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Abstract

Based on novel administrative and survey data from Germany, this study investigates the im-

portance of relative STEM performance in high school for the gender gap in STEM enrollment.

We Ąrst document that males display a higher relative STEM performance than females, which

however mainly emerges from femalesŠ stronger achievement in non-STEM subjects. Our Ąnd-

ings further reveal that a one-standard-deviation increase in grade-based STEM advantage raises

the likelihood of pursuing a STEM degree by approximately 19 percentage points for males, but

only by half as much for females. A decomposition analysis shows that 26% of the STEM gender

gap could be attributed to differences in grade-based STEM performance if major preferences

resembled those of males. However, relative grades are largely unimportant in an environment

where preferences mirror those of females. This suggests that STEM performance differences

have limited inĆuence on femalesŠ decisions to pursue STEM degrees. While STEM advantage

signiĄcantly impacts observed gender gaps in STEM enrollment, this effect is primarily driven

by males.
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1. Introduction

Women are underrepresented in math-intensive Ąelds. In Germany, only 22% of graduates in

science, technology, engineering, and mathematics (STEM) are female, compared to 32% in the

OECD overall. Moreover, the gender gap in STEM attendance has not decreased in most developed

countries over the past decades (OECD 2024). The underrepresentation of women in STEM is

concerning to the extent that STEM graduates tend to earn high wages and have above-average

career prospects (e.g., Anger and Plünnecke 2022, Blau and Kahn 2017). Moreover, females shying

away from STEM-related Ąelds may limit the talent pool in occupations that are often viewed as

key contributors to a countryŠs growth and national competitiveness (Carnevale et al. 2011, Bianchi

and Giorcelli 2020, Del Carpio and Guadalupe 2022).

Why is it that women are so much less likely to choose a math-intensive Ąeld of study? The

underlying reasons are manifold, ranging from a difference in preferences and expectations (Zafar

2011, 2013, Wiswall and Zafar 2021, Niederle and Vesterlund 2010), via norms (Guiso et al. 2008,

Nosek et al. 2009, Nollenberger et al. 2016, Del Carpio and Guadalupe 2022, Carlana 2019, Terrier

2020, Nicoletti et al. 2022), to a lack of female role models (Breda et al. 2023, Bettinger and Long

2005, Winters et al. 2013, Dee 2005, 2007, Canaan and Mouganie 2023), or peer effects (Murphy

and Weinhardt 2020, Elsner et al. 2021, Elsner and Isphording 2017, DuĆo et al. 2011). PISA

results reveal persistent gender differences in academic performance across OECD countries (OECD

2019a,b). First, boys tend to do slightly better in STEM subjects on average (1.4% higher scores),

although this difference does not suffice to explain prevailing gender disparities in math-intensive

professions (Ceci et al. 2014). Second, girls outperform boys in terms of verbal abilities (6% higher

scores), and they tend to outperform boys in school, overall.

As a consequence, a girl that performs well in STEM is likely to perform even better in non-

STEM subjects. She thus receives more positive signals about her non-STEM abilities than about

her STEM abilities compared to a boy, and may conclude that a non-STEM occupation suits

her abilities best. To the extent that such perceptions lead to disparities in enrollment decisions,

this could explain persistent gender differences in STEM choices and human-capital investments.

Recent evidence (Breda and Napp 2019, Goulas et al. 2022) suggests that relative performance in

STEM versus non-STEM can indeed have important implications for female intentions to continue
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an education in STEM and that relatively stricter grading policies in STEM courses might reinforce

this tendency (Ahn et al. 2024). However, there remains a gap in our understanding of how these

relative performance differences and their interpretation affect actual decision-making, beyond mere

intentions. Our study addresses this gap by investigating three key questions: First, how does

relative performance in STEM versus non-STEM subjects, measured by grades or ranks at the

end of high school, inĆuence the decision to pursue STEM-related subjects in higher education?

Second, to what extent do males and females differ in their assessment of these relative performance

indicators? At an aggregate level, how much of the gender gap in STEM enrollment at university

can be attributed to differences in relative performance?

To answer these questions, we rely on two sources of data from Germany. First, administra-

tive data documenting grade distributions from upper secondary education, including both overall

performance and subject-speciĄc achievement in the Ąnal exit exams. Second, survey data that con-

tains information on background, university enrollment and performance, high school grade point

averages (GPAs) of exit exams, and subjects chosen in high school exit exams. Based on these data,

we construct two measures of relative STEM performance following Goulas et al. (2022). First,

grade-based STEM advantage is calculated as the ratio of STEM over non-STEM GPA achieved in

Ąnal exit exams, minus one. A grade-based STEM advantage greater than zero indicates that an

individual has a higher GPA in STEM subjects than in non-STEM subjects, reĆecting a relative

proĄciency in STEM based on grades. Second, rank-based STEM advantage is computed as the

ratio of the school-cohort rank of STEM GPA to the school-cohort rank of non-STEM GPA, minus

one. This describes an individualŠs relative grade position as compared to her classmates, that is,

considering the individualŠs position within the school and the year based on their grades. Our

analysis is based on a sample of 573 observations that allow us to link these measures of relative

STEM advantage of upper secondary education school leavers to enrollment choices in tertiary

education. We also conduct a decomposition analysis to quantify the extent to which gender differ-

ences in STEM enrollment can be attributed to variations in grade- and rank-based performance

indicators.

Germany offers a perfect setting to study the effect of ability signals on human-capital invest-

ment and selection. First, Germany offers an educational landscape where over 90% of institutions,

including schools and universities, are publicly funded and tuition-free. Public schools maintain
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exceptionally high quality, with private institutions holding no marked advantage. Consequently,

Ąnancial constraints exert little inĆuence over educational choices. Second, uniform compensa-

tion schemes for teachers and standardized curricula yield consistent educational quality across

schools of a particular type. Variations in schooling levels and educational intensity primarily em-

anate from school tracking, which is transparent to students, parents, educators, and researchers

alike. Lastly, gender-based disparities in tertiary-education outcomes are particularly persistent

in Germany (OECD 2024), which may reĆect substantial non-monetary variations in educational

decision-making across groups.

We present two sets of results. First, we provide descriptive evidence of a signiĄcant gender gap

in high school grades between STEM and non-STEM subjects. Females exhibit smaller STEM to

non-STEM grade differences compared to males, which we refer to as Şgrade-based STEM advan-

tageŤ. This advantage stems from females achieving comparable grades in STEM subjects while

outperforming in non-STEM subjects, aligning with existing literature (OECD 2019b, Breda and

Napp 2019, Goulas et al. 2022). In our sample, we also identify a 24% gender gap in STEM

enrollment in higher education programs. Our analytical Ąndings reveal that grade-based STEM

advantage increases the likelihood of choosing a STEM subject for both genders, but with a no-

tably smaller effect for females. A one-standard-deviation increase in grade-based STEM advantage

raises the probability of pursuing a STEM degree by 19 percentage points for males, but only half

as much for females. A one-standard-deviation increase in rank-based STEM advantage raises the

probability of pursuing a STEM degree by 4.2 percentage points for males, but there is no effect for

females. Second, a decomposition of the STEM enrollment gap into relative-STEM-performance-

related differences and differences in preferences reveals that if female major preferences resembled

those of males, 26% of the gender gap in STEM enrollment could be attributed to disparities in

grade-based performance indicators. However, rank-based performance indicators do not signiĄ-

cantly affect the gender gap in STEM choices. In a scenario with female choice preferences, neither

grade-based nor rank-based STEM performance differentials signiĄcantly inĆuence STEM enroll-

ment differences. We Ąnd that males are more likely than females to specialize in STEM Ąelds

if they have a relative advantage in STEM-related subjects, whether based on grades or ranks.

This suggests that non-performance-related factors, such as preferences or anticipated discrimi-

nation, may discourage females from choosing STEM occupations despite positive ability signals
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and we provide suggestive evidence that females enrolled in STEM subjects indeed anticipate more

gender-based discrimination in their future careers.

Our study contributes to the existing literature in at least four ways. First, we extend research

on STEM advantage in educational decisions by examining actual choices rather than intentions

(Breda and Napp 2019, Goulas et al. 2022). Second, we provide the Ąrst analysis of grade- and

rank-based performance indicatorsŠ relative importance across genders in Germany, a setting, where

grades are crucial for university enrollment.1 Third, there is evidence that shows that students have

imperfect knowledge of their own ability (Zafar 2011, Stinebrickner and Stinebrickner 2012, 2014,

Bobba and Frisancho 2016) and are uncertain about their returns to education (Jensen 2010, At-

tanasio and Kaufmann 2014, Wiswall and Zafar 2015). We are able to show that in their education

decisions, female students seemingly place too little weight on their relative advantage. In our de-

composition exercise, we are able to delineate effects that stem from (gender) preferences to those

from performance differences. This approach enables us to quantify the contribution of observed

performance differences in STEM and non-STEM Ąelds on the overall gender STEM-enrollment gap.

Extending the literature (e.g., Delaney and Devereux 2019, Card and Payne 2021, Riegle-Crumb

et al. 2012), we are able to add an explanation on the paradox of women selecting lower-wage

non-STEM Ąelds despite demonstrating equal or superior academic performance across disciplines.

Lastly, we extend research on ability cues in decision-making (Stinebrickner and Stinebrickner 2012,

Murphy and Weinhardt 2020, Elsner et al. 2021, Bond et al. 2018, Li and Xia 2024, Tan 2023) and

gender differences in grade responsiveness. Prior work shows femalesŠ persistence in subjects corre-

lates with strong performance (Owen 2010), yet they exit male-dominated and STEM Ąelds more

readily after poor performance than males do (Kugler et al. 2021, Rask and Tiefenthaler 2008).

While existing studies examine absolute grades in individual subjects, we demonstrate that females

respond less than males to relative performance differences across subjects. Overall, women may

thus require stronger signals than males to decide for a career in STEM.

The remainder of the paper is organized as follows. In the next section, we provide information

on the institutional setting, the data, measures, and descriptive statistics. In Section 3, we present

the main results. Section 4 concludes.

1Access to tertiary education is determined by the acquisition of the high school degree only. Admission restrictions
in competitive Ąelds such as business and administration, psychology, or medicine, are generally determined by the
Ąnal high school GPA.
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2. Institutional Setting, Data, and Descriptive Statistics

2.1. The German School System

The German education system distinguishes itself by assigning the responsibility for education to

each federal state. In this study, we investigate GPAs in central examinations from high schools sit-

uated within the federal state of North Rhine-Westphalia (NRW), using data of high school leavers

between 2010 to 2019. These central exams make up an important fraction of the upper secondary

degree GPA. It opens doors for future education and career paths by determining eligibility for

tertiary education.

The exams are centrally provided by the federal state of NRW, aiming to enhance comparability

and to ensure equitable treatment for all students. The grade information we observe in our

sample stems from standardized exams across all upper secondary schools. In the Ąnal examination,

students select four subjects, consisting of three written exams and one oral exam. For grading

consistency, we focus exclusively on the GPAs obtained from written exams. The GPAs range from

0 to 15 points, with 15 denoting the highest grade and 0 the lowest. The minimum passing grade

is 4 points. The Ąnal high school GPA, computed from these points, then ranges from 1.0 to 4.0,

where 1.0 is the best grade and 4.0 the lowest one.2 In 2005, there was a shift in the educational

system from the G9 to the G8 system. The G8 system reduces time spent at at school from 13

years to 12 years. Since the Ąrst cohort participating in the G8 system Ąnished upper secondary

school in 2012, we need to account for graduation-year effects. The institutional background is

presented in more detail in Section 5.1 of the Appendix.

2.2. Data

Our dataset combines survey data from the German student study ŞFachkraft 2013Ť with adminis-

trative records of GPA distributions from NRW. The survey, conducted in March 2021 and March

2022, collected comprehensive information about studentsŠ background, university enrollment, per-

formance, and for a subsample, detailed high school information including course selection, grades,

and IQ scores. Students were recruited through a major nationwide job board platform, with

2See APO-GOSt in the version of 12 March 2009 [Article 1, Paragraph 20].
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participation incentivized through Amazon vouchers.3 The sample closely compares to the overall

population of German students in terms of region, university type, study Ąelds, and likelihood to

hold a student job (Hemkes et al. 2016). The administrative data, obtained from the Qualitäts-

und UnterstützungsAgentur Ű Landesinstitut für Schule (QUA-LiS NRW), covers GPA distribu-

tions from central Ąnal exams and school-leaving grades for all upper secondary schools in NRW

from 2010-2019. These records include school characteristics (legal status and type) and GPA fre-

quency distributions across 22 subjects4, ranging from STEM Ąelds like mathematics and physics

to humanities and arts.

Merging these administrative records with our survey data yields a Ąnal sample of 573 individ-

uals with information on high school performance and major choices in higher education.

2.3. Measures

Tertiary Education Sorting Students in Germany directly enroll for a Ąeld of study when

they Ąrst enter university. We elicited the current study Ąeld as a choice out of a list of 14

majors.5 We adopt a STEM deĄnition that emphasizes strong quantitative rigor. For the purposes

of classifying tertiary education choices, we consider the following disciplines as STