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Coordinating Dividend Taxes and Capital

Regulation∗

Salvatore Federico Andrea Modena Luca Regis²

Abstract

We study the impact of state-contingent dividend taxes (and bans) and capital

regulation on a firm’s optimal strategy and value. In the model, the firm generates

stochastic income under time-varying macroeconomic conditions. Its manager distrib-

utes dividends and issues costly equity to maximize shareholder value. We solve the

manager’s stochastic control problem and derive the firm’s reserve distribution in closed

form. Imposing dividend taxes (or bans) during crises generates a trade-off, as it en-

courages reserve accumulation in bad states but promotes payouts in good ones. Also,

the policy undermines financial stability by reducing the firm’s value and its recapit-

alization incentives across states. Coordinating dividend taxes with counter-cyclical

capital regulation can mitigate value losses and ameliorate the trade-off, but it also

creates additional recapitalization disincentives. (JEL: G32; G35; G38)

Keywords: Capital requirements; dividend bans; payout taxation; policy coordination;

stochastic control.
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1 Introduction

At the height of the COVID-19 crisis, driven by the observation that banks did not

adjust their dividends during the Great Financial Crisis (Acharya et al., 2011; Cziraki et al.,

2024; Belloni et al., 2024), banking regulators worldwide recommended, and in some cases

enforced, dividend restrictions.1 These unprecedented measures aimed to preserve banks’

credit capacity by ensuring adequate capital buffers and, more critically, preventing systemic

defaults.

Empirical evidence suggests that the short-term outcome of these policies has been two-

sided. Some studies argue that restrictions were indeed effective in improving banks’ balance

sheet conditions and, ultimately, in avoiding a credit crunch (Li et al., 2020; Hardy, 2021).

Others provide evidence that dividend restrictions and their announcements have negatively

impacted banks’ equity valuations, because shareholders demanded higher returns for lower

and delayed future proceeds (Andreeva et al., 2023; Sanders et al., 2024).

From a theoretical perspective, the problem of evaluating state-contingent dividend regu-

lation, such as bans or, more broadly, dividend taxation, has only recently received attention

(see Vadasz, 2022 and Kroen, 2022) and remains poorly understood. Analyzing these policies

is complex, especially when considering their endogenous interaction with banks’ optimal de-

cisions and other regulations. This paper develops a theory to evaluate how state-contingent

dividend taxes (or bans) influence firms’ optimal recapitalization and dividend strategies in

the short and long term and how they interact with capital requirements.

We model the optimal control problem of a regulated financial firm holding a fixed amount

of loans and deposits.2 Loans generate stochastic cash flows, whose expected returns and

volatility depend on the aggregate state of the economy, as in Hackbarth et al. (2006).3

The government imposes state-contingent dividend taxes and capital requirements. Simil-

arly to Décamps et al. (2011) and Moreno-Bromberg and Rochet (2014), the firm’s manager

1The ECB advised suspensions to start in March 2020; regular payments resumed in the fourth quarter of
2021. The FED imposed restrictions in June 2020, partially easing them in December 2020. The restrictions
ended between June and July 2021, allowing banks to revert to pre-pandemic dividend policies.

2In principle, the firm can represent either a financial or a non-financial company. However, our model is
particularly suited to represent financial firms, which are usually subject to capital requirements.

3Empirical evidence that cash flow uncertainty is a key determinant of firms’ payout decisions can be
found in Chay and Suh (2009).
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decides whether to default or issue equity (and how much) at a cost when capital require-

ments become binding. She retains cash flows as reserves or pays dividends to avoid costly

recapitalization, aiming to maximize shareholder value.

The first part of the paper solves the firm’s stochastic control problem in closed form.

First, we demonstrate that optimal payouts follow a threshold strategy. In particular, di-

vidends get paid only when their marginal value –proportional to the state-contingent di-

vidend tax rate – exceeds that of accumulating reserves. Otherwise, the firm takes no action.

Adopting state-contingent dividend taxes is equivalent to imposing a dividend ban when the

tax rate is high enough. Second, we show that recapitalizing the firm is optimal if its costs

are sufficiently small (“incentive-compatible”). If so, when the capital constraint binds and

there are no dividend taxes, the firm injects equity until reserves reach the dividend payout

threshold. In the presence of dividend taxes, the optimal recapitalization target falls below

the payout threshold. Third, we analytically derive the stationary distribution of the firm’s

reserves under the optimal strategy. We interpret this distribution as a measure of the firm’s

credit capacity ex-ante and use it to evaluate different policies in the long run.

The second part of the paper uses numerical analysis to investigate how dividend taxes

and capital regulation affect the firm’s optimal strategy and derive policy implications. Mo-

tivated by the COVID-19 policy case, we examine a scenario where dividend taxes are higher

during a bad economic state, characterized by high cash flow volatility and low expected re-

turns. To isolate the effects of dividend taxes, we consider a-cyclical capital requirements.

Consistent with its scope, the policy encourages reserve accumulation in the targeted

state by raising the firm’s optimal payout threshold. This happens because higher taxes

lower the marginal value of dividends. At the same time, however, it reduces the firm’s value

not only in the bad state (“ex-post”) but also in the good state (“ex-ante”) as shareholders

internalize the prospect of lower future returns. Accordingly, the firm finds it optimal to

increase dividend payouts (i.e., reduce capital buffers) in the good state to compensate for

these losses partially. These predictions warn that regulatory uncertainty regarding dividend

restrictions may backfire by generating lower capital buffers (on this point, see Attig et al.,

2021) in the long run and encourage counter-cyclical equity issuance strategies, as suggested

by Baron (2020).
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Related to these observations, the second finding of the analysis is that imposing higher

dividend taxes (or, equivalently, dividend restrictions) during a bad macroeconomic state re-

duces the firm’s optimal recapitalization targets across all states. Additionally, shareholder

value losses lower the incentive-compatible cost threshold beyond which shareholders be-

come unwilling to inject equity when capital constraints are binding. This result suggests

that state-contingent tax policies could increase default risk, potentially amplifying stability

concerns for the financial system.

Finally, we explore whether coordinating dividend taxes with cyclical capital buffers

helps mitigate the adverse effects of the first policy. This analysis is particularly relevant

because, during the COVID-19 crisis, regulators combined the recommendation to suspend

dividends with more relaxed capital buffers, which Dursun-de Neef et al. (2023) argue was

key to sustaining lending. According to our simulations, coordinating counter-cyclical capital

regulation with dividend taxes can mitigate the adverse effects of the latter policy by redis-

tributing value losses between states and reducing the dispersion of the firm’s distribution

in the long run. However, these benefits come at the cost of generating further disincentives

for recapitalization.

The paper proceeds as follows. Section 2 situates the paper within the existing literature.

Section 3 introduces the model, and Section 4 provides its analytical solution. Section 5

analyzes the model numerically and discusses its policy implications. Section 6 concludes.

2 Literature

From an empirical standpoint, several recent papers examined the (primarily short-term)

effects of dividend restrictions during the COVID-19 crisis. For example, Andreeva et al.

(2023) and Sanders et al. (2024) find that banks subject to the dividend suspension policy

experienced a temporary drop in equity valuation but were able to increase their lending

to the economy. Hardy (2021) shows that banks’ CDS spreads declined after this measure,

suggesting it improved their safety. A notable exception is Mücke (2023), showing that

mutual funds permanently reduced their ownership in banks under payout restrictions. We

complement this literature by developing a theory studying the joint effect of dividends and
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capital regulation on a firm’s endogenous decisions in the short and long run.

To our knowledge, only a few papers have theoretically examined the effect of firms’

dividend regulation. Goodhart et al. (2010) study the impact of dividend restrictions on an

interbank market, showing that it may reduce defaults and improve welfare. Lindensjö and

Lindskog (2020) solves the optimal control problem of a financial company facing dividend

restrictions, finding that they may increase default risk. Unlike our work, these papers

abstract from macroeconomic uncertainty.

Other related contributions include Vadasz (2022), which explores the ex-post interven-

tion problem between a regulator and a bank in a two-period game, and Ampudia et al.

(2023), which investigates dividend bans in a quantitative DSGE model with banks. Similar

to our work, these papers highlight the trade-off between the benefits of increased lending

and the losses in bank valuation due to the policy intervention. We differentiate substantially

by studying the joint effect of dividends and capital regulation on the firm’s optimal recapit-

alization decisions in a more standard corporate finance setting. In this respect, we connect

with extensive literature studying optimal cash management of the firm, such as Décamps

et al. (2011) and Gryglewicz (2011). We depart from these studies by considering macro-

economic uncertainty as in Hackbarth et al. (2006) (which does not consider dividends) and

state-contingent capital regulation.

Methodologically, we build on the continuous-time stochastic control literature on di-

vidends pioneered by Jeanblanc-Picqué and Shiryaev (1995). In particular, we tackle a

problem featuring Markovian regime switching, as in Jiang and Pistorius (2012) and Ferrari

et al. (2022). We consider endogenous equity issuance, as in Løkka and Zervos (2008). Our

solution adopts a guess-and-verify approach, as in Sotomayor and Cadenillas (2011).

We set apart from these studies in three dimensions. First, we consider macroeconomic

uncertainty in both expected cash flows (as in Reppen et al., 2020) and volatility. Second,

we model both dividend taxes (bans) and capital regulation. Third, we derive (analytically)

the stationary distribution of the reserve process under the firm’s optimal strategy.
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3 Model set up

Time is continuous and indexed by t ∈ [0,∞). As in Guo et al. (2005) and Hackbarth

et al. (2006), we consider a firm subject to aggregate uncertainty on the state of the economy,

modelled via a bi-variate Markov chain It ∈ {1, 2}, with transition intensity λIt . A risk-

neutral manager runs the firm in the best interest of its shareholders.

The firm holds a fixed amount of insured liabilities D (deposits) and assets At. Assets

include a constant stock of illiquid loans L and time-varying liquid reserves Xt. The book

value of the firm’s equity at time t satisfies then the balance sheet identity

Et +D = Xt + L. (1)

Deposits yield the risk-free interest rate ρ ≥ 0, while reserves are not remunerated,

for simplicity. Loans generate operating cash flows according to the following stochastic

differential equation:

µ̄Itdt+ σItdWt, (2)

whereWt is a standard one-dimensional Brownian motion defined on some filtered probability

space (Ω,F ,F := (Ft)t≥0,P). The drift and diffusion terms of (2) are contingent on the state

of the economy It. In particular, we assume that µ̄1 ≥ µ̄2 > 0 and σ2 ≥ σ1 > 0 so that States

1 and 2 represent expansions (higher expected returns and lower volatility) and recessions

(lower expected returns and higher volatility), respectively. We will thus refer to It = 1 as

the “good” and to It = 2 as the “bad” state throughout the paper.

The cash flows can be retained as reserves or paid out as dividends. dZt denotes the

time-t dividend payment and is the manager’s first choice variable. The government taxes

dividends depending on It. We denote as βIt ∈ [0, 1] the after-tax value of a 1$ dividend in

State It. Consistent with the paper’s motivation, we focus on counter-cyclical dividend tax

schedules and set β1 = 1 and β1 ≥ β2.

As in Décamps et al. (2011), the firm is required by the regulator to hold sufficient equity

to repay debtors fully in the case loans are liquidated at the fire-sale price α ∈ [0, 1]. Provided
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that D > αL, equity must be such that:

ER,It ≥ L (1− α) + ΓIt . (3)

The parameter ΓIt captures additional capital requirements (e.g., systemic capital buffers)

when ΓIt > 0, or subsidies (e.g., state guarantees to cover default losses partially) when

ΓIt < 0. By substituting (3) into (1) and rearranging, the capital requirement can be

expressed as the following minimum reserves level:

Xt ≥ D − αL+ ΓIt := xR,It . (4)

Since Xt is stochastic, (4) becomes occasionally binding at the random times (τn)n≥1.

When that happens, the manager can either liquidate or re-capitalize the firm by issuing

equity. The outcome is captured by the auxiliary variable bn, taking values 0 (liquidation)

or 1 (re-capitalization). This is the manager’s second choice variable.

In the case of a liquidation, shareholders incur no cost but forgo all future dividends.

The additional buffer Γ+
It

is rebated to the shareholders. In the case of a recapitalization,

shareholders provide the firm with new liquidity Gn and pay a fixed cost κ ≥ 0.

For a given equity issuance schedule, liquid reserves up to a (possibly infinite) liquidation

time τℓ := inf{τn ≥ 0 : bn = 0} evolve as follows:







Xτn = Xτ−n
+Gn, n ≥ 0,

dXt = (µ̄It − ρD)
︸ ︷︷ ︸

:=µIt

dt+ σItdWt − dZt, t ∈ [τn, τn+1),

(5)

with initial values I0 = i ∈ {1, 2} and X0 = x ≥ min {xR,1, xR,2}.

Since reserves are not remunerated, the firm accumulates them (i.e., pays dividends)

only to avoid costly recapitalization or liquidation. Formally, its strategy is a triple of

Ft-measurable stochastic processes A :=
(
(Zt)t≥0, (bn, Gn)n≥1

)
. For this strategy to be ad-

missible, dividends cannot be negative or leave the firm with reserves below the capital
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requirement, and each re-capitalization must be strictly positive.4

Formally, the firm’s gain functional is

J(x, i;A) = E

[
ˆ τℓ

0

e−δtβItdZt −

ℓ−1∑

n=1

e−δτn(Gn + κ)

]

, ∀A ∈ A, (6)

where δ is a discount rate and A denotes the set of admissible strategies, with the convention
∑0

n=1 = 0. The firm’s value function (i.e., shareholder value) is given by

V (x, i) := sup
A∈A

J(x, i;A) (7)

s.t. (5) (8)

4 Model solution

The first part of this section derives the solution to the firm’s optimal control problem

analytically. For this purpose, we focus on the “baseline” case in which capital requirements

are a-cyclical, i.e. not contingent on the state of the economy (xR,1 = xR,2 = xR). We will

consider cyclical capital requirements in Section 5.

The second part of the section derives and analyses the (stationary) distribution of the

firm’s reserves under the optimal strategy.

4.1 Shareholder value and optimal strategy

To tackle Problem (7), we follow a guess-and-verify approach.5 More specifically, we

formulate a set of optimality conditions for a candidate value function v based on heuristic

considerations. Then, we use verification arguments to prove that v = V .

We expect the firm’s value function to solve (in a suitable sense) the following system of

4A more formal definition of the decision policy and admissible strategies appears in the online appendix.
5This approach is the most used in the classical corporate finance literature starting from Leland (1994).

For a direct approach to a similar problem, building on the theory of viscosity solutions and stating the
optimality conditions as necessary, we refer to Akyildirim et al. (2014).
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Hamilton-Jacobi-Bellman Variational Inequalities (HJBVI):

max
{

Liv(x, i)− λi [v(x, i)− v(x, 3− i)] , βi − v′(x, i)
}

= 0, i = 1, 2, x > xR, (9)

where v : [xR,∞) × {1, 2} → R, and Li are differential operators acting on functions ϕ ∈

C2(xR,∞) as follows:

Liϕ =
1

2
σ2
i ϕ

′′ + µiϕ
′ − δϕ, i = 1, 2.

Associated with a smooth enough solution to (9), there are the following continuation

and intervention regions for i = 1, 2:

Ci := {x > xR : v′(x, i) > βi} , (10)

Si := {x > xR : v′(x, i) = βi} . (11)

Equipped with these objects, we conjecture that the optimal control has a threshold struc-

ture, as in Sotomayor and Cadenillas (2011), meaning that for each i = 1, 2, there is a reserve

level x̃i below which the firm does not pay dividends. Indeed, we expect that it is optimal to

accumulate reserves as long as their marginal value (v′(·, i)) exceeds that of dividends (βi).

Formally, we guess that the above regions are Ci = (xR, x̃i) and Si = [x̃i,∞) for i = 1, 2,

implying that

x̃i = inf {x ≥ xR : v′(x, i) ≤ βi} . (12)

Next, we make some conjectures to construct a sufficiently smooth solution to (9). First,

we assume that v(·, i) ∈ C([xR,∞))∩C2((xR,∞)). Second, we postulate that xR < x̃1 < x̃2,

based on the intuition that it is optimal to pay more dividends when assets yield higher

returns and carry less uncertainty. Third, we impose appropriate boundary conditions at

the regulatory threshold xR. The boundary conditions determine whether recapitalization

is optimal at xR and, if so, the amount of equity to issue.

If the manager liquidates the firm, shareholders receive the maximum between the capital

buffer and zero (Γ+
i ). Otherwise, the optimal recapitalization policy (Ĝ) must be feasible and

“incentive-compatible”, i.e. its benefits must be larger than or equal to its costs. Therefore,
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we require that Ĝ = argmax {v(xR +G; i)−G− κ}, with v(xR + Ĝ, i) ≥ Ĝ + κ and Ĝ ∈

G := [0, x̃i − xR]. As either liquidation or recapitalization must be optimal, we impose that

v(xR, i) = max

{

max
G∈G

{v(xR +G, i)−G− κ} ,Γ+
i

}

for i = 1, 2. (13)

We now construct a function that meets all these conditions.

In the intervals [x̃i,∞), the function must satisfy v′(·, i) = βi. In the interval (x̃1, x̃2), we

define v′(·, 2) as the unique solution to

1

2
σ2
2v

′′′(x, 2) + µ2v
′′(x, 2)− (δ + λ2) v

′(x, 2) + λ2 = 0, (14)

with boundary conditions v′(x̃2, 2) = β2 > 0 (optimality condition), and v′′(x̃2, 2) = 0 (super

contact condition, see Dumas, 1991). In the interval (xR, x̃1), we find the functions v′(·, i)

as unique solutions to the following system:







1
2
σ2
1v

′′′(x, 1) + µ1v
′′(x, 1)− (δ + λ1) v

′(x, 1) + λ1v
′(x, 2) = 0,

1
2
σ2
2v

′′′(x, 2) + µ2v
′′(x, 2)− (δ + λ2) v

′(x, 2) + λ2v
′(x, 1) = 0.

(15)

with boundary conditions v′(x̃1, 1) = 1 (optimality condition), v′′(x̃1, 1) = 0 (super-contact

condition), v′(x̃−
1 , 2) = v′(x̃+

1 , 2), and v′′(x̃−
1 , 2) = v′′(x̃+

1 , 2) (continuity conditions).

Solving (14) and (15) for v′(·, i) and integrating over the corresponding intervals yields

the following.

Proposition 1 (Solution to the HJBVI system). Recall that δ > 0, λi > 0, µ1 ≥ µ2,

σ2 ≤ σ1 and assume that β2 > λ2/(λ2 + δ). Then, we have the following claims.

1. Fix x̃1, x̃2 such that xR < x̃1 < x̃2 and define

v(x, 1) = K1 +







(x− x̃1), x ∈ [x̃1,∞),

∑4
j=1 Aj

(
eαj(x−x̃1) − 1

)
, x ∈ [xR, x̃1),

(16)
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v(x, 2) = K2+







β2(x− x̃2), x ∈ [x̃2,∞),

λ2(x−x̃2)
δ+λ2

+
∑2

j=1 Ãj

(
eα̃j(x−x̃1) − eα̃j(x̃2−x̃1)

)
, x ∈ [x̃1, x̃2),

λ2(x̃1−x̃2)
δ+λ2

+
∑2

j=1 Ãj(1− eα̃j(x̃2−x̃1)) +
∑4

j=1 Bj

(
eαj(x−x̃1) − 1

)
, x ∈ [xR, x̃1),

(17)

where αj < α2 < 0 < α3 < α4 and α̃1 < 0 < α̃2 are the real roots of

(

δ + λ1 − αµ1 −
σ2
1

2
α2

)

︸ ︷︷ ︸

:=G1(α)

(

δ + λ2 − αµ2 −
σ2
2

2
α2

)

︸ ︷︷ ︸

:=G2(α)

= λ1λ2, (18)

1

2
σ2
2α̃

2 + µ2α̃ = δ + λ2, (19)

and (A1, A2, A3, A4, Ã1, Ã2) ∈ R
6 and (K1, K2) ∈ R

2
+ solve the following linear system:6







∑4
j=1 Ajαj − 1 = 0,

∑4
j=1 Ajα

2
j = 0,

∑4
j=1 Bjαj −

λ2

δ+λ2
−
∑2

h=1 Ãhα̃h = 0,

∑4
j=1 Bjα

2
j −

∑2
h=1 Ãhα̃

2
h = 0,

∑2
h=1 α̃hÃhe

α̃h(x̃2−x̃1) − β2 +
λ2

δ+λ2
= 0

∑2
h=1 α̃

2
hÃhe

α̃h(x̃2−x̃1) = 0.

µ2β2 − (δ + λ2)K2 + λ2(K1 + x̃2 − x̃1) = 0,

µ1 − (δ + λ1)K1 + λ1

(

K2 +
λ2

δ+λ2
(x̃1 − x̃2)

)

= 0,

(20)

with Bj = Ajλ
−1
1 G1(αj). Moreover, assume that







∑4
j=1 Ajα

3
j > 0,

∑4
j=1 Bjα

3
j > 0,

∑4
j=1 Ajα

3
je

αj(xR−x̃1) > 0,

∑4
j=1 Bjα

3
je

αj(xR−x̃1) > 0.

(21)

6Assuming that a solution to this system exists.
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Then, v′′(·, i) < 0 in (xR, x̃i) and (16) and (17) solve (9) in a classical sense.

2. Consider the framework in Point 1 and assume that

4∑

j=1

Bjαje
αj(xR−x̃1) − 1 > 0. (22)

Then, x∗
2 ∈ (xR, x̃2] is the unique solution of

1[xR,x̃1](x
∗
2)

4∑

j=1

Bjαje
αj(x

∗

2−x̃1) + 1(x̃1,x̃2](x
∗
2)

(

λ2

δ + λ2

+
2∑

h=1

α̃hÃhe
α̃h(x

∗

2−x̃1)

)

− 1 = 0.

(23)

3. Consider the framework in Points 1 and 2 and set Γ+
i = 0. Moreover, assume that

x̃1, x̃2 solve the following algebraic system:







∑4
j=1 Aj

(
eαj(xR−x̃1) − 1

)
+ (x̃1 − xR) + κ = 0,

λ2x̃1

δ+λ2
−
∑2

j=1 Ãj(1− eα̃j(x̃2−x̃1))−
∑4

j=1 Bj

(
eαj(xR−x̃1) − 1

)
+

−
(

λ2x̃1

δ+λ2
+
∑2

j=1 Ãj(1− eα̃j(x̃2−x̃1)) +
∑4

j=1 Bj

(
eαj(x

∗

2−x̃1) − 1
))

1(xR,x̃1)+

−
(

λ2x
∗

2

δ+λ2
+
∑2

j=1 Ãj

(
eα̃j(x

∗

2−x̃1) − eα̃j(x̃2−x̃1)
))

1(x̃1,x̃2) − (x∗
2 − xR) + κ = 0.

(24)

Then, (16) and (17) satisfy the boundary conditions (13).

Proof. See Appendix A.1.

Suppose all the above assumptions hold, and v equals the value function. In that case,

we can use this proposition to determine the firm’s optimal strategy by solving a system of

algebraic equations. The procedure is the following.

The firm only pays dividends in State i when its reserves reach x̃i. For a given x∗
2 ∈

(xR, x̃2], the payout thresholds solve the system in (24). When reserves reach xR, liquidation

is never optimal (τ̂l = ∞ or, equivalently, b̂n = 1), provided that κ is sufficiently small to

ensure that (13) is positive. If that is the case, the optimal recapitalization in State i injects

equity until the firm’s reserves reach the “target” level x∗
i . Therefore, Ĝ(i) = x∗

i − xR.

12



Since v(·, i) is differentiable, we can use (13) and the boundary condition v(x̃1, 1) = 1

to obtain that x∗
1 = x̃1 and x∗

2 ∈ (xR, x̃2] as the unique solution of (23). In other words,

the firm finds it optimal to recapitalize exactly to its dividend payout threshold in the good

State and below the payout threshold in the bad one, (x∗
2 ≤ x̃2) because the marginal value

of dividends (β2) is smaller than one. Since v is concave, v(x̃2, 2) = β2 ≤ v(x∗
2, 2) = 1, and

each state has a unique payout threshold and recapitalization target.

For a given Ĝ(i), the following condition defines the maximum cost level that ensures

that recapitalization is incentive-compatible:

κ̄ = xR +min {v(x∗
1, 1)− x∗

1, v(x
∗
2, 2)− x∗

2} . (25)

The next theorem verifies that v is indeed the value function and formally expresses the

optimal strategy we described above.

Theorem 1 (Verification). Let all the assumptions of Proposition 1 hold and let v(·, i) be

the functions constructed therein. Moreover, let (x, i) ∈ (xR,∞) × {1, 2}. Then, v(x, i) =

V (x, i) and the control Â = (Ẑ, (b̂, Ĝ)) ∈ A such that







b̂n = 1,

Ĝn = x∗
I
τ̂
−

n

− xR,

Ẑt = Ẑτn + sups∈[τ̂n,t)

[

x∗
I
τ̂
−

n

+
´ s

τ̂n
(µIrdr + σIrdWr)− x̃I

τ̂
−

n

]+

, t ∈ [τ̂n, τ̂n+1),

(26)

where τ̂0 := 0 and τ̂n is defined recursively as τ̂n+1 = inf{t ≥ τ̂n : X̂t− = xR} being X̂t the

associated state process, is optimal.

Proof. See Appendix A.2.

Remark 1. (Dividend tax threshold) The solution structure described in Proposition

1 and Theorem 1 holds under the parametric restriction that dividend taxes are not too

high, i.e., β2 > λ2/(λ2 + δ). In contrast, when β2 ≤ λ2/(λ2 + δ), an inspection of the

conditions set shows that the solution structure used to obtain them breaks down. The same

conditions suggest we guess an alternative structure with x̃2 = ∞. The “right” structure has

13



C2 = (xR,∞), irrespective of the value of β2 ∈ [0, λ2/(λ2 + δ)). For a rigorous treatment of

this case, we refer to Appendix A.4.

Remark 1 clarifies that when taxes are excessively high in the bad state, the firm finds

it optimal to withhold dividend payments and wait until the good state occurs to distribute

them. Therefore, setting β2 ≥ λ2/(δ + λ2) is equivalent to imposing a dividend ban in

the bad state. The level of β2 that triggers the “ban-like” behaviour increases with the

probability of transitioning from the bad to the good state (λ2) and decreases with the

manager’s impatience (δ).

4.2 Reserves distribution

This section derives the probability density function of the firm’s reserves process in state

i = 1, 2, denoted as π(x, i). We will use this object to evaluate the effects of dividend taxes

and capital regulation on the firm’s capital buffers (or “credit capacity”) in Section 5.

Since the dynamics of reserves obey the controlled process (26), standard arguments can

be applied to show that, in the interval (xR, x
∗
2) ∪ (x∗

2, x̃1), π(x, i) satisfies the following

system of Kolmogorov Forward Equations (KFE):







σ2
1

2
π′′(x, 1)− µ1π

′(x, 1) + λ1 (π(x, 2)− π(x, 1)) = 0,

σ2
2

2
π′′(x, 2)− µ2π

′(x, 2) + λ2 (π(x, 1)− π(x, 2)) = 0,

(27)

with boundary conditions π(x∗−
2 , i) = π(x∗+

2 , i) (value matching), π′(x∗−
2 , 1) = π′(x∗+

2 , 1)

(smooth pasting). By the same logic, in the interval (x̃1, x̃2) the density function in State 2

satisfies
σ2
2

2
π′′(x, 2)− µ2π

′(x, 2)− λ2π(x, 2) = 0, (28)

with boundary conditions π(x̃−
1 , 2) = π(x̃+

1 , 2) and π′(x̃−
1 , 2) = π′(x̃+

1 , 2). These conditions

imply that π(·, i) is C1 in all interior regions for i = 1, 2, except for π(·, 2) at x∗
2, which is

the mass point where reserves accumulate after each recapitalization when i = 2.

14



To characterize the pdf at x̃1 and x̃2, we impose the following reflecting barriers:7

σ2
i

2
π′(x̃i, i)− µiπ(x̃i, i) = 0, for i = 1, 2. (29)

Coherently, we set π(·, i) = 0 in the interval (x̃i,∞) for i = 1, 2.

To characterize the pdf at the regulatory threshold, we impose that the reserves process

is “absorbed” at xR, in the sense that it is immediately and irreversibly transported to

the interior states x∗
i (see Yaegashi et al., 2019, for a discussion of similar conditions in a

uni-variate setting). Thus, we set π(xR, i) = 0 for i = 1, 2. Finally, we impose that

2∑

h=1

λ3−h

λ1 + λ2

ˆ ∞

xR

π(x, h)dx = 1, (30)

where λh/(λ1 + λ2) = 1 − P {i = h}, because π(x, i) is a pdf. Solving (27) and (28) under

these conditions yields the following.

Proposition 2. (Reserves probability density function) Fix x̃1, x̃2 such that xR <

x̃1 < x̃2. Then, the pdf of the firm’s reserves in state i = 1, 2 satisfies

π(x, 1) =







P1e
r1x + P2e

r2x + P3e
r3x + P4e

r4x, x ∈ (xR, x
∗),

P̃1e
r1x + P̃2e

r2x + P̃3e
r3x + P̃4e

r4x, x ∈ (x∗, x̃1),

0, x ∈ (x̃1,∞),

π(x, 2) =







Q1e
r1x +Q2e

r2x +Q3e
r3x +Q4e

r4x, x ∈ (xR, x
∗),

Q̃1e
r1x + Q̃2e

r2x + Q̃3e
r3x + Q̃4e

r4x, x ∈ (x∗, x̃1),

H1e
s1x +H2e

s2x, x ∈ (x̃1, x̃2),

0, x ∈ (x̃2,∞),

7For a formal derivation of reflecting barriers for controlled diffusion process, we refer to D.R. and Miller
(1965), Chapter 5.
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in which r1 < r2 < 0 < r3 < r4 and s1 < 0 < s2 are the real roots of

(

λ1 + rµ1 −
σ2
1

2
r2
)

︸ ︷︷ ︸

:=F1(r)

(

λ2 + rµ2 −
σ2
2

2
r2
)

︸ ︷︷ ︸

:=F2(r)

= λ1λ2, (31)

σ2
2

2
s2 − µ2s = λ2, (32)

and the constants (P1, P2, P3, P4, P̃1, P̃2, P̃3, P̃4, H1, H2) ∈ R
10 solve the linear system







∑4
j=1 P̃j

(
σ2
1

2
rj − µ1

)

erj x̃1 = 0,

∑4
j=1 P̃j

(
σ2
1

2
rj − µ1

)

erj x̃1 = 0,

∑4
j=1 Pje

rjxR = 0,

∑4
j=1 Qje

rjxR = 0,

∑4
j=1 e

rjx
∗

2

(

Pj − P̃j

)

= 0,

∑4
j=1 e

rjx
∗

2rj

(

Pj − P̃j

)

= 0,

∑4
j=1 e

rjx
∗

2

(

Qj − Q̃j

)

= 0,

∑2
h=1 Hhe

shx̃1 −
∑4

j=1 Q̃je
rj x̃1 = 0,

∑2
h=1 Hhshe

shx̃1 −
∑4

j=1 Q̃jrje
rj x̃1 = 0,

∑2
h=1 λ3−h

´ x̃i

xR
π(x, i)dx− λ1 − λ2 = 0,

(33)

where Qj = λ−1
1 F (rj)Pj and Q̃j = λ−1

1 F (rj)P̃j.

Proof. See Appendix A.3.

