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Abstract

This paper studies assortative matching in a non-stationary search-and-matching model with

non-transferable payoffs. Non-stationarity entails that the number and characteristics of agents

searching evolve endogenously over time. Assortative matching can fail in non-stationary en-

vironments under conditions for which Morgan (1994) and Smith (2006) show that it occurs in

the steady state. This is due to the risk of worsening match prospects inherent to non-stationary

environments. The main contribution of this paper is to derive the weakest sufficient conditions

on payoffs for which matching is assortative. In addition to known steady state conditions, more

desirable individuals must be less risk-averse in the sense of Arrow-Pratt.

Keywords: non-stationary, assortative matching, random search, risk preferences, NTU

1 Introduction

Homer (Odyssey XVII, 218) claims that ’Gods join like things with like things.’ This is one of the

oldest mentions of positive assortative matching (PAM), where individuals with similar characteris-

tics tend to match with one another. Interest in PAM is widespread, partly because it is so frequently

observed.1 To understand the determinants of PAM, it is imperative to study individual match deci-

sions, as first recognized by Becker (1973). We follow his line of inquiry in a model with time-varying

search frictions that render finding a potential partner haphazard and time-consuming.

The theory of assortative matching amid search frictions is extensive (Smith (2006); Morgan

(1994); Shimer and Smith (2000); Atakan (2006)).2 However, and in line with most of the literature

*We thank Roland BÂenabou, Hector Chade, Daniel Garrett, Christian Hellwig, Johannes HÈorner, Bruno Jullien,

Stephan Lauermann, Lucas Maestri, Thomas Mariotti, Humberto Moreira, Stephen Morris, Pietro Ortoleva, Wolfgang

Pesendorfer, Andrew Rhodes, Francois SalaniÂe, Anna Sanktjohanser, Nicolas Schutz, BalÂazs Szentes, Jean Tirole and

Leeat Yariv as well as seminar audiences at ASU, Berlin, Bocconi, Chicago, CMU-Tepper, EPGE-FGV, LSE, UCL,

UIUC, Northwestern, Princeton, Stony Brook International Conference on Game Theory 2023, Tel-Aviv and Toulouse.

Bonneton gratefully acknowledges financial support from the German Research Foundation (DFG) through CRC TR 224

(Project B04).
²Vanderbilt University, nicolas.bonneton@gmail.com
³London School of Economics, c.sandmann@lse.ac.uk
1Examples include skilled workers employed by exporters (Davidson et al. (2014), Felbermayr et al. (2014)); marriages

along wealth, education, or desired fertility (Mare (1991), Charles et al. (2012), Rasul (2008)); friends or study partners

sharing altruism and risk attitudes (Jackson et al. (2023)).
2Chade et al. (2017) is a self-contained introduction to research on search and assortative matching.
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on heterogeneous agent models (Achdou et al. (2014)), formal results are confined to the steady state

where match prospects do not evolve, and individual expectations over the future remain unchanged

as time goes on. The assumption of stationarity, commonly thought to be without loss, makes com-

plex models more tractable.3 But it also eclipses time-changing intertemporal trade-offs (e.g., due to

seasonality or gradual market clearing) inherent in search.

This paper is the first to derive sufficient conditions for PAM in a non-stationary search-and-

matching model. Following Shimer and Smith (2000), PAM means that, upon meeting, higher types

match with sets of higher types. By deriving these conditions, we show that the steady state require-

ment is not always necessary for achieving tractability, nor is without loss: PAM fails in environments

where it occurs in the steady state.

We consider a continuous-time, infinite-horizon matching model with two populations, in which

pairs of vertically differentiated agents meet randomly at time-varying rates. Upon meeting, agents

observe each other’s type. We follow the NTU (non-transferable utility) paradigm where match pay-

offs solely depend on both partners’ types.4 If both agents agree, they permanently exit the search

pool and enjoy their respective match payoffs. Otherwise, they continue waiting for a more suitable

partner. Our model admits as a special case the classic pure search model without recall (McCall

(1970), Mortensen (1970)) when one side of the population values all partners the same and is thus

non-strategic.5

Much can be learned about PAM by studying the one-sided search problem. This is because

PAM can be equivalently re-cast in terms of within-population sorting: PAM holds if, for any two

agents from the same population, the higher type has a higher match acceptance threshold. Viewing

PAM through this one-sided search lens naturally leads to a partial equilibrium analysis exclusively

premised on optimal search and encompasses general equilibrium as a special case. To establish suffi-

cient conditions for PAM, it is enough to compare the value-of-search across agents in one population,

holding constant the meeting rates and match acceptance thresholds in the opposite population.

To date, the literature has derived equilibrium sorting conditions by drawing on an explicit char-

acterization of the value-of-search in the steady state. Non-stationary analysis forecloses this avenue,

as the time-varying value-of-search is a complicated object to handle.6 We circumvent the ensuing

tractability issues by using a revealed preference argument: superior types, being more desirable, can

exploit their superior match opportunities and replicate the expected match outcomes of any inferior

type. These deviations must be weakly dominated by the actual value-of-searchÐestablishing lower

bounds on superior types’ value-of-search. The lower bounds serve as the keystone of all of our

3For instance, Smith (2011) writes that ªAlmost all successful research on equilibrium search and matching has as-

sumed a steady-state model. For even the simplest of nonstationary environments can be notoriously intractableº.
4The NTU paradigm applies, for instance, in environments characterized by the absence of bilateral bargaining (e.g.,

rent-controlled housing, collective bargaining agreements in the labor market, see Felbermayr et al. (2014), or national

wage setting, see Hazell et al. (2022)) or those where bilateral bargaining does not precede match formation (e.g., the

classical hold-up problem in household bargaining or team production, see Mazzocco (2007), Rasul (2008), Doepke and

Kindermann (2019)).
5Smith (1999) studies a non-stationary pure search model without recall in which agents can quit employment and

return to the search pool at will.
6The value-of-search is characterized by an integral over an infinite time horizon taking as its argument the population

dynamics, which are themselves a solution to an infinite-dimensional system of integral equations.
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equilibrium sorting results. In particular, we provide a concise proof that unifies several results that

hold in stationary environmentsÐtwo well-known (Theorems 1 and 1′) and two that are new (Propo-

sitions 2 and 2′): if payoffs are log supermodular, then there is PAM when search is costly due to

time discounting as established by Smith (2006); if payoffs are supermodular, then there is PAM when

search entails an explicit time-invariant flow cost as established by Morgan (1994). Moreover, we

derive missing comparative static results in the pure search model under both discounting and explicit

search costs: under identical conditions, higher types pursue higher prizes.

In a non-stationary environment, steady state sufficient conditions are insufficient to guarantee

PAM. Here, unlike in the steady state, the lowest type accepted today need not be the worst possible

match outcome for all future times. As the search pool evolves over time, agents may face a less

favorable selection of types to match with in the future. And an agent who initially rejects a given

type, may accept an inferior type at a later stage. In effect, the agent’s decision problem involves

weighing a sure match payoff today against both the upside risk of matching with a superior type

and the downside risk of ending up with an inferior type in the future. Supermodularity and log

supermodularity do not resolve this trade-off. Log supermodularity implies that higher types gain

relatively more from being matched with higher types. But it also implies that higher types lose out

more from being matched with a lower type. We provide an example of a gradually clearing search

pool in which the latter effect dominates: lower, not higher types are choosier. PAM does not occur

despite log supermodular payoffs.

The main contribution of this article (Theorems 2 and 2′) is to derive an intuitive condition that

guarantees PAM in non-stationary environments. Proposition 3 and 3′ adapt this result to a pure search

model. We establish that if the respective steady state sufficient condition holds and payoffs satisfy

log supermodularity in differences, then there is positive assortative matching across all equilibria.

By log supermodularity in differences we mean that, for all y1 < y2 < y3 and x1 < x2, we have

π(y3|x2) − π(y2|x2)

π(y2|x2) − π(y1|x2)
≥
π(y3|x1) − π(y2|x1)

π(y2|x1) − π(y1|x1)
,

where π(y|x) represents agent type x’s payoff if matched with an agent of type y. Assuming differ-

entiability, this condition is equivalent to log supermodularity of dyπ(y|x). Log supermodularity in

differences emerges as the missing condition because it ensures that the upside of matching with a

higher type vis-à-vis the downside of matching with a lower type is always greater for higher types.

Observe that this result holds irrespective of how search cost is modeled. To ensure that PAM occurs

in non-stationary environments, we require log supermodularity in differences under both discounting

and explicit search cost.

We further prove that our conditions are the minimal ones under which matching away from the

steady state is assortative: if one of the two is upset locally, then there exist environments for which

PAM does not occur (Propositions 4 and 4′).

To interpret our result, it is instructive to link PAM to a ranking over risk preferences. In partic-

ular, when type x’s payoff over partners y corresponds to a utility function, log supermodularity in

differences defines a ranking over risk preferences in the sense of Arrow (1965)-Pratt (1964). Ac-

cordingly, if the respective steady state sufficient condition holds, our main contribution states that
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the weakest sufficient conditions for positive assortative matching is that more desirable individuals

are less risk-averse.7 In applied models, by contrast, the curvature of the payoff function may be

unrelated to risk preferences.8

1.1 Related Work

Previous forays into non-stationary environments rely on two-type models or stylized payoffs.9 Re-

search shows that a sorting externality can give rise to endogenous cyclical equilibria (Burdett and

Coles (1998)), render welfare-maximizing matching decisions non-stationary (Shimer and Smith

(2001)), and sustain multiple equilibrium paths (Boldrin et al. (1993)). A notable exception is Wu

(2015), who reports a limit result on the stability of equilibrium matches in a (non-stationary) gradu-

ally clearing search pool as search frictions vanish.

ªWhen is matching assortative?º is the central question in the theory of decentralized matching.

Becker (1973) famously studied it in an idealized frictionless marriage market. His analysis empha-

sizes the role of pre-match negotiation in sorting. Under ªcomplete rigidityº in the division of output

at the moment of match creation (the NTU paradigm), e.g., due to a hold-up problem, PAM occurs

when match payoffs are increasing in the partner’s type.10 Under ªcomplete negotiabilityº at the

moment of match creation (the TU paradigm), PAM occurs when match output satisfies increasing

differences.11,12 Various authors have since extended Becker’s initial analysis of frictionless match-

ing markets.13 Most related to ours is the strand of literature that takes into account search frictions,

hitherto with an exclusive focus on the steady state.14 A common finding is that Becker’s conditions

7There is mounting empirical evidence that characteristics commonly attributed to desirability such as cognitive skills,

education, health or income strongly correlate with risk preferences. See Dohmen et al. (2010) and Dohmen et al. (2011),

as well as Guiso and Paiella (2004), Frederick (2005), Benjamin et al. (2013) and Noussair et al. (2013) for evidence. For

instance, Dohmen et al. (2010) find that individuals with higher cognitive ability are both more willing to take financial

risks and more patient. Moreover, Dohmen et al. (2011) find significant correlations between financial and non-financial

measures of risk-aversion. This suggests that those individuals to which society attributes the greatest desirability are also

the greatest risk-takers in matching markets.
8Online Appendix C illustrates this point by examining marriages between prospective partners who anticipate a hold-

up problem over fertility decisions once matched. Match payoffs derive from a model due to Rasul (2008) wherein spouses

Nash bargain over transfers after female fertility decisions have been made. The curvature of payoffs is unrelated to risk

preferences and exclusively depends on the relevant threat point in the Nash bargaining problem over ex-post transfers.
9Recent applied papers, such as Baley et al. (2022) and Lise and Robin (2017), employ new modeling paradigms and

numerical analysis to gain quantitative insights into non-stationary matching dynamics.
10More generally, Legros and Newman (2010) show that a co-ranking condition of types that requires local monotonic-

ity of payoffs only is necessary and sufficient for PAM.
11This condition is commonly thought of as complementarity between assortative types. Increasing differences also

plays a role for comparative statics: there is no less PAM with a more complementary production function Cambanis et al.

