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Abstract

Without heat metering, households face strong free-riding incentives. Using data from Swiss

households, we find that the staggered introduction of submetering reduced heating expenses

by 17%, on average. Machine learning techniques reveal highly heterogeneous effects, consis-

tent with coordination failure in larger buildings and strategic exit of free-riders. We find that

households are price elastic even when they share a common heating bill. Our results suggest

that most households do not exploit the free-riding incentive, especially in smaller buildings.

“Schmeduling,” inattention to the billing regime, and pro-social behavior can explain the low

prevalence of free-riding. Nevertheless, submetering is welfare-improving for most buildings.
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1 Introduction

Externalities and free-riding behavior are at the core of pressing global challenges. Climate

change, antibiotic resistance, and overfishing are just a few examples where individual incen-

tives are misaligned with social costs (Stern, 2008; Roope et al., 2019; Noack and Costello,

2024). Given the ubiquitous nature of these problems, it is not surprising that scholars

have long been interested in the conditions under which groups can overcome them. Hume

(1739) argues that large groups will find it difficult to provide public goods. Coase (1960)

emphasizes the importance of low transaction costs, and Ostrom (1990) describes princi-

ples, including monitoring and sanctioning, that allow communities to effectively manage

common-pool resources. We add to this body of work by studying free-riding behavior in

the context of energy consumption in apartment buildings.

We study the implications of the “common heating bill,” where each household pays a

fixed share of building-level heating expenses. Households face a clear free-riding incentive,

as the expenses from their marginal heat consumption will be split with their neighbors. This

situation is analogous to the n-player prisoner’s dilemma and the “diner’s dilemma,” where

bill-splitting influences the consumption of diners sharing a table (Glance and Huberman,

1994; Gneezy, Haruvy, and Yafe, 2004). The common heating bill allows us to investigate

free-riding behavior in a high stakes environment. Further, we contribute to understanding

the role of bill-sharing group size, as we observe buildings that vary in number of apartments.

Most importantly, we evaluate a policy that corrects the free-riding problem: submetering.1

The lack of heat submetering is widespread. For example, the majority of households in

23 of 37 economies surveyed in Central and Eastern Europe, Central Asia, and the Mediter-

ranean have no heat meters (EBRD, 2023). A survey in China found that roughly 37% of

households pay heating bills simply according to their dwelling’s area, most of them in the

colder North of the country (Guo, Huang, and Wei, 2015). According to the most recent

version of the American Housing Survey (AHS, 2023), 17% of renters in the US face fixed

heating expenses included in the rent. This can be problematic for worldwide decarboniza-

tion efforts in the residential sector, since the lack of consumption-based billing can lead to

over-consumption and to muted carbon pricing signals.

Our study is carried out in three main steps. First, we model the common heating bill

according to our empirical setting. In this framework, we evaluate how submetering changes

energy demand, the price elasticity, and welfare. Second, we empirically test our model’s

1Throughout this paper, we use the term “submetering” to describe the use of apartment-specific meters
for billing. We use the term synonymous to “individual metering and billing”. Submetering does not
address the related problem within households, where individual household members may have an incentive
to over-consume (Jack et al., 2024).
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predictions by leveraging the staggered rollout of submetering in our sample, as well as

energy price variation across time, region, and heating fuel type. We pay special attention

to the heterogeneous effects of submetering. Third, we discuss potential deviations from our

theoretical framework, including their implications for our welfare calculations.

Our theoretical framework incorporates two externalities: (i) the direct externality from

the fact that, under the common heating bill, each household’s consumption choice impacts

all neighbors’ heating bills; and (ii) the environmental externality from heating energy. Sub-

metering eliminates the direct externality while simultaneously reducing the environmental

externality. The latter is important, as heating accounts for 80% of direct CO2 emissions in

the building sector (IEA, 2022). Our framework yields a sufficient statistic to empirically

evaluate the welfare effects of submetering. It also highlights that the effects of submeter-

ing depend on the building’s heat loss, households’ temperature preferences, the number of

bill-sharing neighbors, and energy prices—motivating our exploration of effect heterogeneity.

Our main empirical strategy leverages the staggered introduction of heat submetering in

185 apartment buildings in Switzerland between 2008 and 2022. This constitutes a difference-

in-differences setting, where the “treated” buildings are those that switched billing regimes

after the installation of submeters. The comparison buildings are those that remained under

common billing during the whole sample period (i.e., never-treated). Including treated and

comparison groups, we have information from 4,124 buildings with a total of 44,415 apart-

ments. Our data include three essential features that were mostly unavailable in previous

studies on submetering of heating energy. We observe (i) heating energy expenses before

the installation of submeters, which allows us to capture potential effects of announcement

or installation. Moreover, we observe (ii) renovations and (iii) tenant changes, allowing us

to document how these correlate with changes in energy consumption and the introduc-

tion of submetering. We implement event study regressions using the heterogeneity-robust

estimator from Sun and Abraham (2021).

We find that submetering reduces heating energy expenses by 17%, on average. We

document anticipation effects, as a significant portion of the energy savings happens in

the year of the installation of submeters, but before submetered bills are charged. The

effect sizes are larger (20.8%) when we do not control for renovations or turnover. In all

specifications, the effects are significant and persistent at least until the fifth year after

installation. Moreover, we find that submetering moderately increases tenant turnover.

We use machine learning (ML) algorithms to explore heterogeneity, primarily through

a counterfactual imputation method (Borusyak, Jaravel, and Spiess, 2024; Souza, 2019).

We estimate the conditional average effects of submetering, while accounting for several

confounding factors. Consistent with our framework, we find that submetering effects are
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more pronounced in buildings with a larger number of apartments. Also in line with our

framework, we find that submetering effects are stronger for large apartments (requiring more

heating energy and facing stronger heat loss). Our analysis further reveals that treatment

effects are larger when we observe tenant turnover. This finding is consistent with a scenario

where high-consumption tenants (free riders under common billing) choose to leave the

building because they anticipate higher heating bills under submetering (Brewer, 2022). We

account for this in our welfare analysis, which would otherwise be based on inflated treatment

effects. We do not find effect heterogeneity by apartment location in the building, suggesting

that heat flows between apartments do not significantly influence our results.2

We also implement ML techniques to estimate building-specific treatment and welfare

effects of submetering. This exercise allows us to identify the set of buildings in our sample

for which submetering was cost-effective. Disregarding the social cost of carbon (SCC) and

assuming annual submetering costs of CHF 86, we find that submetering was cost-effective

in only 10% of the treated buildings. This result rationalizes why the common heating bill

is still prevalent in Switzerland and many other countries. However, when we account for a

SCC of 185 USD/tCO2 (Rennert et al., 2022), submetering is welfare-improving for 63% of

treated buildings. To the extent that our sample is similar to non-submetered buildings, our

results suggest that submetering policies can improve welfare for many apartment buildings

in Switzerland.

Our theoretical framework also predicts that submetered households are more price elastic

than those under common billing. We empirically test that by comparing outcomes in

submetered versus non-submetered buildings, leveraging energy price variation by region,

over time, and depending on heating fuel type. Our estimates show that households in

submetered buildings are more price elastic. This difference is primarily driven by the lower

price-responsiveness of households who live in large apartment buildings under the common

heating bill.

However, we note that our theoretical framework cannot quantitatively match our elas-

ticity results. We find a relatively large price elasticity (around -0.6) under the common

heating bill. If all households behaved according to our model, one would expect lower

elasticities, since these households face a very low marginal heating cost. Conversely, the

estimated elasticities imply that a switch from common billing to submetering should have

induced a sharper decrease in energy consumption. We discuss that these discrepancies can

2The engineering literature suggests that heating energy expenses are lower for apartments located in
“intermediate” floors (Ling, Li, and Xing, 2015), although measured indoor temperatures are uncorrelated
with apartment location (Dahlblom, Nordquist, and Jensen, 2015). Taken together, these findings indicate
that apartments in intermediate floors may benefit from heating from adjacent floors. However, in Section 4.2
we show that heat flows between apartments are unlikely to influence the effects of submetering.
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be explained by “schmeduling” (responding to average, rather than marginal price changes),

inattention to the common heating bill, and pro-social behavior.

We find that our results are consistent with approximately one quarter of the population

free-riding according to our theoretical framework. The remaining three quarters can be ex-

plained by “schmeduling,” inattention to the common heating bill, and/or pro-social behavior

(e.g., Kaufmann, Andre, and Kőszegi, 2024). Prior literature suggests that schmeduling is

prevalent in the context of residential energy consumption (Ito, 2014; Shaffer, 2020; Ito and

Zhang, 2023). We provide novel survey evidence on inattention to the common heating bill.

We asked 835 households under the common heating bill to state the billing regime they

believed to be in. 19% of respondents mistakenly said that they were in the submetering

regime. Our results indicate that pro-social behavior is relevant in this context. We find that

buildings with fewer neighbors report better relationships, potentially explaining why the

share of free-riders is substantially smaller in buildings with few neighbors. These findings

are consistent with small groups managing the common heating bill more effectively. We

argue that, given the behavioral mechanisms likely at play, our welfare estimates may be

somewhat conservative.

Our study relates to several strands of economic literature. We contribute to a long-

standing question on the effect of group size on cooperation. This question has been of

interest since Hume (1739), and an important aspect of the seminal work of Olson (1965).

A large experimental literature suggests that cooperation can either increase (Isaac, Walker,

and Williams, 1994; Diederich, Goeschl, and Waichman, 2016; Nosenzo, Quercia, and Sefton,

2015) or decrease (Marwell and Ames, 1979; Nosenzo, Quercia, and Sefton, 2015; Arifovic

et al., 2023) with group size in public good games, the diner’s dilemma, and similar setups.

A related literature studies the effect of group size in the context of fisheries, agriculture,

and forestry commons (Ostrom, 1990; Agrawal, 2000; Poteete and Ostrom, 2004; Casari and

Tagliapietra, 2018). Our study bridges experimental and observational approaches. Unlike

lab studies, we analyze naturally occurring groups with long-term interactions and high

stakes. Our setting allows for more controls than most prior observational studies, as we

can leverage the staggered introduction of a policy intervention that corrects the free-riding

problem. Using a rich dataset and quasi-experimental methodology, we provide new insights

into free-riding behavior.

Our results are also directly relevant for a growing literature on the effects of submeter-

ing. Studies on electricity (Munley, Taylor, and Formby, 1990; Dewees and Tombe, 2011;

Elinder, Escobar, and Petré, 2017; McRae, 2024), water (Ornaghi and Tonin, 2021), and hot

water (Elinder et al., 2024) find that submetering leads to large reductions in consumption—

between 18% and 36%. Evidence on the effects of heat submetering is somewhat limited. A
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number of case studies provide highly variable estimates, ranging from a 40% reduction to

a 24% increase in energy consumption (Canale et al., 2019). More recently, Ito and Zhang

(2023) provide quasi-experimental evidence on the switch from a fixed heating charge to a

consumption-based heating tariff in China, finding that the switch reduced heating energy

consumption by 10%. Our study contributes to this literature by revealing that it is impor-

tant to take renovations into account, that submetering can lead to the exit of free-riders,

that treatment effects are highly heterogeneous, that welfare effects of submetering depend

crucially on the social cost of carbon, and that submetering increases households’ price elas-

ticity. The results on elasticity, in particular, suggest that the lack of submetering can be

viewed as yet another energy price distortion, in addition to those caused by taxes, subsidies,

regulatory pricing, or market power in the residential sector (Borenstein and Bushnell, 2022;

Asker et al., 2024).

Our findings also speak to a similar strand of literature on the effects of switching from

landlord-pay regimes (where tenants face zero marginal costs for heating) to tenant-pay

regimes, finding substantial reductions in consumption (e.g., Brewer, 2022). We add to a

recent body of evidence demonstrating heterogeneous effects (e.g., Knittel and Stolper, 2021;

Christensen et al., 2023), and the potential gains from targeting in the context of residential

sector energy interventions (e.g., Allcott and Kessler, 2019; Knittel and Stolper, 2019; Gerar-

den and Yang, 2023; Christensen et al., 2024). More broadly, we contribute to understanding

the “energy efficiency gap,” i.e., the relatively slow adoption of energy efficiency technologies,

despite their apparent short payback periods (e.g., Allcott and Greenstone, 2012; Gillingham

and Palmer, 2014; Gerarden, Newell, and Stavins, 2017). Submetering can be viewed as an

energy efficiency investment that could be profitably adopted in some buildings, yet faces

barriers such as coordination problems or split incentives between landlords and tenants

(e.g., Gillingham, Harding, and Rapson, 2012; Myers, 2020).

The remainder of this paper is organized as follows. Section 2 presents a theoretical

framework to assess the welfare effects of submetering. Section 3 describes the data and

empirical strategy. Section 4 presents our empirical analysis, including average effect, effect

heterogeneity, welfare estimates, and effects on the price elasticity of demand. Section 5

discusses alternative behaviors and Section 6 concludes.

2 Theoretical framework

We propose a straightforward model incorporating the main elements necessary to illustrate

the “tragedy of the common heating bill.” Our framework allows us to derive predictions

which we empirically test in section 4. We also derive a sufficient statistic for the welfare effect
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of submetering. To this end, we begin with standard assumptions of free-riding behavior. In

Section 5, we discuss plausible alternative behavioral mechanisms in our setting.

Let there be N households that live in separate apartments within the same building.

We assume that each household i has a quasi-linear utility function that depends on heating

energy ei and a numeraire outside good ci. Households do not derive utility from energy

consumption per se, but from their apartment’s indoor temperature T (ei). Household i

prefers temperature Ti and suffers disutility from the square of temperature deviations

Ui(ei, ci) = −κi

(

Ti − T (ei)
)2

+ ci .

The parameter κi captures the household’s intolerance to deviations from its preferred tem-

perature. We model indoor temperature as function of heating energy consumption, through

a simplified heat loss formula T (ei) = T0+
ei
H
, where T0 is the outside temperature andH mea-

sures the apartment’s heat loss (inverse energy efficiency, capturing the thermal resistance

of walls and windows, losses at thermal bridges, as well as ventilation losses).3 Combining

these ingredients, the utility function of household i can be written as

Ui(ei, ci) = −κi

(

Ti − T0 −
ei

H

)2

+ ci . (1)

The household faces a budget constraint that depends on its income yi, the price of energy

p, consumption of the numeraire good, and the billing regime for heating energy. A share

θ ∈ [0, 1] of heating consumption is individually billed, while the remainder is equally split

among all neighbors j = (1, . . . , N), such that

yi ≥ θeip+ (1− θ)

∑j
ejp

N
+ ci . (2)

This budget constraint implies an externality if θ < 1, as household i’s heating consump-

tion ei influences the energy bills of all neighbors (and vice-versa).

3We focus on the context of heating (not cooling), such that T0 ≤ T (ei) and ei ≥ 0. The engineering
literature typically models heating energy requirements as ei = H(T − T0) +S, where H is the heat loss per
degree of temperature difference, and S is the rate of heat storage within the structure (Johannesson et al.,
1985). We omit S, because heat storage is negligible in the long term (Johannesson et al., 1985). We further
abstract from solar heat gains and other internal heat gains.
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Private solution

The household maximizes Equation 1 subject to Equation 2, resulting in

e∗i,θ = (Ti − T0)H −
H2

2κi

p

(

θ +
1− θ

N

)

. (3)

Unsurprisingly, optimal energy consumption e∗i,θ is larger for high preferred indoor tem-

perature Ti, low outside temperature T0, and high heat loss H. The influence of energy

prices p is modulated by the intolerance parameter κi, heat loss H and, importantly, the

billing regime θ. When heating bills are fully shared among neighbors, then θ = 0 and the

price incentive is distorted to p

N
. This distortion is particularly severe if N is large, i.e., the

heating bill is shared among many households. Conversely, with individualized metering and

billing, then θ = 1 and the price incentive does not depend on the number of neighbors.4

When energy prices are zero, households consume heating energy up to satiation, such that

indoor temperature exactly matches their temperature preference.

The own-price elasticity of heating energy demand is

|ηi,θ| = |
∂e∗i,θ

∂p

p

e∗i,θ
| =

H2

2κi

p

e∗i,θ

(

θ +
1− θ

N

)

. (4)

It is therefore clear that households should be more price sensitive under a submetering

regime (θ = 1). Under shared billing, the elasticity decreases as the number of neighbors N

increases.

Submetering

Submetering increases θ from 0 to 1. The change in household i’s energy consumption in

response to submetering will be:

∆e∗i = e∗i,θ=1 − e∗i,θ=0 = −
H2

2κi

N − 1

N
p . (5)

The negative sign implies a reduction in energy consumption after submetering. Energy

savings are larger for apartments with high (squared) heat loss H, households that are

more tolerant to temperature deviations (i.e., low κi), and at high energy prices p. Again,

these effects are modulated by the number of bill-sharing neighbors N . All else equal, the

energy savings from submetering are increasing in N . This framework also implies that all

4In practice, θ may be larger than zero but smaller than one when the heating bills include fixed service
fees, or when only common-area heating costs are shared, for example. Appendix B.1 describes the conditions
under which the simplified model with θ = 1 is equivalent to a more complex model with fixed heating costs.
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households i will over-consume when the energy bill is shared, resembling a classical diner’s

dilemma (e.g., Gneezy, Haruvy, and Yafe, 2004). Intuitively, this is because each household

is paying for only a fraction of their marginal heating energy consumption.

While the direction of ∆e∗i is clear, submetering may either increase or decrease household

i’s utility:5

∆Ui = Ui(e
∗
i,θ=1)− Ui(e

∗
i,θ=0)

=

(

p2

N2
− p2

)

H2

4κi

+

(

∑j
Tj

N
− Ti

)

Hp

+ p2
H2

2κi

−
p2

N2

H2

2

j
∑ 1

κj

(6)

There can be winners and losers from submetering, depending on households’ preferences

and the size of the price distortion. The first term of the right-hand side of Equation 6

captures the utility loss from lowering indoor temperature. That term will be small, for

example, for households that are highly intolerant (high κi) to temperature deviations. The

second term reflects distributional consequences that vary according preferences for indoor

temperature Ti. This term is zero for the average household. However, it will be positive

(negative) if the household prefers a relatively low (high) temperature, as compared to its

neighbors. The remaining terms represent utility gains from removing the price distortion.

Finally, as already evident from Equation 4, our framework implies that submetering

increases the own-price elasticity of heating energy demand:

∆ηi = |ηi,θ=1| − |ηi,θ=0|

=
H2

2κi

(

p

e∗i,θ=1

−
1

N

p

e∗i,θ=0

)

> 0
(7)

Welfare

Submetering is the preferred policy if it improves welfare. We model welfare from the

perspective of a social planner who accounts for the utility of all households i that live in the

same building. We abstract from any potential spillovers across buildings. In addition to

affecting households’ private utility, energy consumption is associated with an environmental

5The complete derivation is presented in Appendix B.2.
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externality ϕ (to the extent it is not internalized by a carbon price). The welfare function

also incorporates the per-household cost of submetering s, such that:

W =
i
∑

Ui(e
∗
i,θ)− ϕ

i
∑

e∗i,θ − 1θ>0sN . (8)

The welfare effect of submetering can be expressed in terms of empirical estimates. Note

that the average treatment effect of submetering on energy expenses is τ =
∑i ∆e∗i p

N
. Then

the change in welfare will be:

∆W = −
τN

2

(

1−
1

N

)

− τ
ϕ

p
− sN . (9)

Therefore, an estimate of τ , together with the cost of submetering and the social cost

of carbon are sufficient to estimate ∆W . In Section 4.3, we use this equation to calculate

building-specific welfare effects.

Figure 1 depicts the potential welfare loss associated with the common heating bill.

Panel a shows the situation without a carbon price. Privately optimal energy consumption

in the common heating bill regime e∗i,θ=0 is characterized by u′
i(e

∗
i,θ=0) = p

N
, i.e., point A

on the lower right. Submetering increases the implicit price from p

N
to p and decreases

energy consumption to e∗i,θ=1. If, in addition to submetering, the household also internalizes

the environmental externality ϕ, it consumes the social optimum e∗i,S, i.e., the point on the

upper left. The central insight from this illustration is that submetering partially addresses

welfare losses due to the environmental externality. The welfare gain from submetering is

represented by the green areas in Panel a of Figure 1. The light green triangle represents

the first term of Equation 9, as households save more on their heating bill than they lose in

terms of thermal comfort. The dark green rectangle represents the second term of Equation 9,

as emissions are reduced to the climate’s benefit. The welfare loss represented by the tiled

purple area cannot be resolved by submetering alone. Panel b of Figure 1 shows the situation

with a carbon price. Given the common heating bill, a carbon price only addresses a fraction

of the welfare loss, represented by the tiled blue area. Submetering resolves the remaining

welfare loss, represented by the light green area. Submetering is welfare improving if the

benefits of submetering exceed the cost, i.e., the third term of Equation 9.

3 Setting and data

We use data from a large real estate management company in Switzerland. The company

manages apartment buildings for institutional and private real estate owners. As part of their

9



(a) Without carbon price
(b) With carbon price

Figure 1: Private solutions and social optimum

mandate, the company provides a range of services to the buildings they manage, including

the provision and billing of heating energy. Buildings typically have a central heating system,

which is used to heat the apartments and provide hot water. The real estate management

company is responsible for the maintenance and operation of the heating system. Depending

on the type of heating system, it buys heating oil, natural gas, or district heating from energy

suppliers. The company bills tenant households annually for their share of heating expenses.

Under the common heating bill regime, the company divides the total heating expenses

among households according to a fixed key, usually the area of the apartment. In the

submetering regime, the company bills households based on their individual consumption of

heating energy. Households receive an annual bill that includes heating expenses and other

utilities.

Providers of natural gas and district heating are local monopolies, whereas local heating

oil providers operate in a free market. There is no increasing block pricing and the price of

energy is largely independent of consumption. Households have no influence on the price of

energy, as contracts are arranged between the real estate management company and energy

providers. Switzerland introduced a CO2 levy in 2008. The levy started out at 12 CHF/tCO2

and was increased multiple times: to 36 CHF/tCO2 in 2010, to 60 CHF/tCO2 in 2014, to

84 CHF/tCO2 in 2016, to 96 CHF/tCO2 in 2018, and to 120 CHF/tCO2 in 2022.

Since they are all tenants, households in our setting also have limited influence regarding

any structural changes to the apartments. Most decisions are at the discretion of the real

estate owners, not the real estate management company. This includes the decision to install

submeters, the choice of heating system and fuel type, and energy efficiency renovations.

Households are usually neither in direct contact with owners, nor involved in the decision
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making process. They can influence energy bills through their heating behavior, but they

cannot influence the billing regime or the energy efficiency of the building.

Our dataset includes household-level utility bills for 4,124 buildings with a total of 44,415

apartments, from the years 2006 to 2023.6 We can identify which apartments belong to each

building. The data include yearly heating and auxiliary expenses that are billed by the real

estate management company. Expenses include heating fuels, water and sewage bills, as well

as various service fees. For each household in our sample, we observe the yearly heating

energy bill in CHF. In the common heating bill regime, this amount is a fixed share of the

buildings’ heating energy expenses. This fixed share usually depends on the area of the

apartment in relation to the whole building. In the submetering regime, each household’s

heating bill depends on its own consumption of heating energy. The median household in

our sample consumes heating energy worth CHF 980 in a year.

We infer submetering from how a buildings’ total heating energy expenses are shared. In

the common heating bill regime, each apartment’s share of the bill depends on a weight that

is an integer (usually its area in square meters). In the submetering regime, apartments pay

according to their consumption, which implies that their weight is unlikely to be an integer.

In each year, we assign a building to the submetering regime if at least 50% of its apartments

have non-integer weights. All remaining buildings, with a positive but small share (≤ 50%) of

apartments with non-integer weights, are dropped from our sample (less than 5% dropped).

Finally, we restrict the sample such that we observe the treated buildings for at least two

years before and two years after submetering. Our final sample consist of 4,124 buildings,

out of which 185 received submetering during our sample period (corresponding to 1,564

apartments). Figure 2 shows the staggered rollout of submetering over the years.

In practice, submetering is often introduced with other measures. This can include the

replacement of the heating system, or the insulation of the building’s facade, and other im-

provements that may influence the building’s energy efficiency. We have access to the real

estate company’s database where any such improvements are recorded. This includes the

renovation year, as well as short texts describing the renovation. We observe 1,473 renova-

tions in our sample. Using the OpenAI API (OpenAI, 2024), we categorize renovations into

comprehensive renovations, non-comprehensive renovations that change the energy efficiency

of the building, and other renovations. Our empirical specifications control for the effect of

renovations on energy consumption. Appendix C describes the renovation classification pro-

cedure in detail.

6These numbers already represent a restricted sample for which we drop “always-treated” apartments
(i.e., those that were already submetered in the first year we observe them). The earliest treated buildings
in our regression samples were submetered in 2008, and the latest were submetered in 2022.
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Figure 2: Year of submeter installation

We use several other data sources to account for potential confounders. For each apart-

ment in our sample, we observe vacancy spells and tenant changes. In addition to energy

expenses, for a subset of our data, we observe quantities in kWh. This information allows

us to calculate heating oil and natural gas prices by NUTS2 region, as well as the price

of district heating and other heating sources on the national level. Weather data from the

Swiss Federal Office for Meteorology and Climatology allows us to control for local heating

degree days.

4 Empirical analysis

4.1 Average effect of submetering

Within the setting described above, we estimate the change in heating expenses attributable

to submetering. Our parameters of interest are the average treatment effect on the treated

(ATT ), and the “dynamic” ATT (r) for r periods after submetering is installed. Formally,

these parameters can be defined as

ATT = E[Yi,t(1)− Yi,t(0)|Si = 1;Postt = 1],

ATT (r) = E[Yi,t(1)− Yi,t(0)|Si = 1;Postt = 1; t− qi = r],

12



where Yi,t(1) and Yi,t(0) are potential outcomes for apartment i in year t under the treated

(submetered) and untreated (common heating billing) scenarios, respectively;7 Si is a treat-

ment indicator, equal to one for all apartments that have been individually metered during

our sample period, zero otherwise; Postt is an indicator equal to one for post-treatment

years, zero otherwise; qi is the year in which the submetering technology was installed in

apartment i, such that r represents years since the installation.

To estimate ATT and ATT (r), we leverage the staggered introduction of submetering

within a difference-in-differences framework. Both not-yet-treated and never-treated build-

ings serve as a comparison group to the buildings that were individually metered during our

sample period.

Heterogeneity-robust specifications

As shown in Equation 5 from our theoretical framework, we expect heterogeneity in sub-

metering treatment effects in our setting. Also, recall that we observe buildings that were

submetered at different points in time (Figure 2). Put together, these facts pose a challenge

for estimation of the ATT and ATT (r) described above. For example, recent econometric

literature on difference-in-differences (e.g., Borusyak, Jaravel, and Spiess, 2024; Goodman-

Bacon, 2021) advises against the implementation of standard two-way fixed effects (TWFE)

in these types of settings. That is because standard TWFE specifications require an as-

sumption of homogeneous treatment effects. For staggered rollout designs, in particular,

standard TWFE can lead to near-term bias (Goodman-Bacon, 2021), since estimates would

over-weight sample regions with higher treatment variance (i.e., typically where there is more

switching from an untreated to a treated status).

To avoid this type of bias, we implement the estimator from Sun and Abraham (2021).8

The building block of their approach is a “fully dynamic” regression specification for cohort-

specific effects, where cohorts are defined based on the timing of treatment (Figure 2). Within

our setting, the fully dynamic specification can be written as:

Yi,t =
∑

r ̸=−2

2022
∑

c=2008

βr,cSi × ✶[r = t− (qi)]× ✶[qi = c] + γi + γt + εi,t , (10)

7Note that we use the subscript i to refer interchangeably to apartments and households. We acknowledge
that this will only be accurate for a setting without tenant changes (i.e., without turnover). That is not the
case in our data. In Section 4.2 we discuss the potential impacts of turnover in detail. We show results for a
sub-sample of apartments without turnover. We also test the extent to which submetering itself may induce
tenant changes.

