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Abstract

Behavioral policy often aims at overcoming barriers like imperfect infor-
mation and limited attention that contribute to suboptimal consumer deci-
sions. When multiple barriers are present, a single intervention that does not
overcome all barriers simultaneously may fail to unfold its full potential. We
conduct a three-month randomized field experiment on energy conservation
in a resource-intensive everyday activity, using two different interventions.
Home energy reports fail to reduce energy use despite achieving significant
knowledge gains; real-time feedback induces considerable conservation ef-
fects. Strikingly, combining both interventions boosts these effects by over
50%. This showcases how barrier multiplicity can generate complementari-
ties in behavioral interventions.
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1. Introduction

Individuals regularly make decisions that are not in line with their own values and in-

tentions. For example, gym members want to stay in shape and healthy, yet exercise

less often than they initially plan to (DellaVigna and Malmendier, 2006); entrepreneurs

want to manage their businesses effectively, yet fail to follow simple rules for good fi-

nancial practice (Drexler, Fischer and Schoar, 2014). One particularly relevant domain

is pro-environmental behavior. Amidst growing public concern about climate change,

many people are willing to make personal sacrifices in order to protect the environment,

yet often fail to act pro-environmentally in their everyday lives (Kollmuss and Agyeman,

2002; Frederiks, Stenner and Hobman, 2015). This causes negative externalities, as the

ever-rising demand for energy and natural resources fuels existential societal challenges

like global warming and water scarcity (IPCC, 2014).

The gap between consumers’ intentions and actions could be partly driven by behav-

ioral barriers such as imperfect information, limited attention, self-control problems, sta-

tus quo bias, etc. (Allcott, 2016; Handel and Schwartzstein, 2018). These informational

or cognitive frictions and biases can also mute responses to monetary incentives and

thereby dampen the effectiveness of traditional price-based policies (Jessoe and Rapson,

2014; Madrian, 2014). Behavioral interventions aimed at overcoming these types of bar-

riers have been used to facilitate behavioral change in a variety of contexts such as retire-

ment savings or public health (Thaler and Sunstein, 2008; Madrian, 2014), and are also

regularly advocated as promising policy tool for fostering more environmentally sustain-

able household consumption behavior (Dietz et al., 2009; Allcott and Mullainathan, 2010;

Reddy et al., 2017). However, the existing evidence on their effectiveness remains mixed.1

In this paper, we emphasize that multiple behavioral barriers can be present at the same

time. For example, people tend to underestimate the energy-intensity of room heating

(Attari et al., 2010), and additionally they may be inattentive and forget to turn off the

heating system when leaving the house, or fail to resist the temptation of turning up

temperature on a cold winter’s day. Presence of multiple barriers in turn implies that a

single intervention that does not overcome all relevant barriers to a sufficient degree may

stay below its potential, because its effect would be dampened by the remaining barriers.

For example, information provision about environmental consequences could fall flat

if individuals do not activate their newly acquired knowledge when making decisions.

Thus, we hypothesize that interventions that each overcome a different set of barriers

can be complements, in the sense that each intervention is more effective in conjunction

with the other(s) than in isolation; put differently, the whole is greater than the sum

of its parts. If such complementarities indeed exist, then clever policy bundling may

increase the cost-effectiveness of behavioral interventions beyond what can be achieved

1Pro-environmental interventions have drawn from a broad set of instruments such as information cam-
paigns, feedback, social norms, goal-setting, etc. For reviews, see e.g. Abrahamse et al. (2005), Fischer (2008),
Delmas, Fischlein and Asensio (2013), Karlin, Zinger and Ford (2015), and Andor and Fels (2018).
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with piecemeal approaches. To the best of our knowledge, this hypothesis has not been

formulated explicitly and tested empirically yet. Our paper aims to fill this gap.

We first introduce a stylized conceptual framework to demonstrate the hypothesized

complementarity theoretically. In the framework, multiple barriers (e.g. lack of infor-

mation, inattention, present bias) distort agents’ choices by preventing them from fully

incorporating the marginal costs of consumption. Importantly, the different barriers en-

ter in a multiplicative way, which implies that behavioral interventions will only unfold

their full effect if all relevant barriers are eliminated at the same time. We then report evi-

dence from a three-month randomized field experiment in which we use two behavioral

policy tools, home energy reports and real-time feedback, to overcome various barri-

ers to resource conservation in a specific energy- and water-intensive everyday activity.

Crucially, we evaluate both the combined intervention as well as each intervention in iso-

lation, as this is necessary for empirical identification of policy interaction effects. The

home energy reports in our setting are primarily aimed at closing knowledge gaps about

environmental impacts while real-time feedback is targeted to channel attention in the

exact moment individuals are engaged in the resource-consuming activity.2

Lack of knowledge about resource-intensity of everyday activities is regarded as a ma-

jor barrier to pro-environmental behavior (Gardner and Stern, 2008); indeed, consumers

often underestimate the impact of highly energy- or water-intensive activities (Attari

et al., 2010; Attari, 2014).3 Many existing intervention strategies aim at providing in-

formation, yet conservation effects tend to be modest in methodologically more rigorous

studies (Abrahamse et al., 2005; Delmas, Fischlein and Asensio, 2013; Karlin, Zinger and

Ford, 2015). One possible explanation is that the existence of further barriers prevents

information interventions from taking full effect (Dietz et al., 2009). Limited attention

is a prime candidate, as knowledge and good intentions are insufficient if not acted on

in the moment of decision-making.4 For example, in a consumer goods context, Chetty,

Looney and Kroft (2009) show that explicitly posting the sales tax on price tags in U.S.

supermarkets decreases product demand, although shoppers are in principle perfectly

knowledgeable about the tax, even if it is not shown. There is also evidence pointing

2Even if there are alternative channels at work, complementarity can still arise as long as the set of
barriers targeted by the two interventions, respectively, are sufficiently distinct.

3Similarly, consumers may misperceive gasoline costs (Allcott, 2011a) or underestimate the emissions
impact associated with food choice (Camilleri et al., 2019). Knowledge gaps can give rise to subptimal be-
havior, e.g. if an agent has misspecified priors that are never corrected due to lack of feedback (Hanna,
Mullainathan and Schwartzstein, 2014; Schwartzstein, 2014). Hence, households often engage in conserva-
tion measures that are relatively ineffective (Gardner and Stern, 2008; Tonke, 2019).

4Of course, there can be other important barriers. Most prominently, agents might suffer from self-
control problems, e.g. due to present bias. Werthschulte and Loeschel (2019) find correlational evidence
for a positive association between present bias and energy consumption. Similarly, individuals might be
biased towards concentrated rather than dispersed payoffs (Koszegi and Szeidl, 2013; Dertwinkel-Kalt et al.,
2019). Status quo bias and inertia can also prevent consumers from adopting more sustainable behavior,
which is why changing defaults can be effective (Pichert and Katsikopoulos, 2008; Fowlie et al., 2018). Fur-
thermore, literature in the psychology of risk perception argues that the complex and uncertain nature of
climate change breeds overoptimism and makes it difficult for people to internalize it as threat that requires
immediate action (Gifford, 2011; Markowitz and Shariff, 2012).
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towards the role of (in)attention in environmental behavior (Allcott and Rogers, 2014;

Keefer and Rustamov, 2018; Langenbach et al., 2019).5 Making resource use and environ-

mental costs more salient can thus help to bridge the gap between attitudes and actions

(Tiefenbeck et al., 2018).

We borrow the terminology for our “home energy reports” from a prominent program

by the company Opower, in which millions of U.S. households received information

mails containing feedback on their own as well as their neighbors’ energy use.6 The

original mails reduced total household energy use by about two percent (Allcott, 2011b),

although home energy reports have been found to be ineffective in other samples (An-

dor et al., 2017; Myers and Souza, 2019). Our real-time feedback intervention is based

on Tiefenbeck et al. (2018), who find that providing salient feedback about resource use

in real-time through smart meters results in 22% lower energy use in the shower, which

translated into a 5% reduction in total household energy use.

We conducted our field experiment in student dormitories in the cities of Bonn and

Cologne, Germany, and following Tiefenbeck et al. (2018), we focused on resource con-

sumption behavior in the shower. Showering is an interesting paradigm for several rea-

sons. First, it is resource-intensive: an average shower in our sample requires 2.2 kWh

of energy to heat up 38 liters of water.7 Second, individuals tend to neglect the energy-

intensity of warm water use. Third, showering is prone to behavioral biases like inatten-

tion and self-control problems, as the pleasure of a warm shower is salient and immedi-

ate, whereas the cost of resource use seems abstract and distant. Fourth, showering is a

routine activity that occurs within a household context.

A total of 351 students participated in our experiment, with all of them living in single

dorm apartments with a private bathroom. It is noteworthy that subjects in our sample

had no monetary incentives for conserving energy or water, because utilities are com-

pletely included in the flat monthly rent. For the duration of our study, from early De-

cember 2016 until late February/early March 2017, each subject was equipped with a

smart shower meter that could be installed directly below the shower head and recorded

detailed data on each water extraction. We then implemented two types of interventions,

home energy reports and real-time feedback, both tailored specifically to resource use in

the shower. Subjects were randomly assigned into one of four experimental conditions

in a 2×2 design: no intervention (CON group), home energy reports only (HER group),

real-time feedback only (RTF group), or both interventions combined (DUAL group).

5For example, Langenbach et al. (2019) document a moderating effect of cognitive capacity on the re-
lation between pro-environmental intentions and actions. Allcott and Rogers (2014) observe “action-and-
backsliding” patterns after receiving home energy reports. Also, the positive relation between feedback
frequency and the effectiveness of feedback interventions seems consistent with inattention playing a role
(Fischer, 2008; Karlin, Zinger and Ford, 2015).

6There are some major differences between the Opower reports and our intervention. We provide feed-
back only to one specific energy-intensive activity, and we also put less focus on social norms but more on
additional information about environmental impacts. Details will follow later in the paper.

7Total household use per capita in Germany was on average 22.4 kWh of energy and 123 liters of water
in 2016 (Source: German Federal Statistical Office).
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Home energy reports were sent twice via email and provided feedback on the subject’s

water and energy use in the shower as well as additional information on environmental

impacts in terms of CO2 emission. In contrast to the Opower home energy reports, there

is little focus on social norms in our experimental intervention. We do, however, include

a social comparison element in the second home energy report. Real-time feedback pro-

vided instant measurement of water use through a local display on the smart meter, thus

drawing immediate attention while showering, but there was no extra information on

energy use or environmental impacts. Apart from evaluating the effectiveness of home

energy reports and real-time feedback in isolation, respectively, we further evaluate the

interaction effect between the two interventions. Our main hypothesis is that there could

be considerable complementarities, as agents may only engage in resource conservation

if they believe that their behavior has sufficient environmental impact and pay immediate

attention to resource use in the shower.

Our empirical results show that subjects in the RTF group reduce their energy (water)

consumption by about 0.4 kWh (6.3 liters) per shower compared to subjects in the CON

group, which corresponds to 17–18% of baseline resource use — a conservation effect that

is consistent with results in previous studies using the same smart shower meter (Tiefen-

beck et al., 2018, 2019). The treatment effect remains fairly stable over the entire 3-month

duration of the study. In contrast, home energy reports in isolation (HER group) do not

lead to any discernible conservation effects at all. Crucially, in line with our hypothesis,

we observe a striking complementarity between the two interventions. Combining home

energy reports with real-time feedback (DUAL group) further increases the treatment ef-

fect of real-time feedback by 0.22 kWh of energy (3.8 liters of water) per shower, more

than 50% of the original effect in the RTF group. This additional resource use reduction

in the DUAL group is not driven by short-lived boosts directly after receiving a home

energy report, but rather seems to unfold over time, which speaks in favor of learning

effects and against cueing or Hawthorne effects as the underlying mechanism.

Additional survey analyses show that both interventions help subjects form more pre-

cise beliefs about their water use in the shower. Additionally, information included in

home energy reports induces drastic (upwards) updates in beliefs about CO2 emissions

due to warm water use in the shower. Hence, the zero conservation effect of home en-

ergy reports in isolation is not due to lack of learning. There is also no evidence that

subjects in the DUAL group read their reports more carefully than subjects in the HER

group. Instead, it seems that, in the absence of real-time feedback, inattention and lack

of immediate visibility have prevented knowledge gains about environmental impacts

from translating into effective conservation behavior. Overall, our findings showcase

that accounting for the presence of multiple behavioral barriers can guide the design of

an appropriate policy mix that unlocks the full potential of behavioral policy.

A number of other studies on pro-environmental behavior also explore the idea that

some policy measures become more successful when accompanied by other interven-
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tions.8 For example, Jessoe and Rapson (2014) find that pricing schemes that incentivize

lower peak electricity consumption fall flat if consumers do not know how to effectively

adjust electricity usage; only households who have been outfitted with in-home-displays

reduce electricity use significantly in response to price hikes. List et al. (2017) study the

combination between Opower home energy reports and financial reward programs and

find that adding the latter encourages energy conservation in households that do not re-

spond strongly to the reports alone. Note that these studies do not have a complete 2×2

experimental design, and thus, strictly speaking, cannot cleanly identify complemen-

tarities. Brandon et al. (2018) evaluate both the combined and the individual effects of

two very similar interventions on household energy conservation, home energy reports

and “peak energy reports”, which are basically home energy reports for peak electricity

periods, and find neither strong evidence for complementarity nor for substitutability.

The novel contribution of our paper is that we demonstrate how barrier multiplicity can

generate complementarities in behavioral interventions that each target a different set of

barriers.

Our paper also relates to other studies on information provision or the role of attention

in economic decision making that do not focus on policy interaction effects. Information

provision and disclosure are traditional policy instruments which are often proposed

when there are strong informational frictions, e.g. asymmetries, search costs, or com-

plexity. They have been shown to influence behavior in a wide variety of other contexts,

such as energy efficiency investments (Newell and Siikamäki, 2014), financial decision

making (Bertrand and Morse, 2011), educational choice (Jensen, 2010; Hastings and We-

instein, 2008), job search (Altmann et al., 2018), social program/benefit take-up (Bhar-

gava and Manoli, 2015; Liebman and Luttmer, 2015), and food choice (Bollinger, Leslie

and Sorensen, 2011; Camilleri et al., 2019). In particular, information can have strong

impacts when agents’ prior beliefs are severely misspecified, for example when students

underestimate returns to higher education (Jensen, 2010), or when farmers neglect the

importance of certain input dimensions (Hanna, Mullainathan and Schwartzstein, 2014).