5 Policy implications

In this section, we parameterize the model and numerically analyze its policy implications

by examining the effects of dividend taxes on the firm’s optimal strategy, value, and reserve

distribution.
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Parameter Meaning Value

µ1 CF drift, good state 0.05
µ2 CF drift, bad state 0.02
σ1 CF vol, good state 0.25
σ2 CF vol, bad state 0.3
κ Recapitalization cost 0.087
δ Discount rate 0.03
xR Capital requirement 0.0769
ρ Return on deposits 0.0043
α Haircut 0.6
β2 Dividend regulation 0.87
L
D

Loan-to-deposit ratio 1.5385
1/λ1 Avg duration, good state 10
1/λ2 Avg duration, bad state 6.7
Γ1,Γ2 Capital buffers 0

Table 1: Baseline parameters

5.1 Parameters

We normalize the stock of deposits D = 1 and choose L to match the US bank deposit-to-

loan ratio in Q4 2022 (about 1.5385), according to S&P Global. According to FRED, we set

the rate of return on deposits to ρ = 0.0043. Consistently, we obtain xR = 1−0.6×1.5385 =

0.0769. We calibrate the fixed re-capitalization cost κ = 0.087 to yield a price-to-book ratio

at the dividend payout threshold in the good state (v(x̃1, 1)/(L+x̃1−D)) of about 1.04. This

is the value observed across US commercial banks, according to the NYU Stern database.

The drift and the diffusion parameters, µ̄i and σi, and the discount rate δ are similar to Guo

et al. (2005). The regime shifting intensities λi and the hair cut α come from Hackbarth et al.

(2006). Last, we set β2 = 0.87, corresponding to an increment of 10 p.p. in the dividend tax

rate from 0.3 in the good regime to 0.4 in the bad one.8

8After normalizing the value of β1 = 1, the parameter β2 can be obtained by solving: 1− 0.3 = 1−0.4
β2

.
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Figure 1: Optimal strategy and shareholder value in the good (Panel (a)) and bad (Panel (b))
states when β2 = 1 (solid blue) and β2 = 0.87 (dotted red).

5.2 The effects of dividend taxes

5.2.1 Firm’s optimal strategy and shareholder value

To evaluate the effect of state-contingent dividend taxes, we compare the firm’s optimal

strategy and shareholder value (i.e., the value function) when β2 < β1 = 1 with the bench-

mark case where β2 = β1 = 1. The red dotted and solid blue lines in Figure 1 display

v(x, i) in the good (Panel (a)) and bad (Panel (b)) states as a function of the reserve level

in these two cases. The black crosses and the blue (red) diamonds on the x-axis showcase

the regulatory threshold (xR) and the optimal dividend payout (x̃i) in the good (bad) state.

The red star in Panel (b) indicates the optimal recapitalization target. The following four

patterns emerge from the comparison.

First, dividend taxes reduce shareholder value for all reserve levels and in each state of

the economy. This is expected because the policy introduces an additional distortion beyond

the capital requirement, relative to the benchmark. The value losses are more severe in

percentage terms for any reserve value in the bad state than in the good state, as the policy

affects the latter only indirectly. Additionally, value losses are always more severe when the

level of reserves is lower, except in the bad state, where they increase slightly after reaching
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β2 x̃1 x̃2 x∗
2

1.000 0.820 0.950 0.950
0.990 0.819 0.941 0.815
0.970 0.814 1.061 0.747
0.950 0.811 1.142 0.724
0.900 0.804 1.421 0.667
0.870 0.804 1.700 0.655
0.850 0.800 2.663 0.649
0.834 0.800 17.024 0.649

Table 2: Optimal dividend threshold and recapitalization target as functions of β2.

a tipping point around x = 1.

Second, we examine the effects of dividend taxes on the firm’s optimal strategy. On

the one hand, consistent with its intended scope, the policy encourages additional capital

accumulation (i.e., fewer dividends) in the bad state, shifting x̃2 from about 0.95 to 1.7.

The higher the tax, the more the firm is willing to wait for a state change before paying

dividends. This outcome is apparent in Table 2, which displays the optimal x̃i and x∗
2 as

functions of β2.
9 On the other hand, the policy “backfires” in the good state, where the

firm reduces x̃1 from 0.82 to 0.80. The reason is that the firm compensates for the bad-state

tax by anticipating dividends in the good state. Notice, however, that there is a significant

asymmetry in the magnitude of the threshold shifts between the good and bad states. In our

parametrization, enforcing dividend restrictions reduces the payout threshold in the good

state by only 2.5%, while it increases it by more than 30% in the bad state.

Third, dividend taxes reduce the firm’s optimal recapitalization targets (x∗
i ) in every

state. In the good state, this result directly follows the shift in the payout dividend threshold

x̃1 because it coincides with the recapitalization target (x̃1 = x∗
1). Conversely, x̃2 > x∗

2 in

the bad state because the marginal cost of paying dividends (β2) is always lower than that

of injecting liquid reserves, and v′′(x, 2) < 0 (see (23)). Notably, x∗
2 decreases with β2 (up

to a limit value as β2 → δ+λ2

λ2
) and lies below the good-state payout thresholds x̃1. Hence,

dividend taxes reduce the equity shareholders are willing to inject when their reserves reach

9Note that, consistent with Remark 1, the last rows of the table showcase that the bad-state payout
threshold x̃2 “explodes” when β2 → λ2/(δ + λ2) (≈ 0.33̄ in the baseline parametrization).
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Figure 2: Reserves distribution and the optimal strategy in the good (Panel (a)) and bad (Panel
(b)) states when β2 = 1 (blue) and β2 = 0.87 (red).

the regulatory threshold xR.

Fourth, the overall influence of the dividend tax policy on the firm’s reserve holdings

is ambiguous because the ways it affects its optimal strategy are conflicting: while the

increase in x̃2 yields higher capital buffers, the reduction in x̃1 and x∗
2 may curb them. To

determine which effect prevails, the next section analyzes the impact of the policy on the

firm’s stationary reserves distribution.

5.2.2 Credit capacity and recapitalization incentives

This section employs the (stationary) pdf of the firm’s reserves (π(x, i)), characterized in

Proposition 2, to compute an ex-ante measure of the firm’s credit capacity (i.e., the average

level of its reserves) conditional and unconditional on the aggregate state of the economy.

Figure 2 displays π(x, i) and the associated optimal strategy when β2 = β1 = 1 (blue)

and β2 < β1 = 1 (red). As a first observation, higher dividend taxes in the bad state do

not substantially alter the pdf’s shape in the good state (Panel (a)). However, they transfer

probability mass towards lower reserve levels because reducing β2 shifts x̃1 to the left, but the

probability of i = 1 remains unchanged. In contrast, the tax policy dramatically affects the

shape of the pdf in the bad state (Panel (b)). In particular, the dispersion of π(x, 2) increases

20



β2 E
π
1 [x] E

π
2 [x] E

π [x] V
π
1 [x] V

π
2 [x] V

π [x] κ̄
1.00 0.6007 0.6525 0.6214 0.0372 0.0387 0.0389 0.1351
0.95 0.5758 0.7473 0.6444 0.0284 0.0609 0.0485 0.1187
0.90 0.5698 0.8289 0.6734 0.0280 0.1015 0.0735 0.1090
0.87 0.5677 0.8913 0.6971 0.0279 0.1496 0.1017 0.1057
0.85 0.5669 0.9448 0.7181 0.0278 0.2118 0.1357 0.1043

Table 3: Firm’s credit capacity, its dispersion, and the maximal incentive-compatible recapitaliza-
tion cost for different dividend tax parameters β2.

sharply because a lower β2 shifts x̃2 to the right, widening the support of the reserves’ process.

Additionally, dividend taxes generate a steep mass point at the recapitalization target x∗
2

because x∗
2 < x̃1 < x̃2.

10

To capture the overall effect of the dividend tax policy, we define the following measure

of the firm’s “credit capacity” conditional on State i as:

E
π
i [x] =

ˆ x̃i

xR

xπ(x, i)dx, (34)

and its dispersion as Vπ
i [x] = E

π
i [x

2] − E
π
i [x]

2. Consistently, we define the firm’s uncondi-

tional credit capacity as

E
π [x] =

2∑

h=1

E
π
h [x]

λ3−h

λ1 + λ2
︸ ︷︷ ︸

=P{i=h}

, (35)

with dispersion V
π [x] = E

π [x2]− E
π [x]2.11 Table 3 collects the value of these objects using

the parameters in Table 1 and different levels of β2. The analysis delivers the following

implications.

First, state-contingent dividend taxes reduce the firm’s credit capacity in the bad state

but enhance it in the good state. However, the loss in the former is always more than

offset by the gains in the latter (Columns 1 and 2). As a result, imposing dividend taxes

increases overall credit capacity (Column 3). Second, higher dividend taxes slightly reduce

10Notice that, due to the regime-switching, the pdf of x in State 2 displays a small but interior mass point
even when β2 = 1, coinciding with the dividend payout threshold x̃1 in State 1.

11While our model features a fixed loan supply, credit capacity captures the ex-ante average resources
available to the firm and that may potentially be used to issue new loans.
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β2 τ̂(1) τ̂(2) τ̂

1.000 11.89 11.56 11.76
0.970 12.44 11.99 12.26
0.870 13.06 12.66 12.90
0.834 13.12 12.74 12.97

Table 4: Average waiting time (years) between subsequent recapitalization events, in each State i
and overall, for different levels of β2.

the dispersion of reserves in the good state but significantly increase it in the bad state.

