, the payoff processes can combine

continuous with discrete increments, whereas the literature assumes either Brownian or

Poisson payoffs. Third, lump-sum payoffs can be good or bad news, whereas the literature

assumes that news is of one type only.

The broadening of the class of payoff-generating processes, and the generalization from

Bernoulli to arbitrary discrete priors in particular, is not entirely without costs, however.

In the Brownian model of Bolton and Harris (1999, 2000) and the Poisson models of

Keller, Rady and Cripps (2005) and Keller and Rady (2010, 2015), beliefs evolve on the

unit interval, which allows for a space of admissible Markov strategies large enough to

accommodate the discontinuities of actions with respect to beliefs which are an immutable

feature of asymmetric equilibria. For these settings, the results of Bolton and Harris (2000)

yield a characterization of the entire set of undiscounted Markov perfect equilibria. In

general, however, one must invoke results on the existence and uniqueness of solutions

to stochastic differential equations that rely on Lipschitz continuity of coefficients. This

rules out asymmetric equilibria but, as our main result shows, the space of Lipschitz

continuous strategies is large enough to ensure existence of a unique symmetric Markov

perfect equilibrium.

The equilibrium strategy has a simple explicit form, moreover. As already noted

in Bolton and Harris (2000), the absence of discounting and the presence of background

1This criterion is the limit of the standard discounted performance criterion as the discount rate goes

to zero, both in terms of value functions and optimal strategies. See Dutta (1991) for the connection

between performance criteria with and without discounting in discrete time, and Bolton and Harris (2000)

for a detailed treatment of the strong long-run average criterion in a continuous-time Bayesian-learning

setting such as ours.
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information imply that a player’s best response can be computed without knowledge of the

player’s value function. In fact, given the current belief, a player’s optimal action depends

only on the intensity of experimentation performed by the other players, the payoff of the

safe arm, the expected current payoff of the risky arm, and the expected full-information

payoff – it does not depend on the precise specification of the payoff-generating process.

This feature carries over to the symmetric Markov perfect equilibrium, where one and

the same functional form – the natural generalization of that in Bolton and Harris (2000)

– applies across all specifications that we consider. The common equilibrium action is

a piecewise linear function of the ratio of two differences: that between the risky arm’s

expected full-information payoff and the safe payoff, and that between the safe payoff and

the risky arm’s expected current payoff.

We show that this result extends to two specifications of priors and payoff-generating

processes in which the unknown state of the world is drawn from a continuous distribution

of unbounded support: Brownian payoffs with normal priors as in Jovanovic (1979),

and Poisson payoffs with gamma priors as in Moscarini and Squintani (2010). In either

specification, the players’ information is captured by a two-dimensional sufficient statistic,

which can serve as the state variable for Markov strategies.

Our result hinges on four features of the setting that we study: (i) players receive

free background information; (ii) they use the strong long-run average criterion; (iii) the

experimentation game is played in continuous time; and (iv) the players’ risky payoff

processes and the background information are all of the same (unknown) type, hence

perfect substitutes with respect to learning. The background information ensures that

players learn the true state eventually, no matter what strategy profile they use. This

makes it possible to evaluate players’ random payoff streams according to the strong

long-run average criterion, that is, by computing the expected accumulated shortfall of

received payoffs relative to the expected full-information payoff. Under this criterion, the

problem of finding a best response to the opponents’ Markovian strategy profile has a

recursive structure amenable to dynamic-programming techniques. In continuous time,

this leads to an HJB equation in which the value function enters only through the expected

rate of change of continuation payoffs. When the players’ risky payoff processes and the

background information are all of the same type, moreover, the rate of change of expected

continuation values is linear in the total intensity of experimentation. This makes it

possible to eliminate a player’s value function completely from the maximization problem

in the HJB equation, so best responses can be determined without reference to the value

function and the payoff-generating processes.

Each of these four features is indeed crucial. Without background information, the

strong long-run average criterion would be ill-defined because the expected accumulated

shortfall of received payoffs relative to the expected full-information payoff would always

grow infinitely large. With discounting, the HJB equation would necessarily contain a
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term ‘discount rate times current value’ that is not multiplied by the total intensity of

experimentation, so best responses would depend on current values. As pointed out in

Dutta (1991), moreover, alternative undiscounted performance criteria would not permit a

recursive representation. If the model were set in discrete time, the expected rate of change

of continuation payoffs would not be linear in the total intensity of experimentation. In a

discrete-time version of an exponential bandit game à la Keller, Rady and Cripps (2005),

for example, the probability of a success in any given round is clearly non-linear in the

number of players pulling the risky arm. Linearity would also fail if the type of the risky

arm were independent or imperfectly correlated across players, or if the law of the payoff

process differed across players.2

While the computation of best responses does not involve the specifics of the payoff-

generating processes, the evolution of the players’ posterior beliefs obviously does depend

on how the payoffs are generated, as do the players’ equilibrium payoffs. To characterize

the latter, and to verify that a certain profile of Markov strategies constitutes an equilib-

rium, one has to solve a functional equation that involves the infinitesimal generator of the

belief process. Our approach here is to show that the player’s value function is the unique

viscosity solution of the HJB equation subject to the relevant boundary conditions, and

that the payoff function for the suggested strategy profile also solves this boundary-value

problem, so the two must agree and the player indeed plays a best response.3

Besides Bolton and Harris (2000), the undiscounted limit of a continuous-time stochas-

tic game with one-dimensional state space has also been studied in Harris (1988, 1993)

and Bergemann and Välimäki (1997, 2002), yielding a much simpler characterization

of equilibria than under discounting. More recent applications of this methodology to

single-agent experimentation problems can be found in Bonatti (2011) and Peitz, Rady

and Trepper (2017).

The rest of the paper is organized as follows. Section 2 sets up the game and states

our assumptions on priors, payoff-generating processes and strategy spaces. Section 3

presents the infinitesimal generator of the process of posterior beliefs. Section 4 constructs

the unique symmetric Markov perfect equilibrium. Section 5 presents extensions of our

analysis to two settings with a continuously distributed state of world. Section 6 offers

some concluding remarks.

2Linearity would also fail in a restless bandit model in which the state of the world changed exogenously

over time. This would be the case, for example, if payoffs were generated by a Brownian motion with

an unknown drift subject to Markovian state-switching between a high and a low level as in Keller and

Rady (1999, 2003).
3For a recent application of this approach to the verification of optimality in a single-agent learning

context with Brownian signals, see Ke and Villas-Boas (2019).
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2 The Experimentation Game

Time t ∈ [0,∞[ is continuous. There are N ≥ 1 players, each of them endowed with

one unit of a perfectly divisible resource per unit of time. Each player faces a two-armed

bandit problem where she continually has to decide what fraction of the available resource

to allocate to each arm. One arm is safe, the other risky.

The safe arm generates a known constant payoff s > 0 per unit of time. The evolution

of the payoffs generated by the risky arm depends on a state of the world, ℓ, which

nature draws from the set {0, 1, . . . , L} with L ≥ 1 according to the positive probabilities

π0, . . . , πL. Players do not observe the state, but know its distribution. They also know

that the payoff process associated with player n’s risky arm is of the form

Xn
t = ρ t+ σZn

t + Y n
t ,

where Zn is a standard Wiener process and Y n is a compound Poisson process whose

Lévy measure ν is finite and has a finite second moment
∫

h2 ν(dh).4 The drift rate ρ, the

diffusion coefficient σ > 0 and the Lévy measure ν are the same for all players. While σ is

the same in all states of the world, moreover, ρ and ν vary with the state.5 Conditionally

on ℓ, the processes Z1, . . . , ZN , Y 1, . . . , Y N are independent.

We write ρℓ and νℓ for the drift rate and Lévy measure in state ℓ, λℓ = νℓ(R\{0}) for the

expected number of jumps per unit of time, and hℓ =
∫

R\{0}
h νℓ(dh) / λℓ for the expected

jump size. The state-contingent expected risky payoff per unit of time is µℓ = ρℓ + λℓ hℓ.

