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Abstract

We investigate the impact of providing households with disaggregate consumption
feedback and develop a framework to assess its welfare implications. In the context of
smart metering, we find that the provision of appliance-level feedback causes an energy
conservation effect of 5 percent relative to a group receiving standard (aggregate) feedback.
Hence, a smart meter roll-out will be substantially more effective if appliance-level feed-
back is provided. We also show that the current regulatory approach to assess consumer
surplus overestimates the gains from smart meter feedback.
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1 Introduction

Novel information technologies enable consumers to make better-informed decisions. For

example, navigation systems assist car drivers in improving their travel planning (Chorus

et al., 2006), text message reminders increase patients’ adherence to medical treatments (Pop-

Eleches et al., 2011), and fitness trackers help athletes to maintain higher levels of physical

activity (Cadmus-Bertram et al., 2015). A key advantage of modern information technologies

is their ability to provide disaggregate, i.e., behaviour-specific, feedback on the consequences

of choice alternatives that are otherwise difficult to assess. For example, consumers have bi-

ased beliefs about the caloric content of food (Bollinger et al., 2011) and are unaware of the

returns to education at different schools (Jensen, 2010), which compromises their ability to

choose a healthy diet and a good school for their children. Providing disaggregate feedback

solves these problems by informing consumers about the relative benefits and costs of their

choice alternatives. Despite the rapid proliferation of information technologies, there is only

limited evidence on the effectiveness of disaggregate feedback. In addition, a methodology for

quantifying its benefits is unavailable so far.

In this paper, we explore the potential of disaggregate feedback in the context of smart me-

tering and develop a framework to investigate the impact of feedback on consumer surplus.

Governments throughout the world have implemented a massive deployment of advanced

electricity metering infrastructure, which involves multi-billion investments into so-called

smart electricity meters.1 A core rationale for the deployment of smart meters is that these

devices can provide households with consumption feedback. Feedback may foster awareness

about the cost and environmental impact of electricity usage, and hence lead to energy conser-

vation (EC, 2014b). It is well-documented that ± in the absence of feedback ± individuals tend

to underestimate the energy use of energy-intensive appliances, and overestimate the energy

use of low-intensity applications (Attari et al., 2010). Beyond exploring the impact of feedback

on households’ electricity-use behaviours, we also develop a method to assess its implications

for consumer surplus. We derive sufficient statistics to quantify it, thus providing a novel tool

for regulatory cost-benefit analysis.

1For example, 79 million households in the United States and 472 million households in China have been outfit-
ted with smart meters by 2017 (IEA, 2017). In addition, the European Union has committed to installing 200 million
smart meters at an estimated cost of 45 billion Euro (EC, 2014a).
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We conduct a field experiment with 700 participants and provide electricity use feedback

through a smartphone app. Participants in the Aggregate Feedback group obtain household-

level feedback, as traditionally provided by smart metering interventions. Participants in our

Disaggregate Feedback group additionally receive information on their appliance-level elec-

tricity use. Our study builds on a smart meter technology that leverages the potential of

appliance-level feedback without installing additional costly infrastructure. The technology

exploits that appliances leave distinct signatures in high-frequency aggregate electricity con-

sumption data, which can be used to infer appliance-level uses. For our study, we collaborate

with an electricity utility and use a product that has been validated for its accuracy in the pro-

cess of its market introduction (for technical background information, see Gupta et al. 2010;

Hart 1992; Gupta et al. 2017, and Appendix A3). For evaluating the impact of aggregate feed-

back, we construct a matched (non-experimental) control group of households of the same

utility that have smart meters, but did not obtain any feedback. This allows us to establish

a benchmark to a group without any feedback at all, which we exploit to identify the overall

conservation effect.

We complement our field experiment with a theoretical model of household service de-

mand, which serves two purposes. First, it enables us to derive sufficient statistics for evalu-

ating the impact of feedback on consumer surplus. We also show how these statistics can be

identified as simple functions of the aggregate and appliance-level treatment effects that we

identify in our field experiment. Second, our model allows us to derive behavioural predic-

tions regarding the effectiveness of aggregate and disaggregate feedback.

Our empirical results show that the provision of appliance-level feedback reduces electric-

ity consumption strongly by around 5%, compared to our experimental condition in which

individuals receive ‘standard’ aggregate smart metering feedback. Furthermore, we estimate

that aggregate smart meter feedback reduces electricity consumption only by 1%.2 Taken

together, our estimates demonstrate that providing disaggregate information adds consider-

ably to the effectiveness of feedback. Further evidence from secondary analyses suggests that

households are poorly informed about the wattage of their appliances prior to our interven-

2This finding is in line with previous studies on aggregate feedback that have estimated conservation effects
ranging from 2% to 3% (Carroll et al., 2014; Degen et al., 2013; Martin and Rivers, 2017), up to 5% (Schleich et al.,
2017; Houde et al., 2013). Further studies have shown that feedback via more frequent billing can even lead to an
increase in resource use (Wichman, 2017). With respect to consumption feedback, Gosnell et al. (2019) find that
providing information on social comparisons and demand disaggregation via an advanced app is more effective
than providing aggregate information via in-home displays and a basic app, but only for one of two smart meter
installers. For reviews on feedback interventions, see e.g. Darby (2006) and Karlin et al. (2015).
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tion, but improve the accuracy of their beliefs after receiving disaggregate feedback, in line

with our theoretical framework.

We derive formulas to quantify consumer surplus that are simple variants of those cur-

rently used in regulatory cost benefit assessments. The changes in consumer surplus from

disaggregate feedback can be calculated as the weighted sum over appliance-level cost savings.

The weights are determined by consumers’ relative bias, i.e., the perceived energy intensity

divided by the actual intensity. In our study, we find that the disaggregate feedback increases

consumer surplus by 5.4 EUR. We also derive bounds of the consumer surplus gain from ag-

gregate feedback and quantify these bounds using our sufficient statistics. Our bounds imply

that the welfare gains from aggregate feedback lie between 0.44 to 3.29 EUR per household

and year, and are thus substantially smaller than those from disaggregate feedback.

We make two main contributions to the literature. First, we add to a literature on feedback

by disentangling the effects of disaggregate appliance-level information from the effects of

aggregate information. That households are only poorly informed about the cost of behaviours

has been documented both in the context of energy use (Attari et al., 2010) and water use (Brent

and Ward, 2019). Regarding the effectiveness of disaggregate feedback, the evidence is mixed.

While Burkhardt et al. (2019) find no conservation effects of appliance-level feedback provided

through an online portal, feedback on the energy use of showering, for example, has been

shown to reduce water and electricity use by 10-20% (Asensio and Delmas, 2015; Bruelisauer

et al., 2018; Tiefenbeck et al., 2018, 2019).

One difficulty in interpreting the evidence is that previous studies on appliance-level feed-

back have typically evaluated bundled interventions that also increase the salience of electric-

ity use, reduce aggregate biases and improve energy-related knowledge, for example (Asensio

and Delmas, 2015; Burkhardt et al., 2019; Tiefenbeck et al., 2018, 2019). Hence, it has proven

difficult to assess the extent to which appliance-level feedback contributes to the overall ef-

fectiveness of an intervention. To isolate its contribution, we conduct a tailored randomized

controlled trial that allows us to identify the additional savings induced by appliance-level

information.

Our findings demonstrate that augmenting traditional smart meter feedback by appliance-

level information could largely increase the effectiveness of a smart meter roll-out. So far,

smart meters typically provide information about household-level electricity consumption.

Previous evidence suggests that such feedback leads to modest conservation effects of 2% to
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maximally 5% (Degen et al., 2013; McKerracher and Torriti, 2013; Schleich et al., 2017; Houde

et al., 2013). Against this background, our finding of an additional conservation effect of 5%

from appliance-level feedback suggests that such feedback is crucial for effective smart meter

interventions.

Second, our study relates to the literature on welfare analysis under optimization errors

by consumers (see Farhi and Gabaix 2020 for an overview). One strand of this literature has

primarily focused on the implications of tax misperceptions (e.g., Chetty et al. 2009; Rees-Jones

and Taubinsky 2019). Another strand has derived optimal corrective taxes and subsidies for

behaviourally biased consumers (e.g., Allcott and Taubinsky 2015; Gerster and Kramm 2019;

O’Donoghue and Rabin 2006). By contrast, we analyse informational instruments when con-

sumers misperceive product attributes and the cost of household services. We derive formulas

for evaluating consumer surplus that can be used for policy analysis of informational inter-

ventions to overcome such misperceptions.

Our findings demonstrate that the current regulatory approach to assess consumer surplus

gains from smart meter feedback is fundamentally flawed. Cost-benefit analyses in the U.S.

and the EU, for instance, approximate changes in consumer surplus by the realized energy

cost savings (Faruqui et al., 2011; Giordano et al., 2012). In our study, disaggregate feedback

reduces expenditures by 48.3 EUR on average, while consumer surplus increases only by 5.4

EUR. Hence, consumer surplus gains are overestimated by a factor of about ten. This deviation

arises because the weights used to calculate consumer surplus are substantially smaller than

one (in absolute terms). Intuitively, a reduction of electricity consumption in response to feed-

back involves not only a financial gain from lower expenditures, but also a utility loss from

consuming less of a household service, which is neglected in current cost-benefit analyses.

The remainder of the paper is structured as follows. Section 2 introduces our model. Sec-

tion 3 presents the experimental design and the data. In Section 4, we estimate the impact

of aggregate and appliance-level feedback on energy consumption and present results from

secondary analyses. Section 5 quantifies the impact of appliance-level feedback on consumer

surplus. Section 6 concludes.
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2 Conceptual Model

We start by investigating the effects of providing appliance-level feedback to consumers

based on the Becker (1965) household services model. Let consumers have the following quasi-

linear utility function:

U(x, z) = u(x) + z,

where u(x) is quasi-concave and denotes the utility from consuming J household services de-

noted by the vector x = (x1, . . . , xJ)
′ and z represents the numeraire good, whose price is nor-

malized to 1. The consumption of household service j requires inputs of yj = xjej, where ej de-

notes the input intensity of service xj, which by definition is non-negative. In our application,

households consume energy services by using a particular appliance, such as a dish-washer or

dryer, and the input intensity refers to the amount of electricity that is needed to operate an

appliance. Consumers maximize their utility subject to the budget constraint w = z + ∑j yj p,

where w denotes their exogenous income and p denotes the price of the input, in our case

electricity.

In line with the literature (e.g., Attari et al. 2010), let consumers have biased perceptions

of input intensities ẽj = ej + bj, where bj denotes a bias term. We decompose the bias further

as bj = ba + bs
j , where ba denotes an aggregate bias term and bs

j denotes a service-specific bias

that affects only those beliefs regarding appliance j.

2.1 Behavioural Predictions

We now derive predictions of providing aggregate and disaggregate, i.e., service-specific,

feedback on total input use. In line with the current literature, we assume that aggregate

and disaggregate feedback entirely remove aggregate and service-specific bias, respectively

(Chetty et al., 2009; Bernheim and Taubinsky, 2018).

Under a general utility function u(x), we find correcting a bias of underestimating aggre-

gate service intensities reduces the total amount of input use for service consumption if all

services are a normal good (see proposition 1 in Appendix A1.1 for a derivation). Intuitively,

a reduction in total input use arises because correcting an underestimation increases the per-

ceived cost of using any appliance, which reduces the input demand for any appliance and,

hence, total input demand. For the case of household electricity consumption, studies have
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consistently found small but negative demand elasticities (see, e.g., Frondel et al., 2019). Thus,

we expect aggregate consumption to fall with aggregate feedback.

In a next step, we explore the impact of providing disaggregate feedback in addition to ag-

gregate feedback in order to remove the service-specific biases. To derive a prediction, we need

to impose some structure on the shape of service-specific biases. Empirical studies from the

domain of energy consumption show that individuals tend to overestimate the energy inten-

sity of low-intensity appliances, while underestimating the energy intensity of high-intensity

appliances (Attari et al., 2010; Fang et al., forthcoming). Hence, we model perceived energy

intensity towards the mean: ẽj = αej + (1 − α)e, where α ∈ [0, 1) is the weight attached to the

service intensity of service j, and e = ∑j gjej is the usage weighted average service intensity.3

In addition to empirical realism, this formulation has a straightforward psychological inter-

pretation: the weight α can be interpreted as the outcome of a cognitively uncertain updating

from signals about each services’ intensity (Enke and Graeber, 2023; Gabaix, 2017).

This specification implies that eliminating disaggregate biases may increase input intensity

beliefs for some appliances and reduce them for others. It is therefore not obvious under what

conditions removing the service-specific bias will lead to a decrease in overall input use. In

proposition 2 in Appendix A1.2, we show that overall input use decreases if the price elasticity

of the more energy intensive service is at least as high as the price elasticity of the less energy

intensive service. The rationale is as follows: even though disaggregate feedback may induce

participants to increase the energy use of the less energy intensive service, this increase is

overcompensated by the energy savings from learning about the high energy intensity of the

other service. Whether such a decrease in total input use materializes in practice is ultimately

an empirical question, which we explore in the empirical part of this paper.

Our discussion also clarifies that disaggregate feedback need not cover all input uses to be

effective. To fix ideas, let a customer not only receive aggregate feedback, but also disaggregate

feedback for one of two household appliances. In that case, feedback conveys all information

about the other appliance, which can be derived from the difference between the aggregate

feedback and the disaggregate feedback on the one appliance covered. For cases with more

than two appliances, consumers also learn about the service without disaggregate feedback,

but not completely. In particular, they can learn about the sum of the appliances without

3Notice that this formulation satisfies our mean-zero condition for service specific biases, as ∑ gj ẽj =

α ∑ gjej
︸ ︷︷ ︸

≡e

+(1 − α)e = e
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disaggregate feedback by assessing by how much the aggregated feedback exceeds the sum of

all appliances, for which disaggregate feedback is provided. Thus, even though disaggregate

feedback may be feasible only for large appliances, it allows consumers to learn about smaller

appliances as well.

2.2 Consumer Surplus

For our welfare analyses, we assume that utility is additively separable, but instead do not

impose any structure on the magnitude of aggregate and disaggregate biases.4 Furthermore, in

line with the literature, we assume that aggregate and service-specific feedback fully eliminates

the respective bias (see, e.g., Allcott and Taubinsky 2015).5 The focus of our approach is to

identify the welfare gain of service-specific feedback over and above what aggregate feedback

can achieve. In Appendix A2.1, we derive that a second-order approximation of the change

in consumer surplus in response to an intervention that removes aggregate and disaggregate

biases is given by:

∆CS = ∆CSa(ba = 0, bs) + ∆CSs(ba = 0, bs = 0)

= ∑
j

(
bs

j

ej
+

ba

2ej

)

∆Ea
j + ∑

j

bs
j

2ej
∆Es

j , (1)

where ∆CS denotes the change in consumer surplus, and ∆Ea
j and ∆Es

j are the average treat-

ment effects on the input expenditures for household service j in response to an elimination of

aggregate and service-specific biases, respectively. We partition the calculation of the overall

gain in consumer surplus into two steps. First, we determine the consumer surplus change

from removing the aggregate bias ba, ∆CSa(ba = 0, bs), while leaving the service-specific bi-

ases bs = (bs
1, bs

2, ..., bs
n) in place. In the context of electricity consumption, this term refers to

the gain in consumer surplus of a conventional smart metering intervention that does not pro-

vide appliance-specific feedback. In a second conceptual step, we then additionally remove

the service-specific biases bs, as reflected in the term ∆CSs(ba = 0, bs = 0).

4As we show in Appendix A1.2, one could alternatively maintain the general formulation of u(x) and the spe-
cific form of bias we assume above. The appendix derives the sufficient statistics for welfare analysis in this case,
which may be more appropriate for other contexts.

5If the elimination of biases is only partial, our calculations will underestimate the welfare effects. Our approach
assumes that, for a given behavioural response that enters the calculations, bias is entirely eliminated. Thus, the
last unit of change in consumption will increase consumer surplus by approximately zero. However, if the bias is
not entirely removed, that last unit still produces first-order gains in consumer surplus.
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Figure 1: Changes in Consumer Surplus in Response to Aggregate and Disaggregate Feedback
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Notes: Panel a) depicts a situation where the aggregate bias, ba, and service-specific bias, bs
j , are both negative.

Panel b) depicts a situation with the same aggregate bias, but a positive service-specific bias. ∆CS refers to the
overall consumer surplus change, ∆CSa refers to the change from removing an aggregate bias, and ∆CSs refers to
the change removing the service-specific bias (given that aggregate biases have been removed already).

Note first that each summand of the term ∆CSs(ba = 0, bs = 0) is positive. If bs
j < 0,

i.e., if the individual underestimates the service intensity ej, then service-specific feedback will

reduce the consumption of and the expenditures on xj. Hence, bs
j ∆Es

j < 0 is positive for every

service j. Conversely, if bs
j > 0, service-specific feedback will lead the individual to realize that

ej is lower than she thought, which implies that ∆Es
j > 0. Both cases are illustrated in Figure 1

Panel a) and b), respectively, where the blue-shaded areas correspond to ∆CSs(ba = 0, bs = 0).

The key finding is that providing service-specific feedback on top of aggregate feedback always

increases consumer surplus, as intuition would suggest. As we show in Appendix A2.3, this

finding holds under very general assumptions, e.g. also in the case of non-separable utility.

Consider now the term ∆CSa(ba = 0, bs), as depicted in Panel a) of Figure 1. If both ba and

bs
j go in the same direction, then removing the aggregate bias ba increases consumer surplus by

the area shaded in red. Panel b) in Figure 1 displays the case where the aggregate and service-

specific bias go in opposite directions. In this case, removing aggregate bias alone can decrease

consumer surplus, as the example shows. The removal of ba leads to a larger discrepancy

between perceived and actual service intensity, and thus distorts choices even more. Thus,

while removing all biases always unambiguously increases consumer surplus, removing only

one component of a bias may well harm consumers.6

6The result that opposing biases mitigate losses in consumer surplus is well-known (see, e.g., Benabou and
Tirole (2002)).
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Equation (1) highlights three major flaws of current cost-benefit analyses that approximate

changes in consumer surplus by the sum of expenditure savings (e.g., Faruqui et al. 2011; Gior-

dano et al. 2012). First, the change in consumer surplus equals the weighted sum of changes in

expenditures, where the weights are given by the relative aggregate and disaggregate biases.

These weights are typically less than one in absolute value, and thus reduce consumer surplus

estimates below the levels used in current cost-benefit analyses. Second, expenditure savings

are not a necessary condition for increases in consumer surplus, as implicitly assumed in those

analyses. If consumers overestimate the cost of using an energy service j, their welfare in-

creases if they use that service more, thereby increasing expenditures. Third, the relationship

between consumer surplus and expenditures may break down entirely when only aggregate

feedback is provided. To see that, assume that Panel a) and Panel b) refer to two distinct ap-

pliances used by a consumer. Since the consumer will use both appliances less in response to

aggregate feedback, the effect on expenditures is unambiguously negative. However, the con-

sumer will incur welfare losses from the use of the appliance depicted in Panel b), for which she

overestimates the energy intensity. Overall, it may be even possible that these welfare losses

dominate the welfare gains from the reduction of the use of the other appliance, although elec-

tricity consumption and expenditure is reduced. Hence, inferring even directional changes in

consumer surplus from changes in expenditures is infeasible in general.