Hence, the firm’s credit capacity dispersion increases overall (Columns 5-7).

The relatively small impact of dividend taxes on the firm’s credit capacity in the good

state, compared to their more significant effects in the bad state and the overall increase in

credit capacity, suggests that the policy’s benefits outweigh its costs. Indeed, one can verify

that dividend taxes make recapitalization events less frequent in each state i and overall.

Table 4 reports a numerical approximation of the average waiting time between subsequent

recapitalization events, formally defined as τ̂(i) := inf{t ≥ τn : X̂t = xR,i, X̂τn = x∗
i } and

τ̂ :=
∑2

i=1 τ̂(i) · λ3−i/(λ1 + λ2) for different values of β2.
12 Note that, despite the tax, the

average recapitalization time is higher in the good than in the bad state.

The overall evaluation of the dividend tax policy becomes less straightforward when

noticing that, due to the firm’s value losses, higher dividend taxes reduce the maximal

equity issuance cost that is incentive-compatible (κ̄, see (25)). The last column of Table 3

displays this phenomenon, showing that, for example, a ten p.p. increment in dividend taxes

is associated with a 28 per cent reduction in the level of κ̄. It is relevant to emphasize that all

the figures reported in the table exceed the baseline cost level adopted in our parametrization

(κ = 0.087), ensuring that the firm always finds it optimal to recapitalize when x = xR. We

nevertheless interpret this tightening of the incentive-compatibility constraint as evidence

that dividend restrictions may endogenously increase default risk.

12The numbers are obtained by averaging 5,000 Monte Carlo simulations of the firm’s reserves process
under the optimal strategy (26).
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x̃1 x̃2 x∗
2 κ̄

β2 1.00 0.87 1.00 0.87 1.00 0.87 1.00 0.87
Baseline 0.821 0.801 0.954 1.700 0.954 0.655 0.135 0.106
σ2 = 0.35 0.827 0.811 1.051 1.938 1.051 0.710 0.118 0.087
µ1 = 0.07 0.794 0.776 0.952 1.698 0.952 0.653 0.288 0.251
µ2 = 0.03 0.820 0.798 0.941 1.651 0.941 0.637 0.194 0.157
λ1 = 0.05 0.816 0.806 0.954 1.700 0.954 0.655 0.186 0.160
λ2 = 0.2 0.821 0.804 0.950 3.324 0.950 0.672 0.164 0.141

Γ1 = Γ2 = 0.05 0.871 0.851 1.007 1.750 1.007 0.705 0.133 0.106
Γ1 = Γ2 = −0.05 0.769 0.751 0.923 1.650 0.923 0.605 0.133 0.106

Table 5: Comparative statics analysis.

5.2.3 Comparative statics

The previous section qualitatively examined the effects of dividend taxes in our baseline

calibration. Table 5 reports a comparative statics analysis to demonstrate that our results

hold qualitatively for significant variations in the model’s main parameters.

A higher drift in the good or bad states lowers the payout thresholds because it releases

the firm’s precautionary motive (Rows 3-4). Raising volatilities leads to an opposite effect

(see, e.g., Row 2). Decreasing the probability of visiting the bad state (λ1) fosters dividend

payouts without the tax while mitigating the additional payout incentive in the good state

induced by the tax. Moreover, it increases the maximum incentive-compatible cost level

while leaving the optimal recapitalization target unaffected. The probability of transitioning

from the bad to the good state (λ2) has similar effects on x̃1, x
∗
2, and κ̄, while also leading

to a further postponement of dividends in the bad state. (Row 6).

A particular aspect worth emphasizing concerns the effects of a change in the regulatory

buffer/subsidy parameters Γi, for i = 1, 2. The last two rows of the Table 5 examine the

cases where Γ1 = Γ2 = Γ = ±0.05. Figure 3 displays the effect of changing Γ on the firm’s

value function. The analysis will serve as a benchmark when we discuss cyclical capital

regulation (i.e. when Γ1 ̸= Γ2) in Section 5.3.2. As intuition suggests, tighter (looser)

capital requirements are associated with higher (lower) recapitalization thresholds and lower

(higher) firm valuations. Additionally, it is worth noting that changes in Γ do not affect the

maximum incentive-compatible recapitalization costs. This happens because shareholder
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Figure 3: Shareholder value in the good (left panels) and the bad states (right panels) for different
combinations of Γ when β2 = 1 (top panels) and β2 = 0.87 (bottom panels).

value shifts in the opposite direction of the capital requirement change.

Although relatively straightforward, these effects are significant as they suggest regulators

can mitigate shareholder value losses–one of the adverse impacts of the dividend tax policy–

by adjusting capital requirements simultaneously. We explore this aspect further in the next

section.

5.3 Coordinating dividend taxes and capital regulation

This section extends the model to consider counter-cyclical capital requirements and

discusses how that modifies the associated solution structure. Then, it examines numerically

the policy challenge of coordinating dividend taxes and capital regulation.

Our analysis is primarily motivated by the fact that, while recommending dividend sus-

pensions, the ECB temporarily eased capital requirements for banks during the COVID-19

crisis (see Matyunina and Ongena, 2022). The Basel III regulatory framework justifies our

focus on counter-cyclical capital requirements. At the same time, we neglect pro-cyclical
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Figure 4: Solution structure with counter-cyclical capital requirements.

capital buffers based on the extensive literature showing that it may destabilize financial

institutions and thus exacerbate crises. (On this point, see, for example Repullo and Suarez,

2013; Valencia and Bolanos, 2018, and the references therein).13

5.3.1 Counter-cyclical capital requirements

To model counter-cyclical capital requirements, we consider Γ1 > Γ2 or, equivalently,

xR,1 > xR,2. This assumption requires adjusting the model’s solution structure by adding

the region x ∈ (xR,2, xR,1) to the state space, as shown in Figure 4. The regulator requires

the firm to immediately recapitalize (or liquidate) in this region should the economy shift

from State 2 to State 1. Accordingly, we set

v(x, 1) = max {v(x̃1, 1)− (x̃1 − x)− κ, 0} , (36)

and find v(x, 2) as the unique solution of

1

2
σ2
2v

′′(x, 2) + µ2v
′(x, 2)− (δ + λ2) v(x, 2) + λ2v(x, 1) = 0, (37)

with boundary conditions v(x+
R,1, 2) = v(x−

R,1, 2) and v′(x+
R,1, 2) = v′(x−

R,1, 2).

Since the firm always finds it optimal to recapitalize when κ is small enough (see (36)),

in the remaining regions (i.e., when x > xR,1), the value function equals the one described

in Section 4.1 after setting xR,1 = xR. Hence, we can still characterize the model’s solution

13A brief discussion on how to adapt the model’s solution structure to accommodate pro-cyclical capital
requirements can be found in the online appendix.
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xR,1 xR,2 x̃1 x̃2 x∗
2 E

π
1 [x] E

π
2 [x] E

π [x] V
π
1 [x] V

π
2 [x] V

π [x] κ̄
0.077 0.077 0.801 1.700 0.655 0.568 0.891 0.697 0.028 0.150 0.102 0.106
0.087 0.062 0.806 1.688 0.643 0.571 0.884 0.696 0.028 0.148 0.099 0.102
0.097 0.047 0.812 1.677 0.631 0.579 0.868 0.694 0.028 0.150 0.097 0.098
0.117 0.017 0.824 1.656 0.609 0.600 0.847 0.693 0.027 0.151 0.092 0.087

Table 6: Firm’s optimal strategy, its credit capacity and dispersion, and the maximal incentive-
compatible recapitalization cost for different levels of Γ (xR,1 and xR,2).

analytically by solving a system of algebraic equations. We report the details in the online

appendix.

5.3.2 The effects of counter-cyclical capital regulation

We now numerically examine the effects of counter-cyclical capital requirements on the

firm’s optimal strategy and their interaction with dividend taxes.

To benchmark our results against the a-cyclical case discussed in Section 4, we assume

that the regulator sets Γi to maintain the mean capital requirement xR across states. Ac-

cordingly, we use Γ1 = Γ > 0 and Γ2 = −Γ1, such that

xR = (D − αL+ Γ)
︸ ︷︷ ︸

=xR,1

λ2

λ1 + λ2
︸ ︷︷ ︸

=P{i = 1}

+(D − αL− Γ)
︸ ︷︷ ︸

=xR,2

λ1

λ1 + λ2
︸ ︷︷ ︸

=P{i=2}

. (38)

Table 6 reports the firm’s optimal policy, credit capacity and dispersion, and the maximal

incentive-compatible recapitalization cost for different levels of Γ. Row 1 illustrates the

benchmark case where Γ = 0. We obtain the following predictions.14

First, adopting counter-cyclical capital requirements increases the firm’s credit capacity

in the good state (Columns 3 and 6) while reducing it in the bad states (Columns 4 and 6)

and overall (Column 8), compared to the benchmark. Notably, when both dividend taxes

and capital regulation are used, the firm’s overall credit capacity remains higher than when

dividend regulation is not applied (i.e., β2 = β1 = 1). Moreover, coordinating the two policies

14The appendix examines a simpler case where the regulator relaxes capital requirements only in the bad
state (i.e., xR,1 = xR and xR,2 = xR,1−Γ2 with Γ2 > 0). As expected, the policy lowers the dividend payout
threshold, diminishes recapitalization incentives, and reduces average credit capacity and dispersion across
states. Furthermore, it increases the firm’s value in both states.
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Figure 5: Effect of counter-cyclical capital regulation on shareholder value in the good (Panel (a))
and bad (Panel (b)) states.

allows for the implementation of dividend taxes without curbing capacity in the good state

(on these points, see also the results in Table 3).

The policy’s second effect is to reduce the dispersion of the reserve distribution, even

after accounting for its (lower) expected value. For example, our simulations show that the

reserves variation coefficient (
√

Vπ [x]/Eπ [x]) decreases by approximately 3.2 per cent when

xR,1 = 0.117 and xR,2 = 0.017, compared to when xR,1 = xR,2 = 0.077.