We assume that µ0 < µ1 < . . . < µL−1 < µL with µ0 < s < µL, so that neither arm

dominates the other in terms of expected payoffs. Writing π for the vector of probabilities

(π1, . . . , πL), we let m(π) denote the expected current (or myopic) payoff from the risky

arm, and f(π) a player’s expected full-information payoff:6

m(π) =
L
∑

0

πℓµℓ, f(π) =
L
∑

0

πℓ max{s, µℓ}.

Let kn,t ∈ [0, 1] be the fraction of the available resource that player n allocates to

the risky arm at time t; this fraction is required to be measurable with respect to the

information that the player possesses at time t. The player’s cumulative payoff up to

4Here, ν(B) < ∞ is the expected number of jumps per unit of time whose size is in the Borel set

B ⊆ R\{0}. The finite second moment ensures that the processes Xn have finite mean and finite quadratic

variation.
5Our assumptions on the diffusion coefficient and the Lévy measures ensure that the players cannot

infer the true state instantaneously from the continuous and jump part of risky payoffs, respectively.
6Given our convention to treat π1, . . . , πL as the independent variables, π0 should be viewed as short-

hand for 1−
∑L

ℓ=1
πℓ from now on.
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time T is then given by the time-changed process [T − τn(T )] s +Xn
τn(T ) where τn(T ) =

∫ T

0
kn,t dt measures the operational time that the risky arm has been used. As Xn

t − µt is

a martingale, the player’s expected payoff up to T is

E

[∫ T

0

{(1− kn,t)s+ kn,tµ} dt

]

;

here, the expectation is both about the process of allocations kn,t and the unknown ex-

pected per-period payoff µ, a random variable with possible values µ0, . . . , µL. With s

lying in the interior of the range of possible realizations of µ, each player has an incentive

to learn the quality of the risky arm.

Players do not discount future payoffs, and are instead assumed to use the strong

long-run average criterion.7 This means that player n chooses allocations kn,t so as to

maximize

E

[∫ ∞

0

{

(1− kn,t)s+ kn,tm(π)− f(π)
}

dt

]

.

Here, the integrand is the difference between what a player expects to receive at a given

point in time and what she would expect to receive were she to be fully informed. Note

that this objective function depends on others’ actions only through their impact on the

player’s own choices. In fact, we will soon impose restrictions under which others’ actions

matter only through their effect on a player’s beliefs.

The players start with a common prior belief π0 about the unknown state ℓ, given by

the probabilities with which nature draws this state, namely π. Thereafter, all observe

each other’s actions and outcomes as well as a common background signal, so they hold

common posterior beliefs throughout time. The background signal is generated by the

time-changed process X0
τ0(t) where X0 is an independent process of the same law as each

player’s payoff process from the risky arm, and τ 0(t) = k0t with k0 > 0 exogenously given

and arbitrarily small. This signal ensures that the players eventually learn the value of µ

even if they all play safe all the time.

Let πt denote the players’ common Bayesian posterior belief about the state given their

observations up to time t. With respect to the information filtration generated by these

observations, the process of beliefs πt is a Markov process (in fact, a jump diffusion) and

a martingale. The linearity of the functions m and f now implies that E[m(πt)] = m(π)

and E[f(πt)] = f(π) for all t ≥ 0, so we can rewrite the above objective function as

E

[∫ ∞

0

{

(1− kn,t)s+ kn,tm(πt)− f(πt)
}

dt

]

,

7For a discussion of this criterion and the role of the background signal introduced in the next para-

graph, see Bolton and Harris (2000).
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highlighting the potential for the posterior belief to serve as a state variable.

From now on, we restrict players to strategies that are Markovian with respect to this

variable, so that the action kn,t chosen at time t is a deterministic function of the posterior

πt only. More precisely, we take the players’ common strategy space K to be the set of

all Lipschitz continuous functions from the L-dimensional simplex

∆L =

{

π ∈ R
L
+ :

L
∑

ℓ=1

πℓ ≤ 1

}

to [0, 1]. By standard existence and uniqueness results for solutions of stochastic differen-

tial equations, any strategy profile (κ1, . . . , κN) ∈ KN gives rise to a well-defined process

of posterior beliefs,8 and hence to well-defined payoffs

un(π|κ1, . . . , κN) = E

[∫ ∞

0

{

[1− κn(πt)]s+ κn(πt)m(πt)− f(πt)
}

dt

∣

∣

∣

∣

π0 = π

]

∈ [−∞, 0].

A player’s payoff will indeed be −∞ for certain Markov strategies. If the player always

uses the safe arm, for example, and the true state ℓ is such that µℓ > s, then by almost

sure convergence of posterior beliefs to the truth, the above integrand will converge to

s− µℓ < 0 as t grows large, implying a diverging integral in that state. Since this occurs

with positive prior probability, the expected payoff is −∞, therefore.

We call a strategy in κn ∈ K reasonable if each degenerate belief has a neighbourhood

in which the strategy prescribes the action that is optimal in the respective state; in

particular, [1 − κn(π)]s + κn(π)m(π) = max{s,m(π)} in all these neighbourhoods, and

[1− κn(π)]s+ κn(π)m(π)− f(π) = 0 in all vertices of the simplex ∆L. Establishing that

posterior beliefs converge exponentially fast to the truth, we show in the appendix that

the expected payoff from a reasonable strategy is always finite and, in fact, bounded on

the simplex.

Strategy κn ∈ K is a best response against κ¬n = (κ1, . . . , κn−1, κn+1, . . . , κN) ∈ KN−1

if un(π|κn, κ¬n) ≥ un(π|κ̃n, κ¬n) for all π ∈ ∆L and all κ̃n ∈ K. A Markov perfect

equilibrium (MPE) is a profile of strategies (κ1, . . . , κN) ∈ KN that are mutually best

responses. Such an equilibrium is symmetric if κ1 = κ2 = . . . = κN . Obviously, each

8For L = 1 and no discontinuous payoff component, i.e. in the setting analyzed in Bolton and Harris

(2000), the presence of background information allows one to invoke a result of Engelbert and Schmidt

(1984) whereby any profile of Borel measurable Markov strategies implies a unique solution for the

belief dynamics; see also Section 5.5 of Karatzas and Shreve (1988). For L = 1, no Brownian payoff

component, and lump-sum payoffs that are always good news (meaning that ν0(B) ≤ ν1(B) for all Borel

sets B ⊆ R\{0}), one can proceed as in Keller, Rady and Cripps (2005) and Keller and Rady (2010)

and take K to be the set of functions which are left-continuous and piecewise Lipschitz continuous; as

beliefs drift down deterministically in between lump-sums, these properties allow one to construct belief

dynamics in a pathwise fashion. Neither approach generalizes to higher dimensions.
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player must obtain a finite payoff in any MPE.

3 The Infinitesimal Generator

The evolution of posterior beliefs is driven by up to N +1 distinct sources of information:

the observations on up to N risky arms plus the background signal. Suppose that only

player 1 uses the risky arm, and at full intensity. In other words, consider the time-

invariant action profile for which k1 = 1 whereas kn = 0 for all n > 1. Write G for

the infinitesimal generator of the corresponding belief process – as the payoff-generating

process is the same on every player’s risky arm, the identity of the player in question does

indeed not matter here.

If we now change player 1’s time-invariant intensity to k1 < 1 while keeping all other

intensities at zero, the resulting deceleration of the process of observations implies the

scaled-down generator k1G for the posterior belief; see Dynkin (1965), for example. The

same applies to the background signal, of course, if it alone is observed, with associated

generator k0G.

As the processes X0 and X1 are independent conditionally on the realized state,

Trotter (1959) implies that the infinitesimal generator of posterior beliefs is (k0 + k1)G

when both the background signal and player 1’s payoffs are observed. By the same token,

successively adding the other players with time-invariant allocations k2, . . . , kN leads to

the infinitesimal generator (k0 + K)G where K =
∑N

n=1 kn measures how much of the

N available units of the resource is allocated to risky arms overall. This fact will play a

crucial role in our analysis.