8In Appendix D we present results from standard two-way fixed effects specifications. Those gener-
ally suggest stronger treatment effects than our preferred heterogeneity-robust procedure. We refrain from
interpreting estimates from TWFE, as they might be biased.
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where Yi,t is the observed outcome of interest, heating expenses, measured in Swiss Francs

(CHF) or in logs; Si is a time-fixed variable, equal to one for apartments that will be

submetered, zero otherwise; ✶[r = t− qi] are indicators for years r relative to the treatment

dates qi; ✶[qi = c] are the cohort c indicators; γi are apartment fixed effects; γt are year fixed

effects; and εi,t is an idiosyncratic error term. For inference, we cluster standard errors at

the property level (which can include multiple buildings), because the decision to introduce

submetering may occur at this level.

Note that qi represents the year in which the submetering technology was installed.

However, submetered bills are only charged in the billing year after that installation (in

qi + 1, or r = 1). Also, letters or notifications of submetering might have been sent in the

year before installation (in qi − 1, or r = −1), such that there is scope for households to

react in anticipation of submetering. For this reason, in our regression specifications we set

r = −2 as the omitted comparison year.

Equation 10 estimates separate coefficients β̂r,c for each relative year r and for each

cohort c. The procedure from Sun and Abraham (2021) re-weights and linearly combines

these coefficients according to the shares of each cohort in each time period.9 This results

in average estimates β̂r for each relative time. For r ≥ −1, the estimated coefficients can

be interpreted as the post-treatment effects (corresponding to ATT (r)). By taking a simple

average those time-dependent effects, we can estimate the average submetering effects for

the whole post-treatment sample β̂ (corresponding to ATT ).

The coefficients for r < −2 (pre-treatment) can be used to assess our main identifying

assumption: parallel trends. That is, the outcomes for both the individually metered and

the comparison apartments would have followed parallel paths in the absence of treatment.

If pre-treatment β̂r are close to zero, then we have evidence that this holds at least for the

pre-treatment sample. We assume that paths would have remained parallel also during the

post-treatment periods if submetering had not happened. Note that this assumption implies

that our empirical strategy does not require quasi-random assignment of treatment dates

(see de Chaisemartin and D’Haultfoeuille, 2020; Sun and Abraham, 2021). Nevertheless,

in Appendix Tables A.1 and A.2 we show outcome and covariate averages across treatment

cohorts, and find no systematic differences in patterns when comparing early- versus late-

treated buildings.

We also implement a variant of Equation 10 including time-varying controls. Specifically,

we add: heating degree days (HDD) and squared HDD; flexible controls for the time since the

last renovation, by type of renovation; and canton-by-year fixed effects. Henceforth, we refer

9The weights are obtained from an auxiliary regression that estimates propensity of treatment, depending
only on the relative time indicators and the size of each cohort (Sun and Abraham, 2021).
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to the specifications that include this full set of controls as the “saturated” specifications

or models. For specifications with added controls, we rely on a conditional parallel trends

assumption.

Results

Figure 3a presents results for the heterogeneity-robust specification in Equation 10. The

outcome is the log of annual heating expenses. Blue dots represent point estimates of ATT (r)

for the model with no controls other than year and apartment fixed effects. Red triangles

are point estimates for the saturated model with time-varying controls. Visual inspection of

the pre-treatment coefficients (r < −2) in both panels suggests that pre-trends are limited.

None of the pre-treatment coefficients are statistically significant. This supports the parallel

trends assumption and causal interpretation of the post-treatment coefficients.

The post-treatment coefficients suggest a drop in annual heating expenses starting already

in r = −1, at least in the model with no controls. The implication is that households may

have reacted to the mere announcement of submetering. Announcement effects are consistent

with the results in Elinder, Escobar, and Petré (2017). The drop in energy expenses becomes

stronger in the year of submeter installation (r = 0) and increases further in the first year of

submetered billing (r = 1). For our estimates of ATT , we pool the effects from periods from

r = 1 to r = 5, which we consider to be more “stable” effects after households have fully

adjusted to submetered billing. The resulting pooled ATT represents a 20.8% reduction in

energy expenses in the specification without controls, and a 17% reduction in the saturated

model.

Figure 3b presents estimates with heating expenses in CHF as outcome variable. These

results are qualitatively similar to those in Figure 3a. Overall, for the period from r = 1

to r = 5, we estimate a CHF 188 reduction in energy expenses in the specification without

controls, and a CHF 144 reduction in the saturated model. Given the 972 average heating

expenses in our treated sample, these effects are somewhat smaller than those in Figure 3.

Appendix Figure D.1 presents standard event study estimates obtained via two-way fixed

effects. We find similar results to those in Figure 3a. The point estimates for ATT (r) are

slightly larger in magnitude, and the confidence intervals are wider. The potential bias in

TWFE estimates does not appear to be large in our setting. Nevertheless, we draw our main

conclusions from the heterogeneity-robust estimates from Sun and Abraham (2021).

Submetering may increase tenant turnover. One reason for increased turnover could be

that some households see a substantial increase in their heating bill. Figure 4 shows results

from heterogeneity-robust specifications (Equation 10), but with cumulative tenant turnover

as the outcome variable (i.e., an apartment-level count variable that increases by one unit

each time that there is a tenant change in a given apartment). These results indeed suggest
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that submetering increases turnover. In the model without controls, we estimate a 0.26 effect

on cumulative turnover. This effect is reduced to 0.15 in the saturated model, which suggests

that approximately one in seven households leaves the building because of submetering. This

finding may have important consequences for the interpretation of our results and for our

welfare analysis. We revisit this question in Section 4.2, where we discuss the potential

implications of turnover in detail.

The introduction of submetering can be accompanied by other measures, such as energy

efficiency renovations. In Appendix F.2, we assess how often submetering is introduced in

conjunction with various types of renovations. We find that energy related renovations are

20 percentage points more likely in r = −1. This pattern may explain why our saturated

model finds smaller effects on heating energy than the model without controls—concurrent

renovations inflate the effects of submetering. We further explore renovations in Section 4.2,

where we investigate whether treatment effects differ between renovated buildings and other

buildings. Renovations are also important when we consider effects of submetering on rent in

Appendix F.3. As renovations are usually more expensive than the installation of submeters,

we find sizable rent increases when submetering concurs with renovations. When submeters

are installed without a concurrent renovation, we do not find statistically significant rent

increases.

4.2 Heterogeneous effects of submetering

To explore heterogeneity and the mechanisms through which submetering might lead to

reduced heating expenses, we analyze conditional average treatment effects on the treated

(CATT ). That is, we are interested in understanding how the effects of submetering may

depend on some key covariates. Let CATT be defined as

CATT (c) = E[Yi,t(1)− Yi,t(0)|Si = 1;Xi,t = c;Postt = 1] , (11)

where c denotes a set of conditions or restrictions on some covariates Xi,t of interest. Our

theoretical framework from Section 2 motivates our choice of Xi,t and c. For example, our

framework suggests that the effect of submetering depends on the number of neighbors N

that previously shared a common heating bill.

One natural approach for estimating CATT would be to run a regression as in Equa-

tion 10, but restricted to a sub-sample of apartments that have many neighbors (large N),

for example. Such an approach has a few drawbacks. First, the comparison (not submetered)

group of buildings in that regression would also be restricted, thus different from the original

comparison group used to estimate ATT . This may not necessarily be an issue per se, but

needs to be taken into account when interpreting the sizes of coefficients (as the average out-
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(a) Effects of Submetering on Heating Expenses (%)

ATT (SE), no controls = -20.82 (1.14)
ATT (SE), saturated = -17.03 (1.14)
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(b) Effects of Submetering on Heating Expenses (CHF)

ATT (SE), no controls = -188.46 (22.05)
ATT (SE), saturated = -144.12 (20.07)
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Figure 3: Heterogeneity-robust Effects of Submetering

Notes: This figure presents estimates of both ATT and ATT (r) for the effects of submetering according
to the procedure from Sun and Abraham (2021) described in Section 4.1. For Panel (a) the outcome
variable is heating expenses in logs, while for Panel (b) it is in levels (CHF). The ATT estimates and their
standard errors, included as text within the graphs, pool the effects from periods r = 1 to r = 5. The
ATT (r) estimates are presented graphically. For Panel (a), estimates are transformed to represent percent
effects (100 × (exp(β1) − 1)). All specifications include year and apartment fixed effects. The saturated
specifications also control for heating degree days, renovations, and Canton-by-year fixed effects. Standard
errors are clustered at the property level. The vertical lines around the point estimates represent 95%
confidence intervals.
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ATT (SE), no controls = 0.26 (0.06)
ATT (SE), saturated = 0.15 (0.05)
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Figure 4: Heterogeneity-robust Effects of Submetering on Cumulative Turnover

Notes: This figure presents estimates of both ATT and ATT (r) for the effects of submetering according to
the procedure from Sun and Abraham (2021) described in Section 4.1. The outcome variable is cumulative
turnover (i.e., the cumulative number of tenant changes observed for a given apartment over our sample
period). The ATT estimates and their standard errors, included as text within the graphs, pool the effects
from periods r = 1 to r = 5. The ATT (r) estimates are presented graphically. All specifications include year
and apartment fixed effects. The saturated specifications also control for heating degree days, renovations,
and canton-by-year fixed effects. Standard errors are clustered at the property level. The vertical lines
around the point estimates represent 95% confidence intervals.
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come of the comparison group might differ from the original sample). Second, sub-sampling

can lead to losses in statistical efficiency, as it reduces the number of observations used for

estimation.

Both of the aforementioned drawbacks can be partially addressed with the implementa-

tion of a regression that interacts the covariate of interest (or bins of that covariate) with

the submetering treatment indicator. However, that specification would not address another

key concern which arises when we are interested in multiple correlated covariates that drive

heterogeneity. For example, it could be that apartment size is correlated with the number

of neighbors in buildings. This may bias “naive” estimates of heterogeneity by number of

neighbors, in case apartment size also drives heterogeneity in treatment effects.

To simultaneously account for several factors that can potentially drive heterogeneity of

submetering effects, we turn to ML-based techniques for estimation of conditional average

effects. In particular, we implement a method that is based on counterfactual imputation

(Borusyak, Jaravel, and Spiess, 2024; Souza, 2019). The first step is to predict [Yi,t(0)|Si =

1;Postt = 1], which represents post-treatment heating expenses under a counterfactual

scenario of no submetering.

Prediction of untreated counterfactuals

Following Souza (2019), we use data from never-treated and not-yet-treated apartments to

build a model g(Xi,t) to predict untreated energy expenses Yi,t(0). We estimate ĝ(Xi,t) using

all observations from the never-treated buildings, as well as pre-treatment data from the

not-yet-treated buildings. Importantly, Xi,t are predictor variables that are not affected by

treatment. These include: area of the apartments; number of neighbors in the building;

number of rooms per apartment; location of the apartment (floor) within the building;

presence of commercial establishment in building; billing cycle indicators; heating degree

days, indicators for construction and renovations years; zipcode and canton fixed effects;

year fixed effects; and numeric building IDs.10

We use ML algorithms to estimate ĝ(Xi,t). The out-of-sample prediction performance

of the algorithms is assessed via 4-fold cross-validation. That is, first we randomly split

the pre-treatment data into 4 equally-sized sub-samples. We use a “stratified” sub-sampling

procedure, such that all (annual) observations from a given building are contained within the

same sub-samples. Then, we use 3 of the partitions to train the ML algorithms, and predict

10Our preferred prediction algorithm essentially combines many “simple” regression trees, each con-
structed with only a subset of the candidate covariates. For this reason, it is possible to include nested
fixed effects (e.g., zipcode and canton) without collinearity issues. Building IDs are included as a continu-
ous variable (not as a fixed effects), to prevent the algorithm from building too many uninformative trees
that contain only fixed effects. Also, note that we do not include any tenant characteristics, which would
otherwise contaminate our counterfactual predictions for apartments that experience tenant turnover.
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energy expenses on the 4th “hold-out” sub-sample. By recursively repeating this process 4

times, each time changing the hold-out sub-sample, we obtain out-of-sample predictions for

all observations. Finally, those predictions are compared to the true pre-treatment expenses,

which allows us to calculate prediction performance metrics such as root-mean-square error

(RMSE).11

The “best-performing” algorithm is that which achieves the lowest cross-validation RMSE.

We perform a grid search varying parameter configurations of gradient boosted trees, im-

plemented through XGBoost (Chen and Guestrin, 2016). Since XGBoost is a tree-based

algorithm, it automatically accounts for nonlinear relationships between the outcome and

the covariates based on the branch splits. It also captures interactions between covari-

ates, with deeper trees allowing for more complex interactions. In Appendix Table E.2 we

present the cross-validation RMSE for the 18 algorithm configurations in our grid search.

Our preferred configuration is an “ensemble,” combining the predictions from three of those

configurations, highlighted in gray.12

The RMSE provides a good metric for the average performance of the algorithm. How-

ever, we are also interested in checking if predictions are not biased at different time periods

relative to submetering treatment. This is akin to checking the “parallel trends” assumption

in difference-in-differences settings. For this, again we use a specification based on Souza

(2019). Let ε̂cvi,t = Yi,t − Ŷ cv
i,t be the pre-treatment cross-validation residuals. We then regress

these residuals on event-time indicators as follows:

ε̂cvi,t =
∑

r<−1

βrSi × ✶[r = t− (qi)] + ui,t . (12)

The coefficients βr will thus represent average pre-treatment residuals at different event

times. Estimates from Equation 12 are presented in Figure 5a. Based on an F-test (shown

in graph), we cannot reject that these coefficients are jointly zero, such that the ML algo-

rithm is unlikely to be biased in the pre-treatment sample. We can then proceed to use

this algorithm to predict (untreated) counterfactual energy expenses in the post-treatment

11More details are presented in Appendix E.1. We also implement an alternative CV strategy, without
the stratified sub-sampling. We argue that performance metrics obtained from the stratified CV procedure
are better representative of potential errors for counterfactual prediction. This is because the stratified
procedure guarantees that predictions for a given building are always obtained based on a model trained
with data from other buildings. This is analogous to the intuition behind canonical difference-in-differences.
Regardless, in our setting, similar algorithm configurations would be selected with standard k-fold CV or
stratified CV procedures.