(1976); more recently, Anderson and Smith (2024) impose additional structural assumptions under which they prove the

stronger result that there is more PAM with a more complementary production function.
12Legros and Newman (2007) consider imperfect transfers that constitute a middle ground between the NTU and TU

paradigm.
13The TU paradigm in particular has received great attention. Here the equilibrium matching coincides with the output-

maximizing matching, allowing techniques from optimal transport to aid the analysis. See for instance Choo and Siow

(2006), Chiappori et al. (2017) for the purpose of econometric analysis and Lindenlaub (2017) for studying PAM when

agents’ types are multidimensional.
14Following Postel±Vinay and Robin (2002), an applied literature incorporating search frictions in labor economics

focuses on match-to-match transitions and simplifies the complexity of initial match creation by allowing firms to make

4



alone are insufficient to guarantee PAM, the exception being Atakan (2006). See Smith (2006) (time

discounting) and Morgan (1994) (explicit search cost) for the NTU paradigm as well as Shimer and

Smith (2000) (time discounting) and Atakan (2006) (explicit search cost) for the TU paradigm where

payoffs are determined via Nash bargaining.15 Smith (2011) reviews this literature.16

Log supermodularity in differences (LSD), often framed as a ranking of risk preferences (cf. Ar-

row (1965)-Pratt (1964) and Diamond and Stiglitz (1974)), plays a prominent role in the literature on

monotone comparative statics.17 It informs various sorting results in moral hazard, test design, mecha-

nism design without transfers and menu pricing.18 The search-and-matching literature, chiefly Shimer

and Smith (2000) in the TU paradigm, has been an early adopter. Smith’s (2011) review highlights

that in their paper, the ranking of utility functions that sustains increasing choices under uncertainty

is key to deriving conditions for PAM. While an as-if interpretation in the TU paradigmÐmarginal

match output is re-cast as a utility function of an auxiliary decision makerÐour paper shows that

theirs is a prescient insight that applies literally to match payoffs in the NTU paradigm: away from

the steady state, match payoffs satisfying LSD is the missing condition that guarantees PAM.

The link between risk preferences and assortative matching has also been made in frictionless con-

texts in which the purpose of matching is to share risk that materializes after19 match creation (Serfes

(2005), Chiappori and Reny (2016), Schulhofer-Wohl (2006) and Legros and Newman (2007)). These

papers suggest that risk-loving individuals match with risk-averse ones to absorb the risk of the latter.

Search frictions introduce risk that predates match creation.

2 The Model

There are two distinct populations, denoted X and Y , each containing a continuum of agents that

seek to match with someone from the other population. Each agent is characterized by a type which

belongs to the unit interval [0, 1].20 Throughout, we denote by x a type of an agent from population

X, and y a type of an agent from population Y . Symmetric constructions apply throughout.

take±it-or±leave±it wage offers conditional on worker characteristics. Lindenlaub and Postel-Vinay (2024) build on this

framework to identify the dimensions in which matching is assortative when agent characteristics are multi-dimensional.
15Eeckhout and Kircher (2010) depart from random search to derive sufficient conditions for PAM in a model with

directed search. One key difference is that the sellers cannot discriminate their prices based on the buyer’s type. This may

be attributed to information frictions that are not present in the random search framework.
16In more recent work, Bonneton and Sandmann (2024), we expand the definition of positive assortative matching

by allowing intermediate matching probabilities upon meeting as driven by unobserved heterogeneity. We show that in

the TU paradigm, the literature’s focus on binary match probabilities, zero or one, masks a shift away from assortative

matching as search frictions rise. Since search frictions erode more the bargaining power of more productive agents,

agents prioritize waiting for a more productive agents over matching with prospective partners of similar rank. On a

technical level, this paper introduces a different inductive mimicking argument that we also rely on in Sandmann and

Bonneton (2023).
17In the terminology pioneered by Karlin (1968), log supermodularity (LS) is referred to as total positivity of order 2

(STP2).
18See Chade and Swinkels (2019), Moreno de Barreda and Safonov (2024), Kattwinkel (2019) and Sandmann (2023)).
19Chade and Lindenlaub (2022) study how risk that precedes match creation affects risk-averse workers’ skill invest-

ments. Atakan et al. (2024) study efficiency of skill investments in a search-and-matching model.
20Our focus on the continuum is without loss. Results on PAM extend naturally to the analogous model with finitely

many types or agents.
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2.1 Individual Problem

Agents engage in time-consuming and random searches for partners. When two agents meet, they

observe each other’s type. If both agree, they match and exit the search pool; otherwise, they continue

searching for a more suitable partner. Each agent maximizes her expected present value of payoffs,

discounted at rate ρ > 0.

Search. Meetings follow an (inhomogeneous) Poisson point process. Such a process is characterized

by the time-variant (Poisson) meeting rate λt = (λX
t , λ

Y
t ) so that λX

t (y|x) is the rate at which type

x meets type y agents at time t. We assume that higher types are more likely to meet prospective

partners:

Assumption 1 (hierarchical search). Higher types meet other agents at a weakly faster rate; that is,

λX
t (y|x2) ≥ λX

t (y|x1) for x2 > x1 and all y and λY
t (x|y2) ≥ λY

t (x|y1) for y2 > y1 and all x.

Assumption 1 encompasses the commonly studied case of anonymous search, where the meeting

rate does not depend on one’s type. However, it also allows for high-type-specific advantages in the

search process.21

Match payoffs. Agents derive a time-independent one-time payoff if matched with another agent and

zero if unmatched: denote πX(y|x) > 0 the lump-sum payoff of agent type x from population X when

matched with agent type y from population Y . Payoffs are bounded and continuous in the partner’s

type. We further assume that types are vertically differentiated.

Assumption 2 (vertical differentiation). Match payoffs y 7→ πX(y|x) and x 7→ πY(x|y) are non-

decreasing in the partner’s type, i.e., πX(y2|x) ≥ πX(y1|x) for y2 > y1 and all x, and πY(x2|y) ≥ πY(x1|y)

for x2 > x1 and all y.

Assumptions 1 and 2 embed two advantages for higher-ranked agent types. First, they meet

prospective partners at a weakly faster rate. Second, they are accepted by a greater number of prospec-

tive partners. Both assumptions are key to deriving a bound on the value-of-search under mimicking

(Lemma 1).

Value-of-search. Upon meeting another unmatched agent, x weighs the immediate match payoff

πX(y|x) against the value-of-search VX
t (x). Naturally, the (weakly dominant22) optimal matching deci-

sion is to accept to match with y whenever the payoff exceeds the option value-of-search:

πX(y|x) ≥ VX
t (x). (1)

The optimal stopping rule determines the match indicator function:

mt(x, y) =






1 if πX(y|x) ≥ VX
t (x) and πY(x|y) ≥ VY

t (y),

0 otherwise.
(2)

21Note that homophily (as in Alger and Weibull (2013)), where agents of similar characteristics meet more frequently,

is not encompassed by our analysis.
22By focusing on weakly dominant acceptance rules, we discard trivial equilibria in which agents mutually reject

advantageous matches.
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We denote yt(x) the infimum type with whom x is willing to match at time t so that πX(y|x) ≥ VX
t (x).

As types are vertically differentiated, an agent type x is willing to match with any y > yt(x) at time t.

A symmetric construction applies to xt(y).

The value-of-search is defined as the discounted expected future match payoff if currently un-

matched:

VX
t (x) =

∞∫

t

1∫

0

e−ρ(τ−t)πX(y|x) pX
t,τ(y|x)dy dτ, (3)

where pX
t,τ(y|x) is the density of future matches with y at time τ conditional on x being unmatched at

time t. This is a standard object and is characterized by the matching rate λX
τ (y|x)mτ(x, y).23

2.2 General Equilibrium

Our main result characterizes how match decisions differ across agents. In line with the literature,

we consider a partial equilibrium approach Ðanalyze the individual optimization problem when the

meeting rate and match opportunities are exogenously givenÐto establish sufficient conditions under

which more desirable individuals set higher search cut-offs. General equilibrium, described in the

following, emerges as a special case of this analysis.

Endogenous meetings. Denote µt = (µX
t , µ

Y
t ) the state so that for any U ⊆ [0, 1] the mass of types

x ∈ U is
∫

U
µX

t (x)dx. The initial time 0 distribution is given by µ0.24 Then agent type x’s time t

meeting rate λX
t (y|x) is a function of the underlying state variable µt and time t. Coherence demands

that the number of meetings of agent types x with agent types y must be equal to the number of

meetings of agent types y with agent types x:25

λX
t (y|x)µX

t (x) = λY
t (x|y)µY

t (y).

Evolution of the search pool. Population dynamics are governed by entry and exit. The rate at which

an individual agent type x matches and exits the market at time tÐthe hazard rateÐis
1∫

0

mt(x, y)λX
t (y|x)dy.

Agent type x’s time t entry rate ηX
t (x) is a function of time t and the state µt. We have:

µX
t+h(x) = µX

t (x) +

t+h∫

t

{

− µX
τ (x)

1∫

0

λX
τ (y|x)mτ(x, y)dy + ηX

τ (x)

}

dτ. (4)

The economy is non-stationary whenever the integrand is non-zero so that µt+h , µt.

23Formally, pX
t,τ(y|x) = λX

τ (y|x)mτ(x, y) exp
{

−
∫ τ

t

∫ 1

0
λX

r (z|x)mr(x, z)dzdr}. Refer to Appendix A.1 in Sandmann and

Bonneton (2023) for a formal derivation.
24Functions introduced are Lebesgue measurable throughout. This implies that the type distribution is atomless.
25To better understand the concepts of coherence and hierarchical search, write (without loss of generality) λX

t (y|x) =

ϕt(x, y)µY
t (y) and λY

t (x|y) = ψt(x, y)µX
t (x). Coherence then implies that ψt(x, y) = ϕt(x, y), while hierarchical search further

implies that these functions are non-decreasing in both arguments. Moreover, if the populations are symmetric (and the

equilibrium is symmetric), these functions are symmetric as well, i.e., ψt(x, y) = ψt(y, x).
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Equilibrium. An equilibrium of the search-and-matching economy of given initial search pool pop-

ulation µ0 is a triple (µ,V,m), solution to (2), (3) and (4). In a companion paper, Sandmann and

Bonneton (2023), we show that a non-stationary search equilibrium exists under minimal regularity

conditions.26

Note that our model relaxes common assumptions made in the literature, e.g. the economy is in

the steady state, there are symmetric populations, search is anonymous and meeting and entry rates

are given by specific functional forms. This level of generality helps identify the key assumptions

to study equilibrium sorting: hierarchical search (Assumption 1) and vertically differentiated types

(Assumption 2).27

3 Illustrative Example: One-block Block Segregation

To illustrate the richness of non-stationary matching patterns, we first characterize dynamic sort-

ing in a highly-stylized non-stationary matching market: a closed market where future meetings be-

come rarer over time, t 7→ λX
t (y|x), λY

t (x|y) are decreasing, and agents have identical preferences over

matched partners, πX(y|x) = y and πY(x|y) = x.28 Our example shows that block segregation (see

Smith (2006) and references therein) and perfect sorting can co-exist for different segments of the

economy.30

A formal characterization of equilibrium matching (which is a corollary of our main result) is

deferred to Proposition 5 in Appendix C. At the top, matching patterns bear resemblance to the steady

state phenomenon of block segregation: at any moment in time, expanding sets of the most desirable

types, [y
t
, 1] and [x

t
, 1], form a single matching class; agents within this class exclusively match with

each other (see Figure 1b for an overlay of matching sets at different moments in time). Pooling

emerges because individuals with the same preferences and identical match opportunities will make

the same choices. Expansion of this set whereby t 7→ y
t
, x

t
is decreasing reflects declining meeting

rates that make agents less selective over time. Observe that unlike at the top, intermediate types

experience a discontinuous improvement in their match opportunities once the most desirable agents

begin to accept them. This explains why match acceptance thresholds prior to joining the exclusive

matching class rise in time (see Figure 1a). Matching decisions are ordered in the cross-section,

26Also see Shimer and Smith (2000), Smith (2006), Lauermann et al. (2020) in the context of a stationary equilibrium

with a continuum of agent types.
27The meeting technology λ encompasses the most commonly studied meeting rates found in the literature: linear (e.g.