The generator G is that of a jump diffusion. In the interior
◦

∆L of the simplex, its

action on a C2 function u is given by

Gu(π) =
1

2σ2

L
∑

i=1

L
∑

ℓ=1

πi πℓ [ρi − ρ(π)][ρℓ − ρ(π)]
∂2u(π)

∂πi ∂πℓ

+

∫

R\{0}

[u(j(π, h))− u(π)] ν(π)(dh) −
L
∑

ℓ=1

πℓ (λℓ − λ(π))
∂u(π)

∂πℓ

,

where

ρ(π) =
L
∑

ℓ=0

πℓ ρℓ, ν(π) =
L
∑

ℓ=0

πℓ νℓ, λ(π) =
L
∑

ℓ=0

πℓ λℓ,

and

jℓ(π, h) =
πℓ νℓ(dh)

ν(π)(dh)

is the revised probability of state ℓ after a lump-sum payoff of size h arrives. The first
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term captures the learning from the continuous part of the payoff-generating process; the

second term, the discrete belief revision upon the arrival of a lump-sum payoff; and the

third term, the gradual belief revision when no such lump-sum arrives.

For L = 1, and hence π = π1, we obtain the generator computed by Cohen and Solan

(2013), with the first term simplifying to

1

2σ2
(ρ1 − ρ0)

2π2(1− π)2 u′′(π),

the expression familiar from Bolton and Harris (1999, 2000). It reflects the fact, estab-

lished in Liptser and Shiryayev (1977, Theorem 9.1), that when there is no discontinuous

payoff component (λ0 = λ1 = 0), then the posterior belief πt of a single agent who allo-

cates his entire resource to the risky arm follows a diffusion process with zero drift and

diffusion coefficient (ρ1 − ρ0) σ
−1πt(1− πt) relative to the agent’s information filtration.9

For L > 1, a generalization of Liptser and Shiryayev (1977, Theorem 9.1) shows that, from

the agent’s perspective, the corresponding belief process πt is a driftless L-dimensional

diffusion with instantaneous variance-covariance matrix given by

Cov [dπi,t, dπℓ,t | πt] =
[

πi,t (ρi − ρ(πt)) σ
−1
] [

πℓ,t (ρℓ − ρ(πt)) σ
−1
]

dt,

hence the structure of the first term in Gu.10

The second and third terms generalize their counterparts in Cohen and Solan (2013) to

L > 1 in the obvious way. In the special case that L = 1 and the size of lump-sum payoffs

is uninformative (meaning that conditional on the arrival of a lump-sum, the distribution

of its size does not depend on ℓ), these terms reduce to

λ(π)

[

u

(

πλ1

(1− π)λ0 + πλ1

)

− u(π)

]

− (λ1 − λ0)π(1− π)u′(π),

as in Keller, Rady and Cripps (2005) and Keller and Rady (2010).

Note that we have not imposed any mutual absolute continuity assumptions on the

measures ν0, . . . , νL. As a consequence, lump-sum payoffs of a certain size may rule out

certain states, so that the posterior belief jumps to a subsimplex of ∆L of dimension

lower than L. Once this happens, Bayesian updating ensures that beliefs remain in this

subsimplex.

9More precisely, the belief evolves according to dπt = σ−1 πt[ρ1−ρ(πt)] dZ̄t where the innovation pro-

cess Z̄t, given by dZ̄t = σ−1
(

[ρ− ρ(πt)] dt+ σ dZt

)

, is a Wiener process relative to the agent’s information

filtration.
10This generalization already appears in Veronesi (2000), for example.
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4 Symmetric Markov Perfect Equilibrium

Suppose that all players except player n use the strategy κ† ∈ K, and write (κn, κ
†
¬n) for

the strategy profile that results when player n uses the strategy κn ∈ K.

When choosing κn, player n faces a problem of optimal stochastic control of a jump

diffusion, and κn is a best response if and only if the payoff function un(·|κn, κ
†
¬n) is

the value function for that control problem. This means in particular that a necessary

condition for κn to be a best response is that the payoff function un(·|κn, κ
†
¬n) be a viscosity

solution of the HJB equation

0 = max
k∈[0,1]

{

(1− k)s+ km(π)− f(π) + [k0 + (N − 1)κ†(π) + k]Gu(π)
}

(1)

in the interior
◦

∆L of the L-dimensional simplex; see Øksendal and Sulem (2007) or Pham

(2009), for example.11 Conversely, the following conditions are sufficient for κn to be a best

response: (i) un(·|κn, κ
†
¬n) is a viscosity solution of the HJB equation in

◦

∆L and satisfies

the appropriate boundary condition on ∂∆L; (ii) there exists only one such solution.

As the left-hand side of (1) is zero (a consequence of no discounting) and k0 + (N −

1)κ†(π) + k is positive (because of the background signal), the HJB equation can be

rearranged as

0 = max
k∈[0,1]

s− f(π) + k[m(π)− s]

k0 + (N − 1)κ†(π) + k
+ Gu(π),

which demonstrates that the set of maximizers does not depend on continuation values.

Straightforward algebra allows us to further simplify the problem by rewriting the HJB

equation so that k appears only in the denominator:

0 = max
k∈[0,1]

[k0 + (N − 1)κ†(π)][s−m(π)]− [f(π)− s]

k0 + (N − 1)κ†(π) + k
− [s−m(π)] + Gu(π). (2)

Following Bolton and Harris (2000), we define the incentive to experiment by

I(π) =
f(π)− s

s−m(π)

when m(π) < s, and ∞ otherwise. When I(π) < k0 + (N − 1)κ†(π), the numerator in (2)

is positive and the maximum is achieved by k = 0; when I(π) > k0 + (N − 1)κ†(π), the

numerator is negative and the maximum is achieved by k = 1; when I(π) = k0 + (N −

1)κ†(π), the numerator is zero and the choice of k is inconsequential.

There are three different ways, therefore, in which k = κ†(π) can achieve the maximum

11A definition of viscosity solutions is given in the appendix.
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in the HJB equation: either κ†(π) = 0 and I(π) ≤ k0, or κ
†(π) = 1 and I(π) ≥ k0+N−1,

or 0 < κ†(π) < 1 and I(π) = k0 + (N − 1)κ†(π). This pins down κ†(π) in terms of the

incentive to experiment, I(π), the strength of the background signal, k0, and the number

of players, N :

κ†(π) =











0 if I(π) ≤ k0,
I(π)−k0
N−1

if k0 < I(π) < k0 +N − 1,

1 if I(π) ≥ k0 +N − 1.

(3)

As the partial derivatives of the incentive to experiment I are clearly bounded on the com-

pact set {π ∈ ∆L : k0 ≤ I(π) ≤ k0 +N − 1}, the function κ† is Lipschitz continuous and

hence an element of K. Like the functions m and f , moreover, I and κ† are non-decreasing

in π. Finally, it is straightforward to check that κ† prescribes the full-information optimal

action in a neighbourhood of each vertex of ∆L, so the strategy is reasonable.

Proposition. All players using the strategy κ† constitutes the unique symmetric Markov

perfect equilibrium of the experimentation game.

Proof: That this strategy profile constitutes an equilibrium is shown in the appendix.

Uniqueness follows from the arguments that led us from the HJB equation (1) to the

representation (3) for candidate equilibrium actions.

Figures 1 and 2 illustrate the case L = 2. (In both figures, µ0 = 2, µ1 = 5, µ2 = 8,

N = 4 and k0 = 0.2; s = 6 in Figure 1, and s = 4 in Figure 2.) The solid lines are the

boundaries of the sets of beliefs at which the equilibrium requires full experimentation

(κ† = 1) and no experimentation (κ† = 0), respectively. The dotted lines are level curves

of κ† for the experimentation intensities 0.2, 0.4, 0.6 and 0.8. A comparison of the two

figures exhibits the familiar property that a decrease in the reward from the safe arm

gives the players an increased incentive to experiment.

Note that by equation (3), the set of beliefs for which κ†(π) = 0 is independent of the

number of players and actually the same as for a single agent experimenting in isolation.

This is a stark manifestation of the incentive to free-ride on information generated by

others. In the terminology coined by Bolton and Harris (1999), it means that there is

no ‘encouragement effect’: the prospect of subsequent experimentation by other players

provides a player no incentive to increase the current intensity of experimentation and

thereby shorten the time at which the information generated by the other players arrives.