There has also been increasing interest in the role of limited attention in economic

decision-making, both in theoretical and empirical literature (Chetty, Looney and Kroft,

2009; Gabaix, 2017). When agents are partially inattentive, sending reminders (Karlan

et al., 2016), simplification (Bhargava and Manoli, 2015), or making information more

salient (Chetty, Looney and Kroft, 2009; Taubinsky and Rees-Jones, 2018) can help bring

intentions and relevant choice dimensions to the top of mind.

The remainder of this paper is structured as follows: Section 2 introduces the theoret-

ical framework for policy interactions under multiple barriers. Section 3 describes the

experimental setup and derives behavioral predictions. Section 4 presents our data as

8Policy interaction have also been considered in development economics, where a number of studies
experimentally test the effect of combined interventions on financial savings (Dupas and Robinson, 2013;
Jamison, Karlan and Zinman, 2014), education (Mbiti et al., 2019), risky sexual behavior (Duflo, Dupas and
Kremer, 2015), or demand for health products (Ashraf, Jack and Kamenica, 2013).
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well as some descriptive statistics. Section 5 explains our empirical approach and Section

6 presents our main empirical results. In Section 7, we study the potential mechanisms

underlying the results and provide robustness checks. Section 8 concludes.

2. Conceptual framework

We begin by introducing a stylized conceptual framework to understand how comple-

mentarities in behavioral interventions can arise in settings where multiple behavioral

barriers are present, e.g. imperfect information, limited attention and present bias. Even

if marginal returns to behavioral policy are decreasing, complementarities can arise if in-

terventions target different barriers that operate (to some degree) independently of each

other, because interventions that overcome only one barrier in isolation may still leave

intact other barriers that prevent behavioral change.

2.1. Policy interactions in a theoretical framework

Behavioral policy can help to bridge the gap between consumers’ intentions and actions

by mitigating relevant barriers. In this framework, we highlight that the presence of

multiple behavioural barriers can generate complementarities between different inter-

ventions, in the sense that each intervention becomes more effective in the presence of

the other interventions.

Basic setup.— We consider a simple setup in which an agent engages in an energy-

intensive activity, say showering, and the policy objective is to reduce energy use. The

agent’s consumption level is determined by a trade-off between the consumption utility

(pleasure, instrumental benefits, etc.) and the perceived costs of resource use (monetary

costs, environmental concern, etc.). She chooses energy use level e ≥ 0 to maximize

U(e) = V(e)− B · C(e) , (1)

where V(e) is the instantaneous consumption utility and C(e) is the cost of energy con-

sumption.9 In addition to standard smoothness conditions, we assume that V is hump-

shaped (locally increasing at 0, strictly concave, unique maximum) and that C is strictly

monotonically increasing and weakly convex. For simplicity, we abstract from uncer-

tainty or dynamics. In the absence of monetary motives, as in our empirical setting, C(e)

is the “moral” cost the agent perceives in face of the negative externalities from energy

use. However, the cost function is attenuated by an aggregate bias/barrier factor B, and

energy use is biased upwards if B ∈ [0, 1).

9The agent may not explicitly optimize with regard to energy use, but as long as the mapping from
actual decision variable (e.g. shower duration) to resource use is injective, we can represent the problem as
if the agent was optimizing over energy use.
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Multiple barriers.— This aggregate barrier can be the product of a collection of separate

frictions and biases, so

B = b1 · b2 · . . . bK . (2)

The various barriers bk enter multiplicatively and thus jointly prevent the agent from

fully implementing her conservation motive.10 For example, the agent could underesti-

mate energy-intensity, so the first bias factor is b1 = φ ∈ [0, 1). In addition, she may be

partially inattentive and consider environmental costs only with weight b2 = θ ∈ [0, 1).

As cream topping, the agent may be present-biased and like to save her good intentions

for another day, so that b3 = β ∈ [0, 1). Put together, B = φ · θ · β. Note that we assume

for simplicity that bk does not change with energy use e for any barrier k.

Consumption behavior.— The agent’s consumption level is defined by equating marginal

utility and marginal costs, but with the latter being diminished by the aggregate barrier:

V ′(e) =
K

∏
k=1

bk · C′(e) = B · C′(e) . (3)

If B < 1, than the true marginal cost is underweighted and energy use is thus biased

upwards. Defining f such that f (e) = V′(e)
C′(e)

for all e ∈ [0, ∞), we can directly map the

relation between implemented energy use and aggregate bias as

e(B) = f−1(B) . (4)

Notice that f−1 is a strictly decreasing function, so the weaker the aggregate bias, i.e. B

closer to 1, the lower the energy use.11

Behavioral interventions.— In this setup, we define behavioral interventions as policies

that (only) work through manipulating B. In contrast, price-based policies are aimed

at increasing the marginal costs of energy use, C′(e) that the agent faces. Equation (4)

shows that any behavioral policy P that mitigates the aggregate bias compared to no-

intervention state o will induce the agent to conserve energy. Hence,

∆BP = BP − Bo
> 0 =⇒ ∆eP = e(BP)− e(Bo) < 0 , (5)

and the more successful an intervention in mitigating the aggregate bias the larger its

effect on the outcome of interest. Recall that the policy objective here is to reduce energy

use, so ∆eP
< 0 moves in the desired direction.

10An alternative interpretation, more from a social planner’s point of view, is that the agent should in-
ternalize the full social cost Cs(e), and the ratio of private to social cost C(e)/Cs(e) would then be another
factor entering into the aggregate bias Bs, so decision utility is U(e) = V(e) − Bs · Cs(e). This interpreta-
tion highlights the overarching policy objective of reducing externalities instead of “internalities”. Efforts to
increase the privately perceived cost can include carbon pricing, social norms, goal-setting, etc.

11This is because marginal consumption utility V′(e) is strictly decreasing and marginal cost C′(e) is
non-decreasing. Hence, f is strictly increasing, so the inverse function f−1 exists and is strictly decreasing.
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Policy interactions.— Behavioral interventions I and II are complements if their combi-

nation reduces consumption by more than the sum of their individual effects, i.e ∆eI+II
<

∆eI + ∆eII. If they are substitutes, the inequality sign is reversed. Notice that even under

substitutability, it can be the case that I + II is more effective than both I and II in isolation,

i.e. ∆eI+II
< ∆eI and ∆eI+II

< ∆eII, which is exactly the reason why empirical identifica-

tion of policy interaction effects requires evaluation of the combined intervention as well

as of each intervention in isolation.

In a single-barrier setting, where B = b1, there is little room for complementarity be-

tween interventions I and II that both target b1. First, there will likely be some degree of

redundancy or crowding out, so ∆BI+II
< ∆BI + ∆BII. Second, one would typically ex-

pect decreasing marginal returns, so the scope for further conservation effects diminishes

with every intervention that is piled upon another. In our framework, this corresponds to

function f−1 being convex.12 Intuitively, resource consumption is more inelastic at lower

levels, e.g. due to desire for satisfying basic needs like hygiene; an analogy could be that

concave utility of money implies decreasing marginal returns to monetary incentives. In

principle, there could be complementarities if the introduction of one policy makes an-

other policy more salient, or if there are foot-in-the-door effects, but we are abstracting

from such sources of policy interaction in this paper.13

When moving to a multiple-barrier setting as described in equation (2), the same fac-

tors can still play a role. In particular, marginal returns to bias mitigation tend to be

decreasing, and there could also be redundancy or crowding out if interventions do not

target entirely disjunct sets of barriers.14 However, barrier multiplicity gives rise to a

new force that potentially generates complementarities: behavioral policy may need to

overcome all barriers simultaneously to unfold its full potential. Mathematically, this

statement is based on a simple fact:

∂KB

∂b1 . . . ∂bK
> 0 . (6)

For example, even a highly motivated agent needs to be knowledgeable about the im-

pacts of her actions, pay attention at the right moment, and have sufficient willpower,

12For example, if V has a positive third derivative and the cost function C is linear or quadratic, then f−1

is strictly decreasing and convex. A positive third derivative is often labelled prudence and implies a desire
for precautionary saving in choice under risk. Of course, f−1 could in principle also be concave, so marginal
returns are increasing, but this seems implausible. For example, it can imply that resource conservation
interventions have larger effects for low-baseline households, although the opposite is usually true.

13Furthermore, it is unclear whether these effects will be substantial, especially since there could also
be counteracting forces like competition for attention in a policy-crowded environment or moral licensing
effects. In Section 7, we present robustness checks showing that these effects are unlikely to explain our
empirical results.

14Crowding out can also be the indirect result of interactions across barriers, i.e. if the strength of one
barrier is endogenously linked to another barrier. For example, information provision may incidentally
induce agents to pay more attention (Hanna, Mullainathan and Schwartzstein, 2014; Gabaix, 2017) or set up
commitment devices against their self-control problems.
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etc., in order to act pro-environmentally. An informational intervention may correct mis-

perceptions about environmental impacts, but the agent can still be present-biased and

inattentive, and that would need to be addressed as well. Formally, a policy intervention

Pl that overcomes only a single barrier l still leaves the other barriers intact, so

∆BPl = BPl − Bo = (1 − bo
l ) ∏

k 6=l

bo
k . (7)

The more severe these remaining barriers the more the effectiveness of Pj is attenu-

ated. Thus, it can be more successful when combined with other interventions that raise

∏k 6=j bk, and vice versa. In the extreme case where bo
k = 0 for all k, it becomes necessary

to eliminate every single barrier in one fell swoop, in order to achieve any substantial

behavioral change.

To show how superadditivity in barrier mitigation carries over to the outcome of inter-

est, we can look at a Taylor series approximation. The effect of a behavioral policy P on

the agent’s energy consumption level is as follows:

∆eP = e(BP)− e(Bo) = ∆BP 1

f ′ −
1

2

(
∆BP

)2 f
′′

( f ′)3
+ O

((
∆BP

)3
)

, (8)

where f
′
= V

′′
C′−V′C

′′

(C′ )2
< 0 and evaluated at baseline level e(Bo). The first-order effect

is unambiguously consumption-reducing and directly proportional to barrier manipula-

tion ∆BP, and it becomes stronger when marginal costs C′ are high.15 In contrast, the sign

of the second-order effect depends on the sign of f
′′
. Typically, one would expect f

′′
≥ 0,

e.g. due to desire for basic needs satisfaction, which pushes policy interaction effects in

the direction of substitutability. Nevertheless, complementarity can arise between inter-

ventions I and II that each target a different set of barriers if ∆BI+II
> ∆BI + ∆BII, which

translates directly into a superadditive first-order energy conservation effect.

2.2. Illustration with two barriers

To demonstrate the potential complementarity more clearly, let us consider a simple case

with two barriers, b1 and b2. For example, b1 could be an awareness parameter, where

b1 < 1 indicates that the agent is unaware of the full environmental impact of her be-

havior, e.g. if she underestimates the amount of energy required for heating up water for

showering. Moreover, b2 could be an (exogenous) attention parameter, so b2 < 1 indicates

partial inattention to environmental costs in the moment of decision making, e.g. while

showering. The aggregate bias factor prior to any intervention is therefore B = b1 b2,

where we dropped the superscript o for ease of notation. Crucially, the agent has to hold

sufficiently high beliefs about environmental impacts as well as be sufficiently attentive

15Therefore, our framework also predicts that behavioral interventions can be complementary to tradi-
tional price-based policies such as Pigouvian taxation. See also footnote 10.
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toward it in order to implement her pro-environmental intentions.

Suppose that we have two interventions. Intervention I only provides information

(bI
1 > b1) but does not address limited attention, so that BI = bI

1 b2 and ∆BI = (bI
1 −

b1)b2. Intervention II only channels attention (bII
2 > b2) but does not close knowledge

gaps, so that BII = b1 bII
2 and ∆BII = (bII

2 − b2)b1. Limited attention dampens the effect

of intervention I, and lack of information dampens the effect of intervention II. When

the two interventions are introduced jointly, however, both information and attention

problems are mitigated, so ∆BI+II = (bI
1bII

2 − b1b2).16 The joint bias mitigation effect is

not only larger than that of any individual intervention, which is easy to see, but it is also

larger than the sum of the two individual mitigation effects, because

∆BI+II −
(

∆BI + ∆BII
)
= (bI

1bII
2 − b1b2) − (bI

1 − b1)b2 − (bII
2 − b2)b1

= (bI
1 − b1)(b

II
2 − b2) > 0 . (9)

This additional mitigation effect is stronger the more severe each barrier is initially. For

example, if the agent is completely inattentive in the absence of intervention II, i.e. b2 = 0,

then information intervention I in isolation will not have any effect at all.

The interventions I and II are complements if their efficacy in reducing energy con-

sumption is also superadditive, so ∆eI+II
< ∆eI + ∆eII. Within this framework, an equiv-

alent way to write the condition is that

f−1
(

BII + (BI+II − BII)
)
− f−1(BII) < f−1

(
B + (BI − B)

)
− f−1(B) , (10)

so intervention I must be more effective together with intervention II than in isolation,

where I and II are interchangeable. The level differences due to additional intervention

II can work to the disadvantage of the combined intervention if f−1 is convex, but equa-

tion (9) shows that BI+II − BII
> BI − B, which works to its advantage. Hence, the key

takeaway is that despite opposing forces like decreasing marginal returns, the presence

of multiple distinct barriers potentially gives rise to complementarities that can be ex-

ploited to enhance the effectiveness of behavioral interventions — in particular if some

biases are extremely severe. Whether or not this source of policy complementarity is

practically relevant in real-world settings is then an empirical question.

3. Experimental setup

We conducted our field experiment in student dormitories in the cities of Bonn and

Cologne, Germany, from early December 2016 to late February/early March 2017. Each

16Note that we have implicitly assumed that there is no crowding out, i.e. bI
2 = b2 and bII

1 = b1,
which rules out endogenous attention or induced information search, although the complementarity prop-
erty may even be retained when allowing for a limited degree of redundancy. In the setting here,
∆BI+II −

(
∆BI + ∆BII

)
> 0 as long as bI

2 + bII
1 < 1 + b1b2.
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participant was outfitted with a smart shower meter that measured individual resource

consumption in the shower over the three-month experimental period. Subjects were

randomly assigned to receive real-time feedback on their water use through the smart

meter, or home energy reports with detailed information on water use, energy use, and

CO2 emissions via email, or both. Students in our dormitories have no direct monetary

incentives to conserve energy or water, because they pay a flat monthly rent that includes

all utility bills, which effectively creates a zero-marginal-cost environment.