Figure 5 displays the model’s third prediction by showing the firm’s value function for

Γ = 0 (xR,1 = xR,2 = 0.077) and Γ = 0.05 (xR,1 = 0.117, xR,2 = 0.017).15 The plot reveals

that relaxing the capital requirement in the bad state helps mitigate shareholder value losses,

which can be substantial when dividends are taxed, as discussed in the previous sections

(Panel (b)). However, the gain comes at the cost of reducing the firm’s value in the good

state (Panel (a)). These outcomes materialize because tighter (looser) capital requirements

curb (foster) the managers’ precautionary motive in the good (bad) state, leading them to

anticipate (delay) their dividend payments (Columns 3 and 4).

These results suggest that coordinating dividend taxes (or bans) with counter-cyclical

capital regulation can mitigate some of the adverse effects of the former policy. This provides

15Computing plots for different values of Γ yields the same qualitative results.
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xR,1 xR,2 τ̂(1) τ̂(2) τ̂

0.077 0.077 13.06 12.66 12.90
0.087 0.062 13.11 12.97 13.05
0.097 0.047 13.22 12.94 13.10
0.117 0.017 13.38 12.84 13.16

Table 7: Average waiting time (years) between each subsequent recapitalization, in each State i
and overall, for different levels of Γ when β2 = 0.87.

a theoretical foundation for the regulator’s decision to associate dividend restrictions with

looser capital requirements during the COVID-19 crisis.

However, the positive outcomes of policy coordination come with a cautionary note.

Indeed, the model’s fourth policy prediction indicates that adopting counter-cyclical cap-

ital requirements lowers the optimal recapitalization target in the bad state (x∗
2) and, cor-

respondingly, the incentive-compatible recapitalization cost limit, κ̄ (Columns 5 and 12).

These effects arise because, while the policy increases the firm’s value for each point in the

state space above xR, it reduces the value at xR,2 < xR, which is a key determinant of its

recapitalization decisions (see (13)).

The last step of the analysis assesses the effect of counter-cyclical capital regulation on

the average waiting time (years) after each recapitalization. Table 7 presents a numerical

approximation of these quantities conditional on each State i and overall for various levels

of Γ when β2 = 0.87. According to these simulations, coordinating counter-cyclical dividend

taxes and capital requirements can effectively reduce the frequency of recapitalization (see

Columns 3-5). However, when the policy becomes excessively cyclical, its effectiveness during

downturns diminishes (see Column 4). This occurs because when xR,2 becomes too low, the

positive effect on capital buffers from a higher x̃1 in the good state is partially offset by the

increasingly negative impact of having lower x̃2 and x∗
2 in the bad one (see Table 6).

6 Conclusion

We have modelled and solved the optimal control problem of a firm choosing dividends

and re-capitalization strategies under macroeconomic uncertainty, cyclical capital require-
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ments, and dividend taxes (or bans). Our framework provides several testable policy implica-

tions, complementing recent empirical literature on the (short-term) effects of bank dividend

suspension policies in the EU and the US.

First, the model predicts that state-contingent dividend taxes negatively affect share-

holder value not only during crises (ex-post) but also in good times (ex-ante). Second,

taxing dividends in bad macroeconomic states incentivizes the firm to pay out more in good

times, reducing its corresponding capital buffers (credit capacity). This creates a trade-off

between maintaining capital buffers (credit capacity) in good versus bad macroeconomic

conditions. Third, dividend taxes may generate dispersion in the firm’s capital buffers over

the long run. Furthermore, they may undermine financial stability by diminishing the firm’s

recapitalization incentives.

Policymakers can coordinate dividend restrictions with counter-cyclical capital require-

ments to reallocate value losses and credit capacity between good and bad states, reducing

the firm’s reserve distribution dispersion. However, this approach may generate further

disincentives for recapitalization.

Similar to other studies in the literature, our tractability assumptions carry a few lim-

itations. For example, our firm’s optimization problem does not include investments and

assumes fixed loans and deposits. As a result, even though our analysis of credit capa-

city proxies the potential support the firm may provide to the real economy under different

policies, it does not capture how that interacts with its risk-taking incentives. Second, the

firm’s optimal responses in our model perfectly anticipate the policy the regulator will enact

in each possible state. A non-trivial extension of the model could explore the case where, if

the economy deteriorates, the regulator may refrain from intervening with a certain prob-

ability. Although these extensions lie beyond the scope of the current paper, they open

promising avenues for future research.
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Akyildirim, E., I. E. Güney, J.-C. Rochet, and H. M. Soner (2014). Optimal dividend policy

with random interest rates. Journal of Mathematical Economics 51, 93–101.
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Dursun-de Neef, H. Ö., A. Schandlbauer, and C. Wittig (2023). Countercyclical capital

buffers and credit supply: evidence from the covid-19 crisis. Journal of Banking & Fin-

ance 154, 106930.

30



Ferrari, G., P. Schuhmann, and S. Zhu (2022). Optimal dividends under markov-modulated

bankruptcy level. Insurance: Mathematics and Economics 106, 146–172.

Goodhart, C. A., M. U. Peiris, D. Tsomocos, and A. Vardoulakis (2010). On dividend

restrictions and the collapse of the interbank market. Annals of Finance 6, 455–473.

Gryglewicz, S. (2011). A theory of corporate financial decisions with liquidity and solvency

concerns. Journal of financial economics 99 (2), 365–384.

Guo, X., J. Miao, and E. Morellec (2005). Irreversible investment with regime shifts. Journal

of Economic Theory 122 (1), 37–59.

Hackbarth, D., J. Miao, and E. Morellec (2006). Capital structure, credit risk, and macroe-

conomic conditions. Journal of financial economics 82 (3), 519–550.

Hardy, B. (2021). Covid-19 bank dividend payout restrictions: effects and trade-offs. Tech-

nical report, Bank for International Settlements.
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A Proofs and derivations

A.1 Proof of Proposition 1

1. We divide the proof into the following steps.

(i) Integrating v′(·, i) = βi in [x̃i, x] yields the expression of v(·, i) in the interval

[x̃i,∞) with Ki := v(x̃i, i) > 0.

(ii) In the interval (x̃1, x̃2), our guess is that v(·, 1) solves (14). Hence, it has the

following structure:

v′(x, 2) =
λ2

δ + λ2

+
2∑

h=1

α̃hÃhe
α̃h(x−x̃1). (39)

with α̃i as in (19). By imposing v(·, 2) ∈ C2 at x = x̃2, we obtain that v′(x̃2, 2) =

β2 and v′′(x̃2, 2) = 0, that reflect in the conditions

2∑

h=1

α̃hÃhe
α̃h(x̃2−x̃1) = β2 −

λ2

δ + λ2

,
2∑

h=1

α̃2
hÃhe

α̃h(x̃2−x̃1) = 0. (40)

(iii) To show that v′′(·, 2) < 0 in (x̃1, x̃2), we set u(s) = v′(x̃2 − s, 2) and w(s) =

v′′(x̃2 − s, 2). Then, from (14) and the related boundary conditions, we have that







u′(s) = −w(s), u(0) = β2,

w′(s) = 2
σ2
2
[µ2w(s)− (δ + λ2)u(s) + λ2] , w(0) = 0.

Given that (δ + λ2)β2 > λ2, an analysis of this system shows that w′(s) < 0 for

s > 0. This means that v′′′(·, 2) > 0 in (x̃1, x̃2). We verify our claims by taking

into account that v′′(x̃2, 2) = 0.

(iv) In the interval (xR, x̃1), the functions v
′(·, i) satisfy the coupled ODE system (44)
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with boundary conditions

v′(x̃1, 1) = 1, v′′(x̃1, 1) = 0, v′(x̃1, 2) =
λ2

λ2 + δ
+

2∑

h=1

α̃hÃh, v′′(x̃1, 2) =
2∑

h=1

α̃2
hÃh.

(41)

By plugging in (41) the guesses

v′(x, 1) =
4∑

j=1

Ajαje
αj(x−x̃1), v′(x, 2) =

4∑

j=1

Bjαje
αj(x−x̃1), (42)

and matching coefficients, we obtain the characteristic equations

Aj

(

αjµ1 +
σ2
1

2
α2
j − (δ + λ1)

)

+ λ1Bj = 0

and

Bj

(

αjµ2 +
σ2
2

2
α2
j − (δ + λ2)

)

+ λ2Aj = 0,

for j = 1, 2, 3, 4. Solving the first equation yields Bj. Substituting Bj in the latter

equation and rearranging yields (18). To verify that (18) has four real roots, let

us define

f(θ) :=

(

δ + λ1 − θµ1 −
σ2
1

2
θ2
)

︸ ︷︷ ︸

:=G1(θ)

(

δ + λ2 − θµ2 −
σ2
2

2
θ2
)

︸ ︷︷ ︸

:=G2(θ)

−λ1λ2,

and let θij be the roots of Gi(θj). It is straightforward to verify that f(0) > 0,

f(∞) > 0, f(−∞) > 0, and f(θij) = −λ1λ2 < 0 for i = 1, 2 and j = 1, 2, 3, 4.

Then, by continuity and using that θi1θ
i
2 = −2 (δ + λi) /σ

2
i < 0, (18) has four

different four roots, two positive and two negative. Then, (41) reads as







∑4
j=1 Ajαj = 1,

∑4
j=1 Ajα

2
j = 0,

∑4
j=1 Bjαj =

λ2

δ+λ2
+ Ã1α̃1 + α̃2Ã2,

∑4
j=1 Bjα

2
j = Ã1α̃

2
1 + α̃2

2Ã2.

(43)
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We obtain then the expressions of v(·, i) by integrating (41) in [x, x̃1] and using

that, by value matching,

v(x̃1, 2) = K2 +
λ2(x̃1 − x̃2)

δ + λ2

+
2∑

j=1

Ãj

(
1− eα̃j(x̃2−x̃1)

)

and having also set K1 := v(x̃1, 1) > 0.

(v) To show that v′′(·, i) < 0 in (xR, x̃1) under (21) we use that, in this interval, the

functions u(·, i) := v′′′(·; i) solve the following ODE system:







1
2
σ2
1u

′′(x, 1) + µ1u
′(x, 1)− (δ + λ1) u(x, 1) + λ1u(x, 2) = 0,

1
2
σ2
2u

′′(x, 2) + µ2u
′(x, 2)− (δ + λ2) u(x, 2) + λ2u(x, 1) = 0.

(44)

The Feynman-Kac representation of u provides

u(x, i) = E
[
e−δτu(Xx,i,◦

τ , I iτ )
]
, (45)

where τ = inf{t ≥ 0 : Xx,i,◦
t /∈ (xR, x̃1)}, being Xx,i,◦

t the solution to

dXt = µItdt+ σItdWt, Xx,i,◦
0 = 0.