2.3 Sufficient Statistics

Equation (1) provides us with the structure to estimate the impact of feedback on consumer

surplus based on few statistics. In addition to the readily observable appliance-specific treat-

ment effects of aggregate feedback on expenditures (∆Es
j and ∆Ea

j ), we need to quantify the

relative bias terms (bs
j /ej and ba/ej).

The following intuition guides our identification (see also Chetty, 2009): appliance-specific

feedback changes the perceived prices of service j by −bs
j /ej percent. The treatment effect of

appliance-specific feedback ∆ys
j /yj thus measures the percent response to this perceived price

change. The demand elasticity ηj of service j indicates the percent change of yj in response to a

one-percent increase in the price. Thus, we can infer the relative service-specific bias from the
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relative treatment effect of appliance-specific feedback, normalized by the demand elasticity,

bs
j /ej = −(∆ys

j /yj)/ηj. As we show in Appendix A2.1, this yields

∆CSs(ba = 0, bs) = −∑
j

∆ys
j /yj

2ηj
∆Es

j . (2)

Our empirical setup does not allow us to point-identify ∆CSa(ba = 0, bs = 0). The reason

is that we would also need to observe appliance-specific consumption in the matched control

group. However, we only observe aggregate consumption in that group. Yet, we are able to

bound the change in consumer surplus from aggregate feedback by:

−

(
∆ys

n/yn

ηn
+

∆ya/yn

2ηn

)

∆Ea ≤ ∆CSa(ba = 0, bs) ≤ −

(
∆ys

m/ym

ηm
+

∆ya/ym

2ηm

)

∆Ea, (3)

where ∆ya and ∆Ea denotes the ATE of an intervention that removes aggregate biases on input

expenditures and use, respectively. Furthermore, m and n denote the service j with the maxi-

mum and minimum relative bias under full attribution of the aggregate effect size ∆ya to that

service, respectively.7

All sufficient statistics to quantify Equations (2) and (3) are identified by our study design.

To obtain estimates for price elasticities, we exploit cross-sectional price variation across Ger-

man regions to estimate them (details are provided in Section 5). This variation partly stems

from differences in grid surcharges, which are higher in regions with substantial electricity

generation from renewable energy sources. For sensitivity analyses on the role of our elasticity

estimates, we also use aggregate estimates from the literature.

3 Experimental Design and Data

3.1 Study Groups

We draw on data from two populations: an experimental sample that was recruited for

the study and randomized into conditions receiving aggregate or disaggregate feedback, and

a population of households with pre-installed smart meters who receive no feedback at all.

The information treatments of the experimental sample are provided via an app that study

participants install on their smartphones and tablet PCs. After an initial login, participants can

7In mathematical terms: m = maxjC̃S
a
j = −

(
∆ys

j /yj

ηj
+

∆ya/yj

2ηj

)

∆Ea, and, equivalently n = minjC̃S
a
j .
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access the app without entering their credentials, except if they deliberately log out. Feedback

is provided through the app and its specific functionalities were determined as part of the

experiment.

We randomly assigned participants into one of two experimental treatment conditions.

Participants in our Aggregate Feedback (A) group get access to an app that provides informa-

tion about their household-level electricity use. On the start screen, participants can observe

a real-time power meter that visualizes their current wattage. They also see the cost of their

current monthly electricity consumption relative to their monthly advance payment.8 On an

additional screen, participants can compare their electricity consumption with their own his-

tory, as well as with other study participants, at monthly, weekly, daily, and hourly frequen-

cies. They may also earn electronic ‘badges’ for completing their personal profile on the app

and take part in an energy-related quiz. Participants in our Disaggregate Feedback group (D)

have access to the same app, but can use an additional functionality that provides feedback

on appliance-level usages (for screenshots of the smartphone app in each experimental condi-

tion, see Figures A2, A3, and A4 in the Appendix). All other functionalities and defaults are

identical for both groups.9

In addition to the experimental sample, we obtain data from a non-experimental sample

of households with smart meters that are served by the same utility. These households have

agreed to report their electricity consumption to the grid operator who uses the data to forecast

load profiles, but receive no feedback on their electricity use. We obtain smart meter data

in 15 minute intervals for 577 households, starting from November 1, 2016, which is when

our field test started. We also obtain data on the last annual bill prior to that date, as for

our experimental sample. Using a 1-to-1 propensity score matching procedure, we construct

a Matched Control (MC) group for the aggregate feedback group. We use propensity score

matching on baseline consumption and the billing cycle dates to minimize differences between

the two groups (for details, see Appendix A4). The MC group serves as a benchmark to identify

the conservation effects of aggregate feedback, as discussed in detail in Section 3.4.

8In Germany, typically, billing occurs annually and monthly advance payments are intended to smooth electric-
ity costs over the year. Exceeding the monthly advance payment has no financial consequence, but indicates that
households may face additional payments when the next yearly billing occurs.

9We further subdivided the disaggregation group into four treatments, with the aim of strengthening the
appliance-level feedback, by introducing social comparison and additional financial incentives. These treatments
are secondary to the goal of this paper and are discussed in Appendix A5.5.
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3.2 Study Implementation

We conducted the randomized controlled trial with customers of a large German utility.

Customers were invited to take part in a smart meter study via an email that did not men-

tion appliance-level feedback as the purpose of the study. To be eligible for participation in

the experiment, customers had to have a smartphone and wireless internet access. Further-

more, participants who own solar photovoltaic panels were excluded. Out of around 50,000

customers we invited, 800 participants agreed to take part in the study and met our eligibility

criteria. All participants have a two-part electricity tariff, which is common in Germany. They

pay a flat rate for every kilowatt hour of electricity consumed and a fixed annual base price.

All participating households received a high-resolution smart meter, an internet gateway

that connected the smart meter with the internet, and access to a smartphone app. After the

smart meter had been installed by professionals, the utility sent participants the internet gate-

way along with instructions how to install the app. As soon as participants had activated the

gateway and installed the app, they shared their smart meter data and our study started.10

More than 90% of our study participants entered the field test between November, 2016,

and January, 2017, and the remaining participants joined afterwards. The core study period

extended for 6 months, when consumers had access to the full functionality of the app in their

respective treatment group. From month 7 onwards, households were free to continue to use

the app for another three months. As the number of participants declined considerably during

that period, our analysis focuses on the core study period.

The smart meters measure electricity consumption at a high frequency, typically every sec-

ond. This results in a rich dataset of several billion observations over the entire study period.

The high granularity of our data allows us to use commercial load disaggregation techniques

that disentangle the total electricity use into appliance-level uses.11 The smart meter data

is saved online in real-time and processed daily to detect appliance usages based on a so-

called nonintrusive appliance load monitoring (NALM) algorithm, which employs machine

learning techniques for load disaggregation. The algorithm exploits the fact that appliances

have characteristic electricity use signatures. These signatures can be used to disaggregate

10In this setting, the utility deemed a pure experimental control group as infeasible and feared the confusion of
participants that participated in the trial, got a smart meter installed, but no visualization of smart meter data.

11This feature sets our study apart from earlier attempts to analyse and disaggregate smart meter data, such as
Google PowerMeter or Microsoft Hohm, which were discontinued in 2011 and 2012, respectively. A main reason
for the failure of these services was insufficient access high-granular smart meter data (Donnal and Leeb, 2015).
The high accuracy of the algorithm we use in this study has been documented in verification studies, which have
shown that it detects 94% of all appliance-level uses (Gupta et al., 2010; Carrie Armel et al., 2013).
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Table 1: Descriptives

Matched Control Agg. Feedback Disagg. Feedback P-value
(MC) (A) (D)

Baseline consumption, in kWh/day 10.0 10.2 10.4 0.65
No. of occupants ± 2.5 2.6 0.32
Monthly net income, in EUR ± 3,004 3,127 0.32
Own property, in % ± 74.3 75.5 0.76
Employed, in % ± 50.2 51.4 0.73
Share of females, in % ± 44.8 48.0 0.09
Age, in years ± 47.6 45.4 0.25

Number of households 140 140 560 ∑=840

Notes: P-values are from F-tests of mean equality between households in the Aggregate Feedback (A) and Disaggre-
gate Feedback (D) groups, clustered at the household level. Socio-demographics are not available for participants
in the Matched Control group (MC). For groups A and D, they are measured at the household level, except for
employed, share of females, and age, which we measure at the household member level.

high-resolution smart meter data into appliance-specific electricity uses (see Appendix A3 for

details). Detection of appliance-level uses is possible for the major appliances of a typical

household, including the categories Dishwasher, Washing Machine, Dryer, and Oven, as well as

a Refrigeration category that captures refrigerators and freezers. The algorithm also identifies

an Always-on category as the typical consumption at 3 a.m. In addition to the appliance cate-

gories that we can directly measure, we construct a residual category Other Appliances, which

captures the electricity consumptions of all other appliances.

Table A6 in the Appendix gives descriptive statistics on the more than 300,000 appliance

events that we observe during the core study period. To test the plausibility of the appliance-

level measurements, we compare them to typical appliance-level uses in Germany, which are

available for 2006 and 2011. We find only small differences for refrigeration and residual use,

which likely reflect improvements in energy efficiency in refrigeration and a general trend that

households use more electric devices (see Appendix A3.2 for details).

3.3 Data

Of the 800 participants in our experimental sample, information on the electricity use in

the annual billing period prior to the field test is missing for 27 participants.12 Furthermore, 73

households experienced technical difficulties that prevented them from connecting their smart

12For 18 participants, baseline electricity use is missing. In addition, we set electricity baseline to missing when
the difference between the baseline and the experimental period is in the top or bottom percentile of its distribution
within each treatment group (e.g. above +126% and -64% for group A) or larger than 25 kWh per day in absolute
terms, which concerns 9 participants.
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meter to the internet. As a result, the final experimental sample used for our analyses consists

of 700 participants. The number of participants in the Disaggregate Feedback group is higher

than the number in the Aggregate Feedback group (560 vs. 140), because we implement three

additional sub-treatment arms that test whether financial incentives or social information can

increase the engagement with disaggregate information. Because we find that this is not the

case, we relegate the discussion of these sub-treatments to Section 4.3. As a consequence of 1:1

matching, our matched control group consists of 140 participants, as the Aggregate Feedback

group. For all households, we observe smart meter data during the intervention period, as

well as their most recent annual electricity use before the field test started, which serves as our

baseline. For households in our experimental sample, we additionally conducted surveys to

elicit participants’ socio-demographic characteristics, attitudes, and beliefs.

In Table 1, we show that socio-demographic variables and the electricity use during the

baseline period are balanced across our experimental groups, as expected from randomiza-

tion. When we test for mean equality across our experimental conditions, we cannot reject the

null hypothesis that the variable means are equal at the 5% level for any covariate, as shown

in the last column of Table 1. The same holds true for various dwelling characteristics and the

possession of household appliances such as cooling appliances, washing machines or tumble

dryers (for details, see Appendix Table A3). Hence, we can rule out the possibility that partic-

ipants in our experimental groups differ systematically in their household equipment, which

might otherwise confound our treatment effect estimates.

As shown by Table A2 in the Appendix, socio-demographic characteristics of study par-

ticipants are comparable to German averages. In terms of age, employment status, sex, and

household net income, our experimental sample is similar to the German population. Partici-

pating households consist of slightly more occupants (2.5 vs. 2.0 in Germany), which is mostly

driven by a smaller percentage of single-person households (12% vs. 42% in Germany). For

households of a given size, electricity consumption levels are similar in our study and the

German population. The larger average number of occupants per household in our sample

translates into larger average electricity consumption levels compared to the German average

(10.4 vs. 8.6 kWh per day). Furthermore, households in our sample live more often in their

own property than the average German household (76% vs. 44% in Germany) and went to

school for slightly longer (11 vs. 10.5 years).
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3.4 Empirical Strategy

The main goal of our randomized controlled trial is to identify the average treatment effect

(ATE) of providing disaggregate feedback in addition to aggregate feedback. Furthermore, we

exploit the group MC to estimate the ATE of aggregate feedback on electricity consumption,

and to obtain an estimate of the total electricity savings from disaggregate feedback relative to

a group without any feedback.

Our design allows us to experimentally identify the impact of disaggregate feedback. Ran-

domization ensures that participants in group A and D are identical in terms of both observable

and unobservable characteristics (see Table 1 and Appendix Table A3 for the absence of sta-

tistically significant pre-treatment differences). We use participants in the group A and D to

estimate the equation:

Ynorm
it = αYb

i + βDi + νt + µb
m + ϵit, (4)

where Di is a dummy variable that equals one if a household received disaggregate feedback

and zero otherwise. The variable Ynorm
it denotes electricity use of household i at day t, di-

vided by the average daily electricity use in the aggregate feedback group during the core

study period.13 The variable Yb
i denotes the average daily consumption during the baseline

period, normalized the same way. Including it in our equation allows us to control for per-

manent between-household differences in electricity consumption. This mimics a difference-

in-difference design and increases the efficiency of our estimates. We also control for billing

cycles by including a set of month-of-baseline fixed effects (µb
m) that equal one if the baseline

metering period ended in month m, and zero otherwise. Our model includes day fixed effects

(νt), which absorb variation from seasonality, and an error term ϵit. We cluster standard errors

at the household level, thereby accounting for serial correlation in the error terms.

To identify the effect of providing aggregate feedback, and the effect of disaggregate feed-

back relative no feedback at all, we include participants from the group MC and estimate the

following equation:

Ynorm
it = αYb

i + γAi + δDi + νt + µb
m + ϵit, (5)

13This normalization expresses treatment effects as a percentage of the average consumption level in the absence
of treatment and is common in the literature (e.g., Allcott 2015). It also provides us with a direct link to the sufficient
statistics in the welfare analysis. The treatment effects in kWh can be obtained by simply multiplying our estimates
with the Aggregated Feedback (A) group mean (10.4 kWh).
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where all the variable definitions are as in Equation (4), and Ai equals one if household i is

in group A, and zero otherwise. Notice that the reference group in Equation (5) is the group

MC that does not receive any feedback. Thus, γ measures the effect of receiving aggregate

feedback alone, and δ measures the overall effect of disaggregate feedback, i.e. δ = β + γ. We

correct the standard errors for clustering at the household-match level, i.e., we assign the same

clustering unit to matched households from the groups A and MC (Abadie and Spiess, 2021).

Consistent estimation of γ and δ requires a Conditional Independence Assumption (Im-

bens and Wooldridge, 2009): conditional on covariates, the treatment group indicators D and

A need to be independent of the error term ϵ. Controlling for baseline use eliminates any bias

from differences in levels. However, the Conditional Independence Assumption also requires

trends in each group to be parallel in the absence of an intervention. While randomization

ensures that this is the case for the identification of β, it could in principle be violated for γ.

For example, a violation could arise if baseline electricity consumption levels were unbalanced

across study group and if trends differed depending on these levels. In our setting, matching

ensures that baseline consumption levels are balanced across study group, which mitigates

such concerns. Furthermore, households could face different weather shocks during the out-

come period, which could confound our estimates. In Appendix Figure A8, we plot average

sunshine, precipitation and temperature in our study groups and find no empirical support

for such concerns in the context of our study in Germany.

4 Results

4.1 Effect of Feedback on Total Electricity Use

We start by descriptively investigating the impact of aggregate and disaggregate feedback

on electricity consumption. The right panel of Figure 2 shows the difference between the daily

electricity use during the intervention period and the average daily use in the baseline period.

The electricity use of households in group D have considerably lower average electricity use

levels than households in the other study groups after our intervention begins, which is first

evidence that disaggregate feedback reduces electricity consumption beyond aggregate feed-

back. By contrast, the average electricity use levels are very similar for the groups A and MC,

which speaks against pronounced electricity conservation effects in response to receiving ag-

gregate feedback. For all study groups, the average daily electricity use declines over time,
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Figure 2: Average Daily Consumption by Study Group

Notes: The left part of the figure shows the average daily electricity use during the last annual billing period prior
to the intervention for our three study groups. The right part plots the average daily consumption of electricity
during the intervention period, demeaned by average billing baseline consumption.

which reflects that our study starts in winter, when electricity use tends to be the higher than

in other seasons.

We continue by econometrically estimating the ATE of disaggregate feedback, relative to

obtaining aggregate feedback. Exploiting experimental variation only, we estimate Equation

(4), finding that the ATE amounts to −4.8% and is statistically significant at all conventional

levels (Column 1 of Table 2). Hence, providing disaggregate feedback in addition to aggregate

feedback yields large additional reductions in total electricity input. Our estimate remains

virtually unchanged when we additionally control for weather controls such as sunshine, pre-

cipitation, and temperature, which provides further evidence that weather shocks do not con-

found our estimates.

In Column (4), we present the estimates of both aggregate and disaggregate feedback, rel-

ative to not obtaining any feedback, from estimating Equation (5). We find that the ATE for

households who obtain aggregate feedback amounts to only −0.9%. One explanation is aggre-

gate feedback may not be sufficient to overcome the search frictions that prevent consumers
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from acquiring information about which appliances might be responsible for high aggregate

electricity consumption levels. Our estimate is consistent with previous studies that have

found only small savings from aggregate feedback in European countries (e.g., Degen et al.

2013). We again find no evidence that weather shocks confound our estimates. While restrict-

ing the analysis to our subsample that can be georeferenced and linked to weather data reduces

our sample size and slightly increases our point estimates (Column 5), additionally including

weather controls leaves our estimates virtually unaffected (Column 6).

4.2 Effect of Disaggregate Feedback on Appliance-Level Electricity Use

We proceed by exploring the appliance-specific ATEs of disaggregate feedback, which we

have identified as sufficient statistics for evaluating welfare effects. For that purpose, we esti-

mate Equation (4) separately for every appliance category, substituting the outcome variable

by the average daily consumption of each appliance category, normalized by the respective

average in group A.

As shown in Panel b) of Table 2, we find that the conservation effects from appliance-level

feedback are close to zero for appliance categories which are typically used throughout the

day, such as Refrigeration and Always-On. The low response may partly reflect that consumers’

demand for refrigeration is largely constant, irrespective of (perceived) cost. By contrast, we

find that appliance-level feedback triggers a substantial reduction in the electricity consump-

tion of dryers (Column 5 of Table 2b). As dryers are an electricity intensive appliance, it is

plausible that consumers underestimate it (Attari et al., 2010) and hence reduce their energy

consumption after receiving appliance-level feedback. In addition, substitutes for using the

dryer are often available as dry-hanging clothes is common for German households. We also

find some evidence that participants have reduced their use of the dish-washer, yet this effect

is not statistically significant at any conventional level.