Mortensen and Pissarides (1994), Burdett and Coles (1997)) and quadratic search technologies (e.g. Shimer and Smith

(2000) and Smith (2006)). The entry rate η encompasses several natural entry rates such as no entry and constant flows of

entry (as in Burdett and Coles (1997)). In addition, entry may be generated by exogenous match destruction (as in Shimer

and Smith (2000) and Smith (2006)).
28As an example, consider the yearly junior academic job market where the historic norm of not reneging on accep-

tances resembles our framework with permanent matches.
29Matching patterns are derived in general equilibrium where the rate at which agents meet some type y is proportional

to the number of unmatched agents µY
t (y) in a gradually emptying search pool. Parameter values are λX

t (y|x) = 5µY
t (y),

ηX
t (y|x) = 0 and ρ = 0.3.

30Equilibrium behavior mirrors a result in Smith (1992) who considers a model with opportunistic match destruction:

lesser types quit temporary matches when they become acceptable to the remaining top types. The key challenge in his

paper is that match acceptance does not follow a threshold rule, so characterizing the non-stationary equilibrium becomes

forbiddingly difficult.
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time t

yt(x)

yt(x2)

yt(x1)

y
t

(a) Match acceptance thresholds over time t

y

x

y
t1

y
t2

y
t3

y
t4

(b) Match acceptance sets at t ∈ {t1, t2, t2, t4}

Figure 1: Non-stationary sorting in a closed market with no new entrants

Populations are symmetric so that x
t
= y

t
. (a) The highest acceptance threshold y

t
is depicted by the boundary of the color

bands. Types x above y
t

accept all other y types above y
t
. Color bands below depict the (perfectly ordered) acceptance

thresholds yt(x) chosen by types x below y
t
. Darker colors correspond to higher types. We illustrate this by highlighting

the acceptance thresholds for types x1 and x2: yt(x2) is shown with a dashed line, and yt(x1) with a dotted line. Once

types are accepted by all agents, their acceptance thresholds coincide with y
t
. Observe that as agents anticipate joining

the matching block at the top, they become choosier. (b) Initially (darker color), the exclusive matching class at the top

is small. Over time, as the number of desirable agents shrinks, this highest matching class expands to include ever more

agents (matching sets depicted using lighter colors).29

by contrast. At all times, more highly ranked individuals are weakly more selective in their match

acceptances. The next section expands upon this observation.

4 Positive Assortative Matching

This section presents our main results. We derive the weakest sufficient conditions for positive assor-

tative matching (PAM) in non-stationary environments.

4.1 Definition of PAM

PAM means that agents of similar characteristics or rank tend to match with one another. When

finding a partner entails search, the flow number of created matches depends on both the number of

meetings that take place and individual match decisions. We use the definition of PAM by Shimer and

Smith (2000) that disentangles physical search frictions from individual matching decisions. They

look at hypothetical matches that would be formed if a meeting took place. Formally, define Ut ≡
{

(x, y) : mt(x, y) = 1
}

the set of pairs who are willing to form a match at time t. Matching is assortative

if, when any two agreeable matches in Ut are severed, both the greater two and the lesser two types

can be agreeably rematched.
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Definition 1 (PAM, (Shimer and Smith (2000))). There is PAM at time t if (x1, y2) ∈ Ut and (x2, y1) ∈

Ut imply that (x1, y1) ∈ Ut and (x2, y2) ∈ Ut for all types x2 > x1 and y2 > y1.

PAM can be recast in more intuitive terms: higher types match with sets of superior types; or,

equivalently, higher types are relatively more selective about who they match with. The following

proposition31 develops this idea formally. Recall that yt(x) is the infimum type with whom x is willing

to match at time t so that πX(y|x) ≥ VX
t (x).

Proposition 1. (i) If x 7→ yt(x) and y 7→ xt(y) are non-decreasing then there is PAM at time t. (ii) If

there is PAM at time t then x 7→ yt(x) and y 7→ xt(y) are non-decreasing for all types whose individual

matching sets UX
t (x) ≡

{

y : mt(x, y) = 1} and UY
t (y) ≡

{

x : mt(x, y) = 1} are non-empty.

4.2 The Mimicking Argument

To derive equilibrium sorting properties, we need to compare the value-of-search across types. Such a

comparison is challenging, as the law of motion is intractable in non-stationary environments, making

it impossible to characterize the value-of-search in closed form. To circumvent this problem, we apply

a revealed preference argument, which we refer to as the mimicking argument.32

We first note that the value-of-search, defined in Equation (3), admits an integral representation

over payoffs that subsumes the time dimension:

VX
t (x) =

1∫

0

πX(y|x)QX
t (y|x)dy where QX

t (y|x) ≡

∞∫

t

e−ρ(τ−t) pX
t,τ(y|x)dτ. (5)

Here QX
t (y|x) corresponds to a density that does not integrate to one:

∫

U
QX

t (y|x)dy represents type x’s

discounted probability of forming a match with some other agent type y ∈ U ⊆ [0, 1] some time in

the future.

Then observe that higher agent types have better match opportunities. The reasons are twofold.

Since match payoffs are monotone (Assumption 2), an agent that is willing to match with a lower

agent type x1 is also willing to match with a higher agent type x2. And since search is hierarchical

(Assumption 1), x2 meets other agents at a faster rate. Thus, agent type x2 can in expectation match

with all the agent types (and possibly even other, more attractive ones) that agent type x1 is matching

with. Both observations help establish the following lemma,33 which is the keystone of our proofs for

the sorting results in Theorems 1, 1′, 2 and 2′.

Lemma 1 (mimicking argument). The value-of-search admits the following lower bound:

VX
t (x2) ≥

1∫

0

πX(y|x2)QX
t (y|x1)dy for all x2 > x1 ∈ [0, 1]. (6)

31Shimer and Smith (2000) prove this in the steady state with symmetric populations.
32Mimicking has a long tradition in economics, notably in the theory of incentives (cf. Laffont and Martimort (2002)).

See especially Lauermann (2013) in the context of a stationary TU matching model and Kirkegaard (2009) in the context

of asymmetric first-price auctions. Mimicking arguments also play a major role in our companion paper, Sandmann and

Bonneton (2023), where we show that a non-stationary equilibrium exists under minimal regularity conditions.
33Lemma 5, and thereby all subsequent results on PAM, readily extends to an environment where higher types are more

patient as expressed by their discount factor, i.e., ρ(x2) < ρ(x1) for all x2 > x1.
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To prove the lemma we define an auxiliary decision problem that allows more highly ranked

agents x2 to exactly replicate (ªmimickº) a lesser ranked agent x1’s matching rate. Such mimicking

is feasible because higher types have better match opportunities. Then, by revealed preferences,

mimicking leads to weakly smaller expected payoffs than following the optimal stopping rule (1).

Proof. Fix x ∈ [0, 1] and t ∈ R+. And let QX
t (x) be the space of discounted probabilities y 7→ Qt(y) ∈

R+ generated by some matching rate (τ, y) 7→ ντ(y) that is feasible, i.e., ντ(y) ≤ λX
τ (y|x) and acceptable

to y, i.e., ντ(y) = 0 if πY(x|y) < VY
τ (y). (Following standard arguments, the matching rate (τ, y) 7→ ντ(y)

defines the match density via p̃X
t,τ(y|x) = ντ(y) exp

{

−
∫ τ

t

∫ 1

0
νr(z)dzdr

}

, whence the discounted match

probability via Q̃t(y) =
∫ ∞

t
e−ρ(τ−t) p̃X

t,τ(y)dτ.) By construction, QX
t (·|x) ∈ QX

t (x) and

VX
t (x) = sup

Q∈Qt(x)

1∫

0

πX(y|x)Q(y)dy.

Assumptions 1 and 2 imply that if y 7→ ντ(y) is feasible and acceptable for x1, then it is feasible and

acceptable for x2. Hence, Qt(x1) ⊆ Qt(x2) and

VX
t (x2) ≥ sup

Q∈Qt(x1)

1∫

0

πX(y|x2)Q(y)dy.

The assertion of the lemma then follows because QX
t (·|x1) ∈ Qt(x1). □

4.3 Stationary Environment

We first use the mimicking argument to revisit the known steady state analysis. This allows us to

make transparent how the assumption of stationarity facilitates PAM. A condition on payoffs, log

supermodularity, is sufficient for PAM in stationary environments:

Definition 2 (Log supermodularity). Population X’s payoffs are log supermodular if for all y2 > y1

and x2 > x1,

πX(y2|x2)

πX(y1|x2)
≥
πX(y2|x1)

πX(y1|x1)
.

This condition means that higher types stand relatively more to gain from matching with higher

types. If the inequality is reversed, payoffs are log submodular. We find it most instructive to view

log supermodular payoffs as a property of time preferences: In a toy model with two agents that have

the same discount factors, the higher type will be more inclined to choose a delayed, certain payoff

over an immediate one if and only if payoffs are log supermodular.

The following result is due to Smith (2006).

Theorem 1 (stationary PAM, Smith (2006)). Suppose that both populations’ payoffs are log super-

modular. Then there is positive assortative matching (PAM) in any stationary equilibrium.

Smith’s original proof, motivated by the analysis of block segregation, proceeds recursively from

the highest type to the lowest type. Here, we present a shorter proof of a more granular result, Propo-

sition 2, that is based on Lemma 1, which addresses the sorting patterns within a single population.

11



We deliver two new insights. First, our proof of Proposition 2 makes explicit why the sufficiency

of log supermodular payoffs for PAM is specific to stationary environments: our proof uses the fact

that, in the steady state, agents always match with a weakly better type than the most desirable type

rejected previously. Second, our proof re-frames the across-population matching problem as a within-

population sorting problem where match acceptance from the opposite population is held constant.

This shows that equilibrium behavior on one side of the market is not a pre-condition for sorting on

the other.

Proposition 2. Suppose that population X’s payoffs are log supermodular. Then, in any stationary

environment, higher types x have a higher search cutoff, y(x2) ≥ y(x1) for all x2 > x1.

Theorem 1 follows from here: PAM holds according to Proposition 1 (i) when higher types from

both populations have higher search cutoffs.

Observe that PAM is but one implication of Proposition 2: when one side of the population acts

non-strategically because of valuing all partners the same, πY(x1|y) = πY(x2|y) for all x1, x2, our model

simplifies to the classic pure search model without recall (McCall (1970), Mortensen (1970)). In

effect, under log supermodular payoffs, Proposition 2 asserts that under stationary search, higher

types x pursue higher prizes (goods, assets, ideas...) y.

Proof of Proposition 2. We prove the contrapositive: if some lower types have higher search cut-

offs, it implies that payoffs are not log supermodular. Let x2 > x1 be such that yt(x2) < yt(x1) (the

environment being stationary, this applies to all moments in time). This means that for any type

y ∈ (yt(x2), yt(x1)), agent type x2 accepts y and x1 rejects y; whence, due to (1), πX(y|x1) < VX
t (x1) and

πX(y|x2) ≥ VX
t (x2). Then recall the integral representation of the value-of-search (5) and apply the

mimicking argument (Lemma 1):

1∫

0

πX(y|x1)QX
t (y|x1)dy > πX(y|x1) and

1∫

0

πX(y|x2)QX
t (y|x1)dy ≤ πX(y|x2). (7)

In the steady state, agents’ matching decisions do not change over time. This implies that agents

always match with a better type than any of the types that were rejected previously. Formally,

QX
t (y|x1) = 0 for all y < yt(x1) including y, and we may adjust the bounds of integration in (7)

accordingly. Finally, combining both inequalities yields

1∫

y

πX(y|x1)

πX(y|x1)
QX

t (y|x1)dy >

1∫

y

πX(y|x2)

πX(y|x2)
QX

t (y|x1)dy, (8)

which can only hold if match payoffs are not log supermodular. □

4.4 Non-Stationary Environments

In a non-stationary environment, log supermodularity is insufficient to guarantee PAM. Here, unlike

in the steady state, the lowest type accepted today need not be the worst possible match outcome for

all future times. As the search pool evolves over time, agents may face a less favorable selection of
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types to match with in the future; an agent who rejects a given type initially may accept an inferior

type at a later stage. This requires an agent to weigh the current acceptance decision against both the

upside risk of matching with a superior type and the downside risk of ending up with an inferior type

in the future.