3.1. Recruitment of participants

We selected six student dormitory sites in Bonn and Cologne for our study, based on

the number of single-person apartments and ease of access for our local research teams.

All residents of these dorms are students at the University of Bonn or the University of

Cologne, or at various smaller universities in the cities. We recruited our subjects from

the pool of dorm tenants living in single-person apartments with private bathroom, as

this allows us to precisely measure resource use of each individual. To participate in the

study, residents had to actively agree based on the principle of informed consent. Two

additional criteria were levied: subject should not have lengthy absences planned within

the intended study period (except during Christmas vacation), and they should own a

smartphone compatible with Bluetooth 4.0, which was necessary for implementing home

energy report treatments.

The recruiting process started around mid-October 2016. Posters and flyers informed

residents of the selected dorms about the upcoming study, and our local research as-

sistant teams engaged in door-to-door recruiting. Interested students had to complete

an online registration survey to provide required information and to give their consent

for us collecting and analyzing data on their showering behavior. It was explicitly (and

truthfully) stated that we would treat any collected data confidentially and not share it

with the dormitory administration. As remuneration, each participant received 20 Eu-

ros after completing the study, and ten participants were randomly drawn to receive a

300 Euro cash prize. In total, 406 students registered for the study, out of which 361 met

our participation criteria.17 Ten students subsequently dropped out of the study, either

because they had to move out unexpectedly or we were not able to contact them again.

This leaves us with a sample of 351 participants.

3.2. Smart shower meters and smartphone app

At the beginning of the study, starting from 5th Dec 2016, each participant was outfitted

with an Amphiro b1 smart shower meter that measures and records data on every water

17The total number of all single apartments in the selected dorms is 1380, thus our recruitment rate was
almost 30%. More than half of the dorm resident pool was lost to us because they were never at home when
we knocked, so out of the students we actually managed to talk to, the majority registered for the study.
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Figure 1: Amphiro b1 smart shower meter

(a) Position in the shower (b) Display in control mode (c) Display in feedback mode

extraction in the shower. The device can be easily attached between the shower head

and shower hose, and features a smartphone-sized liquid crystal display, which can be

programmed to display various types of information. The display faces directly towards

the user while under the shower, as illustrated in Figure 1a. The smart meter is designed

such that showering convenience should not be inhibited, as it is small, lightweight, and

needs no battery; power is generated through an integrated hydro turbine, without no-

ticeably affecting water flow in the process. One drawback of the lack of battery is that

the device is unaware of the global time: showers can only be recorded in temporal or-

der, but without time stamps. Once water flow in the shower starts, the smart meter is

powered on and begins to measure, among others, the amount of water flowing through,

water temperature, and the time passed since beginning of water flow. After water flow

stops, the device remains powered on for three minutes. If water is turned on again

within this time frame, it will continue measurement from the point where it had previ-

ously stopped. Once water flow stops for more than three minutes, the device terminates

measurement and stores the recorded data as most recent observation point.

We programmed the shower meters to display select pieces of information to partic-

ipants in real time, i.e. while they are taking their showers. Depending on the study

progress and assigned experimental condition, the device was either in control or feed-

back mode. In control mode, the display only showed information about current water

temperature in degree Celsius (see Figure 1b), whereas in feedback mode, it would ad-

ditionally display the amount of water used (in liter) since the start of the shower (see

Figure 1c). In addition, we asked all participants to install the Amphiro smartphone

app around week 5 of the experiment, shortly after the end of the Christmas break. The

participants could use the app to upload data from their shower meters via Bluetooth

connection.18 We were then able to access the data uploaded through the app and use it

to create personalized home energy reports. The original Amphiro smartphone app also

calculates summary statistics about users’ resource use in the shower, but we deactivated

this feature for our study participants, so the its only functionality was data uploading.

18The process was quite simple. After installing the smartphone app, subjects created an account, which
was then paired to their shower meter through manual entry of a device-specific code. After successful pair-
ing, the meter automatically transmitted all stored data to the app via Bluetooth whenever it was powered
on and the smartphone was within range.
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One ancillary benefit of the app was that it stored time and date of each data upload,

which allows us to construct approximate time windows for each shower. Unfortunately,

28% of all participants did not succeed in uploading any data to the app in time, mostly

due to technical problems. The most common sources of failure were problems with the

Bluetooth connection or unexpected incompatibility between smartphone and app. We

will explain how to deal with this issue later.

3.3. Implementation of real-time feedback

The live tracking of water use on the shower meter display in feedback mode is what we

refer to as real-time feedback, our first type of intervention. We programmed half of the

smart meters as control devices and the other half as treatment devices. Control devices

only displayed the current water temperature throughout the entire study. Treatment

devices also started in control mode for the first ten showers, which we use to measure

baseline behavior, but switched permanently to feedback mode starting from shower

number eleven.

3.4. Implementation of home energy reports

Our second type of intervention consists of two personalized home energy reports. These

reports were sent via e-mail and showed descriptive statistics about the subject’s water

and energy use in the shower, as well as information about environmental impacts. To

allow for learning about outcomes of single showers, a graphical representation of the

subject’s history of water use per shower is included. The reports were constructed based

on data that was uploaded by subjects through the smartphone app. We sent out addi-

tional reminders to upload data before each planned delivery of the home energy report,

but the reports themselves were not explicitly announced. Subjects who did not manage

to upload any data only received empty report templates instead of statistical figures and

graphs.

Figure 3 shows the screenshot of an example home energy report (Oliver is a a fictitious

person). After a short introductory text, subjects see a scatter plot of their history of water

use per shower since beginning of the study, including a fitted regression line to help

recognize trends and averages. Below the graph, average water use (in liters) and energy

use (in kWh) per shower are stated numerically. Furthermore, there is an information

panel on projected CO2 emissions per year and the number of trees required to absorb

the corresponding amount of CO2. The whole report is formulated concisely in neutral

language, to avoid any normative or moral suasion elements. In the second report, we

added a social comparison component in the spirit of the original Opower home energy

reports (Allcott, 2011b). Specifically, we assigned a random anonymous peer to each

14



Figure 3: Screenshot (partial) of a typical home energy report

subject and displayed statistics on the peer’s energy and water use.19 At the bottom of

each report, there was a personalized link to a mini-survey that we asked subjects to fill

out. We can use this information to verify if, and how closely, the email has been read.

3.5. Experimental design

We implemented a complete 2×2 design with four experimental conditions. Subjects

in the control (CON) group received no intervention at all; subjects in the RTF group

only received real-time feedback through the smart shower meters; subjects in the HER

only received home energy reports; and subjects in the DUAL group received both real-

time feedback and home energy reports. Treatment assignment was randomized and the

19For a screenshot, see Figure A1 in Appendix A. The matching procedure was one-sided and ensured
that each subject (except the most and the least efficient) was equally likely to see a peer with lower or higher
energy use per shower.
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Figure 4: Experimental design and timing of interventions

Baseline stage
(showers 1-10, start: 5th Dec 16)

Intervention (IN) stage (showers 11+)

IN stage 1 (until 23rd Jan 17) IN stage 2 (from 23rd Jan until ~28th Feb 17)

CON group

+ HER group

RTF group

+ DUAL group

group sizes are as follows: 82 in CON, 88 in HER, 90 in RTF, 91 in DUAL.20

Figure 4 illustrates the experimental design in detail. Each shower meter goes through

a baseline stage of ten showers, in which it only displays the current water temperature,

regardless of the experimental condition. We use these showers to measure baseline con-

sumption behavior. Starting from the eleventh shower (intervention stage), devices in

RTF and DUAL additionally displayed water use in real time, whereas devices in CON

and HER permanently stayed in control mode. About halfway into the study, we started

sending home energy reports to each subject in the HER or DUAL group; the first report

was sent on 23 January 2017 and the second report on 8 February 2017, about two weeks

later. We distinguish between intervention (IN) stage 1, in which real-time feedback is

switched on but there were no reports yet, and intervention (IN) stage 2, which is the

period beginning after the first home energy report was sent out.21 In order to hold inter-

action with experimenters constant, subjects in CON and RTF groups received placebo

emails at the exact same time the home energy reports were sent out, which simply asked

them to fill out a mini-survey — the same that came along with the actual reports.

This staggered experimental design allows us to exploit both between- and within-

subject variation to cleanly identify treatment effects of interest. The effect of real-time

feedback in isolation is identified by the comparison between the RTF and CON groups

in the (entire) intervention stage, or alternatively by the comparison between the pooled

20For the exact randomization protocol, see Appendix B.
21In practice, the distinction between IN stage 1 and 2 is not perfect, as a small fraction of subjects had yet

to complete 10 showers when the first report was sent out. If anything, this generates measurement error in
our treatment indicators and thus biases estimates toward zero.
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RTF/DUAL group and the pooled CON/HER group in IN stage 1. The effect of home

energy reports in isolation is identified by the comparison between the HER and CON

groups in IN stage 2. The additional effect of home energy reports, when combined

with real-time feedback is identified by the comparison between the DUAL and RTF

groups in IN stage 2. Differences between the effects of home energy reports with and

without real-time feedback are indicative of policy interaction effects, i.e. whether the

two interventions are substitutes or complements.

3.6. Behavioral predictions

In order to derive behavioral predictions for each of our experimental groups, we first

briefly discuss the channels through which each of the two interventions work. Recall

from our theoretical framework that the energy conservation effect of a behavioral policy

P is ∆eP = f−1(BP)− f−1(Bo), where B is the aggregate behavioral barrier parameter, f

is the ratio of marginal benefits to marginal costs, and its inverse f−1 is strictly decreas-

ing. Assuming that the function f remains unaffected — we evaluate this empirically in

Section 7 —, the effectiveness of the three intervention regimes therefore depends on the

degree to which they succeed in overcoming the aggregate barrier.

Real-time feedback visually displays live measurement of water use in the shower.

This is likely to significantly reduce inattention problems, as users are constantly facing

the smart meter display, and the previously abstract and elusive notion of resource use

suddenly becomes salient and palpable through the steadily upward moving liter count.

Of course, water volume information as such may affect behavior if individuals previ-

ously underestimated the amount of water they use. However, there is no additional

information on energy use or carbon emissions, so there may still be severe knowledge

gaps about the environmental relevance of showering remaining. Therefore, our lead-

ing interpretation is that real-time feedback mainly affects behavior by targeting limited

attention. As the RTF condition in our experiment is essentially a replication of the in-

tervention by Tiefenbeck et al. (2018), albeit more minimalistic and in a sample without

monetary incentives, we also expect to find significant conservation effects.

Prediction 1. Providing real-time feedback through the smart shower meter display in treatment

RTF leads to a reduction in water and energy consumption in the shower.

Home energy reports provide information on subjects’ water use in the shower as well

as additional information about energy use and CO2 emissions. The second report also

included a social comparison element, but it seems unlikely to us that this is very im-

portant, as Tiefenbeck et al. (2018) find no effect for including comparisons with the co-

resident in a two-person household and social norms are even less likely to arise in our

setting, with the peer being random and anonymous. In contrast to real-time feedback,

the reports are not immediately salient while showering and therefore fail to target barri-
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ers like limited attention or self-control problems.22 We therefore interpret home energy

reports as information intervention and expect that they induce conservation behavior

mainly by closing knowledge gaps about water- and energy-intensity (and implied envi-

ronmental impacts) of showering.

Prediction 2. Providing information through home energy reports in treatment HER leads to a

reduction in water and energy consumption in the shower.

Finally, the combined intervention should reduce all barriers that are either targeted

by home energy reports or real-time feedback. In particular, both the problem of lim-

ited knowledge about environmental impacts as well as the problem of limited attention

should be mitigated. This should therefore result in a larger conservation effect than can

be achieved by either intervention in isolation.

Prediction 3a. The combined intervention that adds home energy reports to real-time feedback

(treatment DUAL) leads to a larger overall reduction in water and energy consumption in the

shower than either intervention in isolation (treatments RTF or HER).

The combined effect of home energy reports and real-time feedback could be smaller

or larger than the sum of their individual effects. In general, returns to behavioral pol-

icy may be expected to decrease, as there is less room for further conservation efforts.

However, the presence of multiple barriers can generate complementarities. Recall that

the aggregate bias B is then the product of many individual barriers, so B = b1 · b2 · ...bK.

This implies that the effect of providing information through home energy reports could

be mitigated by strong remaining barriers like limited attention or self-control problems.

Analogously, the effect of channelling attention through real-time feedback could be mit-

igated by lack of awareness about energy use and carbon emissions due to warm water

use in the shower. Combining both interventions could therefore have a conservation

effects that is larger than the sum of the effects of each intervention in isolation.

Prediction 3b. Home energy reports may lead to a larger reduction in water and energy con-

sumption in the shower for subjects who receive real-time feedback (treatment DUAL) than for

subjects who do not receive real-time feedback (treatment HER).

This means that our two interventions would be complements, whereby improved atten-

tional focus enables knowledge gains to induce a larger treatment effect and vice versa.

22In principle, it is possible that participants also become more attentive about resource use even without
visual aid through the smart meter, as would be predicted by rational inattention models when updates in
beliefs about environmental impacts are sufficiently large. This would be an instance of indirect redundan-
cies between interventions. However, if there is such an effect, it may prove short-lived once reports fade
out of memory and resolutions cool off (Allcott and Rogers, 2014; Schwartz and Loewenstein, 2017).
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4. Data and descriptive statistics

In this section, we describe our experimental data and show some summary statistics

about our sample and their baseline resource use behavior. We also perform randomiza-

tion checks to affirm the validity of our assignment into experimental conditions. Fur-

thermore, we offer some suggestive evidence of the presence of potentially severe infor-

mation and attention barriers to resource conservation in our setting.

4.1. Measurement data on resource use behavior

The smart shower meters measured and stored data on, among others, water volume,

average temperature, and average flow rate of every water extraction. The amount of

energy used was then calculated based on volume and temperature data, using the stan-

dard engineering formula for heat energy.23 Every subject had a shower meter installed

for the whole duration of the study, starting from early-December 2016. At the end of the

study, from late February to early March 2017, we retrieved the devices and read out the

data manually. In this way, we were able to extract an initial data set of 21,469 showers by

327 participants. Unfortunately, no data could be obtained in 24 cases, either because the

smart meter was defective or because subjects never used it, or because subjects simply

disappeared without a trace (and their shower meters with them).

A number of data cleaning steps are performed before running the empirical analyses.