Intuitively, this simply reflects our assumption that players do not discount future payoffs

and hence are indifferent as to their timing. Formally, the absence of the encouragement

effect is a consequence of the linearity of the infinitesimal generator of posterior beliefs in

k0 +K: as the value of future experimentation by other players is captured by a player’s

equilibrium continuation values, yet best responses are independent of those continuation

values, there is no channel for future experimentation by others to impact current actions.

10
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Figure 1: Equilibrium actions for L = 2

and µ0 < µ1 < s < µ2
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Figure 2: Equilibrium actions for L = 2

and µ0 < s < µ1 < µ2

Free-riding can also be seen in the fact that κ† is non-increasing in N , and decreasing

where it assumes interior values. Figure 3 illustrates this effect. On the horizontal axis

Belief

κ†

Figure 3: Equilibrium actions for L = 2, π1 = π2 and N ∈ {2, 4, 6, 8, 10}

we set π1 = π2 and let that common belief range from 0 to 0.5: so it is a slice through

the simplex from the 0-vertex to the midpoint of the opposite edge. (In this figure, the

parameters are as in Figure 1 except that N varies from 2 for the leftmost curve to 10 for

the rightmost curve.)

The dependence of the overall intensity of experimentation on the number of players is

less clear cut: roughly speaking, Nκ† increases in N at beliefs where κ† requires exclusive

use of the risky arm, but decreases at beliefs where both arms are used simultaneously.
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As to the dynamics of beliefs in equilibrium, the present framework permits the anal-

ysis of experimentation games in which large payoff increments are bad news.12 For

example, let L = 1 for simplicity, with ρ0 = ρ1 and λ0 = λ1. Assume that the payoff

increments are in the set {s− 10, s− 5, s+ 5, s+ 10}. For the ‘good’ arm, the associated

probabilities of a lump-sum of that size are {0.1, 0.3, 0.5, 0.1}, so the expected increment

is s + 1; for the ‘bad’ arm, the associated probabilities of a lump-sum of that size are

{0.5, 0.1, 0.1, 0.3}, and the expected increment is s− 2. When a payoff increment occurs,

the belief jumps – up if the increment is moderate (s − 5 and s + 5 are relatively more

likely if the arm is ‘good’), and down if the increment is extreme (s − 10 and s + 10 are

relatively more likely if the arm is ‘bad’). So, in this stripped-down illustration, an arrival

of the largest possible payoff increment is bad news, and may well cause the players to

stop experimenting.

Finally, by the martingale convergence theorem, beliefs converge almost surely to the

degenerate distribution concentrated on the true value of µ; therefore f(π) converges to

either s or the true µ, and so κ†(π) converges to either 0 or 1. As was already said in

Section 2, we show in the appendix that the convergence of beliefs is exponentially fast

in expectation; this immediately implies that equilibrium actions converge exponentially

fast as well.

5 Continuous State Spaces and Sufficient Statistics

This section presents two specifications of priors and payoff-generating processes that fall

outside the framework of Section 2 but still permit the same analysis as in Sections 3 and 4.

In both settings, the unknown state of the world is drawn from a continuous distribution

of unbounded support, with conjugate priors ensuring that the players’ information is

captured by a two-dimensional sufficient statistic, which can serve as the state variable for

Markov strategies.13 Models in which agents have beliefs and observe stochastic processes

like those in Sections 5.1 and 5.2 can be found in Jovanovic (1979) and Moscarini and

Squintani (2010), respectively.

12In Keller, Rady and Cripps (2005) and Keller and Rady (2010, 2015) lump-sum sizes are completely

uninformative, while in Cohen and Solan (2013) lump-sums are informative, but always good news.
13The unbounded state space requires adjustments to the proof (via uniqueness of viscosity solutions

to the HJB equation) that every player using the strategy κ† constitutes an MPE of the game; we omit

the details here.
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5.1 Brownian Payoffs, Normal Prior

Suppose that the payoff-generating processes and the background signal are of the form

Xn
t = µ t+ σZn

t ,

where the Zn are independent standard Wiener processes and nature draws the unknown

drift µ from a normal distribution with mean m0 and precision τ0 > 0. This is also the

players’ common prior. Given the Gaussian process they observe, players then believe at

time t that µ is distributed according to a normal distribution with some mean mt and

precision τt > 0; see DeGroot (1970, Chapter 9), for example. The pair πt = (mt, τt)

constitutes a sufficient statistic for the updating of beliefs, therefore. Given a generic

π = (m, τ) ∈ R× ]0,∞[ , the corresponding probability density function for µ is g(µ; π) =

τ 1/2ϕ
(

(µ−m)τ 1/2
)

, where ϕ denotes the standard normal density. Let G(·; π) denote the

associated cumulative distribution function.

As in Section 3, consider a single player allocating his entire resource to the risky arm.

Following Chernoff (1968, Lemma 4.1) or Liptser and Shiryayev (1977, Theorem 10.1),

τt increases deterministically at the rate σ−2 and mt is a driftless diffusion process with

diffusion coefficient σ−1 τ−1
t relative to the player’s information filtration.14 As a result,

we see that

Gu(π) =
1

σ2

[

1

2τ 2
∂2u(π)

∂m2
+

∂u(π)

∂τ

]

for any function of class C2,1. By the same arguments as in Section 3, moreover, the

generator associated with time-invariant intensities (k0, k1, . . . , kN) ∈ [0, 1]N+1 is again

(k0 +K)G.

Since the precision τt increases over time, the relevant state space is the half-plane

Π = R × [τ0,∞[ . As to admissible strategies, we take K to be the set of all functions

κ : Π → [0, 1] such that κτ−1 is Lipschitz continuous on Π. Given a strategy profile

(κ1, . . . , κN) ∈ KN , the sum K =
∑N

n=1 κn also lies in K, and the system we need to solve

is

dm = K(m, τ) τ−1σ−1dZ̄, dτ = K(m, τ) σ−2dt.

The change of variable η = ln τ transforms this into dm = K(m, eη) e−ησ−1dZ̄ and dη =

K(m, eη) e−ησ−2dt; as K(m, eη) e−η is Lipschitz continuous in (m, η) on R × [ln τ0,∞[ ,

this system has a unique solution, as was to be shown.

We can now replicate the arguments of Section 4 in the present setting. As a first

step, we compute the expected current payoff m(π), the expected full-information payoff

14More precisely, it can be shown that dmt = σ−1 τ−1
t dZ̄t and dτt = σ−2 dt where, now, the innovation

process is dZ̄t = σ−1
(

[µ−mt] dt+ σ dZt

)

. Note that the expression equivalent to that for dmt to be

found in equation (9) of Jovanovic (1979) omits the term [µ−mt] dt.

13



f(π), and the incentive to experiment I(π). The expected current payoff m(π) is simply

the projection of π on its first component. For the expected full-information payoff, we

have

f(π) = sΦ(z) +m [1− Φ(z)] + τ−1/2ϕ(z),

where z = (s−m)τ 1/2 and Φ denotes the standard normal cumulative distribution func-

tion. To see this, note first that f(π) = sG(s; π) +
∫∞

s
µ g(µ; π) dµ. We trivially obtain

G(s; π) =
∫ s

−∞
g(µ; π) dµ =

∫ z

−∞
ϕ(x) dx = Φ(z). Since g(µ; π) ∝ exp

(

−1
2
(µ−m)2τ

)

,

moreover, we have dg(µ; π) = −(µ−m)τ g(µ; π) dµ and so µ g(µ; π) dµ = mg(µ; π) dµ−

τ−1 dg(µ; π), implying

∫ ∞

s

µ g(µ; π) dµ =

∫ ∞

s

mg(µ; π) dµ−

∫ ∞

s

τ−1 dG(µ; π)

= m [1−G(s; π)] + τ−1 g(s; π) = m [1− Φ(z)] + τ−1/2 ϕ(z).

The above representation makes it straightforward to verify that f is strictly increasing

in m and strictly decreasing in τ .15 This implies that I and κ† as defined in (3) are non-

decreasing in m and non-increasing in τ .

When m < s, we have

I(π) =
sΦ(z) +m [1− Φ(z)] + τ−1/2ϕ(z)− s

s−m
= Φ(z)− 1 + z−1ϕ(z).

In the appendix, we verify that κ† ∈ K by showing that Iτ−1 is Lipschitz continuous on

the set {π ∈ Π : k0 ≤ I(π) ≤ k0 +N − 1}. This is more involved than in scenarios with a

discrete prior because the set in question is unbounded.

Figure 4 illustrates equilibrium actions as a function of the posterior mean m and

variance τ−1. (In this figure, s = 6 and N = 4.) As in Figures 1–2, the solid curves are

the boundaries of the sets of beliefs at which the equilibrium requires full experiment-

ation or no experimentation, and the dashed lines are level curves for κ† equal to 0.2,

0.4, 0.6 and 0.8. All these curves are downward sloping; as one would expect, there is

a trade-off between mean and variance with the latter capturing the ‘option value’ of

experimentation. In particular, a very high variance is needed to induce a high intensity

of experimentation at low means. As the mean approaches the safe flow payoff, the level

curves become steeper and steeper so that the posterior variance has a diminishing impact

on the intensity with which the players explore the risky arm.

15Alternatively, since max{s, µ} is increasing in µ, a first-order stochastic dominance argument can

be used to establish that ∂f(π)/∂m > 0, and since max{s, µ} is convex in µ, a second-order stochastic

dominance argument can be used to establish that ∂f(π)/∂τ < 0.
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Variance

κ†=0

κ†=1

Figure 4: Equilibrium actions for Brownian payoffs and normal prior

5.2 Poisson Payoffs, Gamma Prior

Let s > 0 for the safe arm. Suppose that the payoff-generating processes and the back-

ground signal are independent Poisson processes whose unknown common intensity µ is

drawn from a gamma distribution with parameters α0 > 0 and β0 > 0. This is also the

players’ common prior. Given the processes they observe, players then believe at time

t that µ is distributed according to a gamma distribution with some parameters αt > 0

and βt > 0, which together constitute a sufficient statistic again; see DeGroot (1970,

Chapter 9), for example. Given a generic π = (α, β) ∈ ]0,∞[2, the probability density

function for µ is g(µ; π) = [βα/Γ(α)]µα−1e−βµ; the mean and variance of µ are α/β and

α/β2, respectively. We again write G(·; π) for the corresponding cumulative distribution

function.

Once more, consider a single player allocating his entire resource to the risky arm. He

expects to obtain a positive increment between t and t + dt with probability (αt/βt) dt,

in which case Bayes’ rule implies that πt jumps to (αt + 1, βt); with probability 1 −

(αt/βt) dt, there is no such increment and dπt = (dαt, dβt) = (0, dt). Thus, α counts

arrivals of increments and β measures the time that has elapsed – again, see DeGroot

(1970, Chapter 9). As a consequence, we have

Gu(π) =
α

β
[u(α + 1, β)− u(π)] +

∂u(π)

∂β
.

Once more, the generator associated with time-invariant intensities (k0, k1, . . . , kN) ∈

[0, 1]N+1 is (k0 +K)G.

Given that αt and βt increase over time, and αt can only do so in unit increments, the

relevant state space is Π = {α0+ j : j = 0, 1, 2, . . .}× [β0,∞[ . For K, we choose the set of

15



all functions κ : Π → [0, 1] such that κ(α0+j, ·) is right-continuous and piecewise Lipschitz

continuous for all j. Starting from any π ∈ Π, any strategy profile (κ1, . . . , κN) ∈ KN

induces a well-defined and unique law of motion for πt,

As the unknown intensity µ is also the risky arm’s average payoff per unit of time, we

see that the expected current payoff is m(π) = α/β. The expected full-information payoff

is

f(π) = sG(s; π) +
α

β
[1−G(s;α + 1, β)],

with the second term obtained as follows:

∫ ∞

s

µ g(µ; π) dµ =

∫ ∞

s

µ
βα

Γ(α)
µα−1e−βµ dµ =

α

β

∫ ∞

s

βα+1

αΓ(α)
µαe−βµ dµ

=
α

β

∫ ∞

s

βα+1

Γ(α + 1)
µαe−βµ dµ =

α

β

∫ ∞

s

g(µ;α + 1, β) dµ

=
α

β
[1−G(s;α + 1, β)].

The formula for f makes it straightforward to verify that, exactly like m, this function

is strictly increasing in α and strictly decreasing in β.16 Consequently, the incentive to

experiment I and the strategy κ† as defined in (3) are non-decreasing in α and non-

increasing in β.

For m(π) < s, we have

I(π) =
sG(s;α, β) + α

β
[1−G(s;α + 1, β)]− s

s− α
β

=
sG(s;α, β)− α

β
G(s;α + 1, β)

s− α
β

− 1.

In the appendix, we verify that κ† ∈ K by showing for any fixed α that I(α, ·) has a

bounded first derivative when m(π) < s.

Figure 5 illustrates the mean-variance trade-off in equilibrium actions for Poisson

payoffs and gamma prior. (Here, as in the example with Brownian payoffs and normal

prior, s = 6 and N = 4; the curves shown are thus the exact counterparts of those in

Figure 4.) To compute the level curves, one uses the fact that the shape parameter α

equals the squared mean of the gamma distribution divided by its variance, and β is α

divided by the mean. The similarity to Figure 4 is striking; a closer comparison reveals

that the level curves in the Brownian-normal case are somewhat steeper than those in the

Poisson-gamma case. This is because in the former, an increase in the variance induces

a mean-preserving spread for the random variable α on the whole real axis, whereas in

16Alternatively, for α′ > α′′ the likelihood ratio g(α;α′, β)/g(α;α′′, β) is increasing, and for β′ > β′′ the

likelihood ratio g(α;α, β′)/g(α;α, β′′) is decreasing. Since the likelihood-ratio ordering implies first-order

stochastic dominance, f has the stated monotonicity properties.
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κ†=0
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Figure 5: Equilibrium actions for Poisson payoffs and gamma prior

the latter, the mean-preserving spread is concentrated on the positive half-axis and thus

raises the option value of experimentation by more.

6 Concluding Remarks

We have seen that when rewards from the risky arm are generated by IID Lévy processes

with an unknown average payoff per unit of time, the players’ strategy in a symmetric

MPE of the undiscounted experimentation game depends only – and in a very simple

functional form – on the safe payoff, the expected current payoff of the risky arm, and the

expected full-information payoff. Given a finite set from which nature draws the unknown

average payoff, the equilibrium strategy is then independent of the actual specification of

the payoff-generating processes.

As to the settings with a continuous prior, recall that in the Brownian-normal case

the precision of the posterior distribution increases unboundedly with time, as does the

inverse of the variance in the Poisson-gamma case. Consequently, the posterior proba-

bility density function becomes concentrated on a narrow domain of the support. If we

approximated the normal or gamma distribution with a discrete distribution then, over

time, the beliefs would become more and more concentrated on the discrete values closest

to the true parameter – this suggests that we could take the ‘engineering’ approach and

focus on discrete distributions, with the specification of the payoff-generating processes

being irrelevant.17

17But note that if the two closest neighbours of the true average payoff µ per unit of time are µℓ and µℓ+1

with µℓ < µ < µℓ+1, then, althoughm(πT ) ≃ µ for large T , we would have Var[µ|πT ] ≃ (µℓ+1−µ)(µ−µℓ),

which is bounded away from zero.
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Letting the discount rate go to zero is going to make the analysis easier in many

dynamic settings, but it remains unclear, in general, whether the simplification will be as

great as in the present case. Candidates for optimal strategies or best responses may be

easier to identify in the undiscounted limit, but there remains the need to obtain a well-

defined law of motion, which may again require restrictions such as Lipschitz continuity

and could even lead to existence problems. Nevertheless, we believe that the strong long-

run average criterion has the potential to prove useful in other contexts, especially since

strategies which are optimal under this criterion will shed light on (at least approximately)

optimal behaviour for small positive discount rates.
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Appendix

Boundedness of Payoffs from Reasonable Strategies

We present the case L = 1 only, so that ℓ ∈ {0, 1}, π = π1 ∈ [0, 1], µ0 < s < µ1, m(π) =

(1− π)µ0 + πµ1 and f(π) = (1− π)s+ πµ1. Suppose first that the Lévy measures ν0 and ν1 are

non-trivial and equivalent.