Log supermodularity does not resolve this trade-off. On the one hand, payoff log supermodularity

implies that higher types relatively better like to be matched with higher types. On the other hand,

it stipulates that higher types stand more to lose from matching with a lower type. Depending on

which effect dominates, higher or lower types are choosier. In particular, the higher type’s fear of the

worst outcome may upset PAM, even though payoffs are log supermodular. To build intuition, we

first develop a simple three-type example that illustrates this point (see Figure 3 for an example with

a continuum of types).

Example (PAM does not occur in a gradually clearing matching market). We construct a three-type

example in which PAM is upset despite log supermodular payoffs. Populations are symmetric. The

market gradually clears with no entrants joining the search pool (ηt(x) = 0). Assuming quadratic

search (λt(x′|x) = µt(x′)), meetings are less and less likely to occur over time. Then consider payoffs

that are increasing and log supermodular. The intermediate x2 and high type x3 payoffs are given as

follows where ϵ > 0 is small:

x3 x2 x1

π(·|x3) 10 + ϵ 1 ϵ

π(·|x2) 10 1 1 − ϵ

In effect, the high type x3 is highly averse to matching with the lowest type x1. The intermediate

type, by contrast, is almost indifferent between the lesser two types. Low type payoffs are not further

specified Ðthe lowest type accepts matching with everyone at all times whenever payoffs are log

supermodular (Corollary 1 in Appendix A.2).34 The example is solved numerically35 and illustrated

in Figure 2. Time is on the horizontal axis and the value-of-search on the vertical axis.36 To facilitate

the comparison of match acceptance thresholds across types, we use the payoff of matching with the

medium type as a reference point on the horizontal axis. Hence, agents accept matching with the

medium type whenever their value-of-search is above the horizontal axis. Owing to the gradually

decreasing meeting rate, the high type’s match opportunities deteriorate steadily. At the beginning of

time she matches with high type agents x3 only. But after time t1, with only few agents left in the search

pool, she also accepts to match with agents of intermediate type x2. The intermediate type initially

accepts fellow agents of type x2. Yet, anticipating the possibility of matching with the highest type, x2

experiences a surge in her value-of-search. This leaves her not only to reject the lowest, but also her

own type between t0 and t1. (One could say that time interval [t0, t1] is spent away from the search

pool: Agents of type x2 do not match with anyone!) Between time t1 and t2 type x2, is the choosiest:

34As an example, one can consider π(x3|x1) = 10 − ϵ, π(x2|x1) = 1, π(x1|x1) = 1 − ϵ
2
.

35When the meeting rate is quadratic, solving the HJB differential equation characterizing the value-of-search in closed

form is typically not possible. Closed-form solutions are reported in the examples on necessity (see Proposition 4).
36The equilibrium is constructed backward in time, starting with an almost empty search pool far into the future. We

further consider ϵ = 0.01 and ρ = 1.
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Vt(x3)

Vt(x2)
π(x2|·) time t

t0 t1 t2

Figure 2: PAM is upset despite log supermodular payoffs Ðthree type example
.

the highest type finds the intermediate type acceptable, whereas the intermediate type does not. This

upsets PAM.

The main contribution of this paper is to establish sufficient conditions for which PAM occurs

away from the steady state. First, a definition is in place.

Definition 3. Population X’s payoffs are log supermodular in differences if for all y3 > y2 > y1 and

x2 > x1,

πX(y3|x2) − πX(y2|x2)

πX(y2|x2) − πX(y1|x2)
≥
πX(y3|x1) − πX(y2|x1)

πX(y2|x1) − πX(y1|x1)
.

If the inequality holds with the reverse sign, we say that payoffs satisfy log submodularity in

differences. Log supermodularity in differences, a term that we introduce here, means that higher

types stand relatively more to gain from matching with a high type than they stand to lose from

matching with a low type. Log supermodularity in differences is equivalent to dyπ
X(y|x) being log

supermodular, insofar as such a derivative exists.37,38 The payoffs in the preceding example do not

satisfy this condition, for the downside loss from matching with x1 instead of x2 is much larger for

higher types:
π(x3|x3) − π(x2|x3)

π(x2|x3) − π(x1|x3)
=

9 + ϵ

1 − ϵ
<

9

ϵ
=
π(x3|x2) − π(x2|x2)

π(x2|x2) − π(x1|x2)
.

We can interpret the payoff π(·|x) ≡ ux(·) as agent type x’s utility function. This affords us an

interpretation of log supermodularity in differences in terms of risk preferences. More specifically,

Pratt (1964) shows that given arbitrary x2 > x1 the following statements are equivalent:

1. Agent type x1 is weakly more risk-averse than agent type x2; that is, x1 does not accept a lottery

that is rejected by x2.
39

2. For any y3 > y2 > y1 we have

ux2
(y3) − ux2

(y2)

ux2
(y2) − ux2

(y1)
≥

ux1
(y3) − ux1

(y2)

ux1
(y2) − ux1

(y1)
.

37See Proposition 7 in the textbook by Gollier (2004) for a proof.
38Log supermodularity is a condition that affects both the level and the curvature of a function. By contrast, log

supermodularity in differences governs the curvature of a function only and is invariant to its level. In particular, if πX(y|x)

is log supermodular in differences, then so is πX(y|x) − πX(0|x). Moreover, πX(y|x) − πX(0|x) is also log supermodular,

whereas πX(y|x) need not be.
39Formally, it holds that if

∫ 1

0
ux1

(y)dF(y) ≥ (>) ux1
(y), then also

∫ 1

0
ux2

(y)dF(y) ≥ (>) ux2
(y).
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x

y

Figure 3: PAM is upset despite log supermodular payoffs

Note: Consider a rapidly clearing search pool with no entry. Symmetric payoffs are π(y|x) = exp(1/16y − 2x8(1 − y)8).

These are log supermodular and log submodular in differences. The figure depicts how match acceptance sets shrink over

time: darker sets represent match acceptance sets at an earlier date. Initially, only the highest and the lowest types match.

Intermediate types do not match up until they are accepted by the highest types. PAM fails initially because, prior to

reaching an almost empty search pool, the most desirable agents are not the choosiest. Visually, at the top, the boundary

of matching sets is decreasing.
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The use of this result is twofold. First, it features prominently in the proof of Theorem 2. Second,

it provides a simple interpretation of log supermodularity in differences: lesser ranked agent types

are also more risk-averse. Here we are dealing with payoffs of course, not utilities. This is why

we caution against viewing log supermodularity in differences solely in the guise of risk-aversion.

The curvature of π is implied by the specific model in mind. It may consequently be derived from

economic fundamentals rather than risk preferences.

Having established the terminology we can now state the main result:

Theorem 2 (non-stationary PAM). Suppose that both populations’ payoffs are log supermodular and

log supermodular in differences. Then there is positive assortative matching (PAM) at all times in any

(non-stationary) equilibrium.

The proof of this theorem directly follows from a more granular statement about within-population

sorting, where higher types from one population are choosier about their matches. Similar to the

steady state, increasing choosiness can also be interpreted through the lens of pure search theory

(McCall (1970), Mortensen (1970)). Theorem 2 follows, as PAM holds when higher types in both

populations have higher search cutoffs.

Proposition 3. Suppose that population X’s payoffs are log supermodular and log supermodular in

differences. Then, higher types x have a higher search cutoff, yt(x2) ≥ yt(x1) for all x2 > x1.

A clear division of labor emerges between the two sufficient conditions: One governs time, the

other risk. Log supermodularity in differences ensures that higher types are more willing to bear

the risk, while log supermodularity ensures that higher types are more willing to endure the delay

associated with prolonged search.

Proof. We prove, as in the stationary case, the contrapositive. Let x2 > x1 be such that yt(x2) < yt(x1)

at some time t. This means that for any y ∈ (yt(x2), yt(x1)), agent type x2 accepts y and x1 rejects

y. Using identical arguments as in the proof of Proposition 2, i.e., representation (5) and Lemma 1,

yields
∫ 1

0

πX(y|x1)QX
t (y|x1)dy > πX(y|x1) and

∫ 1

0

πX(y|x2)QX
t (y|x1)dy ≤ πX(y|x2). (9)

Next, define y such that πX(y|x1)
∫ 1

0
QX

t (y|x1)dy = πX(y|x1). Since QX
t (·|x1) integrates to less than one,

y > y. (To see that such y ∈ [0, 1] exists one must prove that πX(1|x1)
∫ 1

0
QX

t (y|x1)dy ≥ πX(y|x1) >

πX(y|x1)
∫ 1

0
QX

t (y|x1)dy and apply the intermediate value theorem. The second inequality is trivially

true. If the first inequality did not hold, then it must be that
∫ 1

0

[

πX(y|x1)−πX(1|x1)
]

QX
t (y|x1)dy > 0 due

to (9) and in spite of non-decreasing match payoffs.) Log supermodularity implies that 1
/ ∫ 1

0
QX

t (y|x1)dy =
πX(y|x1)

πX(y|x1)
≤

πX(y|x2)

πX(y|x2)
. Or, equivalently,

πX(y|x2) ≤ πX(y|x2)

∫ 1

0

QX
t (y|x1)dy. (10)

Finally, normalize QX
t to recast the agents’ decisions as a common choice in between a lottery F and

the sure outcome y. Formally, define F(y) =
∫ y

0
QX

t (y′|x1)dy′
/ ∫ 1

0
QX

t (y′|x1)dy′. It follows from (9) and
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(10) that
∫ 1

0

πX(y|x1)dF(y) > πX(y|x1) and

∫ 1

0

πX(y|x2)dF(y) ≤ πX(y|x2).

Or, type x1 accepts the lottery that is rejected by type x2. This runs counter to the characterization of

log supermodularity in differences in terms of risk preferences and establishes a contradiction. □

To gain a visual understanding of the scope of Theorem 2, refer to Figure 4. In our simulations, we

consider match acceptance thresholds with non-stationary cyclical entry, similar to the fluctuations in

a dynamic seasonal housing market (cf. Ngai and Tenreyro (2014)). Despite the complex dynamics,

when the conditions for PAM are met (as shown in Figure 4b), all acceptance thresholds remain in

a specific order without any crossings. However, if these conditions are not satisfied, the sorting of

thresholds may become intricate, leading to numerous crossings between agents’ acceptance thresh-

olds (as shown in Figure 4a). This is where PAM proves to be useful in imposing regularity on the

dynamics of the matching problem.

Discussion. It may come as a surprise that risk preferences do not play as prominent a role in

the steady state. After all, the decision to reject a certain match payoff today is a revealed preference

for a risky, random match payoff sometime in the futureÐregardless of whether the environment is

stationary or not. Our analysis shows that the randomness of search translates into less risk in the

steady state. Indeed, in a stationary world, the lowest type accepted initially constitutes a bound on

the worst possible match outcome for all future dates; the prospect of future matches below one’s

current acceptance threshold does not arise. This renders downside risk a feature of non-stationary

environments only. In consequence, sorting in the steady state solely relies on a preference ranking

over upside risk. Non-stationarity in contrast requires a preference ranking over any kind of lottery,

entailing both upside and downside risk.

4.5 Necessity

It is easy to provide examples in which PAM occurs, even when payoffs are neither log supermodular

nor log supermodular in differences. As higher types are more likely to be accepted by others, higher

types enjoy superior match opportunities and can therefore afford to be choosier, regardless of payoff

curvature. Becker (1973) illustrates this point in a frictionless matching market. Adachi (2003)

(cloning model), Lauermann and NÈoldeke (2014) (steady state) and Wu (2015) (Markov equilibrium

of the gradually emptying search pool) prove this to be the case more generally as search frictions

vanish. This raises the question whether our conditions are needlessly strong.

In this section, we show that log supermodularity and log supermodularity in differences are

the minimal conditions under which PAM occurs in non-stationary environments.40 If either one

condition reverses locally for some interval of types, then there exist primitives of the model under

which PAM is upset. We show that this is particularly true when there is a gradually emptying search

40This exercise is similar in spirit to the frictionless result by Legros and Newman (2007).
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yt(x)

time

(a) Not PAM ÐPayoffs are Lsub and LsubD

yt(x)

time

(b) PAMÐPayoffs are LS and LSD

Figure 4: Illustration of Theorem 2 with cyclical entry

Note: Populations are symmetric with payoffs given by π(y|x) = y
1
2
+

1
2

x (b) and π(y|x) = y1− 1
2

x (a). The former is LS and

LSD, i.e., the conditions from Theorem 2, and the latter is neither. Entry is cyclical: ηt(x) = 10 sin(8t)ϕ(x)(µt(x))4 where

ϕ(x) is the lognormal density with logmean and logvar equal to 0.5. Further parameters are λt(y|x) = µt(y)/(
∫ 1

0
µt(z)dz)

1
2

and ρ = 10. Each color band corresponds to the range of acceptance thresholds chosen by a small interval of types. To

highlight the crossing of acceptance thresholds, acceptance thresholds of types x ∈ [0.1, 1] are depicted in plain color and

acceptance thresholds of types x ∈ [0, 0.1] are dashed. In the example where PAM fails, it is not the most desirable agents,

but rather agents of a lower-ranked type with x = 0.1, who exhibit the highest level of selectivity.

pool, arguably the simplest instance of a non-stationary environment. The additional requirement that

there is zero entry and populations are symmetric merely disciplines the result.

Proposition 4 (weak sufficiency). Consider an economy with symmetric populations and zero entry

and suppose that payoffs satisfy either of the following:

1. payoffs restricted to [x, x]2 ⊆ [0, 1]2 are strictly log submodular, or

2. payoffs restricted to [x, x]2 ⊆ [0, 1]2 are strictly log submodular in differences;

then there exist meeting rates λ and an initial search pool µ0 such that PAM does not occur for some

time preceding the (empty) steady state.

The proof of Proposition 4 is deferred to the appendix. To prove this statement, we show that

the set of model primitives for which PAM fails is non-empty, which entails choosing an appropriate

meeting rate and type distribution that foster negative sorting for the entire class of payoffs considered.

The proof thus revolves around two counterexamples.41

Counterexample 1 derives from a ranking of time preferences across types that is implied by log

submodular payoffs. This ranking states that lower ranked types will exhibit more patient behavior

in the following choice problem, variations of which naturally arise in a non-stationary search pool:

match instantaneously with a lower ranked type, or match with delay (possibly but not necessarily

with probability less than 1) with a more attractive type in the future. In counterexample 2, we

41The proof of Proposition 4 relies on counterexamples involving finitely many types only. This is for analytical

convenience only. Using bump functions, distributions over finitely many types can be approximated arbitrarily well by a

continuous distribution over a continuum so that one can construct analogous counterexamples with a continuum of types

for which PAM is equally upset.
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emphasize the role of risk as opposed to time by letting the expected time spent in the search pool

become exceedingly small, all the while maintaining the downside risk of matching with the lowest

type.

5 Explicit Search Costs

So far, we have embedded search costs through time discounting (as espoused by Shimer and Smith

(2000) and Smith (2006)). In this section, we re-establish sufficient conditions for PAM adopting

the other prominent representation of search costs: explicit search costs (see Morgan (1994), Chade

(2001) and Atakan (2006)).42 Here, discounting plays no role (ρ = 0), and each agent in the search

pool pays a flow cost c. Whereas time discounting captures the opportunity cost of time, explicit

search costs elevate the act of search to be the critical cost. As was the case under discounting, this

framework has been exclusively studied in the steady state (see Morgan (1994)). In what follows,

we broaden the scope of the analysis to consider all equilibria. We show that log supermodularity in

differences is as essential to PAM under explicit search costs as it is under discounting.

By adapting the proof of Proposition 2, Appendix B presents a short proof of the steady state result

due to Morgan (1994) (see Theorem 1′): Suppose that both populations’ payoffs are supermodular.

Then there is positive assortative matching (PAM) at all times in any stationary equilibrium.43 The

corresponding search result (see Proposition 2′) is as follows: Suppose that population X’s payoffs

are supermodular. Then, in any stationary environment, higher types x have a higher search cutoff,

y(x2) ≥ y(x1) for all x2 > x1.

Supermodularity is insufficient to guarantee positive assortative matching in non-stationary envi-

ronments for the same reasons given in the analysis of search with discounting. Again, log super-

modularity in differences turns out to be the missing sufficient condition that ensures PAM across all

equilibria:

Theorem 2′ (non-stationary PAM with explicit search cost). Suppose that both populations’ payoffs

are supermodular and log supermodular in differences. Then there is positive assortative matching

(PAM) at all times in any (non-stationary) equilibrium.

As with discounting, Theorem 2′ is due to a more granular result (proven in Appendix B):

PROPOSITION 3′: Suppose that population X’s payoffs are supermodular and log supermodular in

differences. Then, higher types x have a higher search cutoff, yt(x2) ≥ yt(x1) for all x2 > x1.

Observe that unlike steady state sufficient conditions, which differ between environments with

discounting and explicit search cost, the additional condition of log supermodularity in differences

ensures monotone search cutoffs and thereby PAM in non-stationary equilibrium irrespective of how

42We are not aware of an existence result that applies under explicit search costs but conjecture that largely similar

arguments as in Sandmann and Bonneton (2023) would establish the result.
43Population X’s payoffs are supermodular if πX(y2|x2) + πX(y1|x1) ≥ πX(y1|x2) + πX(y2|x1) for all y1 < y2 and x1 < x2.
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search cost is modeled.44 We finally show that log supermodularity in differences is the weakest suffi-

cient condition that guarantees PAM (see Online Appendix A for a proof along the lines of Proposition

4).

PROPOSITION 4′Ðweak sufficiency with explicit search costs: Consider an economy with explicit

search cost, symmetric populations and zero entry and suppose that payoffs restricted to [x, x]2 ⊆

[0, 1]2 are strictly log submodular in differences. Then there exist meeting rates λ and an initial

search pool µ0 such that PAM does not occur for some time preceding the (empty) steady state.

The following table summarizes the conditions on payoffs that ensure PAM for various environ-

ments in the NTU paradigm.

Frictionless π2 > 0

Becker (1973)

Search frictions Stationary Non-Stationary

i) discounting π2 > 0, (log π)12 > 0 π2 > 0, (log π)12 > 0, (log π2)12 > 0

Smith (2006) This paper

ii) explicit π2 > 0, π12 > 0 π2 > 0, π12 > 0, (log π2)12 > 0

search costs Morgan (1994) This paper

Table 1: Sufficient conditions for PAMÐsubscript 2 stands for the partial derivative in the partner’s

type and subscript 1 stands for the partial derivative in one’s own type (assuming that these exist).

6 Model Variations

In this section, we discuss three natural alternative specifications of the model. Each of these high-

lights the scope of our main sorting result.

6.1 Aggregate Uncertainty

Note that Theorem 2 straightforwardly extends to environments where aggregate fluctuations are

stochastic and not deterministic.45 Algebraically, aggregate uncertainty merely compounds the indi-

vidual idiosyncratic risk. Irrespective of the source of randomnessÐidiosyncratic or aggregateÐfuture

match prospects can be summarized by the discounted match probability QX
t (y|x). Hence the integral

representation of the value-of-search and the subsequent proofs of our main sorting results continue

to apply without modification.

44In Online Appendix A, we consider the alternative explicit search costs model where agents can quit the search pool

and exit unmatched. Quits prevent future expected search costs from accumulating to the point where the value-of-search

becomes negative. Log supermodularity in differences also plays a critical role in this model.
45Our focus on deterministic aggregate dynamics owes to the literature’s initial focus on the steady state. In Bonneton

and Sandmann (2024), we explore a model with aggregate uncertainty, where uncertainty is driven by random entry into

the search pool.
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Our insights, therefore, carry over to environments where aggregate fluctuations in the state are

uncertain, such as unemployment rising following a (random) economic crisis or sex imbalances

being inflicted due to a low-probability event such as a war. Log supermodularity in differences plays

a critical role whenever there is a positive probability that one’s current match prospects deteriorate

in the future.

6.2 Non-Stationary Types

It is also worthwhile to note that Theorem 2 extends to environments where time-variant match op-

portunities arise due to a change in individual characteristics rather than a change in the composition

of the search pool.46 To ensure PAM in this context, we require log supermodularity in differences,

even in the steady state.

Formally, consider two-dimensional agent types (x, αt) and (y, βt). αt and βt capture, depending

on the application, time spent in the search pool or age. Then αt′′ − αt′ = t′′ − t′ and βt′′ − βt′ = t′′ − t′.

We assume that age types αt and βt affect the agents’ attractiveness to others, but not their preferences.

Then y’s match payoff when matching with an agent of type (x, αt) is ΠY(x, αt|y).47

The following Theorem (proven in Online Appendix B) states, as in our baseline model, that

higher types of similar or more desirable age match with more desirable agents under identical con-

ditions on payoffs as before.

Theorem 3 (PAM with non-stationary types). Suppose that both populations’ payoffs are log su-

permodular and log supermodular in differences in x and y. Then for all αt and x2 ≥ x1, (x1, αt)

accepts every (y, βt) that (x2, αt) accepts. If moreover βt 7→ Π
X(y, βt|x) and αt 7→ Π

Y(x, αt|y) are

non-increasing, then for all ages α′′t ≥ α
′
t and types x2 ≥ x1, (x1, α

′′
t ) accepts every (y, βt) that (x2, α

′
t)

accepts.

This result extends our previous insight: whenever there is downside risk, log supermodularity

in differences is necessary to sustain sorting. For downside risk to arise, the economy need not be

out of steady state. With non-stationary types, downside risk also emerges when individual agents

experience a decline in their value to others.

6.3 Strategic Match Destruction

In our model, agents do not return to the initial search pool once a match is formed. This provides

a natural setting if (i) break-up costs are prohibitive (e.g., non-compete clauses as studied by Shi

(2023)), (ii) the purpose of the match serves a one-time goal, or (iii) if agents enter a different search

pool upon match destruction (e.g., as divorcees). The literature, by contrast, has largely considered

46For instance, Pissarides (1992) suggests that time spent unemployed in the search pool decreases future match payoffs.
47To illustrate, consider non-stationary flow payoffs f Y

αt
(x|y) that depend on the partner’s age type αt. For instance, flow

payoffs may be given by f Y
αt

(x|y) = e−αt x. Then the match payoff of matching with an agent of type (x, αt) is given by

Π
Y (x, αt |y) =

∫ ∞

αt

e−ρ(ατ−αt) f Y
ατ

(x|y)dτ.
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environments in which agents repeatedly enter and exit the search pool and derive flow payoffs while

matched. In the steady state, both modeling specifications are indistinguishable because there is no

reason for agents to match temporarily. In non-stationary environments, however, agents could be

tempted to break their matches strategically once their match opportunities have improved.

Whether PAM occurs in these environments depends on whether our mimicking argument holds,

i.e., whether higher types enjoy better match opportunities. Intuitively, if agents cannot commit to

staying in a match and leave whenever beneficial (as in Smith (1992)), then the mimicking argument,

hence PAM, will not hold. The reason is simple: individuals may choose not to accept a match with a

high-type agent because they anticipate being dumped in the future. If, however, agents can commit

to staying in a match, they continue enjoying better match opportunities, so the mimicking argument,

hence PAM, should hold.

7 Conclusion

This article studies sorting of heterogeneous agents in a general non-stationary matching model,

showing that the study of sorting need not confine itself to particular examples or stationary envi-

ronments. We hope that it will inspire future ventures into the study of non-stationary dynamics in

related frameworks.

Our analysis reveals a close link between the time-variant nature of search frictions and risk pref-

erences. We find that the weakest sufficient conditions for positive assortative matching entail that

more desirable individuals are less risk-averse in the sense of Arrow-Pratt. This result, taken together

with the empirical evidence, provides a theoretical foundation as to why positive assortative matching

arises in decentralized matching markets where there is no bilateral bargaining that precedes match

formation.

A Positive Assortative Matching

A.1 Definition of PAM

Proof of Proposition 1. (i) Fix x1 < x2 and y1 < y2 so that (x1, y2), (x2, y1) belong to the set of pairs

that match upon meeting, Ut. Then yt(x2) ≤ y1 and xt(y2) ≤ x1, whence also yt(x2) ≤ y2 and xt(y2) ≤ x2

due to Assumption 2. It follows that (x2, y2) ∈ Ut. As to (x1, y1), note that since yt(x) and xt(y) are

non-decreasing, it holds that yt(x1) ≤ yt(x2) ≤ y1 and xt(y1) ≤ xt(y2) ≤ x1, whence (x1, y1) ∈ Ut.

(ii) Suppose by contradiction that there is PAM, yet yX
t (x2) < yX

t (x1) for some types x2 > x1 whose

time t matching sets are non-empty.

Case 1: Suppose that there exists y ∈ [yt(x2), yt(x1)) ∩ UX
t (x2). Then pick arbitrary y2 ∈ UX

t (x1).

Clearly, y2 ≥ yt(x1) > y1. And due to the lattice property, (x2, y1), (x1, y2) ∈ Ut implies that (x1, y1) ∈

Ut. This contradicts the assertion that y1 < yt(x1).

Case 2: Suppose that [yt(x2), yt(x1)) ∩ UX
t (x2) is empty. Then pick arbitrary y2 ∈ UX

t (x2) and y1 ∈

[yt(x2), yt(x1)). Clearly, y2 > y1 and xt(y1) > x2. Whence, for any x3 ∈ UY
t (y1) it must be that x3 > x2.
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In particular, (x2, y2), (x3, y1) ∈ Ut implies (x2, y1) ∈ Ut due to the lattice property. This contradicts

the assertion that xt(y1) > x2. □

A.2 Lowest-type self-acceptance

Corollary 1. Suppose that payoffs are log supermodular and populations are symmetric. Then the

lowest type will accept everyone, 0 ∈ Ut(0) for every t.

Proof. We prove the contrapositive, i.e., if self-acceptance fails at some point in time, then payoffs

cannot be log supermodular. Let (t0, t1) denote the maximal time interval during which 0 < Ut(0)

for all t ∈ (t0, t1). If Ut(0) were empty throughout (t0, t1), Vt0(0) = e−(t1−t0)ρVt1(x) < π(0|0), yet

Vt0(0) = π(0|0) which is absurd. Thus, there exists t ∈ (t0, t1) and some non-zero type x2 ∈ Ut(0). Yet,

due to identical arguments as in the proof of Theorem 1,

1∫

0

π(x′|0)

π(0|0)
Qt(x′|0)dx′ >

1∫

0

π(x′|x2)

π(0|x2)
Qt(x′|0)dx′.

As in the proof of Theorem 1, this can only hold if match payoffs are not log supermodular. □

A.3 Necessity

Proof of Proposition 4. Counterexample 1. There are two types, x2 > x1, payoffs are strictly log

submodular,
π(x2 |x2)

π(x1 |x2)
<

π(x2 |x1)

π(x1 |x1)
, search is quadratic, λ(t, µt) = µt and there is no entry.

As match prospects are bleakening over time, there exists a time t∗ beyond which the high type

will always accept the low type and Vt∗(x2) = π(x1|x2). Drawing on the integral representation of the

value-of-search we can write Vt∗(x2) =
∑

j∈{1,2} π(x j|x2)Qt∗(x j) where Qt∗(x j) is the probability of type

x2 matching with x jÐdiscounted by the time at which such event materializes. Now observe that if

the low type found it desirable, she could always exactly replicate discounted match probabilities of

the high type, that is Vt∗(x1) ≥
∑

j∈{1,2} π(x j|x1)Qt∗(x j). Then Vt∗(x1) > π(x1|x1) and the low type rejects

other low types at time t∗. For otherwise the integral representation of the value-of-search combined

with the inequalities implies that

∑

j∈{1,2}

π(x j|x2)

π(x1|x2)
Qt∗(x j) ≥

∑

j∈{1,2}

π(x j|x1)

π(x1|x1)
Qt∗(x j) ⇔

π(x2|x2)

π(x1|x2)
≥
π(x2|x1)

π(x1|x1)

in spite of strict log submodularity.

Counterexample 2. Consider symmetric populations consisting of three types x1 < x2 < x3. Omit

superscripts. Suppose that
π(x3 |x3)−π(x2 |x3)

π(x2 |x3)−π(x1 |x3)
<

π(x3 |x2)−π(x2 |x2)

π(x2 |x2)−π(x1 |x2)
. Then x3 is strictly more risk-averse than x2.

We construct a sequence of equilibra indexed by n in which, for n sufficiently large, there exists

a moment in time such that x3 accepts x2 whereas x2 rejects a fellow x2. Specifically, consider two

distinct moments in time, tn
0

and 0 where tn
0

precedes 0: at time tn
0

the high type x3 begins accepting

the intermediate type x2 and at time 0 the high type begins accepting the low type x1; PAM will be

upset because type x2 will reject another type x2 at time tn
0
.
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The construction makes apparent that the failure of PAM at time tn
0

arises due to a reversal of risk

preferences. As n grows large both (i) tn
0
→ 0 and (ii) the probability of matching after time 0 will

go to zero. As a consequence agent type x3’s future match outcomes at time tn
0

converge towards a

lottery assigning positive probability to both the event that x3 match with another x3 and to the event

that x3 match with an agent type x1. Crucially, at time tn
0

agent types x2 are accepted by agent types

x3. They thus face identical match opportunities. Like agent types x3, they may either choose to play

the lotteryÐor accept x2. Note that since agent type x3 is indifferent between playing the lottery,

i.e., waiting, or accepting x2, by virtue of being less risk-averse agent type x2 must strictly prefer the

lottery and therefore reject another type x2.

To construct the failure of PAM analytically, we consider the simplest non-stationary matching en-

vironment conceivable. There is zero entry. Agent type x2 is present in zero proportion and solely of

hypothetical interest. Due to log supermodularity agent type x1 will accept any agent he meets. Pro-

ceed then to define the (anonymous) meeting rate: it becomes stationary eventually and is piecewise

constant over time. We set

λt(x1) = n(1 − h(n)) if t ≥ 0 and λt(x3) =






nh(n) if t ≥ 0

n if t < 0.

h(n) is determined as to ensure indifference of agent type x3 between accepting and rejecting agent

types x1 for all t ≥ 0. Then at time t = 0

ρVn
0 (x3) = n

[

h(n)π(x3|x3) + (1 − h(n))π(x1|x3) − Vn
0 (x3)
]

and Vn
0 (x3) = π(x1|x3).

Here the equation on the left is the stationary HJB equation and the equation on the right is the

indifference condition. The latter holds if h(n) =
ρ

n

π(x1 |x3)

π(x3 |x3)−π(x1 |x3)
.

We assume that at time 0 agent types x2 likewise accept agent types x1 (log supermodular payoffs

imply this). If they did not, PAM would be upset as we desire to show.

Finally, choose as time 0 ’starting values’ (µ0(x1), µ0(x2), µ0(x3)) such that µ0(x2) = 0 and
µ0(x3)

µ0(x1)
=

λ0(x3)

λ0(x1)

Preceding time t = 0 the high type x3’s value-of-search is decreasing. Time tn
0
< 0, the moment

in time at which agent type x3 is indifferent between accepting and rejecting agent type x2, likewise

admits a closed-form representation: Recall that Vn
0
(x3) = π(x1|x3) so that prior to time 0 the high type

x3 exclusively matches with other high types. Then an explicit characterization of x3’s value-of-search

as defined in Equation (3) gives

Vn
tn
0
(x3) =

0∫

tn
0

e−ρ(τ−tn
0
)π(x3|x3)n e−n(τ−tn

0
)dτ + eρtn

0 entn
0π(x1|x3).

And the indifference condition that characterizes tn
0

is Vn
tn
0

(x3) = π(x2|x3). The solution is given by

tn
0
=

1
ρ+n

ln
n
ρ+n

π(x3 |x3)−π(x2 |x3)

n
ρ+n

π(x3 |x3)−π(x1 |x3)
. Clearly, tn

0
< 0 due to Assumption 2 and tn

0
→ 0 as n goes to infinity.

Agent type x3’s discounted match probabilities of matching with agent types x1 and x3, as defined

in Equation (5), are denoted by Qn
tn
0

(x1) =
π(x3 |x3)−π(x2 |x3)

π(x3 |x3)−π(x1 |x3)
+ o(1) ≡ q + o(1) and Qn

tn
0

(x3) = 1 − q + o(1)
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respectively.48 Here o(1) denotes the Landau notation: lim
n→∞

o(1) = 0. In particular, note that Qn
tn
0

(x1) +

Qn
tn
0

(x3) = 1 + o(1), meaning that the x3’s probability of matching instantaneously approaches 1 as n

tends to infinity.

Now observe that, beginning from time tn
0
, agent type x2 is accepted by agent type x3, and thus

faces identical match opportunities as an agent type x3. Accordingly, x2 can mimic the higher type

x3’s match probabilities (see Lemma 1) so that

Vn
tn
0
(x2) ≥ π(x1|x2)q + π(x3|x2)(1 − q) + o(1).

(Recall by construction that π(x2|x3) = Vn
tn
0

(x3) = π(x1|x3)q+π(x3|x3)(1−q)+o(1).) We then claim that

Vn
tn
0

(x2) > π(x2|x2) for n sufficiently large, so that PAM does not occur at time tn
0
: the intermediate type

x2 rejects a fellow intermediate type x2 that is accepted by high type agents x3. Indeed, this follows

from the characterization of risk preferences. Suppose by contradiction that Vn
tn
0

(x2) ≤ π(x2|x2) for all

n ∈ N. Letting n→ ∞ gives

π(x2|x2) ≥ π(x1|x2)q + π(x3|x2)(1 − q) and π(x2|x3) = π(x1|x3)q + π(x3|x3)(1 − q).

This means that (i) agent type x3 is indifferent between the lottery assigning probability q to x1 and

1 − q to x2 and the sure outcome x2, whereas (ii) agent type x2 weakly prefers the sure outcome x2.

This contradicts the assertion that agent type x2 is strictly less risk-averse than agent type x3. □

B Explicit search cost

We begin by re-stating an adapted version of the mimicking argument that incorporates explicit search

cost. As under time-discounting, the value-of-search admits an integral representation over payoffs:

VX
t (x) =

1∫

0

πX(y|x)QX
t (y|x)dy −CX

t (x) where QX
t (y|x) =

∞∫

t

pX
t,τ(y|x)dτ. (11)

Here CX
t (x) is the expected time that agent type x spends in the search pool from time t onward,

multiplied by the explicit search cost c:

CX
t (x) = c

∞∫

t

1∫

0

(τ − t) pX
t,τ(y|x)dydτ.

Higher types have better match opportunities, and so can mimick lesser ranked agents’ matching rates.

Then an identical reasoning as in the proof of Lemma 1 establishes the following lower bound on the

48Formally, following the above value-of-search, discounted probabilities are

Qn
tn
0
(x1) = etn

0
(ρ+n)

∞∫

0

e−ρτn(1 − h(n))e−nτdτ = etn
0
(ρ+n) n(1 − h(n))

ρ + n
=

n
ρ+n

π(x3|x3) − π(x2|x3)

n
ρ+n

π(x3|x3) − π(x1|x3)

n(1 − h(n))

ρ + n
≡ q + o(1)

Qn
tn
0
(x3) =

0∫

tn
0

e−ρ(τ−tn
0
)ne−n(τ−tn

0
)dτ + etn

0
(ρ+n)

∞∫

0

e−ρτnh(n)e−nτdτ
n

ρ + n
−

n(1 − h(n))

ρ + n

n
ρ+n

π(x3|x3) − π(x2|x3)

n
ρ+n

π(x3|x3) − π(x1|x3)
= (1 − q) + o(1).
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value-of-search:

VX
t (x2) ≥

1∫

0

πX(y|x2)QX
t (y|x1)dy −CX

t (x1) for all x2 > x1 ∈ [0, 1]. (12)

Theorem 1′ (stationary PAM with explicit search cost, Morgan (1994)). Suppose that both popula-

tions’ payoffs are supermodular. Then there is positive assortative matching (PAM) at all times in any

stationary equilibrium.