We briefly describe the most important steps here, as a more detailed documentation

can be found in Appendix C. First, we drop the very first data point of each participant,

as they usually started with a test run to check if the device was working. Following

Tiefenbeck et al. (2018), we further drop any water extraction with volume below 4.5 liters

(in total 2, 942 extractions), as these are unlikely to be actual showers but rather minor

extractions for other purposes such as cleaning. We further remove 37 extreme outlier

points, defined as such by being more than 4.5 times the subject-specific interquartile

range away from the closest quartile.24 We further exclude 1 device with erratic data, 5

devices with fewer than 10 recorded extractions, as well as 3 devices with an abnormally

large baseline consumption of on average 168 liters or more per shower, which is about

40 liters (1.5 standard deviations) away from the rest of the field. In 8 cases, the device’s

temperature sensor broke at some point, and we impute missing information with the

average temperature of showers taken while the sensor was still intact. The final data set

used for our empirical analyses includes 17, 942 showers by 318 participants.

23The formula for energy use of water heating is Q × m × cp × ∆T, with heat energy Q, mass of water m,
heat capacity cp , and ∆T the difference between the measured water temperature and cold water tempera-
ture (assumed to be 12 degrees Celsius). Following Tiefenbeck et al. (2018), we also assume boiling efficiency
losses of 35% and distribution losses of 24%.

24We are particularly strict in only excluding the most implausible data points here. Conventionally, 1.5
or 3 times the interquartile range (IQR) are used as criterion for outliers. For a normal distribution, 4.5 times
the IQR away from the nearest quartile corresponds to 6.745 standard deviation away from the mean.
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The shower meter stores the temporal order of showers, so we can easily classify each

shower into baseline or intervention stage, as real-time feedback (in the RTF and DUAL

groups) started from shower number 11 onwards. Assigning showers into intervention

stage 1 (pre-reports) or stage 2 (post-reports) is slightly more tricky, as the device has

no counter for global time. Fortunately, the smartphone app stores the date and time

of when data about a shower was uploaded, which allows us to construct bounds for

when a shower took place. We instructed subjects to use the smartphone app regularly

starting from 11 January 2017, and send additional reminders before each home energy

report was to be sent out. Using this timing information, we classify observations into

pre-report showers (IN stage 1) or post-report showers (IN stage 2). If there are multi-

ple showers within the range of uncertainty around report dates, we use the switching

point implied by constant shower frequency. One complication is that we do not know

the timing of showers by the subjects who did not manage to upload any data to the

app. Therefore, we impute the timing of showers for these non-uploaders based on the

assumption that timing of home energy reports follows the same distribution for upload-

ers and non-uploaders. To operationalize this, we use timing information from uploaders

to estimate the probability that a shower took place after a home energy report, and then

assign the implied post-report probabilities to showers of non-uploaders. Figure A2 in

Appendix A plots the estimated CDFs.25

4.2. Questionnaire data

To supplement our behavioral data on resource use in the shower, we administered sev-

eral questionnaires. In the baseline survey, we collected information on individual char-

acteristics (i.e. age, gender, etc.), self-assessed resource use in the shower, shower comfort

(i.e. how much they enjoy showering), environmental attitudes and beliefs, as well as a

number of personality attributes (i.e. Big Five, patience, etc). In the post-intervention

survey, we again collected self-reported data on self-assessed resource use, shower com-

fort, and environmental attitudes. Furthermore, we administered mini-surveys with

each home energy report, which also asked subjects to estimate their resource use in

the shower.

We mainly make use of information on self-assessed resource use, shower comfort,

and environmental attitudes, and how they change in response to our interventions. En-

vironmental attitude is elicited using four items about pro-environmental behavior and

identity, e.g. “I do what is right for the environment, even when it costs more money or

takes more time”.26 Shower comfort is elicited using five items on how much subjects

25For details of the imputation procedure, see Appendix D.
26The other items are “Environmental friendliness is part of my personal identity”, “How often do you

try to conserve water?”, and “How often do you try to conserve energy?”. We also include a set of questions
adapted from Nolan et al. (2008), but only in the baseline questionnaire.
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Table 1: Descriptive statistics – baseline showers

Mean Std. dev. 10th pctile Median 90th pctile Obs.

Energy use [kWh] 2.21 1.91 0.43 1.71 4.58 2489

Volume [liter] 37.82 30.45 9.20 29.60 76.00 2489

Duration [min] 7.00 5.01 1.96 5.83 13.01 2489

Temperature [Celsius] 36.16 5.22 32.00 37.00 40.00 2463

Flow rate [l/min] 5.71 2.45 2.80 5.40 9.10 2489

Includes only showers taken in the baseline stage, i.e. first 10 showers and before home energy
reports were sent out. For temperature statistics, devices with broken temperature sensors are
excluded. Duration is net of any breaks and calculated by dividing water volume by flow rate.

enjoy showering, e.g. “I find it relaxing to take a shower”.27 We create indices for shower

comfort and environmental attitude, respectively, by taking the simple average of the in-

dividual’s responses to the relevant items (rated on a 4- or 5-point Likert scale) and then

normalizing to mean 0 and standard deviation 1. For self-assessments, we asked par-

ticipants to estimate how many liters of water they typically use when taking a shower.

These estimates can then be directly compared to their actual water use as measured

by the smart meter. Note that we refrained from eliciting subjects’ beliefs about energy

use and environmental impacts, because we did not want to raise awareness about these

issues before the intervention and potentially undermine the home energy report treat-

ments.

4.3. Sample characteristics and baseline behavior

All participants in the field experiment are students at universities in Bonn or Cologne

living in one-person dorm apartments, so our sample is rather homogeneous. From the

318 participants represented in our main data set, 203 lived in a dorm in Bonn and 115

lived in a dorm in Cologne at the time of our study. The share of females is 61 percent.28

Average age was 23.8 years (median 23 years), with students from all stages of their

studies being represented in our sample. About 34 percent are non-German students,

reflecting the over-representation of international students in dorms. The distribution of

majors is as follows: 38 percent mathematics or natural sciences, 31 percent social sci-

ences, 16 percent business/economics, 10 percent agricultural/environmental sciences,

and 5 percent arts/performance.

Using the nine showers (the first being excluded) in the baseline stage, where only the

current water temperature was displayed, we can measure baseline resource use behav-

ior of each subject. Table 1 presents descriptive statistics about baseline energy and water

use per shower, as well as shower duration (net of breaks), water temperature, and flow

27The other items are “I like showering”, “For me, taking a shower is just a means to an end”, “I like to
let my mind wander when I shower”, and “I try to shower as quickly as possible”.

28In 2016/17, the share of female students was 55% at the University of Bonn and 60% at the University
of Cologne, suggesting that there was no substantial gender-based selection into our study.
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Table 2: Randomization checks

Panel A. Baseline averages by individual Panel B.

Energy use Volume Duration Temperature Flow rate Number
[kWh] [liter] [min] [Celsius] [l/min] of showers

HER group -0.066 -1.901 0.181 0.959 -0.435 3.393
(0.220) (3.468) (0.548) (0.608) (0.320) (5.226)

RTF group -0.111 -1.253 0.284 0.086 -0.124 -2.312
(0.215) (3.427) (0.597) (0.595) (0.370) (5.183)

DUAL group -0.057 -0.910 0.213 0.320 -0.165 3.224
(0.226) (3.575) (0.581) (0.560) (0.358) (5.861)

Constant 2.237 38.316 6.797 35.681 5.832 55.312
(0.163) (2.539) (0.411) (0.447) (0.240) (3.698)

Observations 316 316 316 314 316 318
R-squared 0.001 0.001 0.001 0.011 0.005 0.005
F-test: p-value 0.966 0.958 0.969 0.356 0.571 0.669

Robust standard errors in parentheses. The omitted category is the CON group. For two participants,
the device was not able to record information on baseline showers, but we could extract valid data on
showers in later stages; hence the number of observations is only 316 in most columns. In addition, two
participants with initially defective temperature sensors are excluded in column 4.

rate. Shower duration is calculated from dividing water volume by average flow rate.

On average, showers in the baseline stage feature 7 minutes of water flow, using in total

37.82 liters of water. On average, water is heated up to a temperature of 36.16 degrees

Celsius, resulting in energy use of 2.21 kWh per shower. There is substantial variation

across showers, as becomes obvious when looking at standard deviations and different

quantiles of the distributions. Water and energy consumption follows a right-skewed

distribution, thus the median energy use per shower (1.71 kWh) is substantially lower

than the mean. The average flow rate of 5.74 liters per minute is relatively low, likely due

to dorm infrastructure not being up to modern standards; flow rates of 10-12 liters per

minute are more typical for German households.

4.4. Randomization checks

Our experimental identification strategy assumes that randomization produced treat-

ment groups that are comparable with regard to observable and unobservable subject

characteristics. Although it is naturally impossible to test the latter, we can check bal-

ance on observable baseline characteristics. Panel A of Table 2 shows results from re-

gressing various measures of subjects’ baseline behavior on assigned treatment groups.

The differences between groups are very small and treatment assignment is insignificant

for predicting any of the behavioral measures, so randomization seems to have worked

well. We also check for balance along background characteristics and survey responses

(see Appendix 8), and again find that treatment assignment is statistically insignificant.

Importantly, environmental attitude and shower comfort are comparable across groups.
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4.5. Number of showers

On average, we observe 56.8 showers per individual over the roughly 12 weeks of our

study, which corresponds to a frequency of about two showers every three days. How-

ever, the net frequency (i.e. adjusting for absences) might be closer to one shower per

day, as our study period included a two week Christmas break, and individuals might

also leave the city during weekends. Unfortunately, we have no reliable information on

absence times. In Panel B of Table 2, we check whether the number of showers per in-

dividual differs across experimental conditions. Consistent with Tiefenbeck et al. (2018),

we find that treatments have no effect on the number of showers (p = 0.669). Hence,

our interventions do not seem to induce adjustments along the extensive margin, and we

do not need to worry about subjects compensating shorter showers with more showers,

or about them compromising on basic hygiene needs. This means that we can make use

of the full panel structure of our data and analyze (intensive-margin) water and energy

conservation effects on the level of individual showers.

4.6. Presence of information and attention barriers

Before moving on to the analysis of our experimental interventions, we provide some

descriptive evidence that imperfect information and limited attention are likely to be

significant behavioral barriers to resource conservation in our setting.

First, we make use of the pre-intervention questionnaire and compare subject’s self-

assessments of their water use per shower to their actual baseline water use as measured

by the smart meter. Figure 5 shows that subjects’ estimates are all over the place, and we

cannot reject the null hypothesis that estimated and measured water use are in fact uncor-

related (Pearson’s ρ = 0.08, p = 0.1825), which demonstrates that subjects were not well

informed about their own behavioral outcomes prior to any intervention.29 Interestingly,

however, the mean estimate across all subjects (39.8 liters) is close to the actual mean wa-

ter use per shower in the baseline stage (37.8 liters). This is reminiscent of a “wisdom of

crowds” phenomenon and suggests that, on average, our interventions should not work

through debiasing beliefs about water use.

Furthermore, it is safe to assume that subjects are unaware of how much energy is

consumed (and hence CO2 emitted) in a typical shower, as Attari et al. (2010) show that

consumers are highly prone to underestimating the amount of energy required for heat-

ing up water (e.g. water boilers, dishwashers). We did not elicit beliefs about energy

intensity or carbon emissions in the original experimental sample, to avoid the risk of

undermining our home energy report treatments.

Although anecdotally compelling, finding direct evidence for inattention about re-

29We excluded 35 subjects who responded to the baseline survey more than 2 weeks after we distributed
shower meters, as they have likely reached the intervention stage by then. We also exclude 3 extreme outliers
with estimates above 200 liters. The corresponding regression results are presented in Appendix A Table A5.
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Figure 5: Pre-intervention awareness about water use per shower
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Notes. This figure compares estimated water use from the baseline survey with actual water use in the
baseline stage (showers 2 to 10), excluding late survey responders. 3 subjects with extreme estimates
(above 200 liters) are excluded. Point clouds consist of individual observations (hollow diamonds for
CON and RTF, solid circles for HER and DUAL) and lines represent separate regression fits for each
treatment group. The dashed line starting from the origin is the 45 degree line.

source consumption costs in the shower is tricky. The closest we have is a baseline survey

item asking subjects how much they agree with the statement “I like to let my mind wan-

der when I shower” on a five-point Likert scale. 59% of our sample states that they agree

or strongly agree to the statement (34% agree, 25% strongly agree), whereas only 18% of

subjects disagree or strongly disagree (13% disagree, 5% strongly disagree), indicating

that lack of focus while showering is prevalent. We further find that response to this item

is significantly correlated with baseline energy use in the shower (Pearson’s ρ = 0.17,

p = 0.003). In fact, it is the single most predictive item for energy and water use in our

entire baseline survey.

5. Estimation approach

We now describe our strategy for estimating the effects of our interventions on resource

use in the shower. The empirical results will be presented in the following section.

5.1. Basic estimation strategy

To formally estimate the effects of different intervention regimes, we exploit the staggered

introduction of real-time feedback and home energy reports in the experimental design,

which gives us a double-layered difference-in-differences setup. The differential changes

in consumption behavior across conditions from baseline stage to intervention stage 1

identify the causal effect of real-time feedback (RTF/DUAL versus CON/HER), and the

additional changes from intervention stage 1 to stage 2 identify the the causal effect of

24



home energy reports, both in isolation (HER versus CON) and in conjunction with real-

time feedback (DUAL versus RTF).

For estimating the effect of real-time feedback in isolation, the most straightforward

and easy-to-interpret approach is to simply compare subjects in the RTF and CON groups

over the entire experimental period, as these subjects never received home energy reports

in any form. We do this by estimating the equation

yit = αi + β0 INit + β1 INit × TR
i + ε it , (11)

where the outcome variable yit is energy use (water use) by individual i for shower num-

ber t, αi is the individual fixed effect, INit is an indicator that takes the value 1 if ob-

servation it falls into the intervention stage (i.e. t > 10), and TR
i is an indicator for be-

ing assigned to treatment group RTF. The coefficient of interest is β1, which gives us a

clean estimate for the average treatment effect of real-time feedback over the entire three

months of the study. In this specification, we do not have to deal with issues relating to

non-compliance and timing of reports, though it comes at the cost of disregarding half of

the sample in intervention stage 1.

To make use of the full sample when estimating the effect of real-time feedback, we

can compare differential changes in consumption behavior from baseline stage to inter-

vention stage 1 for the pooled RTF/DUAL group versus the pooled CON/HER group,

because real-time feedback had started but there were no home energy reports yet. But

in intervention stage 2, when home energy reports start flying in, we need to split up the

pooled groups again, so the regression equation is

yit = αi + INit ×
(

β0 + β1TR/D
i

)

+ IN s2
it ×

(
γ0 + γ1TR/D

i + γ2TH
i + γ3TD

i

)
+ ε it . (12)

INit is again the indicator for the entire intervention stage, and on top of that, IN s2
it is

an indicator for showers that fall into intervention stage 2 (post-report). As INit remains

switched on for the entire intervention period, all terms that are multiplied by IN s2
it need

to be interpreted as incremental changes from intervention stage 1 to intervention stage 2,

compared to the baseline period. TR/D
i , TD

i and TH
i are treatment group indicators, where

superscript R/D denotes the combined groups RTF and DUAL, superscript D denotes

the DUAL group, and superscript H denotes the HER group.

Equation (12) incidentally also includes an estimate for the effect of home energy re-

ports, but one concern here is that the differences between RTF and DUAL or between

CON and HER in the first intervention stage are not captured. Although the pooled

groups in intervention stage 1 should behave the same before reports are sent out, ran-

dom differences are likely to exist in finite samples, and these would propagate to the

estimates of γ2 and γ3. For estimating the effects of home energy reports we therefore

25



prefer the more flexible model in which treatment groups are considered separately from

the start:

yit = αi + INit ×
(

β0 + β1TR/D
i + β2TH

i + β3TD
i

)

+ IN s2
it ×

(
γ0 + γ1TR/D

i + γ2TH
i + γ3TD

i

)
+ ε it . (13)

Given the model formulation, we can interpret β1 as treatment effect of real-time feed-

back on energy (water) use per shower in the first half of the study, while γ1 is the change

in treatment effect in the second half. γ2 is the treatment effect of home energy reports

in isolation, and γ3 is the additional effect of adding home energy reports to real-time

feedback. The relevant comparisons of interests are between HER and CON on the one

hand — for the effect of reports without real-time feedback — and between DUAL and

RTF on the other hand — for the marginal effect of adding reports to reinforce the already

existing real-time feedback.

5.2. Estimating treatment effects on the treated

A major complication in estimating the effect of home energy reports is that 28% of sub-

jects did not succeed in uploading any data to the Amphiro smartphone app before we

sent out the reports, mostly due to technical problems (e.g., Bluetooth connection fail-

ure).30 For these “non-uploaders”, we were unable to provide informative home energy

reports. As the emails were generated automatically, non-uploaders in HER and DUAL

groups received report templates with blanks instead of actual statistical figures about

their resource use and environmental impacts. Effectively, this leads to imperfect treat-

ment take-up of home energy reports, although being less the result of deliberate non-

compliance than unfortunate circumstances. For participants in the CON and RTF groups

it is inconsequential whether they successfully uploaded data, as we only asked them to

do so in order to hold constant the general experimental procedure for all participants.

One possible approach to estimate treatment effects under imperfect treatment take-

up is to run an intention-to-treat (ITT) analysis, which ignores that some participants did

not actually receive informative home energy reports and simply uses treatment assign-

ment to estimate treatment effects. However, this is not very appealing in our context,

as failure of information provision due to technical problems is in principle an avoidable

problem. The policy-relevant treatment effect is the effect of delivering informative home

energy reports. Therefore, our preferred approach is to estimate the treatment effect on

the treated (TOT), i.e. on subjects who managed to upload data through the app and thus

received proper home energy reports with all the information we wanted to convey.

One way to estimate the TOT is to simply compare resource use of uploaders in HER

30Out of the 90 non-uploaders in our estimation sample, 63 have explicitly contacted us for technical
problems encountered during their upload attempts.
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and DUAL groups with resource use in the no-report CON and RTF groups. The usual

concern at this point would be that treatment-take up is not random. Fortunately, our

setting limits potential endogeneity concerns, for three reasons. Firstly, we include in-

dividual fixed effects, so our estimates would still be unbiased if differences between

uploaders and non-uploaders do not interact with the treatment. Secondly, subjects only

knew that they should use the smartphone app to upload data, but we did not announce

that we would use this data to construct home energy reports. Thirdly, the main cause for

non-compliance is not the lack of willingness to use the smartphone app, but unexpected

technical failure, which is unlikely to be selected on the trend. Hence, the first way in

which we assess the effect of home energy reports on the treated is by estimating equa-

tion (13), including only uploaders in the HER and DUAL groups. To alleviate the most

blatant endogeneity issue, we also exclude non-uploaders in the CON and RTF groups,

who did not report any technical problems.

A second way to estimate the TOT is by using random treatment assignment as instru-

ment for actual take-up. This can be shown to identify the so-called local average treat-

ment effect (LATE), i.e. the average treatment effect for the subpopulation of compliers,

in our case the uploaders, even under endogenous treatment take-up (Imbens and An-

grist, 1994).31 Compared to the “uploaders-only”-approach, the instrumental variables

approach is always consistent, but potentially inefficient. We will report the results from

both TOT-approaches, but the estimates are very similar, suggesting that endogeneity is

not a large issue in our setting.

To validate that home energy report take-up is not influenced by assignment into treat-

ment group, we can check for differential levels of compliance. The fraction of compliers

are 76.6% in CON, 74.4% in HER, 68.4% in RTF, and 67.9% in DUAL. The difference across

treatment groups is statistically insignificant (p = 0.594). It seems that, at least condi-

tional on (not) receiving real-time feedback, uploading of data is orthogonal to assign-

ment into a group that receives the home energy report. Furthermore, we can compare

the subpopulations of compliers and non-compliers along observable characteristics. For

one, this is indicative of how relevant the endogeneity issue is. It also gives us a sense

of how representative the estimated TOT is for our experimental sample. Table A2 in

Appendix A compares shower behavior and subject characteristics. There is a slight ten-

dency for uploaders to take shorter showers at higher flow rate, which could be due to

the fact that the shower meters tend to work more reliably at higher flow rates. There is

also a slightly lower share of female and international students in the group of uploaders.

Importantly, however, energy and water use per shower of uploaders and non-uploaders

were not significantly different prior to administering the home energy reports.

31This identification result holds under the condition that there are no “defiers”, subjects who always do
the opposite of what they are prescribed. This monotonicity condition holds by design in our study, because
we control the eligibility of home energy report treatment, so any participant in the sample can be classified
either as complier or as never taker in the LATE framework.
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Figure 6: Descriptive evidence on energy conservation effects
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Notes. The bars represent changes in average energy use per shower compared to the baseline period.
The error whiskers show standard errors of the mean. Non-uploaders in HER and DUAL as well as
non-uploaders without technical problems in CON and RTF are excluded.

6. Empirical results

In this section, we present our empirical results on the effect of our interventions on re-

source conservation in the shower. We focus on energy and water use per shower as

outcome variables and report average treatment effects for the main results. Addition-

ally, we investigate treatment effect dynamics as well as heterogeneous effects along the

dimensions of baseline consumption and environmental attitude.

6.1. Main results

Before proceeding to the formal estimates, we present descriptive evidence on the conser-

vation effects of our interventions. Figure 6 shows subjects’ average changes in energy

consumption per shower in intervention stage 1 (pre-report) and intervention stage 2

(post-report) compared to the baseline period. The difference-in-differences across treat-

ment groups then corresponds to the average treatment effect. In order to show the

TOT for home energy reports, we use the uploaders-only approach of excluding non-

compliers in HER and DUAL as well as non-compliers without technical problems in

CON and RTF. The graph essentially summarizes our main results in eight bars.

The four bars to the left of the dashed vertical line represent the change in energy use

per shower in intervention stage 1 compared to the baseline stage. We can see that rel-

ative to subjects in the CON and HER groups, subjects in the RTF and DUAL groups

reduced their energy consumption drastically, by almost 0.4 kWh per shower. Recall that

there were no home energy reports yet at this point. The four bars to the right of the

dashed vertical line represent the change in energy use per shower from baseline stage
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Table 3: Effect of real-time feedback and ITT estimates

only RTF & CON Intention to treat

(1) (2) (3) (4)
Energy Water Energy Water
[kWh] [liter] [kWh] [liter]

Intervention 0.283∗∗∗ 4.453∗∗∗ 0.179∗∗∗ 2.915∗∗∗

(0.104) (1.597) (0.067) (1.049)

Intervention × RTF/DUAL -0.397∗∗∗ -6.346∗∗∗ -0.309∗∗∗ -4.628∗∗∗

(0.125) (1.926) (0.087) (1.387)

IN stage 2 0.187∗ 3.157∗∗

(0.097) (1.441)

IN stage 2 × RTF/DUAL -0.071 -1.745
(0.118) (1.854)

IN stage 2 × HER 0.038 0.147
(0.130) (2.006)

IN stage 2 × DUAL -0.133 -2.302
(0.093) (1.555)

Individual fixed effects yes yes yes yes

Clusters 156 156 318 318
Observations 8446 8446 17942 17942
R2 0.379 0.375 0.403 0.404

Standard errors in parentheses are clustered at the individual level. Columns (1)
and (2) only include individuals in the RTF or CON group.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

to intervention stage 2, after home energy reports were sent out. The first observation is

that average energy use in the control group further increased, which could be driven by

weather effects or by impending exams leaving students stressed and in need for a long,

warm shower.32 The second observation is that the RTF group moved up in parallel with

the CON group, hence the effect of real-time feedback in isolation remains nearly con-

stant. The third observation is that providing home energy reports in isolation does not

seem to result in effective behavioral change: energy consumption of subjects in the HER

group also follows the CON group in close synchronization. In light of this, the fourth

and final observation is particularly striking: home energy reports are highly effective

when combined with real-time feedback. In fact, subjects in the DUAL group are the

only ones to defy the general upward trend and reduce their consumption considerably

compared to subjects in the RTF group.

Our formal empirical results come from implementing the estimation strategies out-

lined in Section 5. In general, they confirm the patterns in Figure 6. We first focus on

estimating the effect of real-time feedback in isolation, before turning to the effect of

home energy reports, for which we need to account for imperfect compliance.

The simplest and cleanest way to estimate the effect of real-time feedback is to only

32While the baseline phase fell mainly into an unusually warm and dry December, the main intervention
months of January and February saw much higher precipitation. Exam periods at the universities began in
mid-February.
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compare subjects in the RTF and CON groups over the entire intervention period, by es-

timating equation (11). Table 3 columns 1 and 2 show that real-time feedback in isolation

reduces resource use by 0.40 kWh of energy and 6.3 liters of water per shower compared

to the CON group, which corresponds to about 17-18% of baseline use. This effect size is

consistent with previous studies using the same smart shower meters. Tiefenbeck et al.

(2019) report a conservation effect of 0.2 kWh (11%) per shower in a sample of Swiss hotel

guests without financial incentives, whereas Tiefenbeck et al. (2018) find 0.59 kWh (22%)

lower energy use in a sample of Swiss households, which did have financial incentives

for resource conservation.33

In addition, columns 3 and 4 present the results from estimating equation (12) on the

full sample, using treatment assignment as the independent variable. Our estimates

show that subjects in RTF and DUAL conserved about 0.31 kWh of energy and 4.6 liters

of water per shower in intervention stage 1, compared to subjects in CON and HER. This

is slightly lower than the estimates in columns 1 and 2, partly due to the inclusion of

the DUAL and HER groups, and because the effect increases in intervention stage 2, al-

beit statistically indistinguishable from zero. With the advent of home energy reports

in intervention stage 2, we split the pairs up into the four separate groups again, which

incidentally gives us ITT estimates for the effect of home energy reports; but as discussed

earlier, this misses the policy-relevant effect of actually receiving information through

home energy reports. That said, the ITT estimates for the effect of home energy reports

are neither significant for HER nor DUAL. Still, the point estimates for the DUAL group

look quantitatively relevant and already hint at something potentially going on.

Result 1. Real-time feedback through the smart meter display leads to a reduction in energy

(water) consumption by about 0.3-0.4 kWh (4.5-6.3 liters) or 14-18% per shower.

To estimate the effect of (sending information through) home energy reports on conser-

vation behavior, we move on to the TOT analyses described in Section 5. Table 4 columns

1 and 2 show the estimates obtained by using the uploader-only approach, in which we

estimate regression equation (13) on the restricted sample that excludes non-uploaders

in HER and DUAL, as well as non-uploaders in RTF and CON without technical issues.

Columns 3 and 4 display the LATE estimates, for which we use random treatment as-

signment to the HER or DUAL group as instruments for actually uploading data and

receiving informative home energy reports. While the LATE approach is consistent even

under endogenous treatment take-up, the uploaders-only approach is potentially more

efficient.

Both approaches produce nearly identical results, suggesting that endogeneity of treat-

33The Swiss household sample of Tiefenbeck et al. (2018) also had a higher average baseline energy use
of 2.66 kWh per shower, and they estimate that conservation decreases by 0.031 kWh for each 0.1 kWh
decrease in baseline use. Projected to our sample (baseline 2.21 kWh), the predicted conservation effect
would be 0.45 kWh per shower. Also, the smart meter display in Tiefenbeck et al. (2018, 2019) contained
additional information on energy use as well as graphical feedback in the form of a polar bear sitting on a
slowly melting ice floe.
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Table 4: Treatment on the treated (TOT) estimates

Uploaders-only LATE

(1) (2) (3) (4)
Energy Water Energy Water
[kWh] [liter] [kWh] [liter]

Intervention 0.179 2.628 0.172∗ 2.533
(0.111) (1.702) (0.102) (1.565)

Intervention × RTF/DUAL -0.388∗∗∗ -5.753∗∗∗ -0.365∗∗∗ -5.481∗∗∗

(0.134) (2.124) (0.125) (1.981)

Intervention × HER 0.027 0.837 0.016 0.733
(0.154) (2.415) (0.134) (2.082)

Intervention × DUAL 0.035 0.576 0.109 2.159
(0.113) (1.860) (0.107) (1.751)

IN stage 2 0.150 2.770∗ 0.189∗ 3.273∗∗

(0.093) (1.422) (0.098) (1.460)

IN stage 2 × RTF/DUAL -0.021 -1.142 -0.053 -1.463
(0.118) (1.913) (0.120) (1.908)

IN stage 2 × HER 0.090 0.714 0.042 -0.084
(0.137) (2.168) (0.162) (2.510)

IN stage 2 × DUAL -0.222∗∗ -3.702∗∗ -0.215∗ -3.836∗

(0.100) (1.756) (0.116) (2.037)

Individual fixed effects yes yes yes yes

Clusters 261 261 318 318
Observations 14712 14712 17942 17942
R2 0.413 0.415 0.004 0.004

Standard errors in parentheses are clustered at the individual level. In columns
(1) and (2), we exclude all non-uploaders in HER and DUAL as well as all non-
uploaders in RTF and CON who did not report a technical problem. In columns
(3) and (4), we use treatment assignment to HER and DUAL, respectively, inter-
acted with the IN stage 2 indicator as instrument for receiving informative home
energy reports. The reported R2 in Columns (3) and (4) is the within R2.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

ment take-up is not a major issue. The conservation effect of real-time feedback in iso-

lation is also similar to the ones reported in Table 3. The results show that home energy

reports had no significant effect in the HER group, and the point estimates go into the

wrong direction. Even in the less precise LATE specification, we can rule out energy use

reductions of more than 7.5% per shower with 90% confidence. Furthermore, we can

reject the hypothesis that home energy reports in isolation were as effective as real-time

feedback in isolation (p < 0.003 in all specifications).