For the description of the evolution of beliefs, it is convenient to work with the log odds ratio

ωt = ln
πt

1− πt
,

so that

πt =
eωt

1 + eωt

and 1− πt =
e−ωt

1 + e−ωt

.

Lemma A.1 There exists a constant C > 0 such that for all x, y ∈ R,

ex+y

1 + ex+y
≤

ex

1 + ex
+

ex

(1 + ex)2
y + C

ex

(1 + ex)3
y2.

Proof: For

f(x, y) =
ex+y

1 + ex+y
,

we compute the partial derivatives

fy(x, y) =
ex+y

(1 + ex+y)2
, fyy(x, y) =

ex+y(1− ex+y)

(1 + ex+y)3
.

For fixed x, the function f(x, ·) thus has the following second-order Taylor approximation around

y0 = 0:

f(x, y) ≈
ex

1 + ex
+

ex

(1 + ex)2
y +

1

2

ex(1− ex)

(1 + ex)3
y2.

As 1− ex ≤ 1, we have the local (with respect to the second variable) upper bound

f(x, y) ≤
ex

1 + ex
+

ex

(1 + ex)2
y +

1

2

ex

(1 + ex)3
y2.

Replacing the factor 1
2 in the last term by a sufficiently large constant C ensures a global upper

bound.18

Suppose now that starting from π0 = π (and corresponding ω0 = ω), the players use the

strategy profile (κ1, . . . , κN ) ∈ KN . By an extension of the results in Cohen and Solan (2013,

Section 3.2) to more than one agent, the log odds ratio at time t > 0 can be written as

ωt = ω + ηℓ

[

k0t+
N
∑

n=1

∫ t

0
κn(πs−) ds

]

+M ℓ
t ,

18Numerical computations suggest that C = 2 is large enough.
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where

ηℓ = (−1)ℓ+1 (ρ1 − ρ0)
2

2σ2
− (λ1 − λ0) +

∫

R\{0}
ln
ν1
ν0

(h) νℓ(dh),

ν1
ν0

is the Radon-Nikodym derivative of ν1 with respect to ν0, and M
ℓ is a martingale under the

probability measure Pℓ associated with state ℓ. The expectation and variance of M ℓ under this

measure, moreover, satisfy Eℓ[M
ℓ
t ] = 0 and Varℓ[M

ℓ
t ] ≤ Cℓ t for all t and a positive constant

Cℓ.
19

As lnx < x− 1 for all positive x ̸= 1, and ν1
ν0

= (ν0ν1 )
−1, one sees that

∫

R\{0}
ln
ν1
ν0

(h) ν0(dh) < λ1 − λ0 <

∫

R\{0}
ln
ν1
ν0

(h) ν1(dh)

unless ν1 = ν0, in which case the inequality µ1 > µ0 implies ρ1 > ρ0. So η0 < 0 < η1. As κn ≥ 0

for all n, this in turn implies

ω + η0k0t+M0
t ≥ ωt ≥ ω + η1k0t+M1

t .

By Lemma A.1,

πt ≤
eω+η0k0t+M0

t

1 + eω+η0k0t+M0
t

≤
eω+η0k0t

1 + eω+η0k0t
+

eω+η0k0t

(1 + eω+η0k0t)2
M0

t + C
eω+η0k0t

(1 + eω+η0k0t)3
(M0

t )
2

and

1− πt ≤
e−ω−η1k0t−M1

t

1 + e−ω−η1k0t−M1
t

≤
e−ω−η1k0t

1 + e−ω−η1k0t
−

e−ω−η1k0t

(1 + e−ω−η1k0t)2
M1

t +C
e−ω−η1k0t

(1 + e−ω−η1k0t)3
(M1

t )
2.

Writing C ′
ℓ = CCℓ, we thus have

E0[πt] ≤ eω+η0k0t
(

1 + CVar0[M
0
t ]
)

= eω+η0k0t(1 + C ′
0t) =

π

1− π
eη0k0t(1 + C ′

0t)

and

E1[1− πt] ≤ e−ω−η1k0t
(

1 + CVar1[M
1
t ]
)

= e−ω−η1k0t(1 + C ′
1t) =

1− π

π
e−η1k0t(1 + C ′

1t).

Now let player n use a reasonable strategy. Then there is a constant C2 > 0 such that

[1− κn(π)]s+ κn(π)m(π)− f(π) ≥ C2 [max{s,m(π)} − f(π)]

for all π. Note that max{s,m(π)} − f(π) is bounded below by s − f(π) = π (s − µ1) and by

m(π)− f(π) = (1− π) (µ0 − s).

Given the prior belief π0 = π, the player uses the expectation operator Eπ = (1−π)E0+πE1

to compute her objective function. Thus,

19For any fixed action profile, M ℓ has stationary increments, so its variance grows linearly with time.

Cℓ can be chosen as the rate at which the variance grows when all players use the risky arm exclusively.
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un(π|κ1, . . . , κN )

≥ (1− π)C2(s− µ1)E0

[∫ ∞

0
πt dt

]

+ πC2(µ0 − s)E1

[∫ ∞

0
(1− πt) dt

]

= (1− π)C2(s− µ1)

∫ ∞

0
E0[πt] dt+ πC2(µ0 − s)

∫ ∞

0
E1[1− πt] dt

≥ πC2(s− µ1)

∫ ∞

0
eη0k0t(1 + C ′

0t) dt+ (1− π)C2(µ0 − s)

∫ ∞

0
e−η1k0t(1 + C ′

1t) dt

= πC2(s− µ1)
C ′
0 − η0k0
η20k

2
0

+ (1− π)C2(µ0 − s)
C ′
1 + η1k0
η21k

2
0

.

This is the desired result.

Next, suppose that the Lévy measure ν1, say, is not absolutely continuous with respect to

ν0. Take a ν0-null set B ⊆ R\{0} with ν1(B) > 0. In state ℓ = 1, we then have P1[πt = 1] ≥

1− e−ν1(B)t, so that

E1[1− πt] = P1[πt = 1] · 0 + P1[πt < 1] · E1[1− πt|πt < 1] ≤ P1[πt < 1] ≤ e−ν1(B)t.

This exponential convergence again allows us to compute an upper bound for
∫∞
0 E1[1− πt] dt.

Finally, if both Lévy measures are trivial, the inequality η0 < 0 < η1 holds trivially, and the

result follows as above.

Viscosity Solutions of the HJB Equation

Consider a nonempty, open, connected and bounded set Ω ⊂ R
L. Denote the set of all symmetric

L× L matrices by S
L. Let H ∈ C(Ω× R

L × S
L × R) satisfy

H(x, p,X + Y, d) ≥ H(x, p,X, d+ q)

for all (x, p,X, d) ∈ Ω× R
L × S

L × R, all positive semidefinite Y ∈ S
N and all q ≥ 0.20

We are interested in solutions u : Ω → R of boundary value problems of the form

H(x,Du,D2u, u−Mu) = 0 in Ω, (A.1)

u = v on ∂Ω, (A.2)

where Du and D2u are the gradient and the Hessian matrix of u, respectively, M is an operator

mapping C(Ω) into itself, and v ∈ C(Ω).

A function u ∈ C(Ω) is called a viscosity subsolution of (A.1) if for every ϕ ∈ C2(Ω) and

every x0 ∈ Ω such that ϕ ≥ u on Ω and ϕ(x0) = u(x0),

H(x0, Dϕ(x0), D
2ϕ(x0), ϕ(x0)−Mϕ(x0)) ≥ 0.

Analogously, a function u ∈ C(Ω) is called a viscosity supersolution of (A.1) if for every ϕ ∈

20Note that the variables X and Y just introduced are unrelated to the objects for which we use these

symbols in the main text.
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C2(Ω) and every x0 ∈ Ω such that ϕ ≤ u on Ω and ϕ(x0) = u(x0),

H(x0, Dϕ(x0), D
2ϕ(x0), ϕ(x0)−Mϕ(x0)) ≤ 0.

Finally, u ∈ C(Ω) is called a viscosity solution of (A.1) if it is a viscosity sub- and supersolution

of (A.1).

The HJB equation (1) and its reformulation (2) are both of the form (A.1) with Ω =
◦
∆L,

the operator in question being

Mu(π) =
1

λ(π)

∫

R\{0}
u(j(π, h)) ν(π)(dh).