In addition, we find that households reduce consumption for the category Other Appliances,

an effect that is statistically significant at the 1% level. This category encompasses a variety of

electric appliances, such as televisions, hi-fi systems, vacuum cleaners, computers, as well as

lighting. While no direct feedback is given for these appliances, our evidence suggests that

participants nonetheless may have updated their respective beliefs. This is possible because

more accurate feedback about some of the appliances helps them attribute the residual elec-

tricity use to the remaining devices. Our evidence suggests that they learned that these other
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Table 2: ATEs on Daily Electricity Consumption

(a) ATE of Aggregate and Disaggregate Feedback (at the Household-Level)

(1) (2) (3) (4) (5) (6)

A: Aggregate Feedback - - - −0.009 −0.027 −0.029
(0.022) (0.029) (0.029)

D: Disaggregate Feedback −0.048*** −0.046*** −0.047*** −0.055*** −0.072*** −0.074***
(0.016) (0.018) (0.018) (0.016) (0.023) (0.023)

Sunshine (in min per hour) - - −0.001** - - −0.001**
(0.000) (0.000)

Precipitation (in liters per hour) - - 0.032** - - 0.029**
(0.015) (0.014)

Temperature (in °C) - - −0.007** - - −0.006**
(0.003) (0.003)

Day fixed effects (FE) ✓ ✓ ✓ ✓ ✓ ✓

Month-of-baseline FE ✓ ✓ ✓ ✓ ✓ ✓

Subsample with weather data ✓ ✓ ✓ ✓

Yb: Baseline elec. use 0.895*** 0.904*** 0.906*** 0.910*** 0.907*** 0.908***
(0.022) (0.023) (0.023) (0.020) (0.022) (0.022)

R2 0.5586 0.5684 0.5689 0.5687 0.5631 0.5636
Number of obs. 106,283 93,350 93,350 127,790 104,401 104,401
Number of participants 700 613 613 840 684 684

(b) ATE of Disaggregate Feedback (at the Appliance-Level)

(1) (2) (3) (4) (5) (6) (7)
Always-On Refrigeration Dish−Washer Washing Dryer Oven Other appl.

D: Disagg. Feedback −0.002 −0.007 −0.091 −0.028 −0.439*** 0.024 −0.072***
(0.046) (0.041) (0.085) (0.064) (0.159) (0.151) (0.026)

Yb: Baseline elec. use 1.156*** 0.461*** 0.747*** 0.637*** 1.064*** 1.354*** 0.851***
(0.065) (0.086) (0.103) (0.072) (0.166) (0.197) (0.033)

Day fixed effects (FE) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Month-of-baseline FE ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.367 0.152 0.046 0.028 0.035 0.040 0.356
Number of obs. 93,187 93,185 84,511 91,473 65,852 93,187 93,187
Number of households 700 700 635 686 499 700 700

Notes for Panel a): ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in
parentheses and clustered at the household (Columns 1-3) and household-match level (Columns 4-6), respectively.
The outcome variable is daily electricity consumption, divided by the mean in the A group (10.4 kWh). A and D
equal one for the households that obtain aggregate and disaggregate feedback, respectively.
Notes for Panel b): The outcome variable is daily electricity consumption of an appliance, divided by the mean for
the same appliance in the A group (2.30, 0.97, 0.29, 0.47, 0.16, 0.20, and 5.6 kWh for Columns 1 to 7, respectively).
The number of observations varies across columns as not all households possess all appliances. Standard errors
are in parentheses and clustered at the household level.
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devices were more energy-intensive than they originally thought, and thus cut back on usage.

In Appendix A1.3, we show that this is indeed consistent with Bayesian updating by rational

individuals.

4.3 Secondary Analyses and Robustness Checks

In the following, we briefly discuss the findings from a series of secondary analyses and

robustness checks (for details see Appendix Section A5).

Treatment Effects by Baseline Use. We find that the treatment effects from disaggregate

feedback are particularly large for households with high levels of baseline electricity consump-

tion (see Subsection A5.1 and Table A9 in the Appendix).

Treatment Effects by Hour-of-the-Day. We show that treatments effects occur predomi-

nantly during daytime, which is when households typically use appliances (see Subsection

A5.2 for details). The treatment effects of disaggregate feedback are particularly large during

late morning hours and late evening hours, while we estimate that the savings from aggregate

feedback occur during early evening hours.

Role of Beliefs. We conducted three surveys during the course of the study to analyze,

among others, whether there are biased beliefs regarding aggregate electricity consumption

and appliance-specific electricity consumption. In particular, we carried out the belief elic-

itations before and after the start of the interventions in order to estimate the effects of the

interventions on the beliefs (see Subsection A5.4 for details).

We find that, prior to the intervention, households on average hold correct beliefs about

their aggregate consumption, but perform only poorly in ranking energy intensities at the

appliance-level. During our intervention, households’ appliance-level beliefs become more

accurate in the Disaggregate Feedback group, but not in the Aggregate Feedback group.

Sub-Treatment Arms on Types of Appliance-Level Feedback. We implement four sub-

treatment arms to test whether additional monetary incentives for reaching appliance-specific

savings targets, appliance-specific social comparisons, or a combination of both increases the

conservation effect of disaggregate feedback. As shown in Subsection A5.5, we do not find

that this is the case.

20



Persistence of Treatment Effects and Attrition. While statistically insignificant, the treat-

ment effects decrease slightly over time (for details, see Subsection A5.6 and Table A12). The

decline may be driven by a seasonal reduction in baseline electricity use of more than 40%

between the beginning and the end of the study period (see Table 2). The decline may also be

related to attrition: our ATE estimates increase slightly when we restrict the sample to a bal-

anced panel, i.e., when we only include participants with complete data transmission during

the core study period (Table A10 of the Appendix).

5 Consumer Surplus

In this section, we go beyond estimating conservation effects and quantify the impact of

appliance-level feedback on consumer surplus. In Section 2, we have identified the following

sufficient statistics to point-identify and bound the consumer surplus gains from disaggre-

gate and aggregate feedback, respectively: the relative appliance-specific treatment effects of

disaggregate feedback on input use, ∆ys
j /yj (and, equivalently, appliance-specific expenditure

changes Es
j ), the relative effect of aggregate feedback on total electricity use ∆ya/y (and, equiv-

alently, total expenditure changes Ea), as well as the price elasticities of energy service demand

for every appliance category j, ηj.

A measure of the treatment effects we have identified as sufficient statistics is directly avail-

able from our empirical results in Table 2. To estimate the price elasticities of appliance-level

energy service demand ηj, we employ cross-sectional variation in our dataset that stems from

the fact that similar households in terms of observable characteristics pay different electricity

prices, in particular owing to transmission charges that vary strongly by region.

Our elasticity estimates, depicted in Column (4) of Table 3, show that appliance-level con-

sumptions are particularly elastic for the category Dryer, where the estimate reaches −3.42.

These estimates reflect that consumers can easily substitute this energy service by, for exam-

ple, dry-hanging clothes. For the categories always-on, refrigeration, and washing, we obtain

much smaller elasticities of −0.29 to −0.55. Our appliance-level elasticity estimates imply a

household-level elasticity of −0.39, which is close to the estimate of −0.44, taken from Frondel

et al. (2019).14 This finding reduces concerns that our cross-sectional identification strategy

yields strongly biased estimates.

14The elasticity of total consumption can be calculated as follows: η = ∑j ηj(yj/y), where ηj and yj denote the
elasticity and the consumption level for appliance j, respectively, and y = ∑j yj denotes total consumption.
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Table 3: Changes in Consumer Surplus from Appliance-Level Feedback

a) Changes in Consumer Surplus from Disaggregate Feedback (∆CSs)

(1) (2) (3) (4) (5) (6)

∆ys
j /yj Avg. use ∆Ej ηj bs

j /2ej ∆CSs

in kWh/a in EUR/a in EUR/a

Always-On −0.002 885.35 −0.32 −0.31 −0.00 0.00
Refrigeration −0.007 372.88 −0.66 −0.40 −0.01 0.01
Dish-Washer −0.091 117.69 −2.54 −0.40 −0.11 0.29
Washing −0.028 184.07 −1.21 −0.55 −0.03 0.03
Dryer −0.439 69.10 −7.22 −3.42 −0.06 0.46
Oven 0.024 85.47 0.50 −1.07 0.01 0.01
Other appl. −0.072 2,145.96 −36.88 −0.29 −0.12 4.60

Total 3,860.51 −48.34 −0.39 5.39

b) Changes in Consumer Surplus from Aggregate Feedback (∆CSa)

∆ya/y Avg. use ∆E (ba/2 + bs)/ej ∆CSa

in kWh/a in EUR/a in EUR/a

Lower bound: −0.009 3,860.51 −7.42 −0.06 0.44
Upper bound: −0.009 3,860.51 −7.42 −0.44 3.29

Notes for Panel a): ∆ya/y and ∆ys
j /yj correspond to the point estimate for group A from Table 2 Panel a), Column

2, and Panel b), Column 2, respectively. The change in Expenditures, ∆Es
j and ∆Ea, is calculated as the product of

these point estimates (Column 1), the average annual electricity use in the Aggregated Feedback (A) group (Column
2), and the average electricity price in our sample (0.238 EUR per kWh). ηj denotes the price elasticity of energy
service demand with respect to the electricity price, which we estimate as described in Section 5. bs

j /ej denotes the

relative service-specific bias, which we calculate as −(∆ys
j /2yj)/ηj (for derivations, see Appendix A2.1). Changes

in consumer surplus are calculated as described in Equation (2), respectively.
Notes for Panel b): The bounds for changes in consumer surplus are calculated as described in Equation (3).

Based on the appliance-level elasticities and ATEs, we estimate how consumer surplus

responds to the provision of disaggregate feedback. Column (1) of Table 3 reproduces the

appliance-level ATEs in response to disaggregate feedback from Table 2b, which correspond

to ∆ys
j /yj in our model. We then estimate the relative bias as bs

j /ej = −(∆ys
j /2yj)/ηj, which is

depicted in Column (5). We find that relative biases are negative for all appliance categories,

except for Oven. Negative biases are most pronounced for the categories Dish-Washer and Other

Appliances, where consumers underestimate energy intensities by 11% and 12%, respectively.

For the categories Washing and Dryer, we obtain less pronounced biases of −3% to −6%. The

relatively low bias estimate for driers illuminates that a large behavioural response is not nec-

essarily indicative of a large misperception, but may also be caused by a high price elasticity.

This observation underlines the general point that welfare effects of feedback cannot be de-
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rived from changes in consumption alone. The bias for the categories Refrigeration, Oven, and

Always-On is close to zero.

To determine how disaggregate feedback changes consumer surplus, we calculate the

appliance-level change in expenditures, ∆Es
j , as the product of the relative ATE, ∆ys

j /yj (Col-

umn 1 of Table 3), the average consumption level, yj (Column 2), and the electricity price p. We

then multiply the change in expenditures with the relative bias (bs
j /2ej) to obtain the change

in consumer surplus that can be attributed to every appliance category (Column 6). Summing

over all categories, we find that total consumer surplus increases by 5.4 EUR per annum and

household (last row of Column 6), which is substantially less than the 48.3 EUR decrease in

annual expenditures (last row of Column 3).

There are two main reasons why changes in total expenditures are an incorrect measure for

changes in consumer surplus. First, less consumption of an energy service not only reduces

expenditures, but also utility. The reduction in utility is proportional to the relative bias from

Column (5), which in our setting is at most 12% (in absolute value). Second, consumer surplus

can also rise when more accurate beliefs lead to higher consumption of an energy service,

despite the fact that expenditures increase. In our setting, this occurs for the category Oven, for

which our estimates imply that consumers slightly overestimate energy intensity.

In Panel b), we present our bounds for the consumer surplus gains in response to aggregate

feedback. Our point estimate of a 0.9% reduction in electricity use translates into a reduction

of expenditures by 7.42 EUR per annum and household. Yet, as shown by the bounds for

the relative aggregate bias (second-last row of Panel b), our estimates imply that only 6% to

maximally 44% of these savings translate into consumer welfare gains. Hence, we bound the

consumer surplus effects between 0.44 and 3.29 EUR per annum and household. Even the up-

per bound is lower than the consumer surplus gain we estimate for disaggregate feedback (5.4

EUR per annum and household). Providing such feedback in addition to aggregate feedback

is thus crucial to reap the full potential of smart metering.

To test the sensitivity of our results to these elasticity estimates, we conduct comprehensive

checks based on aggregate elasticity estimates from the literature (see, e.g., Frondel et al. 2019).

The major outcome of these checks is that our aggregate consumer surplus estimates are robust

to a variety of appliance-level elasticities that are consistent with aggregate elasticity estimates

from the literature (see Appendix A6 for details on the estimation and Appendix Table A15 for

sensitivity checks). In particular, we find that the consumer surplus gain from disaggregate
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feedback lies between 4.8 and 7.9 EUR per household and year, while the minimum and maxi-

mum gain from aggregate feedback ranges from 0.3 to 0.6 EUR and 3.1 to 7.5 EUR, respectively.

Our checks also reveal that the appliance-level contributions are relatively sensitive to the spe-

cific elasticities use. For example, while Table 3 suggests that the main consumer surplus gains

arise in the category Other Appliances, this is no longer the case under alternative assumptions

regarding appliance-level elasticities.

Overall, our findings demonstrate that official cost-benefit analyses in the EU and the U.S.,

for example, overestimate the consumer surplus gains from feedback substantially. Our results

have shown that only 11% (5.39 EUR / 48.3 EUR) of the estimated expenditure savings from

disaggregate feedback translate into changes in consumer surplus and only 6 to 44% of the

savings realized by aggregate feedback (second last column of Table 3). Hence, traditional

cost-benefit analyses overestimate consumer benefits from aggregate feedback by factor of two

to twenty and the benefits from disaggregate feedback by a factor of around ten.

6 Conclusion

In this paper, we conduct a randomized controlled trial to investigate the effects of provid-

ing households with appliance-specific feedback. Our findings show that appliance-specific

feedback leads to an additional electricity conservation effect of 5% beyond the savings in-

duced by aggregate feedback alone. Hence, the provision of appliance-level feedback should

be an integral part of the smart meter roll-out in the EU and beyond. Our evidence implies that

the high effectiveness of appliance-level feedback stems from its ability to overcome appliance-

specific misperceptions of energy intensities, in line with previous evidence (Attari et al., 2010).

Correcting these misperceptions via feedback allows consumers to more efficiently use their

appliances and to reduce total electricity use and cost.

We also provide a novel tool for evaluating the consume surplus gains from feedback

based on few sufficient statistics. As we show, such gains can be calculated as the weighted

sum of appliance-level energy cost savings. The weights are given by consumers’ relative bi-

ases, which measure consumers’ misperception of input intensities. This contrasts with the

approach pursued in current cost-benefit analyses (Giordano et al., 2012; Faruqui et al., 2011)

that equalizes consumer surplus gains by the expenditure savings. As the correct weights typ-

ically add up to less than one, current cost-benefit analyses tend to overestimate the gains in
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consumer surplus substantially. We also derive how the weights can be identified from ob-

servable household behaviours, in particular the behavioural response to feedback and the

appliance-level responsiveness to electricity price changes.

The relevance of our findings extends beyond the context of smart meter feedback. Con-

sumers hold misperceptions not only about the electricity consumption of appliances, but

also about the effectiveness of fitness activities, the caloric content of foods, and benefits from

schooling returns, for example (Attari et al. 2010, Bollinger et al. 2011, Jensen 2010). In such

settings, eliminating biases via feedback holds the promise to improve the effectiveness of

physical exercise and the nutritional quality of diets. Our paper provides policy makers with

a tool for weighting the cost of feedback interventions against their benefits. Such tools are

particularly important as advances in digitalization will likely raise the policy relevance of

various forms of feedback in the future.
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A1 Behavioural Predictions of Feedback on Input Use

Let consumers have the following quasi-linear utility function:

U(x, z) = u(x) + z, (6)

where u(x) denotes the utility from consuming J energy services denoted by the vector

x = (x1, . . . , xJ)
′, and z denotes the numeraire good, whose price is normalized to 1. The

consumption of energy service j requires energy inputs of yj = xjej, where ej denotes the en-

ergy intensity of energy service xj. Consumers maximize their utility subject to the budget

constraint w = z + ∑j yj p, where w denotes their exogenous income and p denotes the price of

energy. Let consumers have biased perceptions of energy intensities ẽj = ej + ba + bs
j , where ba

and bs
j denote the aggregate and appliance-specific bias, respectively.

A1.1 Feedback Removing the Aggregate Bias

The first-order condition of consumers’ utility maximization with respect to service de-

mand xi is given by:

uxi
= (ei + ba + bs

i )p (7)

Let H = (uxixj
) denote the Hessian matrix. Letting hij denote the entry on the ith row and jth

column of H−1, we have the following lemma:

Lemma 1. For all i = 1, . . . , n,

∂xi

∂p
=

n

∑
j=1

hijej.

Proof. We first determine the comparative statics of the first-order condition with respect to p:

n

∑
j=1

uxixj

∂xj

∂p
= ei + ba + bs

i .

Taking ba + bs
i = 0 and then taking inverse, we get:

H







∂x1
∂p
...

∂xn
∂p







=







e1

...

en







=⇒







∂x1
∂p
...

∂xn
∂p







= H−1







e1

...

en







,

completing the proof.

We consider the impact of a full removal of aggregate bias, i.e. ∆ba = −ba. Let ∆xa
i =

∂xi
∂ba ∆ba

denotes the change in xi from such a change. We claim the following:
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Proposition 1. The overall change in aggregate input use as a result of removal of aggregate biases is

given by

n

∑
i=1

ei∆xa
i = −ba p

n

∑
i=1

∂xi

∂p
.

Proof. To evaluate the impact of a change in the aggregate input use, we determine the com-

parative statics of this first-order condition with respect to ba which is:

n

∑
j=1

uxixj

∂xi

∂ba
= p.

Using ∆xa
i =

∂xi
∂ba ∆ba = −ba ∂xi

∂ba , we get

n

∑
j=1

uxixj
∆xa

i

1

−ba
= p

=⇒ H∆xa = −bap

=⇒
∆x

−ba
= H−1p,

where ∆x = (∆xa
1, . . . , ∆xa

n)
′ and p = (p, . . . , p)′. Multiplying by ei gives:

ei
∆xa

i

−ba p
=

n

∑
j=1

hijei.

Summing over all i yields:

n

∑
i=1

ei
∆xa

i

−ba p
=

n

∑
i=1

n

∑
j=1

hijei

=
n

∑
j=1

n

∑
i=1

hjiei

=
n

∑
i=1

∂xi

∂p
,

where the last equality stems from Lemma 1.

Hence, we can identify the aggregate bias by :

ba =
−∑

n
i=1 ei∆xa

i

p ∑
n
j=1

∂xj

∂p

=
−∆ya

p ∑
n
j=1

∂xj

∂p

,

where ∆ya = ∑
n
i ∆ya

i = ∑
n
i ei∆xa

i denotes the total change in input use. Hence, as long as stan-

dard assumptions on the price response of service demand xj hold (∂xj/∂p < 0), the sign of

the aggregate bias can be directly inferred from the sign of the overall demand change. Specif-
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ically, a reduction of total input use implies a negative bias, i.e., an aggregate underestimation

of input use intensities.

A1.2 Feedback Removing Disaggregate Biases

To evaluate how a removal of disaggregate biases effects total input use, we again start from

the first-order condition of consumers’ utility maximization with respect to service demand xj:

uxj
= (ej + bs

j )p

The aggregate bias is set to zero as we have investigated this case in the previous subsection.

In the absence of any structure on disaggregate biases, the effect of removing disaggregate

biases is indeterminate (the case of a removal of an aggregate bias extends to the the cases

when all biases are positive or negative).

Hence, we put some structure on belief biases that ensures that their disaggregate biases

are not naive in the sense of implying an aggregate bias. To that end, we let input intensity

beliefs ẽj = αej + (1 − α)e, where α ∈ [0, 1) is the weight that individuals put on the correct

intensity and e denotes a belief that is consistent with a correct perception of total input use,

but does not distinguish between different appliances, thus satisfying ∑ xjej = (∑ xj)e (see

Gabaix 2017; Enke and Graeber 2023). Beyond ensuring that appliance-level biases do not

imply an aggregate misperception, this specification also implies that eliminating appliance-

level feedback may increase input intensity beliefs for some appliances and reduce them for

others. Hence, the first order condition of consumers’ maximization is:

uxi
= (αei + (1 − α)e)p.