Result 2. Home energy reports in isolation do not induce any significant reduction in energy and

water consumption per shower.

In stark contrast, subjects in the DUAL group further reduced energy use by around

0.22 kWh (water use by around 3.8 liters) per shower in intervention stage 2, which cor-

responds to another 10 percentage points reduction from baseline consumption. Put dif-

ferently, home energy reports boosted the effectiveness of real-time feedback by more
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than 50%. The difference between energy conservation effects in the DUAL group and

the HER group is weakly significant in the uploaders-only specification (p = 0.067). This

contrast between home energy reports with and without real-time feedback is all the

more remarkable given that subjects in DUAL had already cut their energy consumption

per shower significantly and thus had less room for further behavioral adjustments. This

is exactly the ceiling effect we described earlier in the theoretical framework.

Result 3a. Combining real-time feedback with home energy reports further reduces energy (water)

use by around 2.2 kWh (3.8 liters) per shower and thus boosts the conservation effect of real-time

feedback in isolation by more than 50%.

Result 3b. Home energy reports lead to a larger reduction in resource consumption in the shower

for subjects who receive real-time feedback (DUAL group) than for subjects who do not receive

real-time feedback (HER group).

Overall, there seems to be strong complementarity between real-time feedback and

home energy reports. This is consistent with our theoretical framework, which shows

that in the presence of multiple barriers to resource conservation, behavioral interven-

tions may need to overcome all significant barriers simultaneously in order to unfold

their full effect. While home energy reports provide information about resource use

and associated environmental impacts, the lack of salience in resource consumption is

likely to hinder conservation efforts. Real-time feedback through smart meters could

thus turn environmental considerations into action by channelling attention at the mo-

ment of decision-making. We will analyze the underlying mechanisms more closely in

Section 7.

6.2. Treatment effect dynamics

We now investigate whether the conservation effects of real-time feedback and home

energy reports remain stable over the three-month period of our study. The previous

subsection already documents that the effect of real-time feedback does not drop from

the first to the second intervention stage. Therefore, we now focus on the 5-6 week period

of IN stage 2. To estimate dynamic effects, we extend the empirical model for average

treatment effects i.e. equation (13) by interacting with a time variable Zi:

yit = αi + INit ×
(

β0 + β1TR/D
i + β2TH

i + β3TD
i

)

+ IN s2
it ×

(
γ0 + γ1TR/D

i + γ2TH
i + γ3TD

i

)

+ IN s2
it × Zi ×

(
δ0 + δ1TR/D

i + δ2TH
i + δ3TD

i

)
+ ε it . (14)

We explore two variants of Zi. In the first variant, we look additionally at energy use per

shower after the second home energy report that was sent about two weeks after the first

report. In the second variant, we interact each treatment group indicator with a linear
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time trend, so the δ coefficients can be interpreted as weekly depreciation (or apprecia-

tion) rate of energy conservation effects by intervention regime.

Table 5: Treatment effect dynamics

Zi = I{post 2nd report} Zi = # weeks after 1st report

(1) (2) (3) (4)
Uploaders LATE Uploaders LATE

IN stage 2 0.139 0.176 0.065 0.109
(0.103) (0.110) (0.124) (0.127)

IN stage 2 × RTF/DUAL -0.027 -0.053 0.047 0.019
(0.128) (0.134) (0.156) (0.159)

IN stage 2 × HER 0.092 0.048 0.198 0.174
(0.148) (0.169) (0.181) (0.202)

IN stage 2 × DUAL -0.068 -0.041 0.030 0.075
(0.123) (0.135) (0.166) (0.177)

IN stage 2 ×Zi 0.019 0.022 0.032 0.029
(0.093) (0.090) (0.027) (0.026)

IN stage 2 × RTF/DUAL ×Zi 0.012 0.000 -0.026 -0.026
(0.123) (0.119) (0.037) (0.035)

IN stage 2 × HER ×Zi -0.002 -0.010 -0.041 -0.051
(0.126) (0.136) (0.042) (0.047)

IN stage 2 × DUAL ×Zi -0.279 -0.316 -0.099 -0.114∗

(0.209) (0.215) (0.064) (0.067)

Individual fixed effects yes yes yes yes

Clusters 261 318 261 318
Observations 14712 17942 14712 17942
R2 0.413 0.005 0.413 0.005

Standard errors in parentheses are clustered at the individual level. The results are ob-
tained by estimating equation (14). The full table with all the coefficients is presented
in Appendix A Table A3. In columns (1) and (3), we exclude all non-uploaders in HER
and DUAL, as well as all non-uploaders in RTF and CON who did not report a techni-
cal problem. In columns (2) and (4), we use treatment assignment to HER and DUAL,
respectively, interacted with the IN stage 2 indicator as instrument for receiving informa-
tive home energy reports. The reported R2 in Columns (2) and (4) is the within R2.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5 shows that the effect of home energy reports in the DUAL group seems to grad-

ually unfold over time. In fact, subjects do not reduce their energy use significantly in

the first two weeks of intervention stage 2, but the average conservation effect is driven

largely by lower energy consumption in the last 3-4 weeks of the study, after the second

reports were sent out. The conservation effect in the DUAL group increases by around 0.1

kWh per shower every week. This time trend is not estimated very precisely, and hovers

around the 10% significance level. There are several potential explanations for a pat-

tern of increasing behavioral responses over time. For one, subjects may have skimmed

through the email reports initially and only looked at it more carefully later, or it may

have required some experimentation to discover strategies for further reducing energy
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use. The additional peer comparison in the second report may also have played a role.

Importantly, the results seem inconsistent with pure Hawthorne effects or short-lived at-

tention boosts, as these would predict an “action-and-backsliding” pattern (Allcott and

Rogers, 2014; Schwartz and Loewenstein, 2017). Home energy reports in isolation (HER

group) do not appear to exhibit strong dynamic patterns; their effect is identical before

and after the second report. As in previous Amphiro shower meter studies, the effect of

real-time feedback in isolation appears to stay constant over time, showing no signs of

weakening within the 3 months of our study.

6.3. Heterogeneous treatment effects

Particular subgroups of individuals may have responded more strongly to our interven-

tions than others. Previous studies often find that households or individuals with high

baseline consumption tend to respond more strongly to policy interventions targeted at

their conservation behavior (e.g. Allcott 2011b; Ferraro and Price 2013; Andor et al. 2017;

Tiefenbeck et al. 2018). For example, Allcott (2011b) reports that Opower home energy

reports achieved virtually no savings for households in the bottom decile of baseline en-

ergy use, whereas the treatment effect for top-decile users is 6.3% savings. Tiefenbeck

et al. (2018) estimate an additional conservation effect of 0.31 kWh for a 1 kWh increase

in baseline energy use per shower. Policy makers concerned about cost-effectiveness can

therefore purposefully target high-baseline users. Strong pro-environmental motivation

is also frequently associated with higher conservation responses to feedback interven-

tions (e.g. Abrahamse et al. 2005; Costa and Kahn 2013; Tiefenbeck et al. 2018). This is

of particular relevance to our setting, in which environmental concerns may be a critical

lever to bridge the motivational void left by the absence of monetary incentives.

We focus on these two dimensions here, although it should be noted that our study is

not powered to precisely detect heterogeneous treatment effects. To estimate heterogene-

ity, we extend the basic statistical model in equation (13) with interactions terms:

yit = αi + INit ×
(

β0 + β1TR/D
i + β2TH

i + β3TD
i

)

+ INit × Xi ×
(

λ0 + λ1TR/D
i + λ2TH

i + λ3TD
i

)

+ IN s2
it ×

(
γ0 + γ1TR/D

i + γ2TH
i + γ3TD

i

)

+ IN s2
it × Xi ×

(
µ0 + µ1TR/D

i + µ2TH
i + µ3TD

i

)
+ ε it (15)

where variable Xi is either the subject’s average baseline consumption per shower or her

environmental attitude index. As measure of baseline consumption, we use a subject’s

average energy use in the 9 baseline showers (the first shower is excluded), recentered

around the sample mean (2.21 kWh) so that intercept terms can be interpreted as effects

at the mean. As proxy for environmental attitude, we use the standardized index con-
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Table 6: Treatment effect heterogeneity

Xi : baseline energy use Xi : envir. attitude

(1) (2) (3) (4)
continuous I{> median} continuous I{> median}

Intervention × RTF/DUAL -0.403∗∗∗ -0.254∗∗∗ -0.392∗∗∗ -0.324
(0.127) (0.096) (0.134) (0.222)

IN stage 2 × RTF/DUAL -0.014 0.171∗ -0.036 -0.032
(0.117) (0.102) (0.115) (0.196)

IN stage 2 × HER 0.095 0.267∗∗ 0.074 0.214
(0.139) (0.121) (0.133) (0.221)

IN stage 2 × DUAL -0.239∗∗ -0.156∗ -0.225∗∗ -0.313∗∗

(0.102) (0.093) (0.105) (0.157)

Intervention × RTF/DUAL ×Xi -0.164 -0.247 -0.210 -0.176
(0.119) (0.266) (0.145) (0.269)

IN stage 2 × RTF/DUAL ×Xi -0.094 -0.385∗ 0.084 -0.002
(0.101) (0.228) (0.129) (0.237)

IN stage 2 × HER ×Xi -0.021 -0.368 0.083 -0.363
(0.124) (0.268) (0.144) (0.260)

IN stage 2 × DUAL ×Xi -0.097 -0.166 0.024 0.146
(0.092) (0.203) (0.083) (0.207)

Individual fixed effects yes yes yes yes

Clusters 260 260 257 257
Observations 14675 14675 14501 14501
R2 0.413 0.413 0.414 0.415

Standard errors in parentheses are clustered at the individual level. The coefficients are obtained
by estimating equation (15). The full table with all coefficients is presented in Appendix A Table
A4. All non-uploaders in HER and DUAL as well as all non-uploaders in RTF and CON who did
not report a technical problem are excluded. The environmental attitude index is normalized to
mean 0 and standard deviation 1.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

structed from subjects’ baseline survey responses to questions on their willingness to

engage in pro-environmental behavior. We report a specification with Xi as continuous

terms, as well as a specification where Xi is an above-median indicator. Table 6 reports

TOT estimates with heterogeneity along baseline energy use (columns 1 and 2) and en-

vironmental attitude (columns 3 and 4). Note that we only report the main coefficients

of interests here to keep the table visually tractable, but the full set of coefficients can be

found in Table A4 in the Appendix.

Consistent with previous literature, we find that the effect of real-time feedback in iso-

lation increases with baseline use. In intervention stage 2, compounding the effects over

both periods (λ̂1 + µ̂1), subjects with 1 kWh higher baseline reduce their energy use per

shower by an additional 0.26 kWh (p = 0.069) on average. Above-median baseline users

(mean 3.30 kWh) save 0.63 kWh (p = 0.039) of energy more per shower compared to sub-

jects with below-median baseline use (mean 1.17 kWh). This is consistent with the notion

that real-time feedback reduces “slack” in resource use, but does not lead subjects to com-

promise on basic needs. It also appears that providing information through home energy
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reports in the DUAL condition induces about double the conservation effect for above-

median users (γ̂3 + µ̂3 = −0.322 kWh, p = 0.075), compared to below-median baseline

users (γ̂3 =−0.156 kWh, p = 0.096) in intervention stage 2, although the difference is far

from significant (p = 0.414). Home energy reports in isolation (HER group), on the other

hand, are neither effective for low- nor high-baseline users. In fact, it seems that subjects

with below-median baseline use tend to increase their energy use in intervention stage 2

(p = 0.028).

For the interactions with environmental attitude, the picture becomes even less clear.

While the point estimates suggest that pro-environmental subjects may be more respon-

sive to real-time feedback, the standard errors are simply too large to draw any meaning-

ful conclusion. Ultimately, we are severely underpowered given the noisy nature of our

survey proxy for pro-environmental motivation.

7. Underlying mechanisms

Through the lens of our conceptual framework, the empirical findings invite the interpre-

tation that subjects already attached some value to conserving energy and water prior to

any intervention, but only paid limited attention when showering, which was corrected

by providing them with real-time feedback. This lack of attention could have prevented

knowledge gains through home energy reports from taking effect in the absence of real-

time feedback as the “enabler”. To take a closer look at the mechanisms behind our main

results, we now conduct a number of additional analyses to support our proposed chan-

nels and to rule out alternative explanations.

7.1. Awareness about resource intensity and environmental impacts

A crucial element of both interventions in our study is to enable learning about the out-

comes of one’s behavior. Real-time feedback through the smart meter provides immedi-

ate display of water use (and water temperature) for the current shower. Home energy

reports also contain information on individuals’ entire history of water use per shower

since the start of the study, with the difference that it comes in retrospect. Nevertheless,

both interventions should increase subjects’ awareness about their own water use per

shower.

To evaluate the impact of the treatments on resource use awareness, we make use of the

post-intervention survey, where we again asked subjects to estimate the amount of water

they typically use per shower. Figure 7 plots individuals’ estimates as a function of their

average water use per shower as measured by the smart meter. We show this separately

for each experimental condition, both using the ITT as well as the TOT (uploaders-only)

approach. The corresponding regression table A5 is presented in Appendix A.