12Ensemble methods combine the outcomes of several algorithms, resulting in predictions that are more
accurate than those obtained for each algorithm separately (Dong et al., 2020; Van der Laan, Polley, and
Hubbard, 2007). We use non-negative least squares to determine the ensemble weights in our setting. Details
are described in Appendix E.1.
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sample: Ŷi,t(0) = ĝ(Xi,t) for t ≥ −1.13 This requires an implicit assumption that the model

g(Xi,t) for untreated energy expenses would have remained stable over time, in the absence

of submetering (Souza, 2019).

In Appendix F.1, we test this “stability” assumption with a placebo treatment exercise.

That is, we take the sample of never-treated buildings and randomly allocate some of them

to a placebo treatment condition. We then perform the ML training/predictions as described

above, but with this new semi-synthetic data. Appendix Figure F.2 presents the prediction

errors across event times. We find that the errors are also close to zero both before and

after the placebo treatment. This suggests that our model can accurately predict future

consumption patterns in a counterfactual scenario without submetering.

Returning to the real data/treatment, our primary interest is on estimating treatment

effects. We obtain those by subtracting the untreated counterfactual predictions from the

realized post-treatment energy expenses:

b̂i,t = Yi,t − Ŷi,t(0) . (13)

The estimates b̂i,t correspond to apartment-by-year treatment effects. These can be used to

summarize submetering treatment effects across sub-samples of interest.

Summarizing heterogeneous treatment effects

Note that the ML approach allows estimation of how treatment effects change over time

(i.e., estimation of ATT (r)). This can be done by calculating the average of b̂i,t at different

times relative to treatment. We summarize these estimates in Figure 5b. For event times -2

or before, the figure presents average residuals for pre-treatment observations, while average

treatment effects are estimated for event times -1 and later (the post-treatment sample). We

note that these ML estimates are within range of those obtained with the Sun and Abraham

(2021) procedure. Reductions in expenses are statistically significant, ranging from 110

CHF (on the year of submetering installation), to 190 CHF (one year after submetering).

The somewhat wide confidence intervals (“whiskers” around the point estimates) can be

attributed to our conservative clustering approach (at the property level), but might also be

related to substantial heterogeneity in the effects.14

To further explore how heterogeneity may depend on covariates, we summarize b̂i,t across

different sub-samples of interest. As highlighted in the theoretical framework, Equation 5,

we may expect heterogeneity depending on the number of neighbors (N), the apartments’

13Recall that we allow for some anticipation effects by defining “post-treatment” as starting one year
before submetering installation.

14This would be in line with our theoretical framework. Also, while average expenses are reduced, one
could expect that some tenants face an increase in expenses (e.g., those who prefer higher temperatures).

21



(a) Average CV residuals by event time

Joint significance F-stat = 0.632
P-value of F-stat = 0.642
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(b) Machine learning estimates of ATT (r)
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Figure 5: Machine learning average residuals and ATT (r) estimates

Notes: Panel (a) presents coefficient estimates obtained from regression Equation 12. These represent
the average cross-validated residuals for time periods prior to submetering. The reported F-statistic (and
corresponding p-value) tests the joint significance of the coefficients. Panel (b) summarizes ATT (r) according
to the machine learning estimation strategy. We plot average residuals for event times -2 or before, and
average effects for event times -1 or later. Standard errors are clustered at the property level. The “whiskers”
around point estimates correspond to 95% confidence intervals.
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heat loss (H), tenants’ sensitivity to deviations from preferred temperature (κi), and energy

prices (p). In this sub-section, we explore the first two dimensions because they can easily

be used to define submetering policies. While N is directly observable, we use apartment

area and building vintage as proxies for heat loss.

Heterogeneity estimates may be obtained through a sub-sampling approach, such as

taking the average of b̂i,t for buildings with small, medium, or large number of neighbors, as

shown in Appendix Figure E.4. Alternatively, we may regress the treatment effects b̂i,t on a

constant plus the binned indicators for number of neighbors, omitting one of the groups to

serve as a benchmark for comparison. That directly allows us to test whether any differences

between groups are statistically significant. The resulting coefficients are represented by the

blue triangles in Appendix Figure E.5. However, those should still be considered “naive”

estimates, as they ignore other potential drivers of heterogeneity, such as apartment area,

that might be correlated with the number of neighbors. For this reason, we refrain from

interpreting those coefficients. Rather, as described at the top of Section 4.2 we take a

holistic approach for heterogeneity, summarizing effects across sub-samples while controlling

for other factors.

To simultaneously account for the multiple dimensions of heterogeneity in this setting,

we regress the submetering treatment effects b̂i,t on a constant, plus binned indicators for

number of neighbors, apartment area, and building vintage, as shown in Equation 14 below.

We include binned (rather than continuous) versions of these covariates in order to capture

nonlinear effects. We use a data-driven approach developed by Cattaneo et al. (2024) to

determine the optimal number of bins for each variable (details in Appendix E.3).15 Ad-

ditionally, we include canton fixed effects (δm), to parse out heterogeneity that may be

attributed to regional variations in energy prices. The full specification can be written as:

b̂i,t = α +
3
∑

n=2

βn
✶[Neighbor Bin = n]i +

3
∑

a=2

βa
✶[Area Bin = a]i+

4
∑

v=2

βv
✶[Building’s Vintage = v]i + δm + εi,t .

(14)

The coefficients of interest are β̂n, β̂a, and β̂v, which estimate how the effects of subme-

tering depend on number of neighbors, apartment area, and building’s vintage, respectively.

15Note that there is a bias-variance tradeoff when defining bin splits (Cattaneo et al., 2024). With more
splits, the researcher may be able to uncover more nuanced heterogeneity patterns. However, this comes at
a risk: in case bins are too small, some spurious effects may be mistaken for true heterogeneity patterns.
The procedure from Cattaneo et al. (2024) takes that into account, resulting in (not too small) bins that
contain approximately the same number of (post-treatment) observations.
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Importantly, these are jointly estimated with the same regression, allowing us to understand

the contribution of each covariate while holding other factors fixed. Results are presented

in Table 1, column (1). We note that there is no significant difference between apartments

with up to 8 neighbors versus those with 9 to 12 neighbors. Conversely, there is a strong and

statistically significant difference for apartments with more than 12 neighbors. For those,

the point estimate suggests that submetering induced an additional reduction in expenses

of approximately 111 CHF. A larger treatment effect in buildings with many neighbors is

in line with our theoretical framework, as the implied marginal price change is larger (see

Equation 5).

Our results from Table 1 also reveal a relationship between submetering treatment effects

and apartment area. Large apartments (more than 88 sq. meters) reduced heating expenses

by additional 115 CHF compared to small apartments (up to 71 sq. meters). The difference

for medium apartments (72 to 88 sq. meters) is close to 56 CHF. Again, this is consistent

with our framework, assuming that large apartments have higher heat loss. Regarding

building’s vintage, the naive estimates (Appendix Figure E.5) suggest that treatment effects

were stronger for older buildings. However, those differences vanish when we control jointly

control for other factors. This may be due to correlations between building vintage and

number of neighbors, for example.16

We test the robustness of our heterogeneity estimates (βn, βa, and βv) to changes in

Equation 14. In columns (2) to (4) of Table 1 we successively add controls. We find that

the coefficients for number of neighbors and apartment area are stable across specifications.

Further, this exercise reveals other potentially important drivers of heterogeneity.

Column (2) of Table 1 presents results controlling for post-treatment turnover.17 We find

that apartments that experienced tenant changes save an additional 58 CHF, compared to

apartments without turnover. Column (3) shows that effect remains significant even after

controlling for pre-treatment turnover rates (event years -2 and before). The influence of

turnover is somewhat weaker (39 CHF) once we additionally control for energy-related ren-

ovations and vacancies, as shown in column (4). Although the coefficient on vacancies is

strong, it is only relevant for a small fraction of the treated apartments (vacancies happen in

only 8% of the post-treatment sample). The result on turnover has important implications

for our welfare calculations, which we discuss below. Finally, in column (5) we test whether

submetering treatment effects vary depending on the apartment’s location within the build-

16The large buildings (with many neighbors) in our treated sample tend to be older. Newly constructed
large buildings may have already been submetered from the beginning, so they drop out from our sample.
These constitute an “always-treated” group that is not used in the estimation procedures presented so far.
However, the always-treated buildings are used in Section 4.4, where we explore price elasticities.

17Here we tag apartments that experienced any tenant changes during submetering event times -2 to +2.
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ing. We do not find statistically significant differences between apartments on the ground

floor versus those on intermediate and top floors. This finding suggests that heat flows be-

tween apartments are not a major concern in our setting. If heat flows between apartments

were substantial, we would expect larger treatment effects in apartments on intermediate

floors.

Note that the validity of the estimates described above relies on an assumption that the

ML algorithms are unbiased along the relevant heterogeneity dimensions. Essentially, we

need to rule out that prediction errors from our ML algorithm are driving the estimated

heterogeneity shown in Figure E.5. To do so, we run a regression analogous to Equation 14,

but with ML cross-validated residuals as the outcome. We test whether these residuals are

systematically larger for the sub-samples of interest. Results are presented in Appendix Fig-

ure E.1. Since most coefficients are statistically indistinguishable from zero, we conclude that

our ML algorithm is unlikely to be biased for our covariates of interest. In Appendix Figures

E.2 we show that the prediction errors are uncorrelated with several other covariates.18

Strategic turnover

We observe results that are consistent with tenants leaving the building if submetering in-

creases their heating bill by more than their moving costs. Not only does submetering

increase turnover (see Figure 4), but the induced turnover appears to influence heating

expenses: submetering treatment effects are larger for apartments that experiecne tenant

changes (see Table 1). These effects cannot be explained by renovations and the rent in-

crease that comes with them (see Appendix F.3). This finding has implications for the

interpretation of our results and for our welfare analysis.

To model strategic tenant exit, we consider three types of tenants: stayers (s), leavers (l),

and newcomers (n). Our empirical estimate τ̂ is the weighted average of: (i) the treatment

effect on stayers; and (ii) the difference between newcomers under the submetering regime

and leavers under the common heating bill regime. Formally, we can write this as:

τ̂ =

∑s(e∗s,θ=1 − e∗s,θ=0) +
∑n(e∗n,θ=1 − e∗l,θ=0)

N
, (15)

where e∗.,θ denotes energy consumption for each type of tenant, also depending on the billing

regime θ. We note that τ̂ is subject to a selection effect. In particular, e∗n,θ=1 can be lower

than e∗l,θ=0 not only because of submetering, but also because leavers might be a selected

sample. In particular, households with high Ti will lose from submetering, such that some

18Average errors across these other covariates are presented as a form of robustness check in Appendix E.2.
We also do not find that these covariates are significant drivers of heterogeneity in our setting.
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Table 1: Summarizing treatment effect heterogeneity across subgroups

(1) (2) (3) (4) (5)

Number of Neighbors (comparison group: 8 or less)
9 to 12 -8.63 -4.26 -59.10 -51.56 -48.20

(52.57) (50.58) (55.96) (54.47) (54.19)
more than 12 -110.99∗∗ -103.30∗∗ -127.16∗∗ -112.22∗∗ -108.91∗∗

(45.45) (44.37) (47.73) (44.72) (44.32)

Area of Apartment (sq. meters; comparison group: 71 or less)
72 to 88 -55.96 -57.92∗ -85.78∗∗ -81.43∗∗ -81.43∗∗

(34.61) (34.36) (38.57) (36.69) (37.00)
more than 88 -115.08∗∗∗ -115.58∗∗∗ -152.12∗∗∗ -134.32∗∗∗ -134.08∗∗∗

(35.15) (34.57) (43.50) (44.87) (44.83)

Building’s Vintage (comparison group: built in the 90s or later)
No data -82.90 -91.12 -90.98 -100.31 -102.18

(95.37) (94.50) (109.23) (108.86) (109.38)
60s or earlier -41.67 -45.41 -47.88 -24.78 -27.64

(65.90) (64.39) (107.33) (103.25) (104.12)
70s or 80s -25.80 -30.54 -34.23 -18.37 -19.32

(53.49) (50.81) (62.69) (65.29) (66.16)

Post-treat. Turnover (0/1) -57.62∗∗∗ -59.32∗∗∗ -39.40∗∗ -39.26∗∗

(16.04) (17.58) (16.56) (16.84)

Pre-treat. Turnover Share (%) -3.81∗ -3.59∗ -3.62∗

(2.15) (2.10) (2.10)

Energy-related Renovations (0/1) -48.68 -49.09
(48.26) (48.62)

Duration of Vacancies (comparison group: no vacancies)
Vacant 1 to 183 days -77.90∗∗∗ -78.18∗∗∗

(20.64) (20.79)
Vacant 184 to 366 days -286.99∗∗∗ -286.51∗∗∗

(43.86) (43.82)

Location of Apartment in the Building (comparison group: ground floor)
Intermediate Floor -16.56

(15.31)
Top Floor -5.89

(26.36)

Regression Constant -56.64 -29.02 34.65 37.73 48.17
(50.80) (50.56) (73.39) (74.07) (76.61)

Number of observations 6,856 6,856 5,748 5,748 5,730

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Column (1) presents results from the regression in Equation 14.
Column (2) additionally controls for post-treatment turnover. Column (3) additionally controls for pre-
treatment turnover rates. Column (4) additionally controls for renovations and vacancies. Column (5)
tests the influence of apartments’ locations in the building. Vintage information was not available for some
buildings (rather than dropping those, we group them into a separate category labeled as “No data”). All
specifications control for canton fixed effects. Standard errors (in parentheses) are clustered at the property
level.
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of them might decide to leave the building.19 The resulting selection effect increases our

estimate of the treatment effect.

Our results from Table 1 suggest that leavers have higher Ti than newcomers. Note that

if stayers, leavers, and newcomers had similar preferences (Ti and κi), we would not expect

a significant coefficient on turnover, because tenant turnover would not matter on average.

Our specifications allow us to account for this selection effect by focusing on conditional

average treatment effect for stayers:

τ̂stay =

∑s(e∗s,θ=1 − e∗s,θ=0)

Ns

. (16)

Focusing on τ̂stay has two main advantages compared to the unconditional ATT . First, it

is not subject to the selection effect induced by strategic tenant exit. This is important for

our welfare analysis. Within our framework, the selection effect does not improve welfare—

it merely shifts consumption outside of our sample, which we cannot observe or evaluate.