By the arguments that led us from (1) to (2) in Section 4, these equations have the same viscosity

solutions. We will refer to either equation as the HJB equation in what follows.

Suppose that all players except player n use the strategy κ† defined in (3). Let u∗(·|κ†¬n)

denote the value function of the control problem that player n faces when choosing a best

response, and u(·|κ†, κ†¬n) the player’s payoff function when she also uses strategy κ†, that is,

u(π|κ†, κ†¬n) = E
(κ†,κ†

¬n)

[∫ ∞

0

{

[1− κ†(πt)]s+ κ†(πt)m(πt)− f(πt)
}

dt

∣

∣

∣

∣

π0 = π

]

.

By definition, u∗(·|κ†¬n) ≥ u(·|κ†, κ†¬n). We shall establish the converse inequality via a compar-

ison result for viscosity sub- and supersolutions.

We know that both functions are bounded. Assume for now that they are actually continuous

on ∆L; we will justify this assumption later.

Lemma A.2 The value function u∗(·|κ†¬n) is a viscosity subsolution of the HJB equation.

Proof: We simplify the notation by writing u instead of u∗(·|κ†¬n).

Consider ϕ ∈ C2(∆L) and π0 ∈
◦
∆L such that u− ϕ ≤ 0 = u(π0)− ϕ(π0). To establish that

u is a viscosity subsolution of (1), we must show that

max
k∈[0,1]

{

(1− k)s+ km(π0)− f(π0) + [k0 + (N − 1)κ†(π0) + k]Gϕ(π0)
}

≥ 0.

Suppose that this is not the case, so that

(1− k)s+ km(π0)− f(π0) + [k0 + (N − 1)κ†(π0) + k]Gϕ(π0) < 0

for all k ∈ [0, 1]. For ε > 0, define ψ ∈ C2(∆L) by

ψ(π) = ϕ(π) + ε∥π − π0∥
4

and note that ψ → ϕ uniformly as ε→ 0. For δ > 0, let Bδ(π0) ⊂ R
L be the open ball of radius

δ centered at π0. By continuity, we can find ε, δ > 0 such that Bδ(π0) ⊂
◦
∆L and

(1− k)s+ km(π)− f(π) + [k0 + (N − 1)κ†(π) + k]Gψ(π) < 0
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for all k ∈ [0, 1] and all π ∈ Bδ(π0). As π0 is a strict maximizer of u− ψ, moreover, there exists

γ > 0 such that u(π) − ψ(π) ≤ −γ for π ∈ ∆L \ Bδ(π0). Suppose now that player n uses the

strategy κ ∈ K against the other players’ common strategy κ†. Define τ = inf{t > 0: ∥πt−π0∥ >

δ}. As k0 > 0, we have E
(κ,κ†

¬n)[τ ] <∞ and

E
(κ,κ†

¬n)

[∫ τ

0

{

[1− κ(πt)]s+ κ(πt)m(πt)− f(πt)
}

dt+ u(πτ )

]

− u(π0)

≤ E
(κ,κ†

¬n)

[∫ τ

0

{

[1− κ(πt)]s+ κ(πt)m(πt)− f(πt)
}

dt+ ψ(πτ )

]

− ψ(π0)− γ

= E
(κ,κ†

¬n)

[∫ τ

0

{

[1− κ(πt)]s+ κ(πt)m(πt)− f(πt) + [k0 + (N − 1)κ†(π) + κ(πt)]Gψ(πt)
}

dt

]

− γ

< −γ,

where the equality in the third line follows from Dynkin’s formula. But this contradicts the

dynamic programming principle, which states that

u(π0) = sup
κ∈K

E
(κ,κ†

¬n)

[∫ τ

0

{

[1− κ(πt)]s+ κ(πt)m(πt)− f(πt)
}

dt+ u(πτ )

]

.

Lemma A.3 The payoff function u(·|κ†, κ†¬n) is a viscosity supersolution of the HJB equation.

Proof: We simplify the notation by writing u instead of u(·|κ†, κ†¬n).

Consider ϕ ∈ C2(∆L) and π0 ∈
◦
∆L such that u−ϕ ≥ 0 = u(π0)−ϕ(π0). For any deterministic

time τ > 0,

0 = E
(κ†,κ†

¬n)

[∫ τ

0

{

[1− κ†(πt)]s+ κ†(πt)m(πt)− f(πt)
}

dt+ u(πτ )

]

− u(π0)

≥ E
(κ†,κ†

¬n)

[∫ τ

0

{

[1− κ†(πt)]s+ κ†(πt)m(πt)− f(πt)
}

dt+ ϕ(πτ )

]

− ϕ(π0)

= E
(κ†,κ†

¬n)

[∫ τ

0

{

[1− κ†(πt)]s+ κ†(πt)m(πt)− f(πt) + [k0 +Nκ†(πt)]Gϕ(πt)
}

dt

]

by Dynkin’s formula. Dividing through by τ and letting τ → 0, we get

[1− κ†(π0)]s+ κ†(π0)m(π0)− f(π0) + [k0 +Nκ†(π0)]Gϕ(π0) ≤ 0,

which is equivalent to

[k0 + (N − 1)κ†(π0)][s−m(π0)]− [f(π0)− s]

k0 +Nκ†(π0)
− [s−m(π0)] + Gϕ(π0) ≤ 0.

As

κ†(π0) ∈ arg max
k∈[0,1]

[k0 + (N − 1)κ†(π0)][s−m(π0)]− [f(π0)− s]

k0 + (N − 1)κ†(π0) + k
,

u is thus a viscosity supersolution of (2).

The comparison result that yields the inequality u∗(·|κ†¬n) ≤ u(·|κ†, κ†¬n) is due to Ishii and

Yamada (1993). These authors consider functional equations F (x, u,Du,D2u, u−Mu) = 0 such
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that

F (x, r, p,X + Y, d) ≤ F (x, r, p,X, d+ q)

for all (x, r, p,X, d) ∈ Ω×R×R
L × S

L×R, all positive semidefinite Y ∈ S
N and all q ≥ 0. This

means that F corresponds to −H here.21 As a consequence, the inequalities defining sub- and

supersolutions in terms of F are the opposite of those in terms of H.

There is a second, more substantive difference between the definitions of Ishii and Yamada

(1993) and ours. Translated back into our setting, a function u ∈ C(Ω) is a viscosity subsolution

of (A.1) in their sense if for every ϕ ∈ C2(Ω) and every x0 ∈ Ω such that ϕ − u has a local

minimum in x0,

H(x0, Dϕ(x0), D
2ϕ(x0), u(x0)−Mu(x0)) ≥ 0.

Analogously, a function u ∈ C(Ω) is a viscosity supersolution of (A.1) in their sense if for every

ϕ ∈ C2(Ω) and every x0 ∈ Ω such that ϕ− u has a local maximum at x0,

H(x0, Dϕ(x0), D
2ϕ(x0), u(x0)−Mu(x0)) ≤ 0.

In these alternative definitions, therefore, u is replaced by ϕ only as far as the gradient and

Hessian are concerned, but not in the nonlocal term. When M is an integral operator of the

type considered here, however, an argument in Alvarez and Tourin (1996, p. 300) implies that

these definitions are in fact equivalent to ours.22

Lemma A.4 Let a function v ∈ C(∂∆L) be given. Suppose that u is a viscosity subsolution of

the HJB equation, u a viscosity supersolution, and u ≤ v ≤ u on ∂∆L. Then u ≤ u on ∆L.

Proof: Equation (2) takes the form assumed in Ishii and Yamada (1993) with the domain

Ω =
◦
∆L, the function

F (x, p,X, d) = −
1

2σ2
R(x)′XR(x) + L(x)′p+ λ(x)d− c(x)

where

R(x) =









x1[ρ1 − ρ(x)]
...

xL[ρL − ρ(x)]









, L(x) =









x1[λ1 − λ(x)]
...

xL[λL − λ(x)]









and

c(x) = max
k∈[0,1]

[k0 + (N − 1)κ†(x)][s−m(x)]− [f(x)− s]

k0 + (N − 1)κ†(x) + k
− [s−m(x)]

=
[k0 + (N − 1)κ†(x)][s−m(x)]− [f(x)− s]

k0 +Nκ†(x)
− [s−m(x)],

21Note that Ishii and Yamada (1993) allow the value of the solution to enter as a separate variable

besides its difference with the nonlocal operator. Because of the absence of discounting, this generality

is not needed here, so H has one argument fewer.
22See Azimzadeh, Bayraktar and Labahn (2017) for a related discussion.
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and the operator

Mu(x) =
1

λ(x)

∫

R\{0}
u(j(x, h)) ν(x)(dh).