Condition (21) entails u(xR, i) > 0 and u(x̃1, i) > 0 for all i = 1, 2. Thus, from

(45) we get u(·, i) > 0. Hence, v′′(·, i) is strictly increasing on (xR, x̃1) for i = 1, 2.

Since v′′(x̃−
1 , 1) = 0 and v′′(x̃−

1 , 2) < 0, we get that v′′ is negative on (xR, x̃1) and

the claim follows.

(vi) Here we show that

v′(x̃1, 2) <
λ1 + δ

λ1

. (46)

In the interval (xR, x̃1), the function v′(·; 1) solve

1

2
σ2
1v

′′′(x, 1) + µ1v
′′(x, 1)− (δ + λ1) v

′(x, 1) + λ1v
′(x, 2) = 0. (47)
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By (21), we have v′′′(x̃−
1 , 1) > 0. Recalling also that v′′(x̃1, 1) = 0 and v′(x̃1, 1) = 1,

plugging all these information into (47), and passing to the limit as x → x̃−
1 , we

get λ1v
′(x̃1, 2) > (λ1 + δ), which verifies the claim.

(vii) To identify the free parameters K1 and K2, we impose the following conditions:

Liv(x̃i, i)− λi [v(x̃i, i)− v(x̃i, 3− i)] = 0, i = 1, 2,

which are obtained by passing the equality Liv(x, i)−λi [v(x, i)− v(x, 3− i)] = 0

to the limit as x → x̃−
i . Since v′(x̃i, i) = βi and v′′(x̃i, i) = 0, they rewrite as

µ2β2 − (δ + λ2)K2 + λ2(K1 + x̃2 − x̃1) = 0, (48)

and

µ1 − (δ + λ1)K1 + λ1

(

K2 +
λ2

δ + λ2

(x̃1 − x̃2)

)

= 0, (49)

which completes the system (20).

(viii) Next, we show that the solution constructed in Points (i)-(vii) solves (9). Most

of the work has already been done. Indeed, looking at the previous steps, we

see that we have constructed v such that all the following are met: (a) v(·, i) ∈

C2((xR,∞);R); (b) v′(x, i) = βi in [x̃i,∞); (c) Liv(·, i)−λi(v(·, i)−v(·, 3−i)) = 0

in (xR, x̃i); (d) v(·, i) are concave, which entails v′(·, i) ≥ βi for i = 1, 2. So, it

remains to show that

H(x, i) := Liv(x, i)− λi(v(x, i)− v(x, 3− i)) ≤ 0, ∀x ∈ [x̃i,∞), i = 1, 2.

First, we prove thatH(x, 2) ≤ 0 in [x̃2,∞). Indeed, by (48), we haveH(x̃2, 2) = 0.

Recalling that v′(x, i) = βi for x ≥ x̃2 and using that β2 > λ2/(λ2 + δ), we have

H ′(x, 2) = −(λ2 + δ)β2 + λ2 < 0, ∀x ≥ x̃2.

Next, we prove thatH(x, 1) ≤ 0 in [x̃1,∞). Indeed, by (49), we haveH(x̃1, 1) = 0.
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Recalling that v′(x, 1) = 1 for x ∈ [x̃1,∞) and using concavity of v(·, 2) and (46),

we get

H ′(x, 1) = −(λ1 + δ) + λ1v
′(x, 2) < 0, ∀x ≥ x̃1.

2. The fact that (23) admits a unique solution in (xR, x̃1] is due to the structure of v(·, 1)

defined in Point 1 (notably the strict concavity of v(·, 1) in that interval) and the fact

that v′(x̃2) = β2 ≤ 1 together with (22) entailing v′(x̃+
R, 2) > 1.

3. This is immediate as (24) is nothing but the rewriting of (13) given the structure

determined in the previous points.

A.2 Proof of Theorem 1

We only sketch the proof, as a rigorous argument would be highly technical. We refer to

two papers dealing with similar problems and providing complete proofs: Løkka and Zervos

(2008), in the case of no regime switching and no recapitalization; Ferrari et al. (2022), in

the case of regime-switching but with no recapitalization or dividend taxes.

As a first step, we prove that v(x, i) ≥ V (x, i). Let A = (Z, (b, G)) ∈ A be an arbitrary

control and define τ0 := 0 and, recursively on n ≥ 0, τn+1 = inf{t ≥ τn : Xt− = xR}, being

Xt the associated state process. Then, we have, by verification arguments in the interval

[0, τ1) (see Ferrari et al., 2022)

v(x, i) ≥ E

[
ˆ τ−1

0

e−δtβItdZt + e−δτ1v(xR, Iτ1)

]

. (50)

By using (50) and (13) we get

v(x, i) ≥ E

[
ˆ τ−1

0

e−δtβItdZt + e−δτ1 (v(xR +G1; Iτ1)−G1 − κ)

]

.

Iterating the argument yields

v(x, i) ≥ E

[
ˆ τ−n

0

e−δtβItdZt −
n∑

k=1

e−δτk (Gk + κ) + e−δτnv(xR, Iτn)

]

.
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Letting n → ∞ and observing that τn → ∞, we get v(x, i) ≥ J(x, i;A). By arbitrariness of

A, we conclude this part of the proof.

As a second step, we take A = Â into Step 1. Then, by construction, all previous

inequalities become equalities, which allows us to conclude that v(x, i) = J(x, i; Â). Together

with Step 1, this last condition entails J(x, i; Â) = v(x, i) = V (x, i), which verifies our first

claim.

A.3 Proof of Proposition 2

To obtain π(·, i) over the intervals (xR, x̃i) for i = 1, 2, we plug in (27) the following

guesses:

π(x, 1) =
4∑

j=1

Pje
rjx, π(x, 2) =

4∑

j=1

Qje
rjx.

Matching coefficients and solving for Pj and Qj yields the characteristic equation (31) and

the relationship Qj = λ−1
1 F (rj)Pj. Similarly, we obtain π(·, 2) over the interval (x̃1, x̃2) and

(32) by plugging in (28) the guess

π(x, 2) =
2∑

j=1

Hje
sjx

and matching coefficients. Utilizing these equations to impose the boundary and mass pre-

servation conditions as they appear in the main text yields (33).

A.4 Solution structure with dividend bans

First, we show that when β2 ≤ λ2/(λ2 + δ), the solution structure in Proposition 1 does

not hold. For this purpose, we solve the linear system (40) to obtain




Ã1

Ã2



 =

(

β2 −
λ2

δ + λ2

)




eα̃1(x̃1−x̃2)

α̃1(α̃2−α̃1)

− eα̃2(x̃1−x̃2)

α̃2(α̃2−α̃1)



 .
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Plugging these coefficients in (39) and rearranging, we get

v′(x, 2) =
λ2

δ + λ2

+
e−α̃1(x̃2−x) − e−α̃2(x̃2−x)

α̃2 − α̃1
︸ ︷︷ ︸

>0

(

β2 −
λ2

δ + λ2

)

︸ ︷︷ ︸
≤0

.

which violates the optimality condition that v′(x, 2) > β2 in (x̃1, x̃2).

Second, we build an alternative solution of (9) in which x̃2 = ∞, and show that it is

consistent with the parametric restriction β2 ≤ λ2/(λ2 + δ). Following the same steps of

Section 4.1, we look for a function v such that, for i = 1, 2, the following hold:

a) v(·, i) ∈ C([xR,∞)) ∩ C1((xR,∞));

b) The associated continuation and intervention regions have the following structure:

C2 = (xR,∞), C1 = (xR, x̃1); S1 = [x̃1,∞);

c) v(·, 1) ∈ C2(C1) and v(·, 2) ∈ C2(C2 \ {x̃1}).

Accordingly, we have x̃1 = inf {x > xR : v′(x, 1) ≤ 1} and x̃2 = ∞. The boundary conditions

at xR are specified as in the main text.

Following the same approach of Appendic A.1, we now construct a function that fulfils

all these guesses and translates them into a list of algebraic requirements. In the interval

[x̃1,∞), we set v′(·, i) = 1 and

v′(x, 2) =
λ2

δ + λ2

+ α̃1Ã1e
α̃1(x−x̃1),

where α̃1 < 0 is the negative root of (19) and Ã1 < 0. In the interval (xR, x̃1), we set the

functions v′(·, i) as unique solutions to the system (15). This entails the same structure as
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in (42), whose coefficients solve the following linear system:







∑4
j=1 Ajαj = 1,

∑4
j=1 Ajα

2
j = 0,

∑4
j=1 Bjαj =

λ2

δ+λ2
+ Ã1α̃1,

∑4
j=1 Bjα

2
j = α̃2

1Ã1.

By integrating v′(·, i) we get

v(x, 1) = K1 +







(x− x̃1), x ∈ [x̃1,∞),

∑4
j=1 Aj

(
eαj(x−x̃1) − 1

)
, x ∈ [xR, x̃1),

v(x, 2) = K2 +







λ2

δ+λ2
(x− x̃1) + Ã1

(
eα̃1(x−x̃1) − 1

)
, x ∈ [x̃1,∞),

∑4
j=1 Bj

(
eαj(x−x̃1) − 1

)
, x ∈ [xR, x̃1).

Under similar assumptions as Proposition 1 and using that v(·, i) is differentiable, one

gets that G(1)∗ = x̃1 − xR and G(2)∗ = x∗
2 − xR, where x∗

2 ∈ (xR,∞) is the unique solution

of

1[xR,x̃1]

4∑

j=1

Bjαje
αj(x

∗

2−x̃1) + 1(x̃1,∞)

(
λ2

δ + λ2

+ α̃1Ã1e
α̃1(x∗

2−x̃1)
)

− 1 = 0.