As under discounting, this holds if search cutoffs are monotone:

PROPOSITION 2′: Suppose that population X’s payoffs are supermodular. Then, in any stationary

environment, higher types x have a higher search cutoff, y(x2) ≥ y(x1) for all x2 > x1.

Proof. We prove the contrapositive. Let x2 > x1 be such that yt(x2) < yt(x1) (the environment being

stationary, this applies to all moments in time). Then for any type y ∈ (yt(x2), yt(x1)) the optimal

matching decision implies that πX(y|x1) < VX
t (x1), yet πX(y|x2) ≥ VX

t (x2). Then apply the integral

representation of the value-of-search and apply the mimicking argument:

πX(y|x1) <

1∫

0

πX(y|x1)QX
t (y|x1)dy−CX

t (x1) and

1∫

0

πX(y|x2)QX
t (y|x1)dy−CX

t (x1) ≤ πX(y|x2).

In the steady state agents always match with a weakly better type than the one rejected initially.

Formally, QX
t (y|x1) = 0 for all y < yt(x1) including y, and we may adjust the bounds of integration

accordingly. Isolating CX
t (x1), it follows that

∫ 1

y

πX(y|x1)QX
t (y|x1)dy − πX(y|x1) >

∫ 1

y

πX(y|x2)QX
t (y|x1)dy − πX(y|x2).

Since yt(x1) > 0, agent type x1’s value-of-search exceeds the match payoff from matching with type 0.

In effect, type x1 must almost surely eventually exit the search pool so that QX
t (·|x1) integrates to one.

If not it must be that VX
t (x1) = −∞, because there is a non-zero probability of incurring an infinite

amount of search cost. The preceding inequality thus simplifies to
∫ 1

y

[

πX(y|x1) + πX(y|x2) − πX(y|x1) − πX(y|x2)
]

QX
t (y|x1)dy > 0,

which can impossibly hold if payoffs are not supermodular. □

Proof of Proposition 3′. Suppose that there exist x2 > x1 such that yt(x2) < yt(x1) at some time t.

Then for any type y ∈ (yt(x2), yt(x1)) the optimal matching decision implies that πX(y|x1) < VX
t (x1),

yet πX(y|x2) ≥ VX
t (x2). As before, an application of the mimicking argument implies that

∫ 1

0

πX(y|x1)QX
t (y|x1)dy−CX

t (x1) > πX(y|x1) and

∫ 1

0

πX(y|x2)QX
t (y|x1)dy−CX

t (x1) ≤ πX(y|x2). (13)

Next, define y > y such that πX(y|x1) = πX(y|x1) + CX
t (x1). Such y ∈ [0, 1] does exist (for πX(y|x1) +

CX
t (x1) ≤ VX

t (x1) + CX
t (x1) ≤ πX(1|x1); then conclude using the intermediate value theorem). Due to

26



supermodularity,

πX(y|x2) + πX(y|x1) ≥ πX(y|x2) + πX(y|x1) ⇔ πX(y|x2) ≥ πX(y|x2) +CX
t (x1).

It follows that
∫ 1

0

πX(y|x1)QX
t (y|x1)dy > πX(y|x1) and

∫ 1

0

πX(y|x2)QX
t (y|x1)dy ≤ πX(y|x2). (14)

It remains to observe that, as in the steady state, QX
t (·|x1) is a density and integrates to one. Then

type x1 accepts a lottery that is rejected by type x2. This runs counter to the characterization of log

supermodularity in differences in terms of risk preferences and establishes a contradiction. □

C One-block Block Segregation

Proposition 5 (one-block block segregation). Suppose that payoffs are multiplicatively separable and

continuous in the partner’s type49, and meeting rates t 7→ λX
t (y|x) and t 7→ λY

t (x|y) are anonymous,

decreasing and (for item 2.) tend to zero. Then there exist thresholds t 7→ x
t
∈ [0, 1) and t 7→ y

t
∈

[0, 1), decreasing if non-zero, so that:

1. agents with the most advantageous match opportunities match with the same set of agents:

yt(x) = y
t
for all x ≥ x

t
, and xt(y) = x

t
for all y ≥ y

t
;

2. among agents with inferior match opportunities higher types are more selective: yt(x1) <

yt(x2) < y
t
for all x1 < x2 < x

t
, and xt(y1) < xt(y2) < x

t
for all y1 < y2 < y

t
.

To prove Proposition 5, we use our main result, Theorem 2.

Proof of Proposition 5. Denote y
t
= yt(1). Step 1: We first show, as is to be expected, that t 7→ y

t
is

decreasing. To see this, note from (3) and the fact that all other agents accept the highest agent type,

that

VX
t (1) = sup

(ŷτ)τ≥t

∞∫

t

1∫

0

e−ρ(τ−t)πX(y|1)λX
τ (y)1{y ≥ ŷτ} exp

{

−

τ∫

t

1∫

0

λX
r (z)1{z ≥ ŷr}dzdr

}

dydr.

Then fix arbitrary times t1 > t0. And consider the strategy where, from time t1 onward, at any time t

type 1 accepts type y agents as if it were time t+ t0 − t1. This gives a lower bound for VX
t1

(1). In effect,

VX
t1

(1) − VX
t0

(1) is weakly greater than

VX
t1

(1) − VX
t0

(1) ≥

∞∫

t0

1∫

0

πX(y|1)

{
(

λX
τ+t1−t0

(y) − λX
τ (y)
)

1{y ≥ y
τ
} ·

exp
{

−

τ∫

t

1∫

0

ρ + λX
r+t1−t0

(z)1{z ≥ y
r
} dzdr

}

+ λX
τ (y)1{y ≥ y

τ
} ·

49Formally, payoffs are such that πX(y|x) = γX
1

(x)γX
2

(y) with γX
1

strictly positive and γY
2

a continuous, increasing func-

tion.
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(

exp
{

−

τ∫

t

1∫

0

ρ+λX
r+t1−t0

(z)1{z ≥ y
r
} dzdr

}

− exp
{

−

τ∫

t

1∫

0

ρ+λX
r (z)1{z ≥ y

r
} dzdr

})
}

dydτ.

The difference is strictly positive due to the fact that, having assumed decreasing meeting rates, both

terms in round parentheses are strictly positive. This proves that t 7→ VX
t (1) is decreasing in time, and

since y 7→ πX(y|1) is continuous, it follows that also y
t
= inf

{

y : πX(y|1) − Vt(1) ≥ 0
}

is decreasing.

Step 2: We prove item 1., i.e., that all agents x ∈ [x
t
, 1] match with the same set of agents. To

begin with, admit (as a corollary of Theorem 2) that x
τ
≥ xτ(y) for all y ∈ [0, 1] and τ ≥ t. Since

τ 7→ x
τ

is decreasing, we deduce that all agents x ∈ [y
t
, 1] have identical future match opportunities.

In effect,

VX
t (x) = sup

(ŷτ)τ≥t

∞∫

t

1∫

0

e−ρ(τ−t)πX(y|x)λX
τ (y)1{y ≥ ŷτ} exp

{

−

τ∫

t

1∫

0

λX
r (z)1{z ≥ ŷr}dzdr

}

dydr

for all x ∈ [x
t
, 1]. Then recall that πX(y|x) = γX

1
(x)γX

2
(y) and compare with VX

t (1) as characterized

above. It follows that VX
t (x) =

γX
1

(x)

γX
1

(1)
VX

t (1) and

yt(x) = inf
{

y : γX
2 (y) −

Vt(x)

γX
1

(x)
≥ 0
}

= inf
{

y : γX
2 (y) −

Vt(1)

γX
1

(1)
≥ 0
}

= yt(1).

Step 3: We prove item 2., i.e., that among agents with inferior match opportunities, x1 < x2 < x
t
,

higher agent types are more selective. That yt(x1) ≤ yt(x2) is an implication of Theorem 2. We

now show that this inequality is strict when meeting rates tend to zero. First, observe that following

standard arguments t 7→ VX
t (x) is continuous (see Proposition 6 (i) in Sandmann and Bonneton (2023))

and tends to zero (because meeting rates tend to zero), and so the earliest times at which two agents

with inferior match opportunities match with the most desirable agents are finite and favor the more

desirable type: for any two x1 < x2 < x
t
, it holds that inf{t : x

t
= x1} > inf{t : x

t
= x2}. Then an

identical construction as in step 1 implies that
VX

t (x2)

γX
1

(x2)
>

VX
t (x1)

γX
1

(x1)
. And since y 7→ γX

2
(y) is continuous, it

follows that

yt(x2) = inf
{

y : γX
2 (y) −

Vt(x2)

γX
1

(x2)
≥ 0
}

> inf
{

y : γX
2 (y) −

Vt(x1)

γX
1

(x1)
≥ 0
}

= yt(x1)

as was to be shown. □
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Online Appendix

The online appendix contains the missing proofs from the sections on explicit search costs and model

variations. It further develops Rasul’s 2008 model on fertility decisions within couples to demonstrate

how sufficient conditions for PAM can shed light on applied problems.

A Explicit Search Costs: Missing Proofs

A.1 Necessity

The proof of Proposition 4′ is analogous to the proof of Proposition 4:

Proof of Proposition 4′. We follow the same steps as in Counterexample 2 in the proof of Proposition

4. For an identical set-up, type x3’s stationary HJB equation writes as c = n
[

h(n)π(x3|x3) + (1 −

h(n))π(x1|x3) − Vn
0
(x3)
]

. The indifference condition continues unchanged as Vn
0
(x3) = π(x1|x3). One

then deduces algebraically that h(n) is well-defined (as given by h(n)n = c/(π(x3|x3) − π(x1|x3))).

Next, consider the explicit characterization of the value-of-search preceding time 0 and succeeding

the time tn
0

at which agent type x3 is indifferent between accepting and rejecting agent type x2:

Vn
tn
0
(x3) =

0∫

tn
0

ne−n(τ−tn
0
)dτ π(x3|x3) +

(

1 −

0∫

tn
0

ne−n(τ−tn
0
)dτ
)

πX(x1|x3)

− c

{ 0∫

tn
0

(τ − tn
0)ne−n(τ−tn

0
)dτ + (−tn

0)
(

1 −

0∫

tn
0

ne−n(τ−tn
0
)dτ
)
}

= (1 − entn
0 )

︸    ︷︷    ︸

≡Qn
tn
0

(x3)

π(x3|x3) + entn
0

︸︷︷︸

≡Qn
tn
0

(x1)

π(x1|x3) − c
1 − entn

0

n
.

Here, as before, we used that by construction Vn
0
(x3) = π(x1|x3) and that during time interval (tn

0
, 0) the

high type only matches with fellow high type agents. The indifference condition is Vn
tn
0

(x3) = π(x2|x3)

which implies that for all n ∈ N

π(x2|x3) = Qn
tn
0
(x3)π(x3|x3) + Qn

tn
0
(x1)π(x1|x3) + o(1).

Beginning from time tn
0
, agent type x2 is accepted by agent type x3, and thus faces identical match

opportunities as an agent type x3. Accordingly, x2 can mimic the higher type x3’s match probabilities

so that

Vn
tn
0
(x2) ≥ Qn

tn
0
(x3)π(x3|x2) + Qn

tn
0
(x1)π(x1|x2) + o(1).

We then show that PAM does not occur at time tn
0

for n sufficiently large. Or, we show that Vn
tn
0

(x2) >

π(x2|x2). If not, it must hold that

π(x2|x2) ≥ Qn
tn
0
(x3)π(x3|x2) + Qn

tn
0
(x1)π(x1|x2) + o(1).
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Since Qn
tn
0

(·) is a probability measure, i.e. Qn
tn
0

(x1) + Qn
tn
0

(x3) = 1, this runs counter Arrow-Pratt’s char-

acterization of risk preferences whereby strict LsubD implies that x3 is strictly more risk averse than

x2: π(x2|x3) ≤ Qn
tn
0

(x3)π(x3|x3) + Qn
tn
0

(x1)π(x1|x3) implies π(x2|x2) < Qn
tn
0

(x3)π(x3|x2) + Qn
tn
0

(x1)π(x1|x2)

Then taking the limit n→ ∞ establishes the desired contradiction. □

A.2 Explicit search costs with quits

We here study a further model variation within the explicit search costs case: agents can voluntarily

exit the search pool unmatched. This variation is motivated by the possibility that, absent the option

to exit, expected search costs may accumulate and outweigh the expected benefit of matching; staying

unmatched forever is infinitely costly. If agents lacking significant future match opportunities could

quit the search pool, they would. In keeping with the discounting paradigm, we set the value of

rejecting all match opportunities or, analogously, quitting the search altogether to be zero.

The option to exit the search pool is irrelevant in the steady stateÐthose who are currently search-

ing would never have entered if they then wanted to quit. However, it invalidates the conclusion of

Theorem 2′ for non-stationary environments. Coercing unmatched agents to keep searching ensures

that agents who are selective about who they match with must eventually match with someone. If,

instead agents exit the search pool after an unsuccessful search, the probability that they match must

be bounded away from one. In effect, inequalities (14) no longer amount to a comparison between

a lottery and a certain outside option. Nonetheless, Theorem 2′′) shows that PAM can be recovered

when in addition to the conditions from Theorem 2′, payoffs are log supermodular. Crucially, risk

preferences play the same role as before. Adding log supermodularity to the sufficiency conditions is

unsurprising in light of the analysis under time discounting. It allows us to normalize future match

probabilities like in the proof of Theorem 2.

Theorem 2′′ (non-stationary PAM with explicit search costs and endogenous quits). Suppose that

both populations’ payoffs are supermodular, log supermodular and log supermodular in differences.

Then there is positive assortative matching (PAM) at all times in any (non-stationary) equilibrium.

Proof. When there are outside options, there are two stopping rules: match if πX(y|x) ≥ VX
t (x), exit if

0 ≥ VX
t (x). Now suppose that matching is not assortative. As before an application of the mimicking

argument guarantees that there exist x2 > x1 and y such that (13) holds with the exception that y 7→

QX
t (y|x1) need not integrate to one. Then consider two normalizations: let, as in the proof of Theorem

2, ŷ be such that πX(ŷ|x1)
∫ 1

0
QX

t (y|x1)dy = πX(y|x1). Clearly ŷ > y. Then πX(ŷ|x2)
∫ 1

0
QX

t (y|x1)dy ≥

πX(y|x2) because payoffs are log supermodular. Next, let, as in the proof of Theorem 2′, y be such

that πX(y|x1)
∫ 1

0
QX

t (y|x1)dy = πX(ŷ)
∫ 1

0
QX

t (y|x1)dy + CX
t (x1). Clearly y > ŷ because search cost are

non-negative. Then πX(y|x2)
∫ 1

0
QX

t (y|x1)dy ≥ πX(ŷ|x2)
∫ 1

0
QX

t (y|x1)dy + CX
t (x1) because payoffs are

supermodular. Given both normalizations, inequalities (14) continue to hold which (as before) upsets

the posited ranking of risk preferences. □
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B Model Variations

B.1 Non-Stationary Types

Proof of Theorem 3. The proof of this theorem is readily adapted from Theorem 2, since, just as in

the baseline model, the value-of-search admits an integral representation over payoffs that subsumes

the time dimension. For an analogously defined value-of-search that accounts for age, it holds that

VX
t (x, αt) =

∞∫

t

1∫

0

Π
X(y, βτ|x)QX

t (y, βτ|x, αt)dydτ.

Then the proof of Lemma 1 implies that

VX
t (x2, α

′
t) ≥

∞∫

t

1∫

0

Π
X(y, βτ|x2)QX

t (y, βτ|x1, α
′′
t )dydτ.

for x2 > x1 and α′t = α
′′
t in general, and α′t ≤ α

′′
t if match payoffs are non-increasing in age. If agents

cease to be attractive to others as αt grows, agents face downside risk even in the steady state. We

therefore cannot simplify thie problem as in the steady state proof of the baseline model. Instead, we

need to proceed with the proof of Theorem 2 requiring log supermodularity in differences. □

C Application

Our theory focused on ex-ante match creation and did not address the origin of payoffs. In contrast,

many applied models in household bargaining or team production provide a detailed description of

the strategic interactions that occur ex-post, once agents are already matched (see Chiappori and

Mazzocco (2017) and references therein). Here, we integrate ex-ante and ex-post perspectives into a

unified marriage model, where anticipation of having children informs match payoffs.

C.1 Marriage and Fertility Choice

We build on the work of Rasul (2008), who studies fertility among married ethnic Chinese and Malay

couples in Malaysia. In marriage, spouses must resolve differences in fertility preferences. Rasul

(2008) proposes a game-theoretic analysis based on differing threat points in bargaining, whose pre-

dictions align with the observed fertility outcomes among both ethnic groups. Here, we extend Rasul’s

analysis of married couples’ decisions to the context of match formation. Using Rasul’s equilibrium

utilities as primitive match payoffs, we identify when these payoffs satisfy our sufficient conditions

for assortative matching. When they do, our theory predicts that marriages form between individuals

with similar fertility preferences.

Rasul (2008)’s analysis is particularly well-suited to our purposes. One of his central contributions

is to uncover a hold-up problem in couple bargaining: husbands cannot commit ex-ante to compensate
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Marriage threat point: Divorce No divorce

(Malay case) (Chinese case)

Payoff properties:

Increasing no yes

Log supermodular no yes

Log supermodular in diff. yes yes

Empirical observation: Less PAM More PAM

Table 2: Do equilibrium payoffs from Rasul (2008) satisfy our condition for PAM? By ªyesº, we

mean that the condition is satisified for all parameters values, and ªnoº means that it is not always

satisfied.

their wives for bearing the couple’s children.50 From a matching perspective, the absence of ex-

ante agreed transfers suggests that marriage formation follows the NTU paradigm, where a lack of

commitment prevents ex-ante redistribution within the couple.

C.2 Formal Analysis

Rasul (2008)’s model: The married couple comprises a husband (y) and a wife (x). Types x, y ∈ [0, 1]

encode preferences for greater fertility. Realized fertility q is at the sole discretion of the wife and

subsumes both the quality and quantity of children born. Individual spouses wish to match their

desired fertility, but can be compensated via transfers.

Excluding transfers and sunk cost, utility over realized fertility q is

uX(q|x) = vX −
1

2
(q − x)2,

uY(q|y) = vY −
1

2
(q − y)2,

where vX and vY are private gains from marriage.

The timing of the game is as follow. In stage 1, the wife chooses fertility q and incurs sunk cost

cq2/2. In stage 2, the husband makes a transfer to his wife, determined via Nash bargaining with

positive bargaining weights αX, αY : αX
+αY

= 1.51 Bargaining outcomes hinge on the spouses’ threat

points.

Divorce Regime. If the relevant threat point is divorce (attributed to Malay couples), spouses lose

the private benefits of marriage vX, vY , and pursue their fertility goals with future marriage partners.

Denote the regime R = D. Threat point utility is u
X
D(q; x) = u

Y
D(q; y) = 0.

Non-cooperative Regime. If the relevant threat point is a distressed, non-cooperative marriage (at-

50In Malay marriages, both spouses’ fertility preferences have an equal, positive, and significant impact on fertility

outcomes. In ethnic Chinese couples, male fertility preferences have no statistical power to explain realized fertility

levels. This finding is inconsistent with bargaining at the moment of match creation. If spouses could commit to transfers

before marriage, the observed fertility outcomes should reflect a compromise between both spouses’ preferences.
51About notation: in Rasul’s paper the husband’s bargaining power is θ, not αX; αY becomes 1 − θ. Fertility costs are

non-parametric as given by c(q). Finally, Rasul allows for a common fertility benefit, ϕ(q), that we normalize to be zero.
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tributed to ethnic Chinese couples), the mismatch in desired and realized fertility levels is irrevocable.

Denote the regime R = NC. Threat point utility is u
X
NC(q; x) = −1

2
(q− x)2 and u

Y
NC(q; y) = −1

2
(q− y)2.

Resolution of the model: Rasul (2008) solves the game via backward induction.52

Second stage: once fertility decisions have been made, the couple determines ex-post transfers via

Nash bargaining. Transfers tR(q; x, y) in both regimes R ∈ {NC,D} maximize the product of surplus

utilities:

tR(q; x, y) ∈ arg max
t

(

uX(q; x) − u
X
R

(q; x) + t)α
X (

uY(q; y) − u
Y
R

(q; y) − t)α
Y

. (15)

First stage: the female spouse anticipates second-stage transfers for given fertility decision q. The

female fertility decision thus solves

qR(x, y) = arg max
q

uX(q; x) + tR(q; x, y) − cq2/2. (16)

Plugging equilibrium transfers and fertility decisions into utilities gives the expected utilities of the

bargaining game.53 These correspond to the match payoffs of the search-and-matching model.54

Check conditions for PAM: We then check whether Rasul’s match payoffs satisfy our conditions for

PAM. Results are summarized in Table 2. The theory, in line with empirical observations, predicts

PAM only in the non-cooperative regime where divorce is inadmissible.

Non-cooperative Regime It emerges that transfers (solution to (15)) and female fertility decisions

(solution to (16)) do not depend on the husband’s fertility preferences y: tNC(q; x, y) = αXvY − αYvX

and qNC(x, y) = x
1+c

. And so neither do female payoffs:

πX
NC(y|x) = αX(vY

+ vX) −
1

2

c

1 + c
x2,

As a result, a single woman’s optimal match acceptance strategy is to not discriminate among potential

husbands and prioritize quick matching. Males, by contrast, can only realize their desired fertility by

marrying a woman whose preferences closely align with their own. Male match payoffs are

πY
NC(x|y) = αY(vX

+ vY) −
1

2

( x

1 + c
− y
)2
.

These are increasing in the partner’s type x for all men with a sufficiently high fertility preference,

more precisely for all y ≥ max x
1+c

where max x is the highest supported type x.55

52Transfers and fertility levels corresponds to Equations (14) and (15) in Rasul (2008).
53In greater detail, πX

R
(y|x) = uX(qR(x, y); x) + tR(qR(x, y); x, y) − cqR(x, y)2/2 and πY

R
(x|y) = uY (qR(x, y); y) −

tR(qR(x, y); x, y).
54Using our notations, the transfers and fertility levels are

tNC(q; x; y) = αXvY − αYvX and tD(q; x, y) = αX(vY −
1

2
(q − y)2) − αY (vX −

1

2
(q − x)2),

and,

qNC(x, y) =
x

1 + c
and qD(x, y) =

αX(x + y)

c + 2αX
.

55Fortunately, this restriction is of little empirical relevance. In the data, low fertility preferences among men are rare,
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The sufficient condition for assortative matching identified in this article is log supermodularity in

differences. This holds because

d2
xy log dxπ

Y
NC(x|y) =

dxqNC(x, y)

(qNC(x, y) − y)2
=

1

1 + c

1

(x/(1 + c) − y)2
> 0.

One can further check that payoffs are also log supermodular.

Divorce Regime. In the regime where divorce is prevalent, attributed to Malays, both spouses’

preferences carry equal weight in determining fertility outcomes. As a result, individual payoffs are

single-peaked in the partner’s type. The asymmetric distributions over fertility preferences between

men and women then imply that men with the highest fertility preference will be the least desirable

husbands. Conversely, women with the lowest fertility preference are the least desirable wives. These

individuals then face the worst match opportunities in equilibrium, giving rise to negative assortative

matching between the two groups.

Overall, Theorem 2 predicts PAM along fertility preferences only when divorce is not an admis-

sible threat point. This prediction is consistent with empirical observations. Fertility preferences

play a negligible role in explaining marriage patterns among Malays: 44% of couples have fertility

preferences that differ by at least two children; 10% differ by more than four (see Figure 3 in Rasul

(2008)). The extent of these differences is much smaller among Chinese couples and not attributable

to differences in the distribution of individual fertility preferences. This suggests that, remarkably,

payoffs derived from a within-household decision model have predictive power for aggregate sorting

in the marriage market.

as men typically desire more children than women. Payoff monotonicity arises because women unilaterally bear the cost

of child birth, yet are not compensated for it.
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