Let ∆xs
i = (1− α) ∂xi

∂α denote the change in in xi from the removal of appliance-specific bias.

Then we get the following result:

Proposition 2. The overall change in aggregate input use as a result of removal of appliance-specific

biases is given by

n

∑
i=1

ei∆xs
i = p(1 − α)

n

∑
i=1

(ei − e)
∂xi

∂p
. (8)

Furthermore, assuming that e1 ≥ e2 . . . ≥ en (with at least one strict inequality), aggregate input use

decreases if

η1 ≤ η2 ≤ . . . ≤ ηn

with at least one strict inequality, where ηi = (∂xi/∂p)(p/x) = (∂yi/∂p)(p/y) denotes the elasticity

of input use with respect to the input price p.
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Proof. To evaluate the impact of removing the appliance-specific bias, we determine the com-

parative statics of this first-order condition with respect to α and p. After rearranging, we

obtain the following system of equations (for i = 1, . . . , n):

n

∑
j=1

ejhij =
∂xi

∂p
(9)

n

∑
j=1

ehij +
∆xs

i

p
α̃ =

∂xi

∂p
, (10)

where α̃ = (1 − α)−1 and hij is the (i, j)-th entry of the inverse of the Hessian matrix of u.

For each i = 1, . . . , n we can rewrite (10) as

n

∑
j=1

eihij +
ei∆xs

i

ep
α̃ =

ei

e

∂xi

∂p
. (11)

Subtracting (11) from (9), we get for i = 1, . . . , n:

∑
j ̸=i

(ej − ei)hij −
ei∆xs

i

ep
α̃ =

e − ei

e

∂xi

∂p
. (12)

Summing (12) for all i, we get

−
∑

n
i=1 ei∆xs

i

ep
α̃ =

1

e

n

∑
i=1

(e − ei)
∂xi

∂p
.

Rearranging gives us (8) as desired.

We now explore the conditions under which total input use reduces, which occurs if:

n

∑
i=1

ei∆xs
i = p(1 − α)

n

∑
i=1

(ei − e)
∂xi

∂p
< 0. (13)

Using that p > 0, 1 − α > 0, this reduces to finding conditions such that

n

∑
i=1

(ei − e)
∂xi

∂p
< 0. (14)

Using the definition of e = ∑
n
i=1 giei as sum of ei (with weights gi = xi/ ∑j xj) we obtain the

the inequality:

n

∑
i=1

∂xi

∂p

n

∑
j=1

gj(ei − ej) < 0. (15)

Multiplying by ∑j xj and rearranging, we can rewrite this inequality to get:

∑
i,j:i<j

(ei − ej)

[

xj
∂xi

∂p
− xi

∂xj

∂p

]

< 0 (16)
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Without loss of generality, assume that e1 ≥ e2 . . . ≥ en (with at least one strict inequality).

Then, a sufficient condition for a reduction in total input use is given by:

∂x1

∂p
x−1

1 ≤
∂x2

∂p
x−1

2 ≤ . . . ≤
∂xn

∂p
x−1

n ,

with at least one strict inequality. Multiplying by p yields:

η1 ≤ η2 ≤ . . . ≤ ηn,

as was to be shown.

One possible functional form that satisfies the condition in Proposition 2 would be that for

all i = 1, . . . , n,

∂xi

∂p
= −Cxiei,

where C > 0 is a constant. We have

∑
i,j:i<j

(ei − ej)

[

xj
∂xi

∂p
− xi

∂xj

∂p

]

= ∑
i,j:i<j

−Cxixj(ei − ej)
2.

We will thus get following expression for change in total input use:

n

∑
i=1

ei∆xs
i = −

Cp(1 − α)

∑
n
i=1 xi

∑
i,j:i<j

xixj(ei − ej)
2,

which is clearly negative.

One could weaken the condition to

∂xi

∂p
= −Cixiei,

provided that the sequence C1, . . . , Cn > 0 satisfies the property Ci/Cj ≥ ej/ei whenever ei ≥

ej, with inequality strict when ei > ej. In this case, we have

∑
i,j:i<j

(ei − ej)

[

xj
∂xi

∂p
− xi

∂xj

∂p

]

= ∑
i,j:i<j

−xixj(Ciei − Cjej)(ei − ej),

hence the term is indeed negative since the terms (Ciei −Cjej) and (ei − ej) share the same sign.

Lemma 2. The bias parameter 1 − α can be identified empirically as

1 − α =
∑

n
i=1 ei∆xs

i

p ∑
n
i=1(ei − e) ∂xi

∂p

(17)

Proof. This follows immediately from rearranging equation (13).

The expression in equation (17) has a straightforward interpretation: the numerator in the

equation is the change in energy use due to the removal of the error (1 − α)(ei − e) in the
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perception of service intensities for appliance i. The denominator expresses by how much

energy use would change due to a change in perceptions ∆α = 1: it would act like a price

change of (ei − e)p for service i, and must hence be weighted with the slope of the demand ∂xi
∂p

for service i.

A1.3 Belief Updating from Information for a Subset of Appliances

In this section, we explore what a consumer can learn from disaggregate consumption feed-

back for a group of appliances with respect to the consumption of another group of appliances

where no feedback is given.

To formalize that problem, let y1 denote the consumption of a group of appliances for which

a consumer obtains aggregate feedback, and y2 the consumption of a group of appliances for

which a consumer obtains no disaggregate feedback. We also assume that the consumer ob-

serves aggregate consumption Y = y1 + y2. A consumer has prior beliefs about appliance 1

and 2 that are normally distributed: yi ∼ N(µy, σ2
y ) for i = 1, 2, where µy and σy denote the

mean and variance of all types of appliances that exist. We also assume that a consumer ob-

tains a normally distributed signal regarding the consumption of both appliances that consists

of ªtruth plus noiseº: si = yi + ui where ui ∼ N(0, σ2
ui
) denotes the noise that is assumed to be

independent of true consumption levels yi. The precision of the signal i is thus given by 1/ui.

Finally, we assume that the consumer processes signals via Bayesian updating.

This model setup captures the core features of our experimental setting. Consumers may

be well aware about the distribution of energy uses by different appliances, but they are funda-

mentally unsure about which appliance uses more (or less) energy than another (Attari et al.,

2010). Note that, for simplicity, we cast the problem about a problem of inferring energy uses

rather than energy intensities. Both problems are equivalent as consumers can easily observe

the appliance usage x, but not the energy intensity e (and, thus, energy use y = x · e).

We now explore how obtaining more precise information about the consumption for certain

appliances affects the beliefs concerning the appliances where no additional information is

received. In particular, we model better information as an increase in the precision of the

signal obtained for the second group of appliances, for example because disaggregate feedback

is provided. Formally, we assess how the conditional distribution of y1 given s1, s2, and Y

changes as σu2 decreases (the precision of the signal 1/σu2 increases).15

Before deriving the conditional distribution, we first make some definitions. Let µx denote

the expected value of a random variable X. Furthermore, let Z = [y1, s1, s2, Y]T denote the

vector of the variables of interest in this setting. The vector of signals a consumer obtains is

denoted by S = [s1, s2, Y]T. The covariance matrix Σ of Z is then given by:

Σ =









σ2
y σ2

y 0 σ2
y

σ2
y σ2

y + σ2
u1

0 σ2
y

0 0 σ2
y + σ2

u2
σ2

y

σ2
y σ2

y σ2
y σ2

y + σ2
y









15In this section, we used ChatGPT to reproduce textbook results on conditioning results for normal distributions.
All subsequent derivations were produced by us.
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We can partition

Σ =

[

Σ11 Σ14

Σ41 Σ44

]

,

where the sub-matrix Σ44 is the covariance matrix for the variables s1, s2, and Y:

Σ44 =






σ2
y + σ2

u1
0 σ2

y

0 σ2
y + σ2

u2
σ2

y

σ2
y σ2

y σ2
y + σ2

y






General formula for conditional distribution

The conditional distribution of y1 given a vector of realized signals s is given by

y1|s ∼ N(µy1|s, Σy1|s),

where

µy1|s = µy + Σ14Σ−1
44




s −






µy

µy

µy + µy









 (18)

and

Σy1|s = σ2
y − Σ14Σ−1

44 Σ41 (19)

denote the conditional mean and variance of y1, which capture the posterior beliefs of partici-

pants after having observed signals about appliance 1, 2, and total energy use.

Equations (18) and (19) capture the rationale how a consumer employing Bayes’ rule in-

corporates information about signals s1, s2, and Y into her beliefs. Equation (18) shows how

the consumer updates her posterior mean belief regarding the consumption of appliance 1. It

shows that updating is strong when a) the signals received z deviate from their expected value,

and b) when the term Σ14Σ−1
44 is large, which captures the informativeness of a given signal.

Equation (19) describes how the consumer updates her posterior variance regarding the con-

sumption of appliance 1. It shows that the posterior second moment consists of the variance

of y1 less the part of the variance that is explained by the signals z, Σ14Σ−1
44 Σ41.

In the following, we explore how a higher precision of a signal for good 2 affects the infer-

ences a consumer makes from that signal about the consumption of good 1. This will allow

us to explore in what way consumers rationally adjust their beliefs for a group of appliances

when disaggregate consumption feedback is provided for another group of appliances.

Derivation of conditional distribution in our setting

We now derive the expressions Σ14Σ−1
44 and Σ14Σ−1

44 Σ41 in our setting. For that purpose, we

partition the sub-matrix Σ44 into the following components:

A =

[

σ2
y + σ2

u1
0

0 σ2
y + σ2

u2

]

, B =

[

σ2
y

σ2
y

]

, C = BT =
[

σ2
y σ2

y

]

, D = σ2
y + σ2

y
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The Schur complement S is given by

S = D − CA−1B = σ2
y + σ2

y −
σ4

y

σ2
y + σ2

u1

−
σ4

y

σ2
y + σ2

u2

Let the ªsignal-to-noiseº ratio for appliance 1 be denoted by by:

α =
σ2

y

σ2
y + σ2

u1

and for appliance 2 by:

β =
σ2

y

σ2
y + σ2

u2

.

We can rewrite S as follows:

S = σ2
y (1 − α) + σ2

y (1 − β). (20)

Note that a higher precision of signal 2 (lower σ2
u2

) increases β and decreases S (and thus in-

creases S−1).

We can compute the inverse Σ−1
44 as follows:

Σ−1
44 =

[

A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]

=

[

A−1 0

0 0

]

+ S−1

[

A−1BCA−1 −A−1B

−CA−1 1

]

Note that A−1B =

[

α

β

]

and CA−1 =
[

α β.
]

We thus have
[

A−1BCA−1 −A−1B

−CA−1 1

]

=






α2 αβ −α

αβ β2 −β

−α −β 1




 .

We are interested in the quantity Σ14Σ−1
44 Σ41, where

Σ14 =
[

σ2
y 0 σ2

y

]

= σ2
y

[

1 0 1
]

,

and

Σ41 = ΣT
14 = σ2

y






1

0

1




 .

We have

[

1 0 1
]
[

A−1 0

0 0

]





1

0

1




 =

1

σ2
y + σ2

u1

.
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We also have

[

1 0 1
]






α2 αβ −α

αβ β2 −β

−α −β 1











1

0

1




 = α2 − 2α + 1 = (α − 1)2 =

(

σ2
u1

σ2
y + σ2

u1

)2

.

It follows that

Σ14Σ−1
44 Σ41 =

σ4
y

σ2
y + σ2

u1

[

1 + S−1 σ4
u1

σ2
y + σ2

u1

]

. (21)

Furthermore, we have that:

Σ14Σ−1
44 = σ2

y

[

1 0 1
]

{







1
σ2

y+σ2
u1

0 0

0 1
σ2

y+σ2
u2

0

0 0 0






+ S−1






α2 αβ −α

αβ β2 −β

−α −β 1




}

= σ2
y

[

1 0 1
]







1
σ2

y+σ2
u1

0 0

0 1
σ2

y+σ2
u2

0

0 0 0






+ σ2

y

[

1 0 1
]

S−1






α2 αβ −α

αβ β2 −β

−α −β 1






= σ2
y

[
1

σ2
y+σ2

u1

0 0
]

+ σ2
y S−1

[

α2 − α αβ − β 1 − α
]

Rewriting thus gives:

Σ14Σ−1
44 = σ2

y S−1
[

S
σ2

y+σ2
u1

+ α2 − α β(α − 1) 1 − α.
]

(22)

Result 1: Belief updating regarding appliance 1 consumption is stronger when the signal

for appliance 2 becomes more precise.

Recall that our thought experiment is that σ2
u2

decrease (e.g., in response to disaggregate

feedback) and then to explore the impact of this on the precision of beliefs for y1, i.e., the con-

sumption of appliances not covered by disaggregate feedback. We first explore how posterior

means (µy1|s) are affected.

Putting Equations (18) and (22) together, we get:

µy1|s = µy + σ2
y S−1

[
S

σ2
y+σ2

u1

+ α2 − α β(α − 1) 1 − α
]

︸ ︷︷ ︸

(1)




s −






µy

µy

µy + µy











︸ ︷︷ ︸

(2)

. (23)

Notice that the impact of on the posterior mean, captured in Equation (23), consists of two

components. First, the strength of updating (1), and, second, the degree to which the signal

obtained by a consumer deviates from his posterior mean (2).
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For the purpose of our thought experiment, where σu2 decreases, we now want to assess

how such a change affects the posterior mean for the consumption of appliance 1. This follows

from the second element from Equation (23), which is given by:

µy + σ2
y S−1(σu2)β(α − 1)
︸ ︷︷ ︸

(1)

(
s2 − µy

)

︸ ︷︷ ︸

(2)

. (24)

Intuitively, the posterior mean for the consumption of appliance 1 consists of the prior

mean µy, plus an updating component. The updating component consists of two terms. The

first term, (1), captures the degree to which a higher signal implies an adjustment of the poste-

rior mean. In our setting, it is always negative (as α < 1). The second term, (2), captures what

a consumer learns about appliance 2. If the signal for appliance 2 is larger than anticipated,

(2) is positive and a consumer adjusts his posterior mean for appliance 1 downwards. This is

because the consumer now attributes more of the aggregate consumption level to appliance 1

(and less to appliance 2).

What happens to such updating when σu2 decreases? As before, S−1 increases when σu2

decreases. In addition, β = σ2
y /(σ2

y + σ2
u2
) increases when σ2

u2
decreases. As 0 ≤ α < 1, this

implies that (1) decreases when σu2 decreases. The intuition is as follows: Better information

for appliance 2 implies that a consumer puts more weight on the signal obtained for that ap-

pliance.

In the context of our experiment, highly precise feedback for appliances 2 (through disag-

gregation) will imply that consumers learn more about the consumption of appliance 2 and

appliance 1. If the consumer learns from signal 2 that the consumption of appliance 2 is lower

than expected, we have that s2 − µy < 0. In our experiment this is likely the case as the con-

sumption share of large appliances covered by disaggregation is plausibly smaller than what

consumers may have suspected. Consumers will then revise their posterior mean for appliance

1 upwards, even though they have not received any specific information on these appliances.

Result 2: Beliefs about appliance 1 consumption become more precise as the signal for

appliance 2 becomes more precise

Next, we discuss a second channel that explains why consumers respond to better infor-

mation for disaggregate appliances by changing the consumption of other appliances. This

channel is more subtle and works through the precision of signals. As above, continue to as-

sume that electricity use of disaggregate appliances is smaller than µy, and that consumption

of the appliances without specific feedback is above µy.

Because the signal for a subset of appliances becomes more precise, more households will

receive a signal that
(
s2 − µy

)
< 0. By the same token, equation (24) is thus pushed up for these

households, thus leading a larger fraction of households to (correctly) believe that y1 > µy, and

reduce consumption of these appliances, as we observe in the data.
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Formally, these forces reduce the remaining variance in the forecast of y1, as can be seen by

putting (19) and (21):

Σy1|s = σ2
y − Σ14Σ−1

44 Σ41

= σ2
y −

σ4
y

σ2
y + σ2

u1

[

1 + S−1(σu2)
σ4

u1

σ2
y + σ2

u1

]

,

where S(σu2) = σ2
y + σ2

y −
σ4

y

σ2
y+σ2

u1

−
σ4

y

σ2
y+σ2

u2

.

Note that Σy1|z depends on σu2 only via S−1(σu2). S−1 increases when σu2 decreases. Hence,

Σ14Σ−1
44 Σ41 increases as σ2

u2
decreases. As this term enters negatively, the conditional variance

of y1 decreases as σu2 decreases, which is what we wanted to show. In other words, poste-

rior beliefs regarding the consumption of good 1 become more precise as the precision of the

signal for the other group of appliances increases, for example in response to the provision of

disaggregate consumption feedback.

A2 Welfare and Sufficient Statistics

A2.1 Sufficient Statistics for Evaluating Consumer Surplus

Let consumers have the following quasi-linear utility function:

U(x, z) = u(x) + z, (25)

where u(x) denotes the utility from consuming J energy services denoted by the vector

x = (x1, . . . , xJ)
′, and z denotes the numeraire good, whose price is normalized to 1. The

consumption of energy service j requires energy inputs of yj = xjej, where ej denotes the en-

ergy intensity of energy service xj. Consumers maximize their utility subject to the budget

constraint w = z + ∑j yj p, where w denotes their exogenous income and p denotes the price of

energy. Let consumers have biased perceptions of energy intensities ẽj = ej + ba + bs
j , where ba

and bs
j denote the aggregate and appliance-specific bias, respectively.

We write decision utility as:

Us = u(x)− ∑
j

p(ej + ba + bs
j )xj.

Utility maximization yields the FOCs with respect to energy service demand xj:

uxj
= pẽj = p(ej + ba + bs

j ) ∀ j ∈ {1, . . . , J}. (26)

Furthermore, normative utility is:

Un = u(x)− ∑
j

pejxj.
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We are interested in the welfare effect of a change in the bias b → b + ∆b. Its second-order

approximation is given by:

∆CS = Un(b + ∆b)− Un(b) = Un′

b ∆b +
1

2
∆b′Un

bb∆b,

where Un
b and Un

bb denote the vector of first and second derivatives of normative utility

with respect to the bias vector b, defined by:

Un
b =







∂Un

∂b1
...

∂Un

∂bk







, Un
bb =







∂2Un

∂b1∂b1
... ∂2Un

∂b1∂bk
...

. . .
...

∂2Un

∂b1∂bk
... ∂2Un

∂bk∂bk







, b =







b1

...

bk







, ∆b =







∆b1

...

∆bk







.

In particular, we find that:

∂Un

∂bl
=

∂Us

∂bl
+ pxl + ∑

j

pbj ·
∂xj

∂bl

= ∑
j

∂u

∂xj

∂xj

∂bl
− pxl − ∑

j

p(ej + bj) ·
∂xj

∂bl
+ pxl + ∑

j

pbj

∂xj

∂bl

= ∑
j

[
∂u

∂xj
− p(ej + bj)

]
∂xj

∂bl
+ ∑

j

pbj

∂xj

∂bl

= ∑
j

pbj

∂xj

∂bl

∂Un

∂blbm
= p

∂xm

∂bl
+ ∑

j

pbj

∂2xj

∂bl∂bm

= p
∂xm

∂bl
, (27)

where, in the last step, we assume that higher-order effects of changes in bias on demand are

zero.

Under additive seperability, we have that u(x) = ∑
j

uj(xj). It implies that:

Un
b =







pb1
∂x1
∂b1

...

pbk
∂xk
∂bk







Un
bb =







p ∂x1
∂b1

... 0
...

. . .
...

0 ... p ∂xk
∂bk







.
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Hence, we can express the change in consumer surplus as follows:

∆CS = Un(b + ∆b)− Un(b) = Un′

b ∆b +
1

2
∆b′Un

bb∆b

= ∑
j

pbj

∂xj

∂bj
∆bj +

1

2 ∑
j

p∆bj

∂xj

∂bj
∆bj

= ∑
j

p

(

bj +
1

2
∆bj

)
∂xj

∂bj

= ∑
j

bj
1
2 ∆bj

ej
∆Ej(b, ∆b), (28)

where ∆yj(b, ∆b) denotes the change in expenditures from an initervention that induces a belief

change from b to b + ∆b.

Starting from a situation where both aggregate and disaggregate biases exist, we now ex-

plore how the total change in consumer surplus from a debiasing intervention, ∆CS, can be

split into two parts: First, a consumer surplus change from the removal of aggregate bias,

∆CSa and, second, a corresponding change from removing disaggregate biases, ∆CSs. To de-

rive the respective consumer surplus changes, we first evaluate an intervention that removes

the aggregate bias ba (e.g., through aggregate feedback) and then proceed to evaluate an inter-

vention that additionally removes disaggregate biases (e.g., through additionally presenting

appliance-specific feedback).

The effect on consumer surplus from removing aggregate biases is given by applying Equa-

tion (28), noting that bj = ba + bs
j , ∆bj = −ba, and that ∆Ej(bj, ∆bj) = ∆Ea

j . This yields:

∆CSa = ∑
j

ba + bs
j −

1
2 ba

ej
∆Ea

j

= ∑
j

1
2 ba + bs

j

ej
∆Ea

j . (29)

Similarly, the effect on consumer surplus from removing disaggregate biases follows from

Equation (28), noting that bj = bs
j , ∆bj = −bs

j , and that ∆Ej(bj, ∆bj) = ∆Es
j . Hence, we ob-

tain:

∆CSs = ∑
j

bs

2ej
∆Es

j . (30)

Derivation of sufficient statistics:

In order to implement our welfare formulas, we need to express the relative aggregate and

disaggregate bias in terms of observables. To do so, we totally differentiate the first-order

condition of consumer maximization (Equation 26) with respect to disaggregate biases bs
j , the
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aggregate bias ba, and the price p. These comparative statics yield the following system of

equations:

bs
j : H














∂x1
∂bs

j

...

...

...
∂xk
∂bs

j














=













1(j = 1)
...
...
...

1(j = J)













· p ⇔
∂xk

∂bs
j

= H−1













1(j = 1)
...
...
...

1(j = J)













(31)

p : H







∂x1
∂p
...

∂xk
∂p






=







e1

...

ek







⇔
∂x

∂p
= H−1e (32)

ba : H







∂x1
∂ba

...
∂xk
∂ba






= p ⇔

∂x

∂ba
= H−1 p, (33)

where 1(·) denotes the indicator function. Under additive separability, we have that:

H =







ux1x1
... 0

...
. . .

...

0 ... uxkxk







H−1 =







1
ux1x1

0

...
. . .

...

0 ... 1
uxk xk







.

Hence, we can rewrite Equations (31), (31), and (33) as:

∂yj

∂bs
j

· ∆bs
j =

∂xj

∂bs
j

· ej · ∆bs
j =

pej

uxjxj

· ∆bs
j = p ·

e2
j

uxjxj

∆bs
j

ej
(34)

∂yj

∂p
=

∂xj

∂p
· ej =

e2
j

uxjxj

(35)

∂yj

∂ba
∆ba = p

ej

uxjxj

∆ba = p
e2

j

uxjxj

∆ba

ej
. (36)

Inserting Equation (35) into Equation (34), noting that ∆bs
j = −bs

j , yields:

∆ys
j = p ·

∂yj

∂p
·

(
−bs

j

ej

)

⇔
bs

j

ej
= −

∆ys
j

yj

ηj
. (37)
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We then insert Equation (35) into Equation (36) to obtain:

∆ya
j = p ·

∂yj

∂p

(
−ba

ej

)

⇔
ba

ej
= −

∆ya
j

yj

ηj
. (38)

By inserting Equation (37) into Equation (29), we obtain an expression for ∆CSs in terms of

sufficient statistics:

∆CSs = ∑
j

∆yj

yj

2ηj
∆Es

j . (39)

To obtain bounds for the consumer welfare effect of aggregate feedback, ∆CSa, we insert Equa-

tion (38) into Equation (30), which yields:

∆CSa = ∑
j






∆ya
j

yj

2ηj
+

∆ys
j

yj

ηj




∆Ea

j . (40)

In the absence of information about the change in expenditures at the appliance-level,

this expression is not point identified. However, note that consumer surplus is estimated

by weighting the changes in expenditures by the sum of the average aggregate and disag-

gregate bias (the expression in squared brackets). Hence, we derive the maximum and mini-

mum weight that is consistent with the aggregate saving, which we observe. Multiplying these

weights with the aggregate savings we observe then allows us to construct an upper and lower

bound for the consumer welfare change.

More specifically, the upper bound is given by:

∆CSa ≤ p · ∆ya ·





∆ya

ym

2ηm
+

∆ys
m

ym

ηm



 ,

where m is the appliance with the largest bracketed term. By a similar logic, the lower bound

is given by:

∆CSa ≥ p · ∆ya ·





∆ya

yn

2ηn
+

∆ys
n

yn

ηn



 ,

where n is the appliance with the smallest bracketed term.

A2.2 Sufficient Statistics Without Separability

In this subsection, we showcase how our approach can easily be adapted to other settings

beyond electricity use. We derive the sufficient statistics for an alternative model with a general

utility function u(x), but retain appliance-specific bias of the form ẽi = αei + (1 − α)e that we
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use in deriving the predictions for disaggregate feedback. This subsection serves to purpose

to showcase that our approach can easily be adapted to other settings beyond electricity use.

Normative utility is defined as above

Un = u(x)− p
n

∑
i=1

eixi.

Recall that from the consumer’s perspective, the first-order condition is:

uxi
= (α(ei − e) + e)p.

Hence, the derivative of normative utility with respect to the bias parameter α is:

∂Un

∂α
=

n

∑
i=1

(uxi
− ei p)

∂xi

∂α

= p
n

∑
i=1

((α(ei − e) + e)− ei)
∂xi

∂α

= (α − 1)p
n

∑
i=1

(ei − e)
∂xi

∂α
.

Assuming that ∂2xi

∂α2 ≈ 0, we get:

∂2Un

∂α2
≈ p

n

∑
i=1

(ei − e)
∂xi

∂α
.

Putting terms together for a second-order Taylor approximation, the increase in consumer sur-

plus from removing biased perceptions of appliance-specific service intensities, i.e of ∆α =

1 − α has the following approximate effect:

∆CS ≈
∂Un

∂α
(1 − α) +

1

2

∂2Un

∂α2
(1 − α)2 (41)

= (α − 1)p
n

∑
i=1

(ei − e)
∂xi

∂α
+

1

2
p

n

∑
i=1

(ei − e)
∂xi

∂α
(1 − α)2 (42)

= (α − 1)p
n

∑
i=1

(ei − e)
∆xs

i

1 − α
(1 − α) +

1

2
p

n

∑
i=1

(ei − e)
∆xs

i

1 − α
(1 − α)2 (43)

=
1

2
(α − 1)p

n

∑
i=1

(ei − e)∆xs
i . (44)

In the above equations, we have made use of the assumption that ∂2xi

∂α2 ≈ 0. Because of this, we

can express the derivative ∂xi
∂α =

∆xs
i

1−α , where ∆xs
i is the behavioural change due to the feedback

intervention. This is the total change in behaviour due to ∆α = 1 − α, as we assume that the

feedback intervention removes the entire bias.

The expression in Equation (44) has the same general interpretation as in the separable case,

but is more compact as the bias parameter α governs the extent of bias away from the known

service intensities ei.
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The expression for ∆CS in Equation (44) still contains the parameter 1 − α. It can be iden-

tified empirically using Lemma 2 (equation 17). Substituting this result, we can express the

sufficient statistic for the change in consumer surplus by removing the bias 1 − α in the case of

non-separable utility as

∆CS =
1

2

∑
n
i=1 ei∆xs

i

∑
n
i=1(ei − e) ∂xi

∂p

n

∑
i=1

(ei − e)∆xs
i (45)

Calculation of this sufficient statistic requires three sets of measurements:

1. The change in service (energy) use due to disaggregate feedback for all appliances i,

ei∆xs
i .

2. The demand responses ∂xi
∂p with regard to a change in the service (kWh) price p.

3. Measurements of the true service intensities ei.

Conceptually, all these elements can be identified in an experimental setup such as ours.

Notice also that it is still necessary to put some structure on the form of bias, which is achieved

through our behaviourally and empirically informed formulation. Identification of the suffi-

cient statistics in a model with non-separable utility and unspecified form of the bias would

require substantially more data. In particular, it would require knowledge of the demand

slopes ∂xi
∂pi

that vary the price for service i, while holding all other service prices constant. In

the context of electricity use, this would amount to an impossibly complicated experiment: one

would need experimental treatments that change the cost of use of only one of the appliances.

A2.3 General Welfare Effects of Feedback

In this section, we prove that a de-biasing intervention increases welfare under very gen-

eral assumptions. Throughout, we make the assumption that higher-order effects of bias on

demand is zero, i.e. that ∂2xi
∂bj∂bℓ

= 0 for all 1 ≤ i, j, ℓ ≤ k.

Subjective utility is given by

Us(b) = u(x(b))− p[e + b]′x(b),

where x(b) solves

∇u(x(b)) =







u1(x(b))
...

uk(x(b))






= p[e + b].

Taking derivative with respect to b, and denoting the Hessian of u by H, we have

H
∂x

∂b
= H










∂x1
∂b1

∂x1
∂b2

· · · ∂x1
∂bk

∂x2
∂b1

∂x2
∂b2

· · · ∂x2
∂bk

...
...

. . .
...

∂xk
∂b1

∂xk
∂b2

· · · ∂xk
∂bk










=









p 0 · · · 0

0 p · · · 0
...

...
. . .

...

0 0 · · · p









=⇒
∂x

∂b
= pH−1.
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Normative utility is given by

Un(b) = u(x(b))− pe′x(b)

The change in consumer surplus from changing bias by ∆b =







∆b1

...

∆bk







is given by

Un(b + ∆b)− Un(b) ≈
∂Un

∂b
∆b +

1

2
(∆b)′

∂2Un

∂b2
∆b

=
∂Un

∂x

′ ∂x

∂b
∆b +

1

2
(∆b)′

∂x

∂b

′

H
∂x

∂b
∆b

= [∇u(x(b))− pe]′
∂x

∂b
· ∆b +

1
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It follows that if ∆b = −b, the change in consumer surplus is equal to

−p2b′H−1b +
1

2
p2b′H−1b = −

1

2
p2b′H−1b

which is positive if H is negative definite.
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A3 Appliance-Level Electricity Use Measurement

In this section, we describe the commercial nonintrusive appliance load monitoring

(NALM) algorithm, which is used in our study to determine appliance-level consumptions

from high-frequency measurements of total electricity consumption of a household. Based on

Hart (1992), we first introduce the general approach of NALM algorithms and then present the

structure of the algorithm employed in our study (see Gupta et al. 2017 for details).

NALM algorithms exploit that appliances are typically wired in parallel, so that the power

they consume is additive. The fact that appliances are switched on and off creates distinct pat-

terns in high frequency data, which can be used to decode appliance-level consumptions. This

decoding process is simplified by the fact that every appliance has a distinct signature during

use, i.e. a characteristic pattern of the power it consumes. For example, washing machines

use different amounts of power when they heat water, wash, and spin. NALM algorithms

represent appliances as so-called finite state machines (FSMs), i.e., model appliances as hav-

ing a finite set of states (e.g. off, heating, washing, spinning) and transitions between states

(e.g. off → heating → washing → spinning → off). These FSM models are then mapped with

observable shifts in electricity usage to determine appliance-level consumptions. While the

methodology has already been proposed almost 30 years ago (e.g. Hart 1992), the mapping

between FSMs and empirical transitions has been facilitated by recent advances in machine

learning.

The structure of the NALM algorithm used in our study is depicted in Figure A1. A meter-

ing device records both the electric power consumed and the voltage at a high-frequency (in

our case, every few seconds), thus measuring the ªwhole house composite load signalº. This

signal is analysed in order to detect so-called transitions in the data, i.e., changes in consump-

tion levels.

A core element of NALM algorithms is a signature repository, which collects appliance

signatures. To construct this repository, the algorithm uses a comprehensive collection of elec-

trical load signature patterns of common appliances. For example, the load signature of an

electric clothes dryer typically consists of three states (off, high heat, cool down) and of typical

power consumptions for each of these states (e.g. 0 W, 4500-6000 W, 200-300 W, respectively).

Another input is the non-electric signature repository which includes typical behavioural pa-

rameters of appliance usages (e.g. that a clothes dryer is typically used for 30-75 min). Based

on these inputs, the household specific signature repository is constructed as follows. First, the

NALM algorithm uses methods from cluster analysis to define clusters of shifts in electricity

consumption. In a subsequent step, it classifies these clusters by comparing them to the typical

states and transitions of a particular appliance. This classification step is typically performed

via supervised machine learning techniques based on training data.

In a subsequent step, a load dis-aggregator uses the whole house composite load signal as

well as the signal repository to decompose the entire signal into appliance-specific consump-

tions. In our case, load disaggregation was performed once a day, so that households could

access appliance-level information always on day following appliance usage.

Appliances leave a distinct pattern in high-frequency electricity consumption data, which

allows to determine the start and end date of an appliance, as well as the electricity consumed
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by it. For the dryer, for example, it is easy to spot the pattern of a long heating period after

switching on the appliance, followed by an iteration between periods for letting cool down the

laundry and heating it up again.

A3.1 Appliance-Level Feedback in the App

In this subsection, we detail how appliance-level feedback is provided to participants in

our study group D. Based on the appliance-use events, we determine participants’ monthly

electricity consumption for every appliance category. To facilitate the assessment of appliance

consumptions, we also use participants’ electricity prices to calculate monthly operating cost

by appliance. Furthermore, we transform monthly appliance-level consumptions into an ap-

pliance score that informs households about their usage intensity.16 In the app, households

can click on a button that provides a detailed description of the meaning of the appliance

scores. The score is 100 if a household’s appliance use is very low and 0 if it is very high, com-

pared to typical usage behaviours and energy intensities of the respective appliance. More

specifically, the score is calculated as follows: Appliance Score = 100 × (Monthly Appliance

Consumption - Benchlow)/(Benchhigh - Benchlow), where Benchlow and Benchhigh correspond

to pre-determined benchmark values for high and low appliance uses, respectively. We con-

struct these benchmarks from survey data on typical appliance uses as well as product data

sheets on the technical efficiency of appliances currently used in German households (for de-

tails, see Table A4 in the Appendix).

In Figure A5, we display the distributions of the appliance scores by appliance category. As

we determined the appliance score benchmarks prior to the experiment, assessing the range

of the appliance scores serves to evaluate the plausibility of the detected appliance use events.

For all appliance categories, the vast majority of appliance scores lies between 0 and 100, which

supports the credibility of the disaggregation. For the categories Dishwasher, Dryer and Oven,

there is bunching at indices of 100, which indicates that some participants have not used these

appliances at all in some months.

A3.2 Plausibility checks

To test the plausibility of the appliance-level measure, we benchmark the appliance-level

measurements by comparing our data from 2017 with the average appliance uses in Germany,

which is only available for 1996 and 2011. As Figure A6 in the Appendix shows, the percentage

of electricity used for cooking (9.6%) and for washing, drying, and dish-washing (9.7%) aligns

with German averages in 1996 and 2011 (about 9.6 ± 9.8% and 10.4 ± 12.4%, respectively). In

our study, refrigeration accounts for 9.9%, which is less than German averages for 1996 and

2011 (22.6% in 1996 and 16.7% in 2011). This divergence likely reflects a gradual increase in

energy efficiency of refrigerators and freezers over time, not least owing to ever increasing

minimum standards (see, e.g., Andor et al. 2020b). The percentage of the category Other Ap-

pliances amounts to 71%, which is slightly larger than the German averages (57.5% in 1996 and

61.1% in 2011). This deviation is likely driven by the general trend that households use more

16After consulting with the app designers, we denoted this score as an ªefficiency scoreº, as this term has intuitive
appeal to an average household.
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electric devices, such as smart TVs, computers, smartphones, and robotic vacuum cleaners. By

contrast, air conditioning is not prevalent in German households and thus cannot explain that

increase.
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A4 Matched Control Group

To identify the overall conservation effect, we additionally obtain data from a non-

experimental sample of smart meter households that are served by the same utility. These

households have agreed to report their electricity consumption to the grid operator who uses

the data to forecast load profiles. We obtain smart meter data in 15 minute intervals for 577

households, starting from November 1, 2016, which is when our field test started. This data al-

lows us to identify the effect sizes for all experimental conditions relative to obtaining no feed-

back at all. To ensure that observable household characteristics are balanced across our exper-

imental and non-experimental sample, we select a control group using a propensity matching

method.

As the left panel of Figure A7 in the Appendix shows, the baseline consumption in the non-

experimental sample is slightly larger than in the experimental sample. To account for such

differences, we follow a matching approach to determine the subset of control households

that we use in our analyses, denoted henceforth as matched control (MC) households. For

every participant in the Aggregate Feedback group, we determine the nearest neighbour in

the non-experimental sample by implementing a 1:1 matching algorithm without replacement,

based on two covariates. First, we match on the average per day electricity consumption in the

baseline period. Second, we control for differences in the timing of billing periods by matching

on the end day of the billing period before the start of the field test. As a result, we obtain a

group of 140 matched households.

The right panel of Figure A7 shows that, after matching, participants in the A and in the MC

group have about the same baseline electricity use distribution. In Table A8, we additionally

assess the balance in terms of further billing information. We find that the average end date of

the bill is not statistically different for both groups, as expected from matching. Yet, the average

start of the billing period starts about one month earlier in the Aggregate Feedback (A) group,

compared to the matched non-experimental observations. To account for such differences in

the baseline billing period, we include month-of-baseline fixed effects in our post-matching

regressions.
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A5 Secondary Analyses and Robustness Checks

In the following, we describe in more detail our secondary analyses and robustness checks.

A5.1 Heterogeneity in Treatment Effects by Baseline Consumption

To investigate treatment effect heterogeneity by baseline consumption in more detail, we

estimate two equations. First, we estimate the following equation by OLS, using only our

experimental sample:

Ynorm
it = αYb,dm

i + βAiY
b,dm
i + νt + µb

w + ϵit,

where Yb,dm
i denotes the baseline consumption of household i, expressed as a percentage of

the average daily consumption in the A group. We also demean this variable, so that we can

interpret β̂ as the average treatment effect at the mean of baseline consumption. In addition,

we estimate the following equation using the experimental and the matched control groups:

Ynorm
it = αYb,dm

i + β0ECi + β1ECiY
b,dm
i + γ0Di + γ1DiY

b,dm
i + νt + µb

w + ϵit.

Using the experimental sample, the estimates for the interaction term between the disaggrega-

tion dummy D and baseline electricity consumption amounts to −0.66, but is not statistically

significant (Panel a of Table A9). When using data from the experimental sample and matched

control observations, we find that the interaction effect reaches -0.124 and is statistically signif-

icant at the 1% level (Panel b of Table A9). Furthermore, we cannot reject the null hypothesis

that both the main effect of EC and its interaction with the baseline electricity use are zero

(F-test stat.: 1.35, p-value: 0.26), while we can reject the corresponding null hypothesis for the

disaggregation groups D (F-test stat: 7.47, p-value: 0.001).
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A5.2 Treatment Effects by Hour-of-the-Day

In this subsection, we exploit the high granularity of our data to investigate how treatment

effects vary by hour-of-the-day. This analysis allows us to explore the timing of households’

responses to appliance-level feedback. Using households from our experimental sample, we

estimate the following equation:

Ynorm
ith = αYb

i +
24

∑
k=1

βk1(k = h)Di + νt + µh + µb
m + ϵith, (46)

where 1(·) is the indicator function and all variables are defined as in Equation (1), except

that we now investigate the hourly electricity consumption of participant i on day t and hour

h, and additionally include 24 fixed effects µh for every hour of the day. We normalize our

outcome variable by the average hourly consumption in the Aggregated Feedback (A) group,

so that our estimates β̂h capture the ATE in hour h, expressed as a percentage of the average

consumption in that hour. Again, we cluster standard errors at the household level.

Figure A11 shows that treatment effects are large during late morning hours and late

evening hours. During these hours, they reach about 10% of the average control group con-

sumption. Furthermore, we find that the magnitude of electricity conservation cannot be pre-

dicted by baseline electricity consumption levels alone. Electricity reductions are particularly

strong in the late morning hours between 8 a.m. and 1 p.m., which coincide with large elec-

tricity consumption levels. However, during 4 and 8 p.m., consumption levels are similar,

but households save considerably less. We also detect strong savings in late evening hours

between 9 and 11 p.m., when consumption levels are rather low.

Using households from the A and MC groups, we also explore the timing of the electricity

savings from aggregate feedback (by estimating (46) and replacing the dummy variable Di

with the dummy variable Ai that equals one for households in the A group). As shown in

Figure A10, we find that the electricity savings occur during the evening hours, between 6 and

8 p.m.

A5.3 Appliance-Level Treatment Effects by Hour of the Day

To identify the hourly average treatment effects at the appliance-level, we estimate the

following model separately for every appliance:

Ynorm
ithj = αYb

i +
24

∑
h=1

βh
j Di + νt + µh + ϵihdj.

In Figure A12, we show how appliance-level consumptions change in response to appliance-

level feedback over the hours of a day. For dish-washers, dryers, and washing machines, we

find a distinct pattern that savings occur only during the day, between 7 a.m. and 15 p.m.,

which coincides with typical usage patterns of these appliances. By contrast, consumption

reductions in the category Other Appliances occur particularly during late morning hours, as

well as during late evening hours, between 8 p.m. and 4 a.m. As the categories Refrigeration

and Always-On are measured daily, we cannot estimate hourly treatment effects for them.
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A5.4 Appliance-Level Beliefs

We conducted surveys before and after the start of our intervention to elicit participants’

socio-demographic characteristics, household characteristics, and beliefs. The first survey took

place in November 2016 prior to the start of the field test, followed by two additional surveys

in March 2017 and July 2017.

The survey that we conducted prior to the field test allows us to assess the extent to which

households misjudge their aggregate and appliance-level electricity use. We elicited house-

holds’ annual electricity consumption beliefs and compare them to their annual consumption

values from the latest annual bill prior to the field test. This comparison does not provide any

evidence that households underestimate their aggregate electricity consumption. On average,

annual consumption beliefs are virtually on par with baseline consumption levels (Panel b of

Table A1). In addition, we find that beliefs closely match the actual consumption values. A

one-unit increase in baseline electricity use is associated with an increase in baseline beliefs

by 0.93 units (Std. Err.: 0.026; see Table A7 and Figure A13 in the Appendix). As shown

in Byrne et al. (2020), this estimate is a measure of the consumers’ misperception of aggregate

consumption. Hence, our finding that it is only slightly below one indicates that misperceiving

aggregate consumption is unlikely to cause excessive resource use in our context.

To assess appliance-level beliefs, our baseline survey contained a wattage ranking task that

asked households to assess the wattage of a laptop, dish-washer, tumble dryer, and mobile

heater relative to a 100 watt lightbulb on a five point Likert scale (ªmuch lowerº, ªlowerº,

ªabout the sameº, ªhigherº, ªmuch higherº).17 We find that more than half of all respon-

dents make at least one mistake in assessing appliance-level wattage. Furthermore, respon-

dents make mistakes in about 11% of all the binary appliance-level wattage comparisons that

are implicitly incorporated in the task. Both findings show that households’ knowledge of

appliance-level energy intensities is limited, as formalized by our model.

To investigate the mechanisms that underlie households’ responses to appliance-level feed-

back, we first explore whether treatment effects are particularly large for households who

make mistakes in the wattage ranking task. This test is closely linked to our model, which pre-

dicts that households who misjudge the relative wattage of appliances should respond most

strongly to the provision of appliance-level information. We define two groups of households:

those who made at least one mistake in the wattage ranking task and those who did not. We

then estimate our main specification (Equation 4) and interact the dummy variable D with both

group indicators, which yields the average treatment effect of appliance-level information in

these groups. As shown in Column (1) of Table A16a, we find that the effect size amounts to

−4.3% for households who make at least one mistake and is statistically significant at the 5%

level. For households with no errors in the wattage ranking task, the effect size amounts to

only −1.4% and is not statistically significant at any conventional level. In Column (2), we also

consider a third group of households who did not indicate appliance-level beliefs in the base-

line survey. The effect size that we estimate for this group of households is even larger than for

those households who indicate beliefs and make at least one mistake. As not expressing be-

17Inspired by Attari et al. (2010), the wattage ranking task also included three further appliances: desktop com-
puter, hifi system, and air conditioning. Depending on the configuration of these devices, their wattage varies to an
extent that prevents us from establishing a clear wattage ranking. We thus exclude these devices from our analysis.
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liefs may indicate particularly poor knowledge of appliance wattages, this finding is consistent

with our previous results.

In addition, we explore the intensive margin of making mistakes by interacting the dummy

variable D with the share of mistakes in all binary comparisons implied by the wattage rank-

ing task (Column 3). The estimate of the main effect (D) shows that households who make no

mistakes save only about 1.2% in response to appliance-level feedback. By contrast, we find

that an increase in the share of mistakes from 0 to 1 increases conservation effects by 15.6 per-

centage points (p-value: 0.069), which supports the idea that households with poor knowledge

of appliance wattage have particularly large treatment effects. Furthermore, the regression re-

sults from Column 3 demonstrate that households who make mistakes in the wattage ranking

task tend to have higher consumption levels overall. Taken together, these findings suggest

that lack of energy-related knowledge among households with high consumption levels could

explain why many previous feedback studies have detected particularly large treatment effects

for these households (e.g., Allcott, 2011; Andor et al., 2020a; Tiefenbeck et al., 2018).18

As a complementary test for the role of beliefs, we explore whether participants’ appliance-

level beliefs align more closely with the appliance-level uses that we measure during the ex-

periment. We elicited appliance-level beliefs in a baseline survey that took place prior to the

study period (November 2016) and an end-line survey towards the end of the study period

(July 2017). In particular, we asked participants to estimate their monthly electricity consump-

tion for the appliance categories always-on, washing machine, dryer, refrigeration, and dish-

washer. A limitation of our data is that we observe appliance-level uses only once our field

experiment started. Hence, we cannot assess the accuracy of households’ appliance-level be-

liefs before obtaining appliance-level feedback. Yet, we can test whether beliefs during the

field tests align more closely with measured appliance-level uses for households in the treat-

ment groups T1-T4 than for households in the Aggregate Feedback (A) group.

To circumvent difficulties that may arise from noisy appliance-level belief measurements,

we first translate all consumption beliefs into ranks.19 We assign rank 1 if a participant believes

that the monthly consumption of an appliance was highest among all of his or her appliances.

Similarly, rank 2 corresponds to a belief that the appliance consumption occupies the second

rank, etc. We also calculate the same ranks based on the appliance-level data that we can

observe. This allows us to calculate a rank difference as the absolute difference between the

ranks implied by participants’ belief and those based on the appliance-level data during the

study period. Averaging over these absolute differences across all appliances yields a measure

of the accuracy of beliefs that is robust to differences in the unit of measurement used by

participants when expressing their beliefs. For this measure to be comparable, we drop all

18In our study, we also find evidence for such treatment effect heterogeneity (see Appendix Section A5.1 for
details).

19The elicitation of appliance-level energy consumption beliefs is subject to vivid controversy and a methodolog-
ical consensus has not been reached so far (Frederick et al., 2011; Attari et al., 2010, 2011). To help consumers who
are not familiar with energy consumption units, some researchers provide reference points and inform households
about the energy consumption of a reference appliance prior to asking participants about energy consumption be-
liefs (Attari et al., 2010). While this approach can reduce excessive variance in participants’ answers, providing a
reference point has been shown to also bias belief estimates towards that reference point. In addition, changing the
unit of measurement from watts to kilowatts, for example, can induce framing effects that also bias belief elicitation
(Frederick et al., 2011). For these reasons, we chose not to provide reference points.
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participants who have not stated beliefs for all appliances in one of the two surveys. The

mean rank difference is zero if a consumer is correct about the rank of all appliances and can

reach up to 3 if the estimated consumption ranks are exactly opposite to the ranks from our

appliance-level measurements.

Table A16b displays the average absolute rank difference for the baseline survey that we

conducted prior to the experiment (B) and the survey after the core study period (E), as well as

the change in the rank difference (E-B). The baseline rank difference amounts to about 1.8 for

all experimental groups. It reflects poor knowledge of energy intensities as it is only slightly

lower than the expected rank difference of randomly determined ranks, which amounts to

70/36 ≈ 1.94. For the EC group, we cannot reject the null hypothesis that the mean differences

in the rank difference (E-B) equals zero at any conventional significance level. This finding

is consistent with the absence of an conservation effect for that group (for details, see Section

A4 in the Appendix). By contrast, for each of the treatment groups T1-T4 with appliance-level

feedback, we observe a decrease in the absolute rank difference that is statistically significant

at the 5% level. Accordingly, participants in these groups adjusted their beliefs in response to

obtaining appliance-level feedback.

A5.5 Sub-Treatment Arms

In this subsection, we explain the four sub-treatment arms that all receive disaggregate

information (and thus form the Disaggregate Feedback group in the main text).

In addition to the app functionalities that participants in the Aggregate Feedback group can

use (see Section 3.1 for details), participants in our first sub-treatment arm T1 have access to

an additional app page that provides feedback on appliance-level usages, cost and appliance

scores. In the three sub-treatment arms T2-T4, participants receive the same appliance-level

feedback and are additionally invited to take part in appliance challenges. With these chal-

lenges, we test whether complementary interventions increase the effectiveness of appliance-

level feedback. The challenges start at the beginning of the second month after installation of

the app and require participants to increase one of the appliance scores by as much as they

can within a month. At the end of the month, the change in the appliance score relative to the

previous month is evaluated as follows.

In sub-treatment arm T2, participants obtain 1 EUR per appliance score improvement,

capped at a maximum of 20 EUR per monthly challenge. This treatment is motivated by stud-

ies that have found stronger conservation effects when monetary incentives are provided (e.g.,

Ito et al. 2018). In T3, participants receive a ranking that compares their score improvement

with those of other study participants, but do not obtain a financial reward. A participant

within the top percentile of monthly score improvements is classified as rank one, and simi-

larly for all other percentiles. With this treatment, we test the impact of relative performance

feedback, which has been found to be effective in educational (Azmat and Iriberri, 2010; Tran

and Zeckhauser, 2012) and workplace settings (Mas and Moretti, 2009; Blanes i Vidal and Nos-

sol, 2011). In T4, we implement the same ranking, but reward participants according to their

rank: rank one translates into 10 EUR, rank two into 9.9 EUR, etc., and rank 100 into 0 EUR.
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This treatment allows us to explore the effectiveness of combining relative performance feed-

back with monetary incentives.

Participants take part in a maximum of five challenges. The first challenge is always tar-

geted towards the appliance with the lowest appliance score, followed by the appliance with

the second-lowest score, etc. If less than five appliances are detected for a household, chal-

lenges can target the same appliances more than once, given that all other appliances have

been targeted already. At the end of our study, participants in T2 and T4 receive an Amazon

voucher to the amount of their earnings from taking part in the challenges. We designed our

reward scheme to yield similar average payments in both treatment groups. The average re-

alized payments per monthly efficiency challenge amount to 6.3 EUR in T2 and to 4.5 EUR

in T4.20 The timing in our experiment is as follows: In the first month after app installation,

participants in T1±T4 obtain appliance-level feedback but challenges have not yet started. In

the months 2-6, participants in T2-T4 take part in challenges. After month 6, challenges do not

occur any more, but T1±T4 participants continue to receive appliance-level feedback.

We disentangle the differential impact of the app elements by estimating the following

equation:

Ynorm
it = αYb

i + β1Di + β2Mi + β3Ri + β4MiRi + νt + µb
w + ϵit, (47)

where the scalar Di equals one if a household is in any one of the four treatment groups

(T1i, T2i, T3i, T4i), so that β̂1 identifies the conservation effect of providing appliance-level feed-

back, compared to providing aggregate feedback only. Furthermore, Mi equals one for the

treatment groups T2i and T4i, where participants receive monetary rewards for saving electric-

ity. Similarly, Ri equals one for the treatment groups T3i and T4i, where participants obtain

information on their savings relative to those of other participants. All three groups T2-T4

also receive appliance-level feedback. Hence, the parameter estimates β̂2 and β̂3 identify by

how much the effectiveness of appliance-level feedback changes when monetary incentives

and rank information are provided additionally. We also interact Mi and Ri to test whether the

effectiveness of monetary incentives increases when they are tied to a relative ranking rather

than an absolute appliance score improvement. This interaction effect is identified by param-

eter β4.

Our results from Panel b) of Table A11 show that the provision of appliance-level feed-

back in T1-T4 is the main driver of the electricity conservation we observe. Households that

obtain such feedback reduce their consumption by almost 5 percent compared to households

with aggregate feedback (Column 3). In Column (4), we test whether the provision of mone-

tary incentives and rankings intensify the response to appliance-level feedback. We find that

the point estimates are close to zero and not statistically significant at any conventional level.

Hence, neither monetary incentives nor rankings trigger higher electricity savings compared

to appliance-feedback alone. Furthermore, we do not find support for the conjecture that mon-

etary incentives become more effective when information about participants’ rank is also pro-

vided, as shown by the small and statistically insignificant interaction effect between M and R

in Column (5). Taken together, our evidence suggests that appliance-level information alone

20The average payment in group T4 does not exactly equal 5 EUR as we have less than 100 challenge participants
in that group for some months.
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leverages its full potential and that there are no significant complementarities with monetary

or social incentives. As we do detect no differences between the ATEs of the treatment groups

T1 − T4, we pool them and use the disaggregation dummy D for our analyses in the main text.

A5.6 Conservation Effects after Core Study Period

After our core study period of 6 months, participants continued to have access to the app,

but with limited functionality in treatment group T2 − T4. In particular, participants were

not invited to take part in efficiency challenges any longer, but still received appliance-level

consumption feedback.

To investigate the treatment effects after the core study period, we estimate Equation (4)

and (47), but restrict the sample to the time period from month 7 of the field test onwards.

Panel a) of Table A12 gives the average conservation effect relative to the EC group and

shows that the point estimate for the treatment effect in the disaggregation groups T1 − T4

amounts to −1.4%, but is not statistically significant at any conventional level. When we re-

strict our analysis to a balanced panel, the treatment effect amounts to −3.3%, but is not sta-

tistically significant at any conventional level. Using the non-experimental sample to identify

the total conservation effect (Panel b of Table A12), we find that disaggregate feedback yields

a persistent reduction by −4.7% when using the full sample (Column 3) and of −2.7% when

restricting our sample to a balanced panel of households (Column 4).

We test for differences in the average treatment effect between the core study period and the

period thereafter by estimating the following regressions based on our experimental sample,

as well as on our experimental sample and our matched control group, respectively:

Ynorm
it = αYb

i + τ A f terCSPt + β1Di + β2Di · A f terCSPt + νt + µb
m + ϵit,

Ynorm
it = αYb

i + τ A f terCSPt +γ1ECi +γ2ECi A f terCSPt + δ1Di + δ2Di A f terCSPt + νt +µb
m + ϵit,

where A f terCSPt equals one if day t occurs after the beginning of study month 7 and zero oth-

erwise. To avoid that differences in average treatment effects arise from changes in the sample

composition over time, we use a balanced panel for both regressions. The estimate β̂2 identi-

fies the difference in the average treatment effect from appliance-level feedback relative to the

Aggregate Feedback (A) group: ATEAfterCSP-ATECSP, where ATECSP denotes the ATE during

the core study period. The estimate δ2 has the same interpretation, but gives the change in

the ATEs relative to the matched control group, i.e., relative to obtaining no feedback at all.