Second, it allows us to abstract from the prevalence of submetering in the overall housing

market, which would matter for newcomers and leavers. For example, if all buildings in the

market had submetering, then leavers would receive submetering also in their new building.

If no other buildings had submetering, then newcomers will receive submetering, and leavers

will not. To abstract from these complications, we focus on τ̂stay in our welfare analysis.

Building-specific effects

We use the heterogeneity coefficient estimates β̂a, β̂n, and β̂v from Equation 14 to calculate

building-specific submetering effects. This is essentially an aggregation step. Note that the

model in Equation 14 yields apartment-specific effects that vary depending on covariates.20

We aggregate those to the building level by summing the resulting CATT from all apartments

that belong to the same building.21 We then divide that sum by the number of neighbors in

the building, resulting in average savings per household.

Results are presented in Figure 6. The solid blue curve presents a ranking of the building-

specific savings, according to the model for stayers (τ̂stay, based on Table 1, column 2). The

dashed blue curve is for a model that ignores the issue of turnover (Table 1, column 1). The

comparison of both curves again reveals that newcomer tenants in our context are likely to

have lower Ti preferences than tenants that left the buildings after submetering.

19A similar argument can be made about households with high κi.
20For this exercise, we ignore any heterogeneity implied by canton fixed effects.
21We perform this aggregation for a restricted sub-sample for which we observe the same set of apartments

within their respective buildings over time. This corresponds to about 80% of the treated sample.
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Figure 6: Building-specific treatment effects

Notes: This Figure plots ranked building-specific treatment effects. Buildings are ranked from lowest savings
(left) to highest savings (right). The x-axis represent percentiles, the y-axis savings in energy expenses (CHF
per household).

We focus on interpreting the effects for stayers. The Figure reveals substantial hetero-

geneity, with savings ranging from 40 to 300 CHF per household annually. This heterogeneity

has implications for welfare, which we discuss next.

4.3 Welfare evaluation

We use the sufficient statistic in Equation 9 to assess the welfare effects of submetering. The

relevant parameters are the treatment effect for stayers τ̂stay, the number of neighbors N ,

the social cost of carbon ϕ, the energy price p, and the cost of submetering s.

We start with a hypothetical building that is representative of our sample. The median

treatment effect for stayers τ̂stay is CHF 132 per year, the median number of neighbors N

is 7, and the average energy price in our treatment sample is CHF 0.0883 per kWh. We

assume a cost of submetering of CHF 86 per year.22 We use the SCC estimate from Rennert

et al. (2022) of 185 CHF/tCO2 to value reduced CO2 emissions.23 We also account for the

22The cost of submetering consists of investment costs (hardware and installation) as well as running
service fees. We observe service fees in our data. On average, service fees amount to CHF 41 per apartment
and year. Investment costs are harder to assess. We use CHF 45 annualized investment costs as an approx-
imation, based on EnergieSchweiz (2023) who approximate the annualized cost for both heating and water

at CHF 90. Our cost estimate assumes that heat submetering is responsible for 50% of these costs.
23Rennert et al. (2022) present a SCC measured in US dollars per ton of CO2. During the time period

that we study, the exchange rate between US dollars and Swiss francs fluctuated around 1. At the time of
writing this manuscript, one Swiss franc is approximately equivalent to 1.1 US dollars.
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carbon tax implemented in Switzerland, which had a median value of of CHF 36 during our

sample period.

Given these values for our hypothetical building, we use Equation 9 to calculate the

welfare effect of submetering. The first term of Equation 9 represents household benefits.

The resulting value of − τ̂stay
2

(1 − 1
N
) = 132

2
(1 − 1

7
) ≈ 57 CHF shows that it is important

to account for the loss in thermal comfort, which is generally close to half of the treatment

effect on the heating bill. The second term of Equation 9 represents climate benefits. The

resulting value of −τ̂stay
ϕ

p
= 132 (185−36)0.00022718

0.0883
≈ 51 CHF shows that reduced CO2 emissions

are a substantial benefit of submetering.24 The third term of Equation 9 represents the cost

of submetering s = 86. Putting all terms together, we find that submetering generates a

welfare gain of 57+51− 86 = 22 CHF per household and year for our hypothetical building.

The welfare estimate for our hypothetical building ignores important heterogeneity. For

instance, in Section 4.2, we show that buildings with more neighbors also experience larger

treatment effects. The implication is that we might underestimate welfare gains for those

buildings, if we simply assume that they experience the unconditional average treatment

effect. To more thoroughly investigate how welfare effects differ by building, we take the

building-specific expense reductions shown in Figure 6. For each building in our treatment

sample, we calculate a welfare effect—just like we did with the hypothetical building above.

Figure 7 shows a ranking of welfare effects in our treatment sample. The light green area

represents household benefits, the dark green area climate benefits, and the dashed line the

cost of submetering. Welfare effects are positive where the green areas exceed the dashed

line. If we abstract from climate benefits, we find that only 10% of buildings in our sample

benefit from submetering, with the light green area exceeding the dashed line. When we take

climate benefits into account, the share of buildings with positive welfare effects increases to

63%, with a mean welfare effect of CHF 18 per household and year.

4.4 Effect on price elasticity of demand

Our theoretical framework predicts that submetering changes the price elasticity of heating

demand. In particular, households who pay for their individual consumption should be more

responsive to price changes, as shown in Equation 7. In this section, we test the extent to

which this prediction holds empirically.

Empirical strategy

To estimate own-price elasticities of heating energy demand, we use an empirical strategy

similar in spirit to Myers (2019). We leverage heating energy price variations across regions,

24Note that the factor 0.00022718 tCO2/kWh represents the carbon intensity of heating energy in our
treatment sample.

29



0 20 40 60 80 100
Percentile of welfare effect

0

50

100

150

200

250

CH
F 

pe
r h

ou
se

ho
ld

 a
nd

 y
ea

r

Household benefits (savings minus comfort loss)
Climate benefits
Cost of submetering

Figure 7: Welfare effects without turnover (CHF per household)

Notes: This Figure plots ranked building-specific welfare effects. Buildings are ranked from lowest (left) to
highest (right) welfare effect. The x-axis represents percentiles, and the y-axis measures benefits and costs
in CHF. The light green area represents household benefits, the dark green area climate benefits, and the
dashed line the cost of submetering. Welfare effects are positive where the green areas exceed the dashed
line.

time, and buildings’ heating fuel type (i.e., oil, gas, or district heating). We implement the

following regression specification:

log(Yi,t) = β1log(pr,t,f ) + β2log(pr,t,f )× Si +X′
i,tδ + γi + γr,t + εi,t , (17)

where log(Yi,t) is the log of heating energy expenses for household i in year t. We are par-

ticularly interested in the coefficients associated with the log of energy prices log(pr,t,f ).
25

Importantly, energy prices vary by region r, year t, and heating fuel type f . The speci-

fication also includes NUTS2-by-year fixed effects γr,t, which control for potential demand

confounders such as regional changes in environmental awareness or energy saving cam-

paigns. Those fixed effects also imply that price fluctuations would be completely absorbed

if there were no variations in heating fuel type within regions. The apartment fixed effects

γi control for time-invariant apartment characteristics. Xi,t comprises the same control vari-

ables used in the saturated model in Section 4.1. Another key regressor is the interaction of

the submetering indicator Si with log energy prices. β1 estimates the own-price elasticity of

energy expenses for households under the common billing regime. β2 captures the additional

25This specification assumes that households are essentially price takers with respect to heating energy
fuels. We argue that this is realistic in the case of Switzerland, since these fuels are often supplied by local
monopolies and because we study tenant households, as described in Section 3.
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price sensitivity of submetered households. We subtract 1 from those coefficients, to reflect

elasticities of demand, not expenses.26

Different from our analyses in the previous sections, we estimate Equation 17 with a

sample consisting of apartments that were either always submetered or never submetered.

That is, we exclude apartments that have changed their submetering status during our sample

period. This is to abstract from dynamic treatment effects and adjustment mechanisms that

can be expected shortly after submetering. In essence, this section focuses on estimating

price elasticities under a “steady state” where households have already adjusted to the

billing regime they face.

Finally, we are also interested in estimating how elasticities vary depending on the number

of neighbors in the buildings. Equation 4 from our framework predicts that the number of

neighbors N only influences elasticities of households under the common billing regime.

We test that with a variant of specification 17, where we intereact the log price and the

submetering indicator with binned indicators for number of neighbors.

Results

Table 2 reports our elasticity estimates. Standard errors (in parentheses) are clustered at

the building level. Column (1) reports results for the model in Equation 17. We find

a price elasticity of −0.619 without submetering, and −0.716 with submetering.27 The

difference between the two groups is statistically significant at the 1% level. This implies

that submetered apartments are more responsive to price changes than non-submetered

apartments, confirming the prediction of our theoretical framework.

Further, Column (2) from Table 2 reveals that the elasticity decreases substantially for

large buildings under the common bill. The difference in elasticities between small (8 or fewer

neighbors) and large buildings (more than 12 neighbors) is 0.19 (statistically significant with

p < 0.01). As predicted in our framework, households under the common heating bill are

less responsive to changes in heating energy prices when they live in buildings with many

neighbors. The number of neighbors does not affect the price-responsiveness of households

in submetered buildings. There, the estimated difference in elasticities is at most 0.04 (not

statistically significant). This finding is consistent with our theoretical framework, because

26The elasticity of energy expenses can be defined as ηep = ∂ep
∂p

p
ep

= ( ∂e
∂p

p+ ∂p
∂p

e) · 1

e
= ∂e

∂p
· p
e
+1 = ηe +1.

27These estimates are broadly in line with Filippini and Kumar (2021), who find an elasticity of −0.73 for
residential gas demand in Switzerland. They are also similar to estimates for other countries. For example,
Alberini, Gans, and Velez-lopez (2011) find elasticities for gas ranging from −0.566 to −0.693 in the United
States, Lim, Kim, and Yoo (2016) find a short-run elasticity of −0.7 for district heating in South Korea,
Schulte and Heindl (2017) find a −0.5 elasticity for space heating in Germany, and Trotta, Hansen, and
Sommer (2022) estimate a −0.53 elasticity for district heating in Denmark.
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the price incentive of households under submetering does not depend on the number of

neighbors.

Table 2: Price elasticities

(1) (2)
Baseline Number of Neighbors

Common Bill -0.619***
(0.029)

Common Bill: 8 or fewer -0.725***
(0.036)

Common Bill: 9 to 12 -0.679***
(0.037)

Common Bill: more than 12 -0.537***
(0.035)

Submetering -0.716***
(0.043)

Submetering: 8 or fewer -0.695***
(0.049)

Submetering: 9 to 12 -0.735***
(0.067)

Submetering: more than 12 -0.727***
(0.058)

Number of observations 618,936 618,936

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Dependent variable: log Heating expenses. Results from
regression specification 17, which also controls for apartment fixed effects, region-by-year fixed effects, heating
degree days, and renovations. Reported coefficients were transformed to reflect price elasticities of heating
energy demand (see Footnote 26). Standard errors (in parentheses) are clustered at the building level.

5 Behavioral mechanisms

Fully informed free-riding behavior, as described in our theoretical framework in Section 2,

cannot adequately explain our results. Why do households in the common heating bill react

to price variation if they have little incentive to do so? We would expect a very low price

elasticity under the common heating bill, but find substantial elasticities exceeding 0.5. Given

such price elasticities, why do households not react more strongly to submetering? Recall

that we estimate that submetering reduced heating energy expenses by 17%. As submetering

increases marginal heating energy prices by a factor of N, and the median building in our

sample has 7 apartments, we may expect a demand elasticity of 0.028—substantially smaller

than any of the estimates from Table 2.

In this section, we discuss behavioral mechanisms that rationalize our results: “schmedul-

ing,” inattention to the common heating bill, and pro-social behavior. We start with ex-

tensions of the theoretical model that accommodate these mechanisms, and discuss their
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implications for our welfare estimates. We then combine our results with the theoretical

framework in Section 2 to estimate the prevalence of free-riding. Finally, we show survey

evidence for inattention and pro-social behavior in the common heating bill.

5.1 Extensions of the theoretical framework

We start from the theoretical framework in Section 2. The framework assumes fully rational,

informed, and selfish behavior. In practice, households may deviate from these assumptions.

They may not equate marginal benefits and costs of heating, they may not be fully in-

formed about their billing regime, or they may care about their neighbors. We describe how

these deviations from standard free-riding behavior can be accommodated in our theoretical

framework, what they imply for our welfare estimate, and how they impact households’ price

elasticity.

Schmeduling, inattention to the common heating bill, and pro-social behavior can ratio-

nalize our empirical results. Each of these mechanisms implies that households under the

common heating bill consume less, and are more price elastic, than predicted by standard

free-riding behavior. The implications for our welfare estimates depend on the precise be-

havioral mechanism at play. Our welfare estimates are correct under standard free-riding

behavior, inattention to the common heating bill, and altruism; they are a lower bound

where schmeduling, moral cost, and social norms apply.

Schmeduling

Prior work documents that some households do not respond to marginal price changes, but

rather to average prices (Ito, 2014). This behavior is referred to as “schmeduling” (Liebman

and Zeckhauser, 2004). Ito and Zhang (2023) evaluate a heating price reform in China and

show that schmeduling is relevant in the context of heat submetering.