Before the interventions, subjects’ assessments were virtually uncorrelated with their
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Figure 7: Post-intervention awareness about water use per shower
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Notes. Both graphs compare subject’s water use estimates from the endline questionnaire with their
actual water use in intervention stage 2. In graph (b), we only use the subsample defined for the
uploaders-only approach. Subjects with extreme estimates (above 200 liters) are excluded. Point clouds
consist of individual observations (hollow diamonds for CON and RTF, solid circles for HER and
DUAL) and lines represent separate regression fits for each treatment group. The dashed line start-
ing at the origin is the 45 degree line.

actual water use, with low-baseline users overestimating and high-baseline users under-

estimating their water use (see Figure 5). The picture changes completely after the inter-

ventions. Whereas subjects in the CON group remain as ignorant as before, subjects who

received real-time feedback are now able to estimate their water use almost without bias,

so the fitted regression lines are close to the 45 degree line. While the slope looks slightly

flatter for the DUAL group compared to the RTF group, the difference is not statistically

significant. Importantly, home energy reports in isolation (HER group) already induce

strong learning effects about water use, as estimated water use increases visibly in actual

water use per shower (TOT slope 0.57), and significantly more strongly than in the CON

group (p = 0.025). We cannot reject that learning through home energy reports is more

effective with real-time feedback than without (p = 0.497). While these analyses focus on

the bias of subjects’ estimates (conditional on actual water use), we obtain similar results

when we look at the size of estimation errors across groups (see Table A6 in Appendix

A). Subjects in the three intervention treatments are on average about 27-30 percentage

points closer to their actual water use than subjects in the CON group, and notably, the

effect is virtually the same for HER, RTF, and DUAL groups.

Taken together, these results show that both types of interventions are successful in cre-

ating awareness about individual’s own behavioral outcomes. However, learning about

water use alone neither explains why real-time feedback is much more effective than

home energy reports, nor why home energy reports induce an extra conservation effect

when combined with real-time feedback. Good information per se does not seem to be
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sufficient to realize an individual’s conservation potential, as the intervention also has to

be timely and be able to overcome further barriers like limited attention and self-control

problems.

Home energy reports did not only contain information about water use, but also on

energy use and environmental impacts in terms of CO2 emissions. In addition, the sec-

ond home energy report contained social comparison feedback with a random anony-

mous peer. These additional informational elements could explain why subjects in the

DUAL group reduce their energy consumption even further after receiving the reports.

Knowledge gains about the environmental impact of showering are only associated with

conservation effects when home energy reports are combined with real-time feedback.

One of the key insights of our theoretical framework is that if multiple barriers are sig-

nificant, different behavioral interventions can become complements, because a single

narrowly-targeted intervention is undermined by the presence of other significant bar-

riers. Hence, our empirical results suggest that, in the absence of real-time feedback,

barriers like limited attention have prevented knowledge gains through home energy

reports from translating into actual behavior.

7.2. Engagement with home energy reports

One potential confounder is differential treatment engagement. By that, we refer to how

much attention subjects pay to the treatments per se, e.g. how carefully they read the

reports. If previous exposure to real-time feedback induced subjects in the DUAL group

to engage much more strongly with the home energy reports than subjects in the HER

group, we would then expect stronger conservation effects in the former group. This

would not be the source of complementarity we want to highlight in this paper. The pre-

vious subsection shows that home energy reports induced similar learning effects about

water use per shower in the HER and DUAL groups, which already suggests similar

levels of scrutiny. To assess this crucial assumption more directly, we make use of the

mini-survey that came with each of the two report emails. As described before, each

email included a link to a survey in which we asked subjects to give an estimate of the

amount of water they use in a typical shower. The survey link was at the bottom of the

email, so subjects had to scroll through all the statistics on resource use and CO2 emis-

sions before clicking on it. We therefore use survey responses as proxy for the level of

engagement with the feedback email.

Table A7 in Appendix A shows response rates by treatment group in the uploaders-

only sample. Recall that subjects in the RTF and DUAL groups received Placebo emails

containing a link to the same mini-survey. The overall response rates of uploaders was

87% for the first email and 71% for the second email. The share of respondents in the

HER group was 8.4% lower than in the DUAL group for the first email (p = 0.203),

and 9.4% higher for the second mail (p = 0.308); both differences are statistically in-
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Figure 9: Effects for different levels of engagement with home energy reports
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Notes. The points represent estimated regression coefficients for the effects of home energy reports in
intervention stage 2, where treatment engagement status is instrumented with treatment assignment.
Range lines indicate 90% confidence intervals.

significant. Apart from the extensive margin, Table A7 further shows subjects’ relative

estimation error by treatment group, defined as percent deviation of estimated water use

in the mini-survey from the actual water use per shower.34 Smaller estimation errors are

an indication of subjects paying closer attention while reading the reports. Respondents

in the HER group were only 10% off on average, and they actually gave more precise es-

timates than respondents in the DUAL group (p = 0.039), who were 21% off on average.

Notwithstanding, both groups still outperform the CON group (49% off on average) by

miles. Overall, we find no evidence that uploaders in DUAL group studied reports more

carefully than uploaders in HER group.

To further explore whether it is the actual engagement with the information provided

by home energy reports that matters, or whether the reports simply serve as cue or re-

minder for students to pay more attention to their shower behavior, we check whether

subjects who studied the reports more closely also engaged more strongly in conserva-

tion actions. For this purpose, we again make use of subjects’ water use assessments in

the mini-surveys and regress energy use per shower on several new home energy report

treatment indicators that increase in their level of strictness. Specifically, we define an in-

dicator for whether subjects uploaded data and clicked on the mini survey in their report,

and additional indicators for whether a subject’s estimate precision, defined as distance

between estimated and measured water use per shower, was above the 25th, 50th, or

75th percentile of all subjects, respectively. To avoid the endogeneity issue at hand, we

use treatment assignment as instrument for level of engagement with reports. Figure 9

plots the coefficients and confidence intervals for the effect of home energy reports in

34As measure for actual water use per shower, we take the number that was calculated for each subject
when sending out the home energy reports.
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Table 7: Change in self-reported attitudes (from baseline to post-intervention survey)

shower comfort environmental attitude

(1) (2) (3) (4)
ITT TOT ITT TOT

RTF group 0.042 0.047 -0.340∗∗∗ -0.345∗∗∗

(0.117) (0.119) (0.117) (0.119)

HER group 0.085 0.090 -0.277∗∗ -0.253∗

(0.134) (0.136) (0.133) (0.145)

DUAL group -0.097 -0.011 -0.225∗ -0.239∗

(0.138) (0.150) (0.129) (0.144)

Constant 0.026 0.030 0.139 0.143
(0.086) (0.088) (0.094) (0.095)

F-test: p-value 0.641 0.896 0.034 0.039
Observations 300 255 304 257
R2 0.007 0.003 0.027 0.031

Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

HER and DUAL group, respectively. Even the most studious subjects in the HER group

do not reduce their energy user in response to the reports, which corroborates our find-

ing that home energy reports in isolation are insufficient to induce behavioral change. In

contrast, the estimated conservation effect in the DUAL group increases monotonically

with strictness of our indicator, reaching almost 0.5 kWh for the strictest definition. To-

gether with the previous finding that the effects of home energy reports in DUAL tend to

unfold over time, this speaks strongly in favor of the interpretation that what matters is

the actual information content, not potential reminder or Hawthorne effects.

7.3. Environmental attitude and consumption value

Our interventions presented all information in a neutral and factual way, and we specifi-

cally refrained from including any normative element. Nevertheless, another confounder

could be that the interventions either (differentially) increased subjects’ pro-environmental

motivation or somehow made showering less pleasurable to them, which would corre-

spond to changes in V(e) or C(e) in the theoretical framework. To check if this could

confound our results, we analyse subjects’ survey responses before and after the study.

The outcome variable of interest is the change in environmental attitude index or shower

comfort index, respectively. All indices are normalized by subtracting the pre-intervention

mean and dividing by the pre-intervention standard deviation.

The first two columns in Table 7 show difference-in-differences estimates for the experi-

mental conditions, with the dependent variable being change in the indices from baseline

to endline survey. Both in the ITT (column 1) and in the TOT (column 2) regressions for

subjective shower comfort, we find no significant differences across experimental con-

dition, and all point estimates are virtually zero. Hence, at least based on self-reported
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measures, our interventions do not seem to have diminished the consumption benefits of

showering, which is also relevant for welfare considerations.

The other two columns in Table 7 show the difference-in-differences estimates for im-

pacts on environmental attitude, with ITT estimates in column (3) and TOT estimates in

column (4). Surprisingly, we find that subjects in the treated groups become less pro-

environmental relative to the control group based on their survey responses. The magni-

tude of this decrease ranges from 22% to 35% of a (pre-study) standard deviation, which

is not exactly quantitatively large, but also not negligible. We can only speculate about

what is happening here. At face value, it may seem that feedback makes people less

motivated to act pro-environmentally. Of course, we only have self-reported measures

and cannot be certain about the underlying latent variable that they proxy for. But as we

rather proxy self-perceived inclination to act pro-environmentally rather than the actual

extent of pro-environmental behavior, one possible interpretation could be that feedback

provision curbs the capacity for distorted self-image formation, because people become

aware of their intention-action gaps. We caution from overinterpreting the result here,

and we did not have any ex ante hypothesis along these lines. Still, we can conclude

that the conservation effects we observe are unlikely due to higher pro-environmental

motivation.

7.4. Other channels

Our leading interpretation of the underlying mechanisms is as follows: home energy re-

ports operate through manipulating knowledge about resource intensity and environ-

mental impacts, whereas real-time feedback works through channeling attention and

raising water use awareness. We believe this is the most straightforward interpretation,

but a number of alternative channels are conceivable. For example, the social compar-

ison component included in the second home energy report could in principle add an-

other motive for adjusting behavior, although we believe this to be unlikely, as Tiefenbeck

et al. (2018) find no effect of including comparisons with the co-resident in a two-person

household; hence, social norms are even less likely to arise in our setting, with the peer

being assigned randomly and anonymously. Real-time feedback may also work in more

ways apart from channelling attention. For example, it might counter self-control prob-

lems by offering immediate satisfaction (or disappointment) when the amount of water

stayed below (or exceeded) a self-set target. Instant feedback may also facilitate exper-

imentation with effective strategies for reducing resource consumption. Regardless of

the channels through which the two interventions affect behavior, the complementarity

between them remains an intriguing finding that is consistent with the core of our theo-

retical framework, i.e. that failure to address all significant barriers may result in failure

of an in truth promising policy intervention.

41



8. Conclusion

In this paper, we have argued that when multiple behavioral barriers, e.g. imperfect

information and limited attention, prevent individuals from implementing their values

and intentions, then behavioral interventions overcoming different barriers each can be

complements, in the sense that the effect of each intervention is boosted by the presence

of another intervention. This is because a single intervention cannot always overcome

all relevant barriers, so the remaining barriers will attenuate its effectiveness if they are

not overcome as well by a complementary intervention. We report evidence from a field

experiment on energy conservation in a specific resource-intensive everyday household

activity (showering) that is in line with such complementarities in behavioral interven-

tions. Home energy reports appear to be ineffective in isolation, but induce surprisingly

large effects when combined with real-time feedback. Real-time feedback targets prob-

lems such as limited attention, that could otherwise have prevented knowledge gains

through the home energy reports from translating into actual conservation behavior.

Although our interventions were tailored to only one specific resource-intensive activ-

ity, the effect sizes are quantitatively meaningful also on the aggregate household level.

This is all the more remarkable given that our subjects had no monetary incentives to

conserve resource, as they only pay a flat-rate fee for utilities. In our study, real-time

feedback in isolation lowered consumption by 0.4 kWh (6.3 liters) per shower; adding

home energy reports further lowered consumption by 0.22 kWh (3.8 liters) per shower,

although the reports had no effect in isolation. In comparison, total daily energy use for

lighting in German households is about 0.33 kWh per person. In his influential evalua-

tion of the Opower home energy reports, which target aggregate energy use in U.S. house-

holds, Allcott (2011b) finds a household-level conservation effect of 0.62 kWh per day. In

contrast, other studies find virtually no response to home energy reports in samples that

are more similar to ours — German households, whose average baseline consumption

level is lower than in the U.S. (Andor et al., 2017), or U.S. college dorm residents without

monetary incentives for energy conservation (Myers and Souza, 2019).

One could conclude that home energy reports as policy instruments are relatively in-

effective, but our study suggests that such a conclusion for any type of intervention may

only hold given the existing policy and choice environment that consumers act in. In

fact, our complementarity argument is based exactly on the premise that a well-blended

policy mix can alter features of this environment, in a way that brings the best out of each

component. More specifically, we highlight that designers of policy interventions not

only have to take into account the channels through which interventions affect behavior,

but also identify important barriers to behavioral change that still remain, and how these

can be overcome by complementary interventions.

Our study shows the existence of complementarities in a very specific setting, but the

the notion of barrier multiplicity can be relevant in other contexts, also when involving
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more standard economic barriers such as time, money, and technology constraints, or

lack of financial incentives. Indeed, some empirical findings in the literature are at least

suggestive of similar mechanisms at work. For example, Cortes et al. (2019) find that

text-message based curricula supporting good parenting practices work less well when

parents face high cognitive load than during time periods when the load is lighter. Du-

pas and Robinson (2013) study financial savings behavior in a developing country and

find that simply providing a safe box for storing money is already quite effective for

encouraging higher savings, except for the subgroup of individuals with severe present

bias, who need additional social commitment. Similarly, prompting deliberation about

food choice, to help resist short-run temptations, increases the effectiveness of healthy

purchasing subsidies (Brownback, Imas and Kuhn, 2019). We suspect that barrier multi-

plicity is a pervasive feature in many other domains.