As shown in Table A13, we find that that β̂2 and δ̂2 are positive, but not statistically signifi-

cant from zero at any conventional level. While inconclusive, it is possible that the the strong

seasonal decline by nearly 40% evident in Figure 2 in the main text plays a role. The decline

may be driven by uses that are more responsive to disaggregate feedback. It is also possible

that attrition contributed to this trend. Point estimates of the impact of disaggregation are

slightly larger when we restrict the sample to observations who never experienced any data

loss. This is true for the main study period (see Table A10), as well as for the treatment effect

of disaggregation after the core study period (see columns (2) and (4) in Table A12).
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A6 Elasticity Estimates and Sensitivity Checks

To identify ηj from our data, we estimate the following regression separately for every

appliance category j:

ln yij = ηj ln pi + β′
jXi + ϵij,

where X denotes a vector of socio-demographic variables for household i such as its income

and size, as well as the annual consumption level in the year prior to the experiment. Cross-

sectional identification faces some challenges that we discuss in the following. A typical con-

cern for identification is non-linear pricing, where marginal prices change with the level of

electricity consumption. As households in our sample face constant marginal prices, non-

linear pricing does not threaten the consistency of our estimates. Another concern is omitted

variable bias. Electricity suppliers offer tariffs with lower marginal prices to households with

higher consumption levels, which could negatively bias our elasticity estimates. To circumvent

such bias, we control for baseline electricity consumption, as well as for household income and

size. While controlling for additional covariates reduces concerns from omitted variable bias,

it may still be present to some degree. Our estimation results can be found in Table A17. As

an indirect test of the magnitude of our elasticity estimates (see Section 5), we calculate the

household-level elasticity implied by our appliance-level estimates and compare it to the find-

ings by Frondel et al. (2019). If our appliance-level elasticity estimates systematically suffered

from omitted variable bias, we would expect to find that the implied household-level elasticity

is biased as well. Further sensitivity checks are presented in Table A15, as also discussed in the

main text in Section 5.

xxx



Supplementary Figures

Figure A1: Schematic Representation of the NALM Algorithm
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Notes: The representation is based on Gupta et al. (2017).
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Figure A2: Visualization of Screens I

Start Screen (by Experimental Condition)
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Figure A3: Visualization of Screens II
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Figure A4: Visualization of Screens III
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Figure A5: Distribution of Appliance Scores
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Notes: Appliance Scores are calculated as follows: Appliance Score = 100 × (Monthly Appliance Consumption -
Benchlow)/(Benchup - Benchlow), where Benchlow and Benchhigh correspond to pre-determined benchmark values
for high and low appliance uses, respectively. These benchmarks are based on survey data on typical appliance
uses and product data sheets on the technical efficiency of appliances currently used in German households (for
details, see Table A4).
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Figure A6: Decomposition of Electricity Uses, by Appliance Category
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Notes: Values are expressed as percentages of total electricity consumption in a year. Values for 1996 and
2011 are drawn from BDEW (2016), Energie-Info - Stromverbrauch im Haushalt, Bundesverband der Energie-
und Wasserwirtschaft. Values from our study are calculated for the Aggregate Feedback (A) group. As we
do not have data on hobs, we extrapolate their consumption based on the rule-of-thumb that a hob accounts
for 77.5% (75-80%) of total electricity consumption for cooking, as stated by the energy efficiency advocacy
HEA (www.hea.de/fachwissen/herde-backoefen/betriebswerte-und-energieverbrauchskennzeichnung, last
access: February 27, 2020).
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Figure A7: Balancing in Terms of Baseline Electricity Consumption between Study Participants
and the Non-Experimental Sample

(a) Prior to Matching
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Notes: ºControl (unmatched)º denotes all control group households, while ªMC: Matched Controlº denotes the
group of households that have been matched to households in the Aggregated Feedback (A) group.
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Figure A8: Seasonal Factors Across Treatment Groups

(a) Temperature

(b) Precipitation

(c) Sunshine

Notes: ºControlº denotes all households in the matched control group, while Aggregate Feedback and Disaggregate
Feedback refer to the experimental groups.
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Figure A9: Seasonal Differences between Treatment Groups

(a) Temperature

(b) Precipitation

(c) Sunshine

Notes: ºControl - Agg. Feedbackº denotes the difference between the outcome in the matched control and aggregate
feedback group (likewise for Disaggregate - Agg. Feedback. Shaded areas denote 95% confidence intervals (non-
parametric heteroscedasticity-consistent estimator, correcting for spatial correlation (Hsiang, 2016)
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Figure A10: ATE of Aggregate Feedback (A) group on Hourly Electricity Consumption (rela-
tive to Matched Control)
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Notes: Shaded bars indicate that treatment effects are statistically significant at the 1% (blue shaded) or 5% (light
blue shaded) level. Whiskers indicate a range of +/- 1 standard error (clustered at the household-match level). The
outcome variable is daily electricity consumption, divided by the mean in the A group. Using participants in the

MC and the A groups, we estimate the following equation: Ynorm
ith = αYb

i + ∑
24
h=1 βhECi + νt + µh + ϵihd. We cannot

reject the null hypothesis that all hourly point estimates are zero: F(24, 277) = 1.15, p-value: 0.2938.
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Figure A11: ATE of Disaggregation (D) relative to Aggregate Feedback (A) group, by Hour of
the Day
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Notes: The ATE corresponds to the treatment effect of the group D (T1-T4), relative to group A. The outcome
variable is hourly electricity consumption at the appliance level, divided by the hourly mean in the Aggregate
Feedback (A) group. Shaded bars indicate that treatment effects are statistically significant at the 1% (blue shaded)
or 5% (light blue shaded) level. Whiskers indicate a range of +/- 1 standard error (clustered at the household
level). Based on conducting an F-test, we can reject the null hypothesis that all hourly point estimates are zero:
F(24, 699) = 1.82, p-value = 0.0096.
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Figure A12: ATE of Disaggregation (D) on Hourly Electricity Consumption, by Appliance
Category (Relative to Aggregate Feedback (A) group)
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(b) Washing
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(c) Dryer
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Notes: Shaded bars indicate that treatment effects are statistically significant at the 1% (blue shaded) or 5% (light
blue shaded) level. Whiskers indicate a range of +/- 1 standard error (clustered at the household level). The out-
come variable is hourly electricity consumption at the appliance level, divided by the hourly mean in the Aggregate
Feedback (A) group. The categories Refrigeration and Always-On are measured daily, so that we cannot estimate
hourly treatment effects for them.
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Figure A13: ATE of Aggregate Feedback (A) group on Hourly Electricity Consumption (rela-
tive to Matched Control)

Notes: Dots represent data points, lines stem from linear regressions of beliefs on actual baseline consumption and a
constant (separately for households in the Aggregate Feedback (A) group and households in the treatment groups
T1 − T4, D. We elicited beliefs about the baseline electricity consumption in a survey that we conducted prior to
the field experiment. Actual baseline consumption corresponds to the consumption of a household from the last
(annual) bill prior to the field experiment. We drop outliers, defined as all observations above the 95 percentile of
the actual baseline consumption distribution, as well as below the 2.5 or above the 97.5 percentile of the distribution
of consumption beliefs, divided by the respective actual consumption.
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Supplementary Tables

Table A1: Descriptives (Experimental Sample)

A T1 T2 T3 T4 P-value

a) Socio-demographics (n=700)
Baseline consumption, in kWh/day 10.2 10.5 10.1 10.5 10.5 0.90
No. of occupants 2.4 2.5 2.4 2.5 2.6 0.17
Monthly net income, in EUR 3,004 3,188 3,030 3,194 3,091 0.63
Own property, in % 73.6 79.7 73.8 77.5 73.2 0.67
Employed, in % 50.2 53.1 50.9 55.4 46.0 0.23
Share of females, in % 44.8 49.0 48.7 46.9 47.5 0.40
Age, in years 47.6 44.8 47.6 45.9 43.4 0.29

b) Baseline Aggregate Consumption Beliefs (n=466)
Yearly consumption (belief), in kWh 3,643 3,650 3,616 3,496 3,727 0.81
Yearly consumption (actual), in kWh 3,524 3,551 3,497 3,467 3,589 0.97

c) Wattage Ranking Task (n=598)
At least one mistake (0=no, 1=yes) 0.50 0.62 0.60 0.58 0.56 0.48
Share of mistakes in all comparisons 0.11 0.12 0.11 0.11 0.12 0.90

Number of households 140 136 143 143 138 ∑=700

Notes: P-values are from F-tests of mean equality in all experimental conditions (clustered at the household level).
Variables are measured at the household level, except for employed, share of females, and age, which we measure
at the household member level. The wattage ranking task refers to a task in the baseline survey that asked re-
spondents to assess the wattage of a typical laptop, dish-washer, tumble dryer, and fan-heater, relative to a 100 W
lightbulb on a five point Likert scale (ªmuch lowerº, ªlowerº, ªabout the sameº, ªhigherº, ªmuch higherº). ªShare
of mistakes in all comparisonsº gives the total number of mistakes, divided by the number of all binary compar-
isons implied by that task. Aggregate consumption beliefs are elicited in the same survey. We drop observations
beyond the 95 percentile of the belief distribution as well as those with extreme relative errors (below the 2.5 and
above the 97.5 percentile).
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Table A2: Comparison of Experimental Sample with German Population

Experimental sample German population

Baseline cons., in kWh/day 10.4 8.6
# of occupants 2.6 2.0
# of refrigeration appliances 2.3 2.4
Net income, in EUR per month 3,103 3,314
Own property, in % 75.3 44.0
Employed, in % 51.2 57.8
Share of females, in % 47.4 50.7
Age, in years 45.8 44.3
Years of schooling 11.0 10.5

Baseline cons., in kWh/day (1 person household) 6.0 5.5
Baseline cons., in kWh/day (2 person household) 9.9 8.8
Baseline cons., in kWh/day (3+ person household) 11.5 13.3
1 person household, in % 11.3 41.8
2 person household, in % 48.3 33.5
3+ person household, in % 40.4 24.7

Notes: German averages are taken from the following German Statistical Office publications (for the year
2017): Populalation Statistics (Mikrozensus); Environmental-Economic Accounting; Income, Receipts, and
Expenditures; Consumption Expenditures. The average electricity consumption is for the baseline year 2016
(https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Materialfluesse-Energiefluesse/

Tabellen/stromverbrauch-haushalte.html, last access: March 9, 2020).
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Table A3: Descriptives: Appliance Possessions and House Characteristics

All A T1 T2 T3 T4 P-value N

Appliance Possession
# of cooling appliances 2.27 2.23 2.24 2.27 2.27 2.33 0.82 700
# of dish washers 0.92 0.91 0.91 0.95 0.93 0.91 0.87 700
# of washing machines 1.02 1.00 1.04 1.00 1.01 1.04 0.61 700
# of tumble dryers 0.72 0.74 0.71 0.69 0.69 0.77 0.68 700
# of ovens 0.98 0.98 0.99 0.98 0.99 0.98 0.76 700
# of hobs 0.99 0.99 0.99 0.98 0.99 0.99 0.84 700

HH lives in detached house (1: yes, 0: no) 0.45 0.46 0.42 0.48 0.43 0.44 0.83 700
HH lives in semi-detached house (1: yes, 0: no) 0.14 0.13 0.16 0.10 0.16 0.16 0.37 700
HH lives in an apartment (1: yes, 0: no) 0.24 0.22 0.26 0.23 0.24 0.23 0.94 700
# of bedrooms 3.03 3.06 3.01 3.00 3.00 3.08 0.88 686
Water heating via gas (1: yes, 0: no) 0.62 0.59 0.63 0.64 0.60 0.64 0.83 700
Space heating via gas (1: yes, 0: no) 0.58 0.53 0.68 0.57 0.55 0.57 0.07 700

Notes: P-values are from F-tests of mean equality in all experimental conditions: A, T1, T2, T3, T4

(heteroscedasticity-robust standard errors).
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Table A4: Benchmarks for the Calculation of Efficiency Scores

1 person 2 persons 3 persons 4 persons 5 persons

Always on 0.0 0.0 0.0 0.0 0.0
90.7 125.7 158.7 174.1 190.5

Refrigeration (1 appliance) 4.8 4.8 5.7 5.9 6.3
39.9 44.3 49.3 54.2 59.6

Refrigeration (2 appliances) 8.3 11.5 11.5 12.4 12.5
66.5 73.9 82.1 90.3 99.3

Refrigeration (3+ appliances) 8.3 11.5 11.5 12.4 12.5
94.1 103.1 112.1 121.6 132.0

Washing machine 1.2 1.8 2.3 2.8 3.4
14.0 23.9 36.4 43.6 44.6

Dishwasher 0.0 0.0 0.0 0.0 0.0
17.7 27.7 34.0 43.6 54.6

Dryer 0.0 0.0 0.0 0.0 0.0
31.9 62.7 68.8 70.5 72.2

Oven 0.0 0.0 0.0 0.0 0.0
6.3 12.6 19.0 25.3 31.6

Notes: The benchmarks were calculated taking the technical energy efficiencies of appliances on the market into
account (energy efficient ± energy inefficient), as well as typical usage behaviours (rare user ± heavy user). The
main sources for technical efficiency are product data sheets for efficient appliances from EcoTopTen, an online
platform for energy efficient products (URL: https://www.ecotopten.de/), as well as product data sheets of in-
efficient appliances from product tests by Stiftung Warentest, a renowned German consumer organisation (URL:
www.test.de). In addition, we use information on typical usage behaviours from surveys such as the German Resi-
dential Energy Consumption Survey (RWI-GRECS, URL: http://www.rwi-essen.de/forschung-und-beratung/

fdz-ruhr/datenangebot/mikrodaten/rwi-grecs). For the category Always-On, we calculate the upper bench-
mark based on the stand-by electricity use for a range of appliances, including TVs, hifi systems, PCs, routers, tele-
fones, coffee machines, washing machines, and microwaves (using energy inefficient appliance varieties). These
calculations take typical appliance possessions by household size into account. We set the lower benchmark to
zero, assuming that always-on consumption can be avoided. For the category Refrigeration, we calculate bench-
marks based on the number of appliances (1, 2, and more than 2). For each of them, we consider the most energy
efficient and inefficient appliances available on the market, whose cooling volume is as recommended for the re-
spective household size. For the categories Washing machine, we use data on the energy consumption per use for
energy efficient and inefficient appliances and consider the typical frequency of use for heavy users and rare users
(for every household size). We proceed in the same manner for the categories Dish washer, Dryer, and Oven, but
assume that the lower benchmark is zero as households can substitute these energy services with hand-washing,
dry-hanging and eating-out, for example. Details on the calculations can be obtained from the authors upon re-
quest.
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Table A5: Distribution of Daily Use, in kWh/day

Mean Std. dev. Min Max p1 p25 p50 p75 p99 N

Total electricity 10.16 5.36 0.00 100.07 1.72 6.56 9.27 12.75 27.03 106,283
Always on 2.47 1.97 0.00 47.49 0.14 1.10 2.01 3.30 9.33 93,187
Refrigeration 1.02 0.66 0.00 11.12 0.07 0.63 0.88 1.24 3.29 93,185
Dishwasher 0.30 0.63 0.00 14.15 0.00 0.00 0.00 0.00 2.64 84,511
Washing mach. 0.49 1.11 0.00 40.30 0.00 0.00 0.00 0.60 5.08 91,473
Dryer 0.14 0.59 0.00 36.06 0.00 0.00 0.00 0.00 2.88 65,852
Oven 0.24 0.81 0.00 20.57 0.00 0.00 0.00 0.00 3.86 93,187
Other appliances 5.56 3.89 0.00 56.58 0.00 3.01 4.74 7.15 19.07 93,187

Notes: p1 denotes the first percentile, p25 the 25th percentile, etc. N denotes the number of daily appliance-level
observations.

Table A6: Distribution of Use per Utilization, in kWh

Mean Std. dev. Min Max p1 p25 p50 p75 p99 N

Always-On 2.47 1.97 0.000 47.49 0.13 1.10 2.01 3.30 9.32 93,664
Refrigeration 1.02 0.66 0.000 11.12 0.07 0.63 0.88 1.24 3.29 93,659
Dishwasher 1.08 0.42 0.002 10.98 0.34 0.79 1.04 1.32 2.37 23,643
Washing mach. 1.00 0.75 0.001 18.54 0.05 0.53 0.81 1.27 3.65 45,270
Dryer 1.02 1.02 0.004 38.46 0.03 0.38 0.74 1.37 4.51 8,979
Oven 0.80 1.11 0.001 20.09 0.01 0.19 0.47 0.95 5.55 28,362

Notes: In the categories Always-On and Refrigeration, the unit of utilization is one day. For all other appliances,
average use is given per utilization event. p1 denotes the first percentile, p25 the 25th percentile, etc. N denotes the
number of appliance-use events.
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Table A7: Beliefs vs. Actual Baseline Consumption (at the Household-Level)

(a) Mean Annual Baseline Consumption, Beliefs vs. Actual

Belief (in kWh) Actual (in kWh) Mean Diff. (in kWh) Std. Err. P-value n

Pooled 3,627.6 3,539.4 -88.29 (27.74) 0.002 497

A 3,611.6 3,491.5 -120.06 (60.51) 0.048 92
T1 3,675.8 3,614.0 -61.80 (63.01) 0.327 100
T2 3,642.4 3,561.0 -81.34 (75.86) 0.284 99
T3 3,531.8 3,483.0 -48.77 (44.84) 0.277 106
T4 3,681.3 3,547.1 -134.30 (64.29) 0.037 100

(b) Alignment Between Beliefs and Actual Baseline Consumption

(1) (2)
Estimate Std. Err. Estimate Std. Err.

Yb: Baseline elec. use 0.928*** (0.026) 0.948*** (0.058)
D: T1-T4 48.891 (205.672)

D × Yb -0.024 (0.065)
Constant 342.923*** (82.470) 300.114 (184.225)

R2 0.7878 0.7879
Number of obs. 497 497

Notes for both Panels: Beliefs about the electricity consumption in the baseline period were elicited in a survey that
we conducted prior to the field experiment. Actual baseline consumptions were obtained from billing data. ***, **,*
denote statistical significance at the 1%, 5%, 10% level, respectively. Robust standard errors are in parentheses. A
equals 1 for households in the Aggregate Feedback (A) group. D equals one for households in the groups T1 − T4.
We drop outliers, defined as all observations above the 95 percentile of the actual baseline consumption, as well as
below the 2.5 or above the 97.5 percentile of the consumption belief, divided by the actual consumption.
Notes for Panel b): In Column 1), we pool all experimental groups and estimate the model: Yb,belie f = α + βYb +
ϵ, where Yb,belie f and Yb denotes the belief and the actual consumption of household i in the baseline period,
respectively (and ϵ denotes an error term). In Column (2), we interact βYb with the disaggregation dummy D that
equals one for the groups T1-T4: Yb,belie f = α + βYb + γD · Yb + ϵ. The estimate β̂ gives the average change in
beliefs as the actual consumption increases by one unit (for the EC group). The estimate γ̂ gives the the change of
this slope for the households in the treatment groups T1-T4 (relative to the EC group).
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Table A8: Balance Experimental Sample (Group A) vs. Matched Non-Experimental Sample

Difference A-MC Std. Err. P-val. N

Baseline elec. cons., in kWh/day 0.23 0.27 0.40 280
End of baseline billing, in days −10.04 11.58 0.39 280
Start of baseline billing, in days −33.75 13.28 0.01 280

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors in parentheses,
clustered at the household level.
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Table A9: Heterogeneity in ATE, by Baseline Consumption

(a) Experimental Sample

Estimate Std. Err.

D: Disaggregation −0.051*** (0.017)

D × Yb,dm −0.066 (0.052)

Yb,dm: Baseline elec. use (demeaned) 0.939*** (0.045)

Day fixed effects ✓

Month-of-baseline FE ✓

R2 0.5480
Number of obs. 106,283
Number of households 700

(b) Sample Including Matched Control

Estimate Std. Err.