Schmedulers use the average price p̄ = p
∑j ej
Nei

, rather than the marginal price p, to make

consumption decisions under the common heating bill. This changes Equation 3 to

e∗i,θ = (Ti − T0)H −
H2

2κi

(

θp+ (1− θ)p̄

)

. (18)

Schmeduling does not change consumption decisions under submetering, where house-

holds face a constant price. Under the common heating bill, low-consumers and high-

consumers pay the same heating bill. Hence, low-consumption schmedulers face a high

average price and consume “too little,” as compared to their private optimum. Conversely,

high-consumption schmedulers face a low average price and consume more than their private

optimum.
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Figure 8 shows the implications of schmeduling in our theoretical framework. Under the

common heating bill, all households in a building face the same energy bill, regardless of

their relative consumption. Households with low consumption, represented by household l

in Figure 8, pay an average price that exceeds p. Those with high consumption, represented

by household h, pay an average price below p. Submetering sets the average price equal

to the marginal price. As a consequence, schmedulers with low consumption increase their

consumption, while those with high consumption decrease theirs. The overall effect on

consumption is close to zero.28

Schmeduling is relevant for our welfare estimates. If the energy price is sufficiently below

social marginal cost, then the consumption increase of low-consumers will decrease welfare

(illustrated by the dark red triangle in Figure 8), while the consumption decrease among

high-consumers will increase welfare (illustrated by the green triangle). The overall welfare

effect is positive. Intuitively, the environmental externality is unaffected because emissions

do not change if overall energy consumption remains constant.29 The positive welfare effect

arises because households are not choosing their private optimum under the common heating

bill. Submetering corrects this inefficiency. Hence, if households are schmeduling, our welfare

estimates from Section 4.3 are a lower bound.

Figure 8: Schmeduling in our theoretical framework

28The overall consumption effect is exactly zero in Figure 8. The figure imposes two simplifying assump-
tions. First, household heterogeneity is only driven by Ti (rather than κi), implying parallel demand curves.
Second, p̄ decreases linearly, which can be viewed as a local approximation.

29This argument applies if the price is well below social marginal cost. If the price equals the social
marginal cost, the welfare effect of submetering for schmedulers is unambiguously positive.
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Schmedulers can also explain the large elasticities we find under the common heating

bill, as they are more price elastic than free-riders. In the common heating bill (and also

under submetering), any x% change in energy prices changes the average price by x%. Hence,

schmedulers under the common heating bill react to price changes as if they were submetered.

Inattention to the common heating bill

Some households may be inattentive to the common heating bill. Inattention is well docu-

mented in the domain of energy consumption (e.g., Sallee, 2014; Jessoe and Rapson, 2014),

and it is plausible that some households are inattentive to their billing regime. We focus

on the case where households are inattentive to the common heating bill. Households may

also be inattentive to being submetered, but this is unlikely to be a major concern for newly

treated households. The installation of submetering is typically accompanied by information

letters, which should make households aware of the change in their billing regime.

Inattention to the common heating bill implies that some households act according to

θ̂ = 1, independent of the true value of θ. Hence, they behave as if they were submetered.

This behavior can explain our results because the price elasticity under the common heating

bill is relatively large, and submetering does not change energy consumption. Inattention to

the common heating bill does not bias our welfare assessment, as it is reflected in a lower

treatment effect of submetering.

Pro-social behavior

Pro-social behavior can have different motivations and implications. We discuss three types

of pro-social behavior (altruism, moral cost, and social norms) and acknowledge that this

discussion is by no means exhaustive (e.g., Fehr and Gächter, 2000; Frey and Meier, 2004;

Bénabou and Tirole, 2006; Falk and Fischbacher, 2006; Kaufmann, Andre, and Kőszegi,

2024).

Altruism changes Equation 1 to include neighbors’ utility (Simon, 1993; Fehr and Schmidt,

2006). A fully altruistic household realizes that their heating decision affects their neighbors’

utility. Taking this into account, the altruistic household chooses the same heating energy

consumption under the common heating bill as under submetering. Submetering does not

change the altruistic household’s consumption or price elasticity. Atruism does not bias

our welfare assessment because, to the extent of their altruism, households value their own

consumption as much as their neighbors’.

Some households may pay a moral cost for heating. This is plausible in the common

heating bill, where heating has a clear externality on neighbors, but could also reflect a

“moral cost of carbon” (Houde, Faure, and Schleich, 2024). If we assume a moral cost of
N−1
N

p under the common heating bill, submetering neither changes consumption nor the price
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elasticity. Submetering increases welfare, however, as the household no longer pays a moral

cost. Our welfare estimate would not capture this benefit.

Building communities may share a social norm to not exploit the free-riding incentive

provided by the common heating bill. In addition, they may find ways to observe each other,

to punish free-riders, and achieve low consumption levels (Ostrom et al., 1999). If building

communities manage to cooperate, submetering may not change consumption, but it makes

enforcement obsolete. Our welfare estimate would be a lower bound, as it does not capture

enforcement costs.

5.2 Prevalence of free-riding

We can use our theoretical framework to assess the prevalence of free-riding. We are in-

terested in the share ρ of the population that is free-riding according to our theoretical

framework in Section 2. The remaining share (1− ρ) of the population is schmeduling, inat-

tentive to the common heating bill, or pro-social. Following the arguments in Section 5.1, we

assume that (1−ρ) households always behave as if they were under the submetering regime,

irrespective of their actual billing regime. This analysis abstracts from any other dimensions

of heterogeneity. Hence, all households behave identical under submetering. (1 − ρ) house-

holds have the same behavior under the common heating bill, and ρ households free-ride

under the common heating bill.

We can use our estimates to pin down the demand curve in Equation 3 and calculate ρ.

Expenses under submetering and the energy price determine point C in Figure 1(a). The

estimated price elasticity of demand under submetering determines the slope of the demand

curve. (1 − ρ) households consume e∗i,θ=1 regardless of billing regime. The remaining ρ

households consume the same amount e∗i,θ=1 under submetering, but a larger amount e∗i,θ=0

under the common heating bill. Given the demand curve and the number of neighbors N , we

can calculate e∗i,θ=0. The estimated treatment effect of submetering equals ρ(e∗i,θ=0 − e∗i,θ=1).

We use the following values to calculate ρ. Treated households have average expenses

of CHF 972 before submetering and an average energy price of CHF 0.0883 per kWh. The

median building has a treatment effect of CHF 132. These values imply 9, 513 kWh of energy

consumption under submetering. The estimated demand elasticity under submetering of

−0.716 implies that a one cent price decrease increases consumption by 771 kWh. The

median building has 7 neighbors, implying a price change of 7.6 cents and 5, 838 kWh higher

consumption in the common heating bill. As the average treatment effect corresponds to

1, 495 kWh, we find ρ = 1,495
5,838

= 26%.

We find that approximately one quarter of the population exploits the free-riding incentive

under the common heating bill. Submetering reduces their consumption by 38%, a large
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effect roughly corresponding to a 5➦C decrease in indoor temperature (BFE Bundesamt für

Energie, 2014). It is not implausible because free-riders start from a high consumption level,

and recommended practices (e.g., turning down the thermostat when away, intensive airing)

can reduce energy consumption with minimal comfort loss.

Our results from Section 4 suggest that free-riding depends on the number of neighbors in

the building. We use the results from Table 1 to calculate treatment effects for each number

of neighbors bin (8 or fewer, 9 to 12, and more than 12 neighbors), and use the number of

neighbors of the median building in each bin. We use the same elasticity under submetering

(−0.716) for all bins because (i) the behavioral mechanisms presented above predict identical

behavior under submetering and (ii) Table 2 supports this assumption. The results imply

relatively few free-riders (23%) in small and medium-sized buildings (up to 12 neighbors).

However, the share of free-riders is almost twice as large (44%) in buildings with more than

12 neighbors.

A large share of households in our sample, particularly in smaller buildings, may not

free-ride. As described above, not exploiting the free-riding incentive is consistent with

schmeduling, inattention to the common heating bill, and pro-social explanations. Next, we

provide survey evidence to discuss the importance of these behavioral mechanisms in more

detail.

5.3 Survey evidence and discussion

We provide new survey evidence to inform the behavioral mechanisms behind our empirical

findings. Again partering with the real estate management company that provided data for

the quasi-experiment, we invited 6,111 tenants in the common heating bill to participate in a

survey. Survey participation was incentivized with a lottery of vouchers from a Swiss online

retailer. Between September 26, 2024, and October 24, 2024, 835 tenants (14%) provided

complete responses. The survey focuses on tenants’ support for different submetering poli-

cies. Here, we describe a subset of questions that may inform our discussion of behavioral

mechanisms. We show results for 495 tenants who passed attention checks and watched

information videos as instructed.

We find that many respondents are inattentive to their billing regime. After seeing a

short video on the difference between the common heating bill and submetering, survey

participants were asked about their own billing regime. 44% of respondents in the common

heating bill correctly stated that they were under the common heating bill. The remaining

participants reported that they do not know (33%), thought they were in the submetering

regime (19%), or thought they were in another billing regime (3%). Figure G.1 in Appendix G

shows that inattention to the common heating bill is similar in small/medium (N ≤ 12) and

37



large (N > 12) buildings. These results suggests that inattention to the common heating

bill is highly prevalent in our sample, but unlikely to explain the higher share of free-riders

in large buildings.

We assess altruism using a modified question from the preference module designed by Falk

et al. (2023). The question asks participants “How willing are you to share with your

neighbors without expecting anything in return?” on a five-point scale. 10% of respondents

report that they are very willing to share with their neighbors, 23% are willing, 38% are

neutral, 18% are unwilling, and 11% are completely unwilling. Figure G.2 in Appendix G

shows that altruism is similar in small and large buildings. The share of respondents who

are very willing to share appears somewhat higher in buildings with 12 or fewer neighbors,

but the difference is not statistically significant (p > 0.1).

Prior literature suggests that strong relationships among group members facilitate co-

operation (Shrestha, 2018). Survey participants were asked “How would you describe the

relationship with your neighbors?”. We find that most respondents report neutral (34%)

or positive (59%) relationships. The strength of relationships varies depending on building

size. Figure G.3 in Appendix G shows that buildings with 12 or fewer neighbors are more

likely to report being “friends with your neighbors.” The share of households choosing this

option is similar in buildings with 8 or fewer neighbors (29%) and medium-size buildings

(27%), but lower in buildings with more than 12 neighbors (18%; p-values of the differences

are p = 0.07 and p = 0.02, respectively). This pattern matches our treatment effects and

free-riding shares, which suggest that buildings with 12 or fewer neighbors do better under

the common heating bill.

Taking stock of this section, we find that multiple behavioral mechanisms play a role in

the common heating bill. Previous literature provides compelling evidence for schmeduling

in energy consumption (Ito, 2014; Shaffer, 2020; Ito and Zhang, 2023). We document that

inattention to the common heating bill is prevalent. Together, these two mechanisms can

explain why a majority of households does not exploit the free-riding incentive. We also

document that buildings with few neighbors are relatively price elastic under the common

heating bill and react little to the introduction of submetering. The effect of N on the

price incentive cannot fully explain this pattern, as our results suggest a lower prevalence of

free-riding in smaller buildings. Better relationships among small building communities may

facilitate cooperation and explain this pattern.

The welfare estimates based on the theoretical framework in Section 2 apply to free-

riders, those who are inattentive to the common heating bill, and altruists. Notwithstanding,

households who schmedule, face a moral cost of heating, or enforce a social norm, may see
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additional benefits from submetering. To the extent that these mechanisms play a role, our

welfare estimates should be viewed as conservative.

6 Conclusions

We study free-riding behavior in the context of heating energy consumption in apartment

buildings. In particular, we estimate how heat consumption is affected by a switch from a

common billing regime to submetered billing. We use a sample of 4,124 buildings, 185 of

which introduced submetering between 2008 and 2022. Our main finding is that submetering

leads to a persistent reduction of heating energy consumption of 17%. This is somewhat lower

than estimates for the effects of submetering on electricity (Elinder, Escobar, and Petré,

2017), water (Ornaghi and Tonin, 2021), and hot water (Elinder et al., 2024). It is, however,

substantially larger than the 10% effect attributed to switching from fixed charges to two-

part tariffs in Ito and Zhang (2023). A larger effect is plausible in our setting because it does

not allow for opt-out and our estimate accounts for anticipation effects due to announcement

and installation.

We use recent advances in ML to estimate heterogeneity in submetering effects. This

exercise provides insights regarding the mechanisms that drive (or prevent) energy savings

in this context. For example, consistent with our theoretical framework, we find that the

effect of submetering is larger in buildings with more neighbors. We also find substantial

heterogeneity depending on the floor area of the submetered apartments. This has important

implications for welfare, which would have been masked by estimates of unconditional average

effects.

Our results suggest that submetering is privately cost-effective only for 10% of buildings

in our sample. Widespread adoption of submeters in Switzerland is therefore unlikely in the

absence of policy. Once we account for the social cost of carbon, submetering is welfare-

improving for 63% of buildings. As carbon prices rise for the residential context, then so

do the incentives for the adoption of submeters. However, these investments might still be

delayed or even prevented by coordination problems and split incentives between landlords

and tenants (e.g., Gillingham, Harding, and Rapson, 2012). In this context, policy interven-

tion has the potential to improve welfare. Our findings imply that targeted policies might

be more cost-effective than universal submetering mandates. Finally, our results reveal the

extent to which price signals are muted under shared-billing regimes. This has implications

for carbon pricing policies in this context. Submetering might be necessary to unlock the

full benefits of carbon pricing, especially for large apartment buildings.
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Online Appendix Mayr and Souza, 2024

A Additional Tables

Table A.1: Averages by Treatment Cohort—variables at the apartment-by-year or
apartment level

(1) (2) (3) (4) (5) (6)

Treatment
Cohort

Heating Bill
(CHF per year)

Rent
(CHF per month) Turnover Rate

Number of
Vacancy Days

Apartment Area
(sq. meters)

Rooms
per Apartment

2008 954.80 1,320.48 0.15 3.99 88.07 3.81
(269.64) (546.17) (0.36) (15.62) (24.52) (1.22)

2009 927.19 1,162.26 0.12 3.10 89.42 3.87
(250.54) (529.48) (0.33) (13.34) (25.93) (0.94)

2010 875.15 1,196.49 0.16 6.79 84.47 3.63
(288.73) (411.23) (0.37) (31.03) (27.67) (1.02)

2011 1,156.77 1,238.75 0.17 2.81 88.75 3.75
(384.65) (457.32) (0.38) (12.95) (20.95) (0.80)

2012 972.00 1,040.27 0.15 7.04 73.04 3.30
(316.65) (363.62) (0.36) (34.72) (20.89) (1.10)

2013 1,069.76 1,253.86 0.13 5.16 84.12 3.43
(342.09) (424.10) (0.34) (32.40) (34.72) (1.29)

2014 1,167.18 1,138.21 0.11 1.97 90.49 3.74
(362.70) (274.69) (0.31) (18.00) (17.58) (0.76)

2015 1,006.20 1,104.71 0.16 11.29 69.35 2.75
(363.04) (390.22) (0.36) (50.12) (40.93) (1.37)

2016 954.80 1,320.48 0.15 3.99 104.33 4.50
(269.64) (546.17) (0.36) (15.62) (4.70) (.)