New policies are always introduced to an existing net of policies, institutions, and

norms. As social scientists are beginning to pioneer the process from small-scale proof-

of-concept studies to large-scale interventions (Banerjee et al., 2017), future research must

therefore synchronously advance our knowledge on the interplay of different policy in-

struments.
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Appendix A Supplementary figures and tables

Figure A1: Screenshot of a home energy report with peer comparison
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Figure A2: Empirical distribution of report timing
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Table A1: Additional randomization checks

Baseline survey responses

environmental shower 1 if age 1 if
attitude comfort female in years international

HER group -0.106 0.094 -0.046 0.757 -0.017
(0.165) (0.164) (0.080) (0.615) (0.075)

RTF group 0.044 -0.164 -0.015 0.872 0.042
(0.167) (0.156) (0.079) (0.584) (0.077)

DUAL group 0.154 0.115 0.117 0.540 0.032
(0.161) (0.149) (0.075) (0.583) (0.075)

Constant -0.041 -0.014 0.597 23.351 0.325
(0.118) (0.100) (0.056) (0.380) (0.054)

Observations 307 306 318 307 318
R-squared 0.009 0.012 0.017 0.007 0.003
F-test: p-value 0.425 0.327 0.130 0.437 0.847

Robust standard errors in parentheses. The omitted category is the CON group.
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Table A2: Comparing uploaders and non-uploaders

uploaders: non-uploaders: diff. in means
mean (sd) mean (sd) p-value

Energy [kWh] 2.23 2.20 0.95
(1.38) (1.37)

Water volume [liter] 38.54 37.13 0.87
(22.36) (20.73)

Temperature [Celsius] 35.41 35.94 0.61
(3.33) (3.47)

Flow rate [liter/min] 6.01 5.30 0.11
(2.34) (2.19)

Duration [min] 6.61 7.69 0.10
(2.98) (4.54)

Environmental attitude -0.04 0.07 0.79
(1.03) (0.93)

Shower comfort -0.05 0.14 0.55
(1.05) (0.87)

1 if female 0.58 0.70 0.28
(0.49) (0.46)

Age in years 23.93 23.79 0.95
(3.80) (3.99)

1 if international 0.31 0.41 0.42
(0.46) (0.49)

Observations 228 90

Subject characteristics before sending out home energy reports. p-values adjusted
for multiple hypothesis testing (Romano-Wolf procedure using 2, 000 bootstrap
repetitions).
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Table A3: Treatment effect dynamics

Zi = I{post 2nd report} Zi = # weeks after 1st report

(1) (2) (3) (4)
Uploaders LATE Uploaders LATE

Intervention 0.179 0.172∗ 0.178 0.171∗

(0.111) (0.103) (0.111) (0.102)

Intervention × RTF/DUAL -0.388∗∗∗ -0.365∗∗∗ -0.386∗∗∗ -0.364∗∗∗

(0.134) (0.125) (0.133) (0.125)

Intervention × HER 0.027 0.016 0.029 0.019
(0.154) (0.134) (0.154) (0.134)

Intervention × DUAL 0.046 0.119 0.047 0.120
(0.113) (0.108) (0.112) (0.108)

IN stage 2 0.139 0.176 0.065 0.109
(0.103) (0.110) (0.124) (0.127)

IN stage 2 × RTF/DUAL -0.027 -0.053 0.047 0.019
(0.128) (0.134) (0.156) (0.159)

IN stage 2 × HER 0.092 0.048 0.198 0.174
(0.148) (0.169) (0.181) (0.202)

IN stage 2 × DUAL -0.068 -0.041 0.030 0.075
(0.123) (0.135) (0.166) (0.177)

IN stage 2 ×Zi 0.019 0.022 0.032 0.029
(0.093) (0.090) (0.027) (0.026)

IN stage 2 × RTF/DUAL ×Zi 0.012 0.000 -0.026 -0.026
(0.123) (0.119) (0.037) (0.035)

IN stage 2 × HER ×Zi -0.002 -0.010 -0.041 -0.051
(0.126) (0.136) (0.042) (0.047)

IN stage 2 × DUAL ×Zi -0.279 -0.316 -0.099 -0.114∗

(0.209) (0.215) (0.064) (0.067)

Individual fixed effects yes yes yes yes

Clusters 261 318 261 318
Observations 14712 17942 14712 17942
R2 0.413 0.005 0.413 0.005

Standard errors in parentheses are clustered at the individual level. In columns (1) and
(2), we exclude all non-uploaders in HER and DUAL as well as all non-uploaders in
RTF and CON who did not report a technical problem. In columns (3) and (4), we use
treatment assignment to HER and DUAL, respectively, interacted with the IN stage 2
indicator as instrument for receiving informative home energy reports. The reported R2

in Columns (3) and (4) is the within R2.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

51



Table A4: Treatment effect heterogeneity

Xi : baseline energy use Xi : envir. attitude

(1) (2) (3) (4)
linear median+ linear median+

Intervention 0.180∗ 0.272∗∗∗ 0.178 0.243
(0.105) (0.072) (0.112) (0.203)

Intervention × RTF/DUAL -0.403∗∗∗ -0.254∗∗∗ -0.392∗∗∗ -0.324
(0.127) (0.096) (0.134) (0.222)

Intervention × HER 0.012 -0.139 0.003 0.030
(0.146) (0.112) (0.149) (0.255)

Intervention × DUAL 0.085 0.020 0.049 -0.088
(0.111) (0.087) (0.113) (0.151)

IN stage 2 0.148 0.001 0.166∗ 0.140
(0.091) (0.065) (0.089) (0.172)

IN stage 2 × RTF/DUAL -0.014 0.171∗ -0.036 -0.032
(0.117) (0.102) (0.115) (0.196)

IN stage 2 × HER 0.095 0.267∗∗ 0.074 0.214
(0.139) (0.121) (0.133) (0.221)

IN stage 2 × DUAL -0.239∗∗ -0.156∗ -0.225∗∗ -0.313∗∗

(0.102) (0.093) (0.105) (0.157)

Intervention ×Xi -0.016 -0.192 0.031 -0.137
(0.101) (0.226) (0.130) (0.220)

Intervention × RTF/DUAL ×Xi -0.164 -0.247 -0.210 -0.176
(0.119) (0.266) (0.145) (0.269)

Intervention × HER ×Xi 0.109 0.325 -0.172 -0.039
(0.140) (0.301) (0.166) (0.296)

Intervention × DUAL ×Xi 0.062 0.039 0.103 0.310
(0.110) (0.215) (0.105) (0.232)

IN stage 2 ×Xi 0.056 0.313∗ -0.076 0.056
(0.077) (0.179) (0.116) (0.185)

IN stage 2 × RTF/DUAL ×Xi -0.094 -0.385∗ 0.084 -0.002
(0.101) (0.228) (0.129) (0.237)

IN stage 2 × HER ×Xi -0.021 -0.368 0.083 -0.363
(0.124) (0.268) (0.144) (0.260)

IN stage 2 × DUAL ×Xi -0.097 -0.166 0.024 0.146
(0.092) (0.203) (0.083) (0.207)

Individual fixed effects yes yes yes yes

Clusters 260 260 257 257
Observations 14675 14675 14501 14501
R2 0.413 0.413 0.414 0.415

Standard errors in parentheses are clustered at the individual level. The coefficients
are obtained using the within estimator. All non-uploaders in HER and DUAL, as
well as all non-uploaders in RTF and CON who did not report a technical problem,
are excluded.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A5: Estimated vs actual water use per shower

before study after study

ITT TOT

Actual volume 0.271 0.175 0.186
(0.263) (0.139) (0.145)

Actual volume × RTF 0.025 0.742∗∗∗ 0.835∗∗∗

(0.376) (0.199) (0.179)

Actual volume × HER -0.465 0.289∗ 0.381∗∗

(0.292) (0.174) (0.169)

Actual volume × DUAL -0.074 0.520∗∗∗ 0.517∗∗

(0.299) (0.182) (0.230)

RTF group -0.131 1.694 3.162
(6.777) (3.234) (3.183)

HER group -7.001 -4.578 -5.200∗

(5.813) (3.181) (3.029)

DUAL group -5.182 1.655 1.588
(5.851) (3.136) (3.826)

Constant 43.436∗∗∗ 39.507∗∗∗ 39.610∗∗∗

(4.590) (2.429) (2.542)

Observations 267 296 251
R2 0.030 0.378 0.440

Robust standard errors in parentheses. Actual volume is recentered around 40
liters.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A6: Estimated versus actual water use: relative estimation error

before study after study

ITT TOT

RTF group 0.075 -0.283∗∗∗ -0.296∗∗∗

(0.201) (0.073) (0.075)

HER group 0.008 -0.172∗∗ -0.281∗∗∗

(0.175) (0.080) (0.072)

DUAL group -0.055 -0.214∗∗ -0.270∗∗∗

(0.178) (0.085) (0.076)

Constant 0.927∗∗∗ 0.577∗∗∗ 0.583∗∗∗

(0.136) (0.061) (0.064)

Observations 302 296 251
R2 0.002 0.050 0.101

Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A7: Response to mini-surveys attached to reports

Survey response rate

(1) (2) (3) (4)
first report second report any report estimation error [%p]

RTF group -1.05 0.53 -2.48 -30.69
(5.35) (6.57) (4.90) (7.62)

HER group -7.85 -16.76 -7.18 -38.74
(6.39) (7.91) (5.81) (7.54)

DUAL group 0.58 -26.17 -0.44 -27.70
(5.54) (8.14) (5.00) (8.57)

Constant 88.89 80.56 91.67 48.93
(3.73) (4.70) (3.28) (7.14)

p-value for HER = DUAL 0.203 0.308 0.270 0.039

Observations 261 261 261 231
R-squared 0.009 0.061 0.008 0.139

Robust standard errors in parentheses.
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Appendix B Randomization protocol

At the beginning of the study, we randomly assigned subjects into groups that receive

or do not receive real-time feedback. Each smart meter was programmed as either treat-

ment or control device. Treatment device started displaying real-time feedback from the

eleventh shower onwards, whereas control devices only ever showed the current wa-

ter temperature. When distributing the smart meters to subjects, we alternated between

treatment and control devices after each apartment. Thus, treatment and control devices

are by construction balanced within dorms.

We assigned subjects into groups with or without home energy report shortly before

we intended to sent out the reports. We used the data that subjects uploaded through the

smartphone app to rank them from lowest to highest average water use per shower, split

by whether they receive real-time feedback or not. Then, we formed pairs between sub-

jects adjacent to each other in rank and assigned home energy reports to only one member

of a pair based on a virtual coin flip. This ensures that the distribution of resource con-

sumption levels remain balanced across experimental conditions. Subjects who had not

uploaded any data at that point in time were assigned to a group randomly without prior

ranking.

The second home energy report further contained a social comparison component with

a random and anonymous peer. This peer was assigned to subjects in the following way:

(1) we used uploaded data prior to the second report to rank subjects again by their av-

erage water use per shower; (2) we then selected three potential peers for each subject, a

subject who was somewhat above him/her in rank, a subject who was somewhat below

him/her in rank, and a directly adjacent subject; (3) we then chose one of these three can-

didates randomly with equal probabilities; (4) subjects who had not uploaded any data

received a random peer from the pool of subjects who had uploaded data. This proce-

dure ensured that the direction of peer comparison was orthogonal to subjects’ resource

use level.

Appendix C Data cleaning procedures

A number of data cleaning steps are performed before running the empirical analyses. In

principle, we have access to the smart meter data from two sources: (1) uploads by sub-

jects themselves using the smartphone app, and (2) the data that we read out manually

after retrieving the devices. For the large majority of devices, the two sources gave us

identical data. In the cases where it differed, we always opted to use the information we

read out manually.

We drop the very first data point of each participant, as they usually started with a test

run to check if the device was working. Following Tiefenbeck et al. (2018), we further

drop any water extraction with volume below 4.5 liters (in total 2, 942 extractions), as

these are unlikely to be actual showers but rather minor extractions for other purposes
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such as cleaning. We further remove 37 extreme outlier points, defined as energy use

and water use for that shower being more than 4.5 times the subject-specific interquartile

range away from the closest quartile. We are particularly strict in only excluding the most

unplausible data points here. Conventionally, 1.5 or 3 times the interquartile range (IQR)

are used as criterion for outliers. For a normal distribution, 4.5 times the IQR away from

the nearest quartile corresponds to 6.745 standard deviation away from the mean.

We further exclude 1 device with erratic data, as evidenced by huge intra-device vari-

ance (the largest for all devices) and some outrageous data points with water volumes

of up to above 500 liters for a single shower. In 8 cases, the device’s temperature sensor

broke at some point, and we impute missing information with the average temperature

of showers taken while the sensor was still intact. For some devices, we detected an error

through which decimal places of the flow rate are shifted such that the stored number

is actually ten times the actual flow rate. We corrected these manually for showers with

flow rates that are about ten times the flow rate of other showers stored on the device.

Appendix D Timing of showers

As the smart meter itself has no global time counter and only stores the chronological

order of water extractions, we make use of smartphone app information to put a time

stamp on each observation. In particular, we need to determine whether a shower took

place before or after we sent out the home energy reports, so whether it is in intervention

stage 2. The app provides us with information on the date and time of each data upload

by subjects. This allows us construct time windows in which a shower observation has

plausibly happened. Firstly, a shower must have been taken by the time data was up-

loaded via the app, so this gives us the upper bound. Secondly, it must have been taken

place after the previous data upload, because otherwise it would have been uploaded

by then; this gives us the lower bound. To be able to determine the timing relatively

reliably around the crucial time period, in which we sent out home energy reports, we

sent several upload reminders to all participants. Whenever it was not unambiguously

clear, which shower was the first that took place after a home energy report, we assigned

the switching point implied by constant shower frequency. For example, if one upload

was 1 day before the home energy report and the next upload 1 day after, and there were

2 showers in the window, we assumed that the first shower was before and the second

shower after the report.

A complication arising from non-uploaders is that we do not know the timing of show-

ers by these participants, because the shower meter itself only stores the order of showers

but not the time and date. We can only infer the earliest and latest possible date of each

shower based on when it was uploaded to the smartphone app. Therefore, whenever we

want to include non-uploaders in our analyses, we need to impute the timing of showers

in one way or another, in particular whether it took place before or after a home energy
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report.

We use a pragmatic imputation approach based on the assumption that, given the stage

of study completion, i.e. which fraction of the number of total recorded showers have

been completed, showers by uploaders and non-uploaders have the same probability of

having taken place after the first/second home energy report. Formally, we assume that

for each stage of study completion π,

Pr
(

IN s2
it = 1|π, non-uploader

)
= Pr

(
IN s2

it = 1|π, uploader
)

.

To operationalize this approach, we estimate the distribution of uploaders’ report timing

over study completion non-parametrically, so P̂r
(

IN s2
it = 1 | π, uploader

)
, and, instead of

the indicator IN s2
π for intervention stage 2, we define

ÎN
s2

s = P̂r
(

IN s2
it = 1 | πs

it = 1, uploader
)

as probabilistic indicator for every shower of non-uploaders in study completion stage

π. In other words, the regressor ÎN
s2

π is the probability that a particular shower by a non-

uploader took place after the first home energy report. In all our regressions, we actually

use the indicator

ĨN
s2

it =





IN s2
it if uploader

P̂r
(

IN s2
it = 1 | π, uploader

)
if non-uploader .

(16)
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