D: Disaggregation −0.047*** (0.015)

D × Yb,dm −0.134*** (0.044)

Yb,dm 1.007*** (0.035)
A: Exp. Control 0.008 (0.021)

A × Yb,dm −0.068 (0.058)

Day fixed effects ✓

Month-of-baseline FE ✓

R2 0.5634
Number of obs. 127,790
Number of households 840

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in parenthe-
ses and clustered at the household and the household-match level for Panel a) and b), respectively. The outcome
variable is daily electricity consumption, divided by the mean in the Aggregate Feedback (A) group. Baseline elec-
tricity use Yb,dm is demeaned.
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Table A10: ATEs on Daily Electricity Consumption, Relative to Aggregate Feedback (A) group
(Balanced Panel)

(a) Effect of Experimental Conditions

(1) (2)

D: T1 − T4 -0.064***
(0.019)

T1 -0.065***
(0.023)

T2 -0.048**
(0.022)

T3 -0.087***
(0.024)

T4 -0.056**
(0.027)

Yb: Baseline elec. use 0.878*** 0.879***
(0.028) (0.028)

Day fixed effects (FE) ✓ ✓

Month-of-baseline FE ✓ ✓

R2 0.5373 0.5380
Number of obs. 79,562 79,562
Number of households 460 460

(b) Effects of App Elements

(3) (4) (5)

D: Disaggregation -0.064*** -0.068*** -0.064***
(0.019) (0.021) (0.022)

M: Monetary incentives 0.025 0.015
(0.015) (0.017)

R: Ranking -0.016 -0.026
(0.015) (0.020)

M: Monet. inc. × R: Rank. 0.021
(0.030)

Yb: Baseline elec. use 0.878*** 0.880*** 0.879***
(0.028) (0.028) (0.028)

Day fixed effects (FE) ✓ ✓ ✓

Month-of-baseline FE ✓ ✓ ✓

R2 0.5373 0.5379 0.5380
Number of obs. 79,562 79,562 79,562
Number of households 460 460 460

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. The regressions are based
on a balanced panel for the core study period (months 1-6). Standard errors are in parantheses and clustered at
the household-match level. The outcome variable is daily electricity consumption, divided by the mean in the
Aggregate Feedback (A) group. D equals one for households in the groups T1 − T4, M equals one for households
in the groups T2 and T4, and R equals one for households in the groups T3 and T4, while being zero for the other
participants, respectively.
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Table A11: ATEs on Daily Electricity Consumption, Relative to Matched Control (MC) group

(a) Effect of Experimental Conditions

(1) (2)

A: -0.009 -0.009
(0.022) (0.022)

D: T1 − T4 -0.055***
(0.016)

T1 -0.053***
(0.019)

T2 -0.049**
(0.020)

T3 -0.073***
(0.021)

T4 -0.047**
(0.021)

Yb: Baseline elec. use 0.910*** 0.910***
(0.020) (0.020)

Day fixed effects ✓ ✓

Month-of-baseline FE ✓ ✓

R2 0.5687 0.5689
Number of obs. 127,790 127,790
Number of households 840 840

(b) Effects of App Elements

(3) (4) (5)

AF: Aggregate feedback -0.009 -0.009 -0.009
(0.022) (0.022) (0.022)

D: Disaggregation -0.047*** -0.049*** -0.045**
(0.016) (0.018) (0.018)

M: Monetary incentives 0.016 0.005
(0.013) (0.016)

R: Ranking -0.010 -0.021
(0.013) (0.018)

M: Monet. inc. × R: Rank. 0.023
(0.027)

Yb: Baseline elec. use 0.910*** 0.910*** 0.910***
(0.020) (0.020) (0.020)

Day fixed effects ✓ ✓ ✓

Month-of-baseline FE ✓ ✓ ✓

R2 0.5687 0.5689 0.5690
Number of obs. 127,790 127,790 127,790
Number of households 840 840 840

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. These regressions include
observations from our Matched Control (MC) group, as described in Section A4. Standard errors are in parentheses
and clustered at the household-match level. The outcome variable is daily electricity consumption, divided by the
mean in the Aggregate Feedback (A) group. A equals one for the households in the groups A and T1 − T4, while
being zero for households in MC. D equals one for households in the groups T1 − T4, M equals one for households
in the groups T2 and T4, and R equals one for households in the groups T3 and T4, while being zero for the other
participants, respectively.
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Table A12: ATE on Daily Electricity Consumption (After the Core Study Period), Only Main
Effects

(a) Experimental Sample

(1) (2)
Full Sample Balanced Panel

D: Disaggregation -0.014 -0.033
(0.017) (0.022)

Yb: Baseline elec. use 0.747*** 0.732***
(0.025) (0.034)

Day fixed effects ✓ ✓

Month-of-baseline FE ✓ ✓

R2 0.4978 0.4909
Number of obs. 54,603 29,330
Number of households 586 321

(b) Experimental and Matched Control Samples

(3) (4)
Full Sample Balanced Panel

A: Aggregate Feedback -0.036 -0.026
(0.026) (0.035)

D: Disaggregation -0.047** -0.027
(0.022) (0.023)

Yb: Baseline elec. use 0.781*** 0.760***
(0.024) (0.032)

Day fixed effects ✓ ✓

Month-of-baseline FE ✓ ✓

R2 0.5112 0.5004
Number of obs. 66,084 35,765
Number of households 708 391

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in parenthe-
ses and clustered at the household level in Columns (1) and (2), and at the household-match level for Columns (3)
and (4). The outcome variable is daily electricity consumption, divided by the mean in the Aggregate Feedback (A)
group. D equals one for households in the groups T1 − T4, while being zero for other participants.
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Table A13: Difference in ATEs During and After the Core Study Period

(1) (2)
Experimental Sample Experimental and

Matched Control Samples

1(After Core Study Period) -0.052* -0.008
(0.031) (0.034)

A : Aggregated Feeback (A) -0.010
(0.032)

A : Aggregated Feeback × 1(After Core Study Period) -0.025
(0.033)

D: Disaggregation -0.063** -0.060**
(0.025) (0.026)

D: Disaggregation × 1(After Core Study Period) 0.038 0.038
(0.023) (0.023)

Yb: Baseline elec. use 0.840*** 0.866***
(0.032) (0.028)

R2 0.5280 0.5450
Number of obs. 84,891 103,411
Number of participants 321 391

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in paren-
theses and clustered at the household and at the household-match level for Columns (1) and (2), respectively. The
outcome variable is daily electricity consumption, divided by the mean in the Aggregate Feedback (A) group. 1(Af-
ter Core Study Period) is a dummy variable that equals one when an observation occurs from month 7 onwards,
while being zero otherwise. D equals one for households in the groups T1 − T4, while being zero for other partici-
pants.
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Table A14: Difference in ATEs, by Subgroups

(1) (2)

D: Disaggregation -0.040 -0.019
(0.028) (0.028)

1(Two Occupant) 0.071**
(0.030)

1(Three+ Occupants) 0.128***
(0.036)

1(Own Property) 0.056*
(0.029)

D: Disaggregation × 1(Two Occupant) 0.003
(0.035)

D: Disaggregation × 1(Three+ Occupants) -0.035
(0.039)

D: Disaggregation × 1(Own Property) -0.040
(0.034)

Yb: Baseline elec. use 0.864*** 0.888***
(0.024) (0.024)

R2 0.5614 0.5598
Number of obs. 106,283 105,846
Number of participants 700 696

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in paren-
theses and clustered at the household level. The outcome variable is daily electricity consumption, divided by the
mean in the Aggregate Feedback (A) group. 1(Two Occupants) is a dummy variable that equals one when a house-
hold consists of two occupants, while 1(Three+ Occupants) is one for households with at least three occupants.
1(Own Property) equals one if a household lives in his own property. D equals one for households in the groups
T1 − T4, while being zero for other participants.
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Table A16: Effect Heterogeneity and Appliance-Level Beliefs

(a) Effect Heterogeneity by Wattage Ranking Task Results

(1) (2) (3)
Estimate Std. err. Estimate Std. err. Estimate Std. err.

1(At least one mistake) 0.028 (0.021) 0.031 (0.022)
1(No wattage ranking) 0.169** (0.068)
D × 1(No mistake) −0.014 (0.019) −0.010 (0.020)
D × 1(At least one mistake) −0.043** (0.018) −0.043** (0.018)
D × 1(No wattage ranking) −0.155** (0.069)
D: Disaggregation −0.012 (0.017)
Share of mistakes 0.125* (0.067)
D × Share of mistakes −0.156* (0.085)

Yb: Baseline elec. use 0.888*** (0.024) 0.893*** (0.022) 0.889*** (0.024)

Day fixed effects (FE) ✓ ✓ ✓ ✓ ✓ ✓

Month-of-baseline FE ✓ ✓ ✓ ✓ ✓ ✓

R2 0.5613 0.5613 0.5615
Number of obs. 91,638 106,283 91,638
Number of participants 598 700 598

(b) Appliance-Level Rank Differences between Beliefs and Measured Uses

(1) (2) (3) (4) (5) (6)
Mean rank diff. (B) Mean rank diff. (E) Change (E−B) Std. err. P-value N

A 1.81 1.79 −0.02 0.07 0.757 66
D: T1−T4 1.76 1.56 −0.19 0.04 0.000 296
T1 1.75 1.57 −0.18 0.10 0.077 61
T2 1.75 1.42 −0.32 0.08 0.000 62
T3 1.69 1.47 −0.22 0.10 0.031 54
T4 1.79 1.54 −0.26 0.09 0.009 53

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. Standard errors are in parenthe-
ses and clustered at the household level. ª1(At least one mistake)º and ª1(No wattage ranking)º denote dummy
variables that equal one if a household made at least one mistake in the wattage ranking task or did not take part
in that task, respectively. ªMean rank diff.º denotes the mean of the absolute rank differences between the rank
of appliance consumptions (measured during the study period) and the rank of electricity consumption beliefs,
which we elicited for every appliance category before (baseline, B) and during the study period (endline, E).
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Table A17: Appliance-Level Elasticity Estimates

(1) (2) (3) (4) (5) (6) (7)
Always-On Refrigeration Dish-Washer Washing Dryer Oven Other appl.

ln p -0.310 -0.400* -0.401 -0.552 -3.423*** -1.067 -0.289
(0.355) (0.226) (0.722) (0.418) (1.233) (1.024) (0.252)

# of occupants = 2 0.113 0.129*** 0.872*** 0.843*** -0.012 0.694*** 0.278***
(0.069) (0.043) (0.192) (0.129) (0.359) (0.200) (0.055)

# of occupants = 3 0.038 0.116** 1.099*** 0.937*** 0.104 0.970*** 0.301***
(0.084) (0.052) (0.201) (0.140) (0.396) (0.229) (0.058)

# of occupants = 4 0.126 0.098* 1.178*** 1.019*** 0.135 1.104*** 0.321***
(0.087) (0.058) (0.227) (0.144) (0.406) (0.245) (0.062)

# of occupants = 5 -0.071 0.212*** 1.460*** 0.692*** 0.508 0.947*** 0.264***
(0.106) (0.074) (0.287) (0.191) (0.422) (0.325) (0.081)

Hh. net income 0.048*** -0.017* -0.001 0.026 -0.026 -0.042 -0.001
(0.013) (0.009) (0.035) (0.021) (0.052) (0.037) (0.008)

1(Hh. net income missing) 0.208** -0.100 -0.038 0.126 -0.419 -0.032 0.031
(0.091) (0.064) (0.241) (0.140) (0.363) (0.252) (0.061)

Yb: Baseline elec. use 0.106*** 0.030*** 0.049*** 0.059*** 0.044*** 0.072*** 0.082***
(0.006) (0.004) (0.011) (0.009) (0.014) (0.013) (0.005)

Constant -1.230** -0.986*** -3.728*** -3.338*** -7.236*** -4.725*** 0.058
(0.507) (0.326) (1.066) (0.616) (1.879) (1.504) (0.356)

R2 0.489 0.169 0.154 0.288 0.092 0.151 0.635
Number of participants 700 700 610 677 259 527 700

Notes: ***, **,* denote statistical significance at the 1%, 5%, 10% level, respectively. The outcome variable is the av-
erage daily electricity consumption in the study period (in logs). The regressors are net income, baseline electricity
use, as well as a set of dummy variables for the number of occupants and missings for the variable net income.
Heteroscedasticity robust standard errors in parentheses.

lix



References

Abadie, Alberto, and Jann Spiess. 2021. ªRobust Post-Matching Inference.º Journal of the

American Statistical Association 1±13. 10.1080/01621459.2020.1840383.

Allcott, Hunt. 2011. ªSocial Norms and Energy Conservation.º Journal of Public Economics 95

(9-10): 1082±1095.

Allcott, Hunt. 2015. ªSite Selection Bias in Program Evaluation.º The Quarterly Journal of Eco-

nomics 130 (3): 1117±1165.

Allcott, Hunt, and Dmitry Taubinsky. 2015. ªEvaluating Behaviorally Motivated Policy: Ex-

perimental Evidence from the Lightbulb Market.º American Economic Review 105 (8): 2501±

2538.

Andor, Mark A, Andreas Gerster, J Èorg Peters, and Christoph M Schmidt. 2020a. ªSocial

Norms and Energy Conservation Beyond the US.º Journal of Environmental Economics and

Management 103 102351.

Andor, Mark A., Andreas Gerster, and Stephan Sommer. 2020b. ªConsumer Inattention,

Heuristic Thinking and the Role of Energy Labels.º The Energy Journal 41 (1): 83±122.

Asensio, Omar I., and Magali A. Delmas. 2015. ªNonprice Incentives and Energy Conserva-

tion.º Proceedings of the National Academy of Sciences 112 (6): 510±515.

Attari, Shahzeen Z., Michael L. DeKay, Cliff I. Davidson, and WÈandi Bruine de Bruin. 2011.

ªReply to Frederick et al.: Anchoring Effects on Energy Perceptions.º Proceedings of the Na-

tional Academy of Sciences 108 (8): E24±E24.

Attari, Shahzeen Z., Michael L. DeKay, Cliff I. Davidson, and de Bruin, WÈandi Bruine.

2010. ªPublic Perceptions of Energy Consumption and Savings.º Proceedings of the National

Academy of Sciences 107 (37): 16054±16059.

Azmat, Ghazala, and Nagore Iriberri. 2010. ªThe Importance of Relative Performance Feed-

back Information: Evidence from a Natural Experiment using High School Students.º Jour-

nal of Public Economics 94 (7-8): 435±452.

Becker, Gary S. 1965. ªA Theory of the Allocation of Time.º Economic Journal 75 (299): 493±517.

Benabou, Roland, and Jean Tirole. 2002. ªSelf-Confidence and Personal Motivation.º Quar-

terly Journal of Economics 117 (3): 871±915. 10.1162/003355302760193913.

Bernheim, B Douglas, and Dmitry Taubinsky. 2018. ªBehavioral Public Economics.º Handbook

of Behavioral Economics: Applications and Foundations 1 1 381±516.

Bollinger, Bryan, Phillip Leslie, and Alan Sorensen. 2011. ªCalorie Posting in Chain Restau-

rants.º American Economic Journal: Economic Policy 3 (1): 91±128.

Brent, Daniel A., and Michael B. Ward. 2019. ªPrice Perceptions in Water Demand.º Journal of

Environmental Economics and Management 98 102266.

lx

http://dx.doi.org/10.1080/01621459.2020.1840383
http://dx.doi.org/10.1162/003355302760193913


Bruelisauer, Marcel, Lorenz Goette, Zhengyi Jiang, Jan Schmitz, and Renate Schubert. 2018.

ªAppliance Specific Feedback and Social Comparisons: Evidence From a Field Experiment

on Electricity Saving.º SSRN Working Paper. 10.2139/ssrn.3299500.

Burkhardt, Jesse, Kenneth Gillingham, and Praveen K Kopalle. 2019. ªExperimental Evi-

dence on the Effect of Information and Pricing on Residential Electricity Consumption.º

Working Paper 25576, National Bureau of Economic Research.

Byrne, David, Lorenz Goette, Leslie Martin, Samuel Schoeb, Verena Tiefenbeck, and

Thorsten Staake. 2020. ªThe Behavioral Mechanisms of Habit Formation: Evidence from

a Field Experiment.ºTechnical report, University of Melbourne.

Cadmus-Bertram, Lisa A., Bess H. Marcus, Ruth E. Patterson, Barbara A. Parker, and Brit-

tany L. Morey. 2015. ªRandomized Trial of a Fitbit-Based Physical Activity Intervention for

Women.º American Journal of Preventive Medicine 49 (3): 414±418.

Carrie Armel, K., Abhay Gupta, Gireesh Shrimali, and Adrian Albert. 2013. ªIs disaggrega-

tion the holy grail of energy efficiency? The case of electricity.º Energy Policy 52 213±234.

10.1016/j.enpol.2012.08.062.

Carroll, James, SeÂan Lyons, and Eleanor Denny. 2014. ªReducing Household Electricity De-

mand Through Smart Metering: The Role of Improved Information about Energy Saving.º

Energy Economics 45 234±243.

Chetty, Raj. 2009. ªSufficient statistics for welfare analysis: A bridge between structural and

reduced-form methods.º Annu. Rev. Econ. 1 (1): 451±488.

Chetty, Raj, Adam Looney, and Kory Kroft. 2009. ªSalience and Taxation: Theory and Evi-

dence.º American Economic Review 99 (4): 1145±1177.

Chorus, Caspar G., Eric J. E. Molin, and Bert van Wee. 2006. ªUse and Effects of Advanced

Traveller Information Services (ATIS): A Review of the Literature.º Transport Reviews 26 (2):

127±149.

Darby, Sarah. 2006. ªThe Effectiveness of Feedback on Energy Consumption.º A Review for

DEFRA of the Literature on Metering, Billing and direct Displays 486 (2006): 26.

Degen, Kathrin, Charles Efferson, Fabian Frei, Lorenz Goette, and Rafael Lalive.

2013. ªSmart Metering, Beratung oder Sozialer Vergleich: Was Beeinflusst den Elek-

trizitÈatsverbrauch.º Final report to the Swiss Federal Office of Energy.

Donnal, J. S., and S. B. Leeb. 2015. ªNoncontact Power Meter.º IEEE Sensors Journal 15 (2):

1161±1169.

EC. 2014a. ªBenchmarking Smart Metering Deployment in the EU-27 with a Focus on Electric-

ity.º https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2014:356:FIN, Re-

port by the European Commission.

lxi

http://dx.doi.org/10.2139/ssrn.3299500
http://dx.doi.org/10.1016/j.enpol.2012.08.062
http://dx.doi.org/10.1016/j.enpol.2012.08.062
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2014:356:FIN


EC. 2014b. ªCost-Benefit Analyses & State of Play of Smart Metering Deployment in the EU-

27..º https://eur-lex.europa.eu/legal-content/EN/HIS/?uri=SWD:2014:189:FIN, Eu-

ropean Commission Staff Working Document.

Enke, Benjamin, and Thomas Graeber. 2023. ªCognitive uncertainty.º The Quarterly Journal of

Economics 138 (4): 2021±2067.

Fang, Ximeng, Lorenz Goette, Bettina Rockenbach, Matthias Sutter, Verena Tiefenbeck,

Samuel Schoeb, Thorsten Staake et al. forthcoming. ªComplementarities in Behavioral In-

terventions: Evidence from a Field Experiment on Energy Conservation.º Journal of Public

Economics.

Farhi, Emmanuel, and Xavier Gabaix. 2020. ªOptimal Taxation with Behavioral Agents.º

American Economic Review 110 (1): 298±336.

Faruqui, Ahmad, Doug Mitarotonda, Lisa Wood, Adam Cooper, and Judith Schwartz.

2011. ªThe Costs and Benefits of Smart Meters for Residential Customers.º IAEE Whitepa-

per, https://www.edisonfoundation.net/iee/Documents/IEE_BenefitsofSmartMeters_

Final.pdf.

Frederick, Shane W., Andrew B. Meyer, and Daniel Mochon. 2011. ªCharacterizing Percep-

tions of Energy Consumption.º Proceedings of the National Academy of Sciences 108 (8): E23±

E23.

Frondel, Manuel, Gerhard Kussel, and Stephan Sommer. 2019. ªHeterogeneity in the Price

Response of Residential Electricity Demand: A Dynamic Approach for Germany.º Resource

and Energy Economics 57 119±134.

Gabaix, Xavier. 2017. ªBehavioral Inattention.º National Bureau of Economic Research Working

Paper No. 24096.

Gerster, Andreas, and Michael Kramm. 2019. ªCorrect Me If You Can - Optimal Non-Linear

Taxation of Internalities.º CESifo Working Paper No. 7732.

Giordano, Vincenzo, Ijeoma Onyeji, Gianluca Fulli, M. JimÂenez, and Constantina Filiou.

2012. ªGuidelines for Cost Benefit Analysis of Smart Metering Deployment.º 10.2790/39435,

European Commission Joint Research Centre.
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