It is straightforward to check that F ,M and the function B(x, u) = u−v(x) defined on ∂∆L×R

satisfy all the conditions imposed by Ishii and Yamada (1993). The result thus follows from their

Theorem 3.1.

Corollary A.1 u∗(·|κ†¬n) = u(·|κ†, κ†¬n).

Proof: The proof is by induction over the dimension of the faces of the simplex. The 0-faces

(vertices) correspond to degenerate beliefs that assign probability 1 to one of the states; at all

these vertices, both functions assume the value 0. An application of Lemma A.4 for L = 1 now

yields u∗(·|κ†¬n) = u(·|κ†, κ†¬n) along any 1-face (edge) of the simplex. Applying the lemma for

L = 2 then proves this identity for all 2-faces (facets), and so on until the entire simplex is

covered.

As a by-product, this confirms that the value function is indeed the unique viscosity solution

of the HJB equation.

It remains to justify our assumption that the functions u∗(·|κ†¬n) and u(·|κ†, κ
†
¬n) are continu-

ous. In fact, using upper semicontinuous and lower semicontinuous envelopes, Ishii and Yamada

(1993) define the notion of viscosity sub- and supersolution for functions that are merely locally

bounded. Lemmas A.2 and A.3 still hold then, and Lemma A.4 generalizes in a way that ensures

that any viscosity solution satisfying a continuous boundary condition must be continuous over-

all; see Ishii and Yamada (1993, Corollary 3.3). Continuity of the functions in question follows

from an iterative application of this result as in the proof of Corollary A.1.

Verification that κ† ∈ K for Brownian Payoffs and Normal Prior

From the main body of the text, for m < s we have

I(π) = Φ(z)− 1 + z−1ϕ(z)

where z = (s−m)τ1/2.

The function F (z) = Φ(z) − 1 + z−1ϕ(z) is a strictly decreasing bijection from ]0,∞[ to

itself with first derivative F ′(z) = −z−2ϕ(z). For any positive real number c, therefore, we

have I(π) = c if and only if (s − m)τ1/2 = F−1(c). At any such (m, τ) in the half-plane

Π = R × [τ0,∞[ , we have ∂I/∂m = −F ′(F−1(c)) τ1/2 and ∂I/∂τ = 1
2F

′(F−1(c))F−1(c) τ−1.

To verify that κ† ∈ K, it suffices to show that Iτ−1 is Lipschitz continuous on Π(a, b) =

{π ∈ Π : a ≤ I(π) ≤ b} for any positive real numbers a < b. For I(π) = c, we have ∂(Iτ−1)/∂m =

−F ′(F−1(c)) τ−1/2 and ∂(Iτ−1)/∂τ =
(

1
2F

′(F−1(c))F−1(c)− c
)

τ−2. This establishes that both

partial derivatives of Iτ−1 are bounded along any level curve I(π) = c in Π. Letting c range

from a to b shows that they are bounded on the whole of Π(a, b), so Iτ−1 is indeed Lipschitz

continuous there.
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Verification that κ† ∈ K for Poisson Payoffs and Gamma Prior

Again from the main body of the text, for m(π) = α/β < s we have

I(π) =
sG(s;α, β)− α

β G(s;α+ 1, β)

s− α
β

− 1.

We fix α as well as positive real numbers a < b. To verify that κ† ∈ K, it suffices to show that

I(α, ·) is Lipschitz continuous on the set B(a, b) =
{

β ∈ ]αs ,∞[ : a ≤ I(π) ≤ b
}

. To this end, we

note first that

G(s;α, β)−G(s;α+ 1, β) =

∫ s

0

βα

Γ(α)
xα−1e−βµ

[

1−
βµ

α

]

dµ.

For β = α/s and µ < s, the term in square brackets under the integral is positive, so we have

G(s;α, αs )−G(s;α+1, αs ) > 0. For β ↘ α
s , therefore, the numerator sG(s;α, β)− α

β G(s;α+1, β)

in the above expression for I(π) tends to a positive limit. Given that I(π) is finite for β ∈ B(a, b),

this implies that the denominator in the above expression must be bounded away from 0, i.e. β

must be bounded away from α/s on B(a, b). Using the fact that

∂G(s;α, β)

∂β
=
α

β
[G(s;α, β)−G(s;α+ 1, β)] ,

it is now straightforward to verify that I(α, ·) has a bounded first derivative on B(a, b).
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Mathematics of Operations Research, 38, 92–107.

DeGroot, M. (1970): Optimal Statistical Decisions. New York: McGraw Hill.

Dutta, P.K. (1991): “What Do Discounted Optima Converge to?: A Theory of Discount

Rate Asymptotics in Economic Models,” Journal of Economic Theory, 55, 64–94.

Dynkin, E.B. (1965): Markov Processes Vol. I. Berlin: Springer.

Engelbert, H.J. and W. Schmidt (1984): “On One-Dimensional Stochastic Differen-

tial Equations with Generalized Drift,” Lecture Notes in Control and Information

Sciences, 69, Berlin: Springer-Verlag, 143–155.

Harris, C. (1988): “Dynamic Competition for Market Share: An Undiscounted Model,”

Discussion Paper No. 30, Nuffield College, Oxford.

Harris, C. (1993): “Generalized Solutions to Stochastic Differential Games in One Di-

mension,” Industry Studies Program Discussion Paper No. 44, Boston University.

Ishii, K. and N. Yamada (1993): “Viscosity Solutions of Nonlinear Second Order

Elliptic PDEs Involving Nonlocal Operators,” Osaka Journal of Mathematics, 30,

439–455.

Jovanovic, B. (1979): “Job Matching and the Theory of Turnover,” Journal of Political

Economy, 87, 972–990.

Karatzas, I. and S.E. Shreve (1988): Brownian Motion and Stochastic Calculus.

New York: Springer-Verlag.

Ke, T.T. and J.M. Villas-Boas (2019): “Optimal Learning Before Choice,” Journal

of Economic Theory, 180, 383–437.

Keller, G. and S. Rady (1999): “Optimal Experimentation in a Changing Environ-

27



ment,” Review of Economic Studies, 66, 475–507.

Keller, G. and S. Rady (2003): “Price Dispersion and Learning in a Dynamic

Differentiated-Goods Duopoly,” RAND Journal of Economics, 34, 138–165.

Keller, G. and S. Rady (2010): “Strategic Experimentation with Poisson Bandits,”

Theoretical Economics, 5, 275–311.

Keller, G. and S. Rady (2015): “Breakdowns,” Theoretical Economics, 10, 175–202.

Keller, G., S. Rady and M. Cripps (2005): “Strategic Experimentation with Ex-

ponential Bandits,” Econometrica, 73, 39–68.

Liptser, R.S. and A.N. Shiryayev (1977): Statistics of Random Processes I. New

York: Springer-Verlag.

Moscarini, G. and F. Squintani (2010): “Competitive Experimentation with Private

Information: The Survivor’s Curse,” Journal of Economic Theory, 145, 639–660.

Øksendal, B. and A. Sulem (2007): Applied Stochastic Control of Jump Diffusions

(2nd Edition). New York: Springer-Verlag.

Peitz, M., S. Rady and P. Trepper (2017): “Experimentation in Two-Sided Mar-

kets,” Journal of the European Economic Association, 15, 128–172.

Pham, H. (2009): Continuous-time Stochastic Control and Optimization with Financial

Applications. New York: Springer-Verlag.

Trotter, H.F. (1959): “On the Product of Semi-Groups of Operators,” Proceedings of

the American Mathematical Society, 10, 545–551.

Veronesi, P. (2000): “How Does Information Quality Affect Stock Returns?,” Journal

of Finance, 55, 807–837.

28