2017 1,203.56 1,141.02 0.18 21.80 74.54 3.34
(334.63) (334.05) (0.38) (72.36) (17.80) (0.80)

2018 901.93 1,229.16 0.20 7.03 81.19 3.68
(257.40) (504.39) (0.40) (26.15) (23.59) (0.93)

2019 1,245.25 1,283.43 0.14 4.79 89.41 3.74
(371.00) (292.22) (0.35) (22.20) (21.17) (1.00)

2020 955.09 1,341.54 0.14 4.81 76.66 3.01
(330.23) (391.68) (0.35) (24.13) (26.30) (1.13)

2021 992.84 1,279.99 0.14 10.58 69.93 3.04
(283.14) (464.62) (0.35) (43.38) (21.91) (1.34)

2022 1,201.23 1,019.47 0.10 5.50 77.53 3.38
(329.56) (434.30) (0.30) (32.43) (20.76) (0.90)

Never Treated 1,034.33 1,226.33 0.13 8.40 74.96 3.32
(413.84) (423.54) (0.33) (43.05) (25.41) (1.13)

Observations 362,991 351,304 362,991 362,991 40,956 43,030

Notes: Averages and standard deviations (in parentheses) for variables at the apartment-by-year level are
presented in columns 1 through 4. These use all observations from the never-treated apartments, but only
pre-treatment observations for the treated apartments. Columns 5 and 6 are for variables fixed at the
apartment level (i.e., that do not change over time).
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Table A.2: Averages by Treatment Cohort—variables at the building-by-year or building
level

(1) (2) (3) (4) (5) (6) (7) (8)
Shares of Heating Fuel Type

Treatment
Cohort Heating Degree Days

Energy-Related
Renovation Rate

Number of
Neighbors

Years since
Construction District Heating Gas Oil Heating Other/Unclear

2008 3,394.60 0.00 7.53 38.95 0.05 0.58 0.26 0.11
(235.94) (.) (3.50) (15.69) (0.23) (0.51) (0.45) (0.32)

2009 4,241.21 0.00 7.55 47.82 0.00 0.27 0.64 0.09
(572.21) (.) (2.94) (16.69) (.) (0.47) (0.50) (0.30)

2010 3,112.40 0.12 7.27 38.86 0.18 0.32 0.23 0.27
(504.72) (0.34) (4.94) (17.54) (0.39) (0.48) (0.43) (0.46)

2011 3,180.90 0.33 15.35 38.59 0.24 0.35 0.41 0.00
(402.98) (0.49) (20.72) (16.44) (0.44) (0.49) (0.51) (.)

2012 3,232.54 0.01 8.03 48.11 0.08 0.24 0.61 0.08
(385.34) (0.09) (3.75) (12.56) (0.27) (0.43) (0.50) (0.27)

2013 2,900.48 0.02 10.73 51.95 0.14 0.45 0.32 0.09
(375.45) (0.12) (6.94) (12.21) (0.35) (0.51) (0.48) (0.29)

2014 3,180.03 0.00 8.34 44.41 0.03 0.47 0.44 0.06
(419.04) (.) (3.92) (8.99) (0.18) (0.51) (0.50) (0.25)

2015 3,043.68 0.00 9.26 53.74 0.26 0.47 0.05 0.21
(349.93) (.) (11.58) (9.45) (0.45) (0.51) (0.23) (0.42)

2016 2,400.50 1.00 12.00 41.00 0.00 0.00 1.00 0.00
(.) (.) (.) (.) (.) (.) (.) (.)

2017 3,774.80 0.03 13.50 55.86 0.00 0.86 0.00 0.14
(851.32) (0.18) (5.59) (6.32) (.) (0.36) (.) (0.36)

2018 2,829.05 0.00 8.67 60.00 0.00 0.17 0.83 0.00
(10.96) (.) (6.53) (.) (.) (0.41) (0.41) (.)

2019 3,263.60 0.10 6.18 45.32 0.45 0.14 0.32 0.09
(277.30) (0.30) (2.59) (5.34) (0.51) (0.35) (0.48) (0.29)

2020 3,116.67 0.03 9.90 41.70 0.90 0.10 0.00 0.00
(200.37) (0.17) (6.33) (15.52) (0.32) (0.32) (.) (.)

2021 3,044.63 0.06 9.67 51.50 0.00 0.42 0.33 0.25
(318.87) (0.25) (5.84) (9.87) (.) (0.51) (0.49) (0.45)

2022 3,339.18 0.03 12.85 49.05 0.05 0.50 0.05 0.40
(510.33) (0.17) (11.31) (13.16) (0.22) (0.51) (0.22) (0.50)

Never Treated 3,198.53 0.03 11.01 54.94 0.12 0.37 0.42 0.09
(560.85) (0.17) (8.75) (10.05) (0.33) (0.48) (0.49) (0.29)

Observations 30,934 33,139 3,978 3,978 3,978 3,978 3,978 3,978

Notes: Averages and standard deviations (in parentheses) for variables at the building-by-year level are
presented in columns 1 and 2. These use all observations from the never-treated apartments, but only
pre-treatment observations for the treated apartments. Columns 3 through 8 are for variables fixed at the
building level (i.e., that do not change over time).
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B Extensions of the theoretical framework

B.1 Fixed and variable heating costs

The theoretical framework in the main text applies to full submetering (θ̄ = 1) of variable
energy costs. In practice, the heating bill includes fixed costs that cannot be reduced by
household behavior. These include service fees for the heating system and potentially a
chimney, heat losses in pipes serving individual apartments, and the heating of common
areas. To account for fixed heating costs, submetering usually only applies to a certain share
of the heating bill, θ̄ < 1. We extend the theoretical framework to account for fixed heating
costs.

Note that fixed heating costs and θ̄ change the framework through the budget constraint.
We show how the budget constraint changes with fixed heating costs and θ̄ < 1. Then,
we discuss the conditions under which this budget constraint, and hence the theoretical
framework, is equivalent to the simplified version with θ̄ = 1 and no fixed heating costs.

The budget constraint with fixed heating costs F is

yi ≥ θ̄eip+ (1− θ̄)

∑j
ejp

N
+ θ̄F

ei
∑j

ej
+ (1− θ̄)

F

N
+ ci . (B.1)

The marginal cost of energy consumption in this setting is

∂yi

∂ei
= θ̄p+ (1− θ̄)

p

N
+ θ̄F

∑j
ej − ei

(
∑j

ej)2
. (B.2)

Note that the marginal cost of energy in the simple case with θ̄ = 1 and F = 0 is simply
p. The marginal cost of energy in both settings is equivalent if

θ̄ =

∑j
ejp

∑j
ejp+ F N

N−1

∑j ej−ei
∑j ej

. (B.3)

We see that this condition is satisfied under two conditions. First, household i consumes
approximately 1

N
of the variable heating costs, i.e. 1

N
≈ ei∑j ej

. This condition is likely to

hold, in particular if N is large. Concretely, it holds when ei is finite and N → ∞. Second,
θ̄ equals the share of variable heating costs in the total heating bill. Since the consideration
of fixed costs is precisely the rationale behind θ̄ < 1, this may be approximately true.

B.2 Partial submetering

Submetering increases θ from 0 to θ̄. In response to submetering, household i chooses a
lower e∗i,θ:

∆e∗i = e∗
i,θ=θ̄

− e∗i,θ=0 = −
H2

2κi

N − 1

N
pθ̄ . (B.4)
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Utility may increase or decrease, depending on the effect of submetering on the house-
hold’s energy expenses.

∆Ui = Ui(e
∗
i,θ=θ̄

)− Ui(e
∗
i,θ=0)

=

(

p2

N2
− p2

(

θ +
1− θ

N

)2)

H2

4κi

+

(

∑j
Tj

N
− Ti

)

Hpθ̄

+ θ̄p2

(

θ +
1− θ

N

)

H2

2κi

+ (1− θ̄)
p2

N

(

θ +
1− θ

N

)

j
∑ 1

κj

−
p2

N2

H2

2

j
∑ 1

κj

(B.5)

We also find that submetering increases the demand elasticity, as shown in Equation 7
below.

∆ηi = |ηi,θ=θ̄| − |ηi,θ=0|

=
H2

2κi

(

(

θ̄ +
1− θ̄

N

) p

e∗
i,θ=θ̄

−
1

N

p

e∗i,θ=0

)

> 0
(B.6)

The welfare effect can be expressed in terms of empirical estimates.

∆W = −τ
N − 1

N

(

1−
θ̄

2

)

− τ
ϕ

p
− sN . (B.7)
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C Renovation Classification

We use data on renovations provided by the real estate management company. For each
property, we have a list of renovations that contains the year of the renovation and a text
description. The descriptions are written in German, French, or Italian.

We use the OpenAI API (model version gpt-4o-2024-05-13) to classify renovations into
categories with the following prompt:

You are tasked with classifying descriptions of real estate renovations (given

in German, French, or Italian). For each description, provide the

following details:

1. A short description of your understanding of the renovation in English.

2. Investment cost.

3. Does this renovation improve the energy efficiency of the windows? Note:

This concerns the windows’ ability to retain heat. Do not account for

renovations that merely block sunlight.

4. Does this renovation improve the energy efficiency of the exterior walls?

5. Does this renovation improve the energy efficiency of the roof?

6. Does this renovation concern the heating system?

7. If the description mentions addresses or IDs of apartments or buildings,

list them, separated by commas. Otherwise answer "none".

Note: If a renovation description does not specify the type of renovation,

assume it is large and comprehensive, including energy efficiency

improvements to windows, exterior walls, and roof. This does not apply if

you cannot make sense of the description.

The output should only contain your answers, separated by line breaks (no

enumeration, no repeated questions). The answer to 2 should be either "

small", "medium", or "large". Answers to 3-6 should be either "yes" or "no

".

Now, classify the following renovation description:

We use the output from this prompt to distinguish between comprehensive renovations,
non-comprehensive renovations that change the energy efficiency of the building, and other
renovations. We define a comprehensive renovation as one that includes energy efficiency
improvements to windows, exterior walls, and the roof. We classify a renovation as energy
efficiency improving if it is not comprehensive and includes at least one of improvements
to windows, exterior walls, the roof, or the heating system. All remaining renovations are
classified as other.
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D Standard event study via two-way fixed effects

To estimate ATT (r), we alternatively consider a two-way fixed effects (TWFE) regression,
as follows:

Yi,t =
∑

r ̸=−2

βrSi × ✶[r = t− (qi)] + γi + γt + εi,t , (D.1)

where Si is the submetering indicator; ✶[r = t − qi] are indicators for years relative to the
treatment dates qi; and the other parameters are defined as in the main text. As with
the heterogeneity-robust specifications, we implement a variant of Equation D.1 including
time-varying controls (i.e., the “saturated” specification).

Results are presented in Figure D.1. These are mostly in line with the heterogeneity-
robust specifications. If anything, estimates from TWFE seem slightly stronger.

(a) Effects of Submetering on Heating Expenses (%)
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Figure D.1: Effects of Submetering According to TWFE

Notes: This figure presents estimates of ATT (r) for the effects of submetering according to two-way fixed
effects regressions. The outcome variable is heating expenses in logs. Estimates are transformed to represent
percent effects (100 × (exp(β1) − 1)). All specifications include year and apartment fixed effects. The
saturated specification also controls for heating degree days, renovations, and Canton-by-year fixed effects.
Standard errors are clustered at the property level. The “whiskers” around the point estimates represent
95% confidence intervals.
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E Additional Details on Machine Learning and Het-

erogeneity Analyses

E.1 Cross-validation strategies

We consider two cross-validation strategies to assess the performance of the ML algorithms.
The first strategy is standard k-fold cross-validation, where the validation folds are defined
at random. Given that we have panel data (apartment-by-year), standard k-fold cross-
validation implies that (pre-treatment) observations for a given apartment might be present
in multiple folds. In this case, the CV residuals can be interpreted as “out of sample” in
the sense that they reflect errors when the specific apartment-by-year observations were not
included in the training sample (although observations for the same apartments, but for
different years, might have been included).

We also implement an alternative CV strategy which can be considered stricter and
potentially better suited for ex-ante analyses (e.g., for ex-ante targeting of treatment). We
refer to this strategy as “stratified CV” because we impose that all observations from a
given building must be contained within the same CV fold. The implication is that the CV
residuals would represent fully out-of-sample errors, where the training sample excludes all
observations from the buildings contained in the validation samples. A drawback of this
strategy is that it does not allow the inclusion of building or apartment fixed effects as
predictors.

Tables E.1 and E.2 summarize the average predictive performance of several XGBoost
hyperparameter configurations. Both in-sample and cross-validated root-mean-square errors
(RMSE) are presented. We have trained XGBoost algorithms with 3 thousand trees, but
which vary in terms maximum tree depth (5, 10, or 20), minimum observations per terminal
node (10, 20, or 30), and shrinkage rate (0.1 or 0.2). A total of 18 configurations is obtained
by varying these hyperparameters.

We focus on interpreting the CV RMSE, which are a proxy for out-of-sample performance.
By comparing Tables E.1 and E.2, it can be noted that prediction errors are substantially
larger under the stratified CV strategy. This is expected because, in that case, the algo-
rithms are trained with no information about the apartments for which they attempt to
predict energy expenses. The tables also reveal the “best-performing” hyperparameter con-
figurations (that have lower CV RMSE). Particularly from Table E.2, it is clear that the
best configurations have a maximum tree depth of 10, and a shrinkage rate of 0.1. However,
the tables diverge in terms of the optimal number of observations per terminal node. For
this reason, rather than picking just one configuration, we base our predictions on an “en-
semble” of three configurations highlighted in gray. The ensemble weights are 0.685, 0.283,
and 0.032, respectively, for Model ID 7, 9, and 11. These optimal weights were estimated
via Non-Negative Least Squares (Chen and Guestrin, 2016).
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Table E.1: Predictive Performance of XGBoost Configurations—Standard 4-fold CV

N Trees Max Tree Depth Min Obs per Node Shrinkage In-Sample RMSE Cross-Validated RMSE
1 3000 5 10 0.10 83.514 90.895
2 3000 5 10 0.20 63.845 74.253
3 3000 5 20 0.10 84.984 92.437
4 3000 5 20 0.20 65.890 76.293
5 3000 5 30 0.10 86.233 93.932
6 3000 5 30 0.20 67.737 78.110
7 3000 10 10 0.10 33.327 57.161
8 3000 10 10 0.20 27.642 58.398
9 3000 10 20 0.10 37.794 58.591
10 3000 10 20 0.20 31.008 57.732
11 3000 10 30 0.10 40.629 60.119
12 3000 10 30 0.20 33.510 57.905
13 3000 20 10 0.10 21.958 65.723
14 3000 20 10 0.20 21.672 67.512
15 3000 20 20 0.10 23.646 63.307
16 3000 20 20 0.20 21.990 66.293
17 3000 20 30 0.10 25.703 61.514
18 3000 20 30 0.20 22.700 64.696

Notes: Cross-validated RMSE was obtained through standard 4-fold cross-validation. The algorithm with
the lowest CV RMSE is highlighted in gray.

Table E.2: Predictive Performance of XGBoost Configurations—“Stratified”
Cross-Validation

N Trees Max Tree Depth Min Obs per Node Shrinkage Stratified In-Sample RMSE Stratified CV RMSE
1 3000 5 10 0.10 90.543 192.242
2 3000 5 10 0.20 72.581 192.184
3 3000 5 20 0.10 91.246 191.602
4 3000 5 20 0.20 73.620 193.450
5 3000 5 30 0.10 92.627 190.921
6 3000 5 30 0.20 74.794 193.002
7 3000 10 10 0.10 46.252 186.275
8 3000 10 10 0.20 43.506 191.809
9 3000 10 20 0.10 48.664 186.211
10 3000 10 20 0.20 44.997 190.583
11 3000 10 30 0.10 50.300 187.080
12 3000 10 30 0.20 46.087 190.819
13 3000 20 10 0.10 41.727 198.970
14 3000 20 10 0.20 41.706 200.645
15 3000 20 20 0.10 42.010 196.572
16 3000 20 20 0.20 41.730 200.694
17 3000 20 30 0.10 42.567 195.790
18 3000 20 30 0.20 41.831 199.108

Notes: Cross-validated RMSE was obtained through standard “stratified” cross-validation, where all obser-
vations from a given building must be contained within the same CV fold. Models do not include building
or apartment fixed effects. The algorithm with the lowest CV RMSE is highlighted in gray.
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E.2 Detailed predictive performance by covariates

Next, we turn to analyzing prediction errors by our key covariates of interest: number of
neighbors in the buildings, area of the apartments, and building’s vintage. These are the
covariates that we focus on for heterogeneity (i.e., estimation of CATT). For our CATT
estimates to be valid, then our ML predictions of counterfactuals need to be unbiased for
those covariates. As stated in the main text, we test this unbiasedness assumption by
regressing the cross-validated residuals on binned indicators for these covariates (i.e., we run
a variant of Equation 14, with cross-validated residuals as the outcome).

Results are presented in Figure E.1. We plot average residuals according to both cross-
validation strategies (standard and stratified). We note that, regardless of the CV strategy,
average residuals are small and not statistically significant across the relevant covariate
bins, suggesting that the selected algorithm is unlikely to be biased along those dimensions.
Similarly, in Figure E.2 we show that prediction errors are not strongly correlated with
renovations, tenant changes (turnover), or apartment’s location in the building. That figure
also reveals small prediction errors for other tenant/building characteristics that are unlikely
to drive treatment effect heterogeneity.
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(a) Errors from standard CV
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(b) Errors from stratified CV
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Figure E.1: ML prediction errors by covariates of interest

Notes: This Figure plots coefficient estimates and 95% confidence intervals from a regression of cross-
validated ML residuals on bins for selected covariates, namely apartment area, number of neighbors, and
building’s vintage. Graphs on the left use residuals from a standard 4-fold cross-validation strategy. Graphs
on the right use residuals from stratified cross-validation.
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(a) Errors from standard CV
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(b) Errors from stratified CV
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Figure E.2: ML prediction errors by other covariates
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(a) Errors from standard CV
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(b) Errors from stratified CV
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Figure E.2 (continued): ML prediction errors by other covariates
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E.3 Bin selection for continuous variables of interest

We observe three covariates of interest (for the heterogeneity analyses) that are recorded as
continuous variables, namely: apartment area, number of neighbors, and building vintage.
By directly including those in the heterogeneity specifications, it would be possible to esti-
mate a form of “marginal effect” of how the benefits of submetering change for each marginal
change in the covariates. However, this could mask any potential nonlinear effects. Also,
we argue that a categorical interpretation of these covariates is more tractable for real-world
settings. For these reasons, we discretize these variables (create bins) prior to including them
in the heterogeneity regressions.

We implement a data-driven binning procedure developed by Cattaneo et al. (2024), via
the the R package binsreg. More specifically, the “optimal” number of bins and the bin knots
(or cutoffs) are selected based on integrated mean square error (IMSE), balancing the bias-
variance tradeoff in this context. For example, if we split the covariates into too many bins,
then the number of observations in each bin would be too small, potentially leading to biased
(spurious) effects for some bins. Conversely, if bin sizes are too large, then any meaningful
heterogeneity may be masked, essentially through a mean reversion process (we revert to the
average effect for the whole sample, which defeats the purpose of a heterogeneity analysis).

The specification used for bin selection is analogous to the heterogeneity Equation 14 from
the main text. Therefore, optimal bins are selected for each covariate while simultaneously
adjusting for the other covariates (including canton fixed effects, as well as indicators for
turnover and renovations). We use quantile-spaced binning, rather than evenly-spaced spaced
binning, such that the gaps between knots are not necessarily constant.
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E.4 Summarizing treatment effect heterogeneity

(a) Effects by number of neighbors
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(c) Effects by building’s vintage
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Figure E.4: ML-based “naive” estimates of submetering treatment effect heterogeneity

Notes: This figure summarizes ML-based average submetering treatment effects for sub-samples defined by
(a) apartment area, (b) number of neighbors, and (c) building’s vintage. These may be considered naive
estimates, as they ignore the fact that these variables may be correlated and simultaneously driving hetero-
geneity. The blue dots represent point estimates for heterogeneity specifications without sample restrictions,
other than those defined by the covariates of interest.
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(a) Effects by number of neighbors
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(b) Effects by apartment area
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(c) Effects by building’s vintage
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CATT (additionally controlling for turnover)Figure E.5: Heterogeneity of submetering treatment effects by selected covariates

Notes: This Figure plots β coefficient estimates and 95% confidence intervals regression Equation 14. The
non-naive coefficients capture treatment effect heterogeneity by variables of interest, while controlling for
several confounding factors, including canton fixed effects. Coefficients should be interpreted compared to
the omitted comparison categories (zero point estimate in the figures). Standard errors are clustered at the
property level. Vintage information was not available for some buildings (rather than dropping those, we
group them into a separate category labeled as “No data”).
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F Additional Robustness Checks

F.1 Placebo treatment effects

To further validate our machine learning approach, we implement a placebo analysis with
the sample of the never-treated (not submetered) buildings. The key idea is to ramdomly
allocated some of those buildings to a placebo treatment, then carry out the ML procedure
(as described in the main text) and check the model’s performance in the placebo post-
treatment sample. Note that these buildings were not submetered, such that we do not expect
substantial changes in consumption patterns in the placebo post-treatment. Accrodingly,
the ML predictions from this exercise should closely match real consumption in the placebo
post-treatment. This would provide further credibility that our model results in accurate
prediction of a counterfactual in the absence of submetering.

We aim to closely mimic our true empirical setting, for which there was staggered rollout
of submetering. For this reason, the placebo treatment allocation is not completely random.
Rather, we impose that treatment is more likely to happen in certain years. Figure F.1
presents the rollout of placebo treatment, which closely resembles the true rollout patterns.
The total number of placebo treated buildings is 186.

Finally, with this new semi-synthetic sample, we implement a machine learning procedure
where the training sample consists of observations from the never-treated buildings plus
the placebo pre-treatment. Results from the placebo treatment effects are presented in
Figure F.2. For comparison, we also present the true treatment effects. As expected, we find
no significant errors in the pre-treatment sample, since those data were used to train the
model. Most importantly, the errors are also close to zero also in the placebo post-treatment
sample. We therefore conclude that our model can accurately predict future consumption
patterns in a counterfactual scenario without submetering.
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Figure F.1: Placebo treatment rollout
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Figure F.2: Real and placebo treatment effects

Notes: The blue dots reproduce the true treatment effects as shown in the main text. The blue triangles
correspond to predictions for the placebo treatment exercise described in this Appendix. Standard errors
are clustered at the property level. The “whiskers” around point estimates correspond to 95% confidence
intervals.
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F.2 Concurrent Renovations

Our data provider (the real estate management company) keeps a record of all major ren-
ovations carried out in the properties they manage. These records include the calendar
year of the renovation, as well as some text describing key changes. As described in Ap-
pendix C, we use the OpenAI API to to distinguish between comprehensive renovations,
non-comprehensive renovations that change the energy efficiency of the building, and other
renovations. In this section, we focus on energy-related renovations, which include compre-
hensive renovations and energy efficiency renovations. We investigate how often submetering
is introduced in conjunction with these types of renovations.

To provide further insight regarding the timing of renovations, we implement variants
of our main event study specification in Equation 10, replacing the outcome by indicators
for each of the renovation categories. These indicators are equal to one in the year that a
renovation happened, zero otherwise. We therefore estimate linear probability models to test
whether submetering affects the probability of apartment renovations. Results are presented
in Figure F.3. We find evidence suggesting that both energy efficiency and comprehensive
renovations happen concurrently with (or just before) submetering. The event studies suggest
a 20 percentage point increase in energy related renovation probabilities in r = −1, with
comprehensive and energy efficiency renovations contributing approximately 10 percentage
points each.

In our setting it is unlikely that renovations are a consequence of submetering, for two
reasons. First, as shown in Figure F.3, renovations seem to happen concurrently or before
submetering, not after submetering. Second, households in our sample are tenants, and they
have limited influence regarding structural changes to their building. The most likely expla-
nation for the concurrence of submetering and renovations is that submetering is sometimes
implemented as part of a broader renovation plan.

We account for concurrent renovations in our average treatment effect and heterogeneity
analyses. In Section 4.1, we show results from two models: one that controls only for year
and apartment fixed effects, and another that includes controls for renovations. We find
that controlling for renovations matters, as the saturated model finds smaller effects on
heating energy consumption (17%) than the model without these controls (20.8%). As we
are primarily interested in the effect of submetering (and not in the effect of renovations),
we present the smaller effect from the saturated model as our main estimate. Also, in
Table 1, we investigate whether energy-related renovations influence submetering treatment
effects, within our ML framework. We find that renovated buildings reduce expenses by
an additional 26 CHF after submetering, but that difference is not statistically significant.
We therefore conclude that buildings with and without concurrent renovations are similar in
their treatment effects.
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(a) Energy Efficiency Renovations
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(b) Comprehensive Renovations
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(c) Energy-Related Renovations
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Figure F.3: Does submetering affect the probability of renovations?

Notes: This figure presents estimates of both ATT and ATT (r) for the effects of submetering according to
the procedure from Sun and Abraham (2021) described in Section 4.1. The outcome variables are indicators
for renovations. The ATT estimates and their standard errors, included as text within the graphs, pool the
effects from periods r = 1 to r = 5. The ATT (r) estimates are presented graphically. All specifications
include year and apartment fixed effects. The saturated specifications also control for heating degree days
and canton-by-year fixed effects. Standard errors are clustered at the property level. The “whiskers” around
the point estimates represent 95% confidence intervals.
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F.3 Rents

We also investigate the effects of submetering on rents. One complication is that rents might
concurrently be affected by renovations or turnover. Tenancy regulations in Switzerland
allow for rent increases in both cases (FOH, 2022). We should therefore control for these
confounding factors. For this, we implement variants of the event study Equation D.1,
including interactions for the confounders of interest as follows:

Yi,t =
∑

r ̸=−2

1
∑

g=0

βr,gSi × ✶[r = t− (qi)]× ✶[Renovations = g] + γi + γt + εi,t ,

Yi,t =
∑

r ̸=−2

1
∑

g=0

βr,gSi × ✶[r = t− (qi)]× ✶[Turnover = g] + γi + γt + εi,t ,

(F.1)

where the outcome variable Yi,t is log monthly rents. Note the inclusion of indicator vari-
ables ✶[Renovations = g] and ✶[Turnover = g] for energy-related renovations and turnover,
respectively. These are defined to be time-fixed. We tag apartments that experienced ren-
ovations during any event times from -5 to +5. For the case of turnover, we restrict that
window to -2 to +2, assuming that turnover in earlier/later time periods are unlikely to be
related to the submetering implementation.

The specifications F.1 above allow us to estimate the effects of submetering βr,g on rent,
separately for apartments that experienced renovations or turnover (i.e., when g = 1) versus
those that did not (i.e., when g = 0). Results are presented in Figure F.4 below. We find
that rents increase substantially (15%, on average) one year after submetering, but only
for apartments that were renovated or that had tenants changes (point estimates illustrated
by blue triangles in the Figure). Conversely, the rent increase is smaller than 5% and not
statistically significant for non-renovated/no-turnover apartments. It is therefore unlikely
that the submetering technology itself is capitalized into rent increases.
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(a) Accounting for Renovations
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(b) Accounting for Turnover
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Figure F.4: Submetering Effects on Rent

Notes: This figure presents estimates ATT (r) for the effects of submetering on rents, according to specifica-
tions F.1. The outcome variable is month rent in logs. The ATT (r) estimates are presented graphically. All
specifications include year and apartment fixed effects. Standard errors are clustered at the property level.
The “whiskers” around the point estimates represent 95% confidence intervals.
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G Survey
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