To pin down the remaining coefficients (K1 > 0, K2 > 0, and Ã1 < 0) and the dividend

threshold (x̃1 > xR) we enforce that L1v(x̃1, 1)−λ1 [v(x̃1, 1)− v(x̃1, 2)] = 0 and L2v(x̃2, 2)−

λ2 [v(x̃1, 2)− v(x̃1, 1)] = 0 as x → x̃−
1 , which rewrites as







µ2

∑4
j=1 Bjαj +

σ2
2

2

∑4
j=1 Bjα

2
j − (δ + λ2)K2 + λ2K1 = 0,

µ1 − (δ + λ1)K1 + λ1K2 = 0,

and impose the two boundary conditions in (13).
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B Supplementary material (online appendix)

B.1 Formal definition of the admissible control

The firm’s control strategy is a triple of measurable stochastic processes A := (Z, b,G) =
(
(Zt)t≥0, (bn, Gn)n≥1

)
such that:

(i) The cumulative dividend (Zt)t≥0 is a right-continuous, non-decreasing, F-adapted pro-

cess such that, setting Z0− = 0, each increment ∆Zt := Zt − Zt− < Xt − xR,i, ∀t ≥ 0

and i = 1, 2. This condition ensures that the firm can never issue dividends and equity

simultaneously.

(ii) The auxiliary function (bn)n≥1 is a Fτn-measurable process taking values bn = 0 or

bn = 1 if a liquidation or recapitalization takes place at time τn, respectively.

(iii) The equity issuance (Gn)n≥1 is a strictly positive Fτn-measurable process representing

the new equity issued at time τn when bn = 1.

B.2 Solution structure with counter-cyclical capital requirements

Let us fix x̃1, x̃2 such that xR,2 < xR,1 < x̃1 < x̃2, Then, the model’s solution structure

encompasses the following four regions: (i) x ∈ (xR,2, xR;1), (ii) x ∈ (xR,1x̃1), (iii) x ∈ (x̃1, x̃2),

and (iv) x ∈ (x̃2,∞).

In Region (i), under the assumption that κ is small enough (i.e., it is always optimal to

recapitalize), we set

v(x, 1) = v(x̃1, 1)− (x̃1 − x)− κ > 0. (51)

Given (51) and (37), we guess and verify that v(·, 2) has the following form:

v(x, 2) =
µ2λ2

(δ + λ2)
2 +

λ2

δ + λ2

(v(x̃1, 1)− (x̃1 − x)− κ) + C1e
α̃1(x−x̃1) + C2

α̃2(x−x̃1),

where (C1, C2) ∈ R
2 are two constants coefficients given below and α̃1 and α̃2 are the real

roots of (19).We find v(·, i) in Regions (ii)-(iv) by using (16) and (17) with xR = xR,1.
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By using these equations to impose the usual boundary (value matching, smooth pasting,

and super-contact) conditions, we get the following linear system:







∑4
h=1 Ahαh − 1 = 0,

∑4
h=1 Ahα

2
h = 0,

∑4
h=1 Bhαh −

∑2
h=1 Ãhα̃h −

λ2

δ+λ2
= 0,

∑2
h=1 Ãhα̃

2
he

α̃h(x̃2−x̃1) = 0,

∑4
h=1 Bhα

2
h −

∑2
h=1 Ãhα̃

2
h = 0,

λ2

δ+λ2
+
∑2

h=1 Ãhα̃he
α̃j(x̃2−x̃1) − β2 = 0,

µ2λ2

(δ+λ2)
2 +

∑2
h=1

[

Che
α̃h(xR,1−x̃1) − Ãh(1− eα̃h(x̃2−x̃1))

]

−K1+

+ λ2

δ+λ2
(K1 − (x̃1 − xR,1)− κ)− λ2(x̃1−x̃2)

δ+λ2
−
∑4

h=1 Bh

(
eαh(xR,1−x̃1) − 1

)
= 0,

λ2

δ+λ2
+
∑2

h=1 α̃he
α̃h(xR,1−x̃1) −

∑4
j=1 Bjαje

αj(xR,1−x̃1) = 0,

µ2β2 − (δ + λ2)K2 + λ2(K1 + x̃2 − x̃1) = 0,

µ1 − (δ + λ1)K1 + λ1

(

K2 +
λ2

δ+λ2
(x̃1 − x̃2)

)

,

whose solution (if it exists) yields (A1, A2, A3, A4, Ã1, Ã2, C1, C2) ∈ R
8 and (K1, K2) ∈ R

2
+.

By using these coefficients to compute v(·, i), we can obtain the recapitalization target x∗
2

and the payout thresholds x̃1 = x∗
1 and x̃2 by imposing the boundary conditions (13) and the
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optimality condition v′(x∗
2, 2) = 1, which requires to solve the following non-linear system:







1[xR,2,x̃1]
λ2

δ+λ2
+
∑2

h=1

[

1[xR,2,xR,1)Che
α̃h(x−x̃1) + 1(xR,1,x̃1]Ãhα̃h

(
eα̃h(x

∗

2−x̃1)
)]

+

+1(x̃1,∞)

∑4
h=1 Bhαhe

αh(x
∗

2−x̃1) − 1 = 0

∑4
h=1 Ah

(
eαh(xR,1−x̃1) − 1

)
+ x̃1 − x+ κ = 0

µ2λ2

(δ+λ2)
2 +

λ2

δ+λ2
(K1 + x− x̃1 − κ) +

∑2
h=1 Che

α̃h(xR,1−x̃1)+

+1[xR,2,xR,1)

[
µ2λ2

(δ+λ2)
2 +

λ2

δ+λ2
(K1 − x̃1 + x∗

2 − κ) +
∑2

h=1 Che
α̃h(x∗

2−x̃1)
]

−

+1(xR,1,x̃1]

[

K2 +
λ2(x∗

2−x̃2)

δ+λ2
+
∑2

h=1 Ãh

(
eα̃h(x

∗

2−x̃1) − eα̃h(x̃2−x̃1)
)]

−

+1(x̃1,∞)

[

K1 +
λ2(x̃1−x̃2)

δ+λ2
+
∑2

h=1 Ãh(1− eα̃h(x̃2−x̃1)) +
∑4

h=1 Bh

(
eαh(x

∗

2−x̃1) − 1
)]

+

+(x∗
2 − x) + κ = 0.

B.3 Solution structure with pro-cyclical capital requirements

Pro-cyclical capital requirements associate with the parametric condition Γ1 < Γ2 or,

equivalently, xR,1 < xR,2. Thus, modeling this case requires us to expand the support of

the firm’s reserves to include the region x ∈ (xR,1, xR,2). The rest of the state space when

x > xR,2 is that described in Section 4.1 after setting xR,2 = xR.

When x ∈ (xR,1, xR,2) and there is a random transition from State 1 to State 2, the

regulatory constraint x > xR,2 is not satisfied. Thus, we assume the regulator requires the

firm to immediately recapitalize or default and, following the logic of Section 5.3.1, set

v(x, 2) = max {v(x∗
2, 2)− (x∗

2 − x)− κ, 0} . (52)

Given (52), one can find v(x, 1) as the unique solution of

1

2
σ1
1v

′′(x, 1) + µ1v
′(x, 1)− (δ + λ1) v(x, 1) + λ1v(x, 2) = 0,

with boundary conditions v(x+
R,2, 1) = v(x−

R,2, 1) and v′(x+
R,2, 1) = v′(x−

R,2, 1).

Unlike the case of counter-cyclical capital requirements, the parametric condition (36)

does not ensure that the firm is always willing to recapitalize after a change of state. In
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x (i = 1)

x (i = 2)
xR,2 x∗

2 x̃2

xR,1 x̃1
xd

Change of state

Recapitalization

C1 S1

C2 S2

Figure 6: Solution structure with pro-cyclical capital requirements.

other words, there may be some reserves level xd ∈ (xR,1, xR,2) such that (52) equals zero.

Figure 6 visually represents this issue.

To adapt the solution structure, we split the region x ∈ (xR,1, xR,2) into the following two

sub-intervals: x ∈ (xR,1, xd) and x ∈ (xd, xR,2). In the former, we find v(x, 1) by solving

1

2
σ1
1v

′′(x, 1) + µ1v
′(x, 1)− (δ + λ1) v(x, 1) + λ1 (v(x

∗
2, 2)− v(x∗

2, 2)− x∗
2 + x) = 0

with boundary conditions v(x+
R,2, 1) = v(x−

R,2, 1) and v′(x+
R,2, 1) = v′(x−

R,2, 1). In the latter,

we solve
1

2
σ1
1v

′′(x, 1) + µ1v
′(x, 1)− (δ + λ1) v(x, 1) = 0

with boundary conditions v(x+
d , 1) = v(x−

d , 1) and v′(x+
d , 1) = v′(x−

d , 1). We find the en-

dogenous threshold xd by finding the reverse level so that (52) equals zero, which yields

xd = κ+ x∗
2 − v(x∗

2, 2).

B.4 Counter-cyclical capital requirements: comparative statics

Table 8 reports the firm’s optimal strategy, its credit capacity and dispersion, and the

maximal incentive-compatible recapitalization cost for different levels of Γ2 (xR,2).

The results of this analysis are broadly consistent with those of the mean-preserving

counter-cyclical capital requirements discussed in the main text. However, the policy’s effects

are more straightforward, as it does not impose tighter capital requirements in the good

state. Specifically, relaxing capital requirements in the bad state lowers the dividend payout

threshold in both states (Columns 2 and 3). At the same time, it diminishes the firm’s
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xR,1 xR,2 x̃1 x̃2 x∗
2 E

π
1 [x] E

π
2 [x] E

π [x] V
π
1 [x] V

π
2 [x] V

π [x] κ̄
0.077 0.069 0.799 1.691 0.646 0.565 0.968 0.726 0.028 0.162 0.130 0.104
- 0.057 0.797 1.687 0.637 0.564 0.958 0.722 0.027 0.163 0.119 0.102
- 0.049 0.795 1.674 0.629 0.562 0.950 0.717 0.027 0.163 0.118 0.101
- 0.037 0.794 1.666 0.622 0.561 0.941 0.713 0.027 0.163 0.116 0.099
- 0.027 0.792 1.657 0.612 0.559 0.932 0.709 0.027 0.163 0.115 0.098

Table 8: Firm’s optimal strategy, its credit capacity and dispersion, and the maximal incentive-
compatible recapitalization cost for different levels of Γ2 (xR,2).

Figure 7: Effect of counter-cyclical capital regulation on shareholder value in the good (Panel (a))
and bad (Panel (b)) states.

recapitalization incentives (see Columns 5 and 12). Consequently, the policy reduces the

average credit capacity and its dispersion across states. Figure 7 reports v(x, i) for different

values of Γ2 (corresponding to Row 3 and 5 of Table 8) in State 1 (Panel (a)) and 2 (Panel

(b)), showing that relaxing capital requirements increases the firm’s value in both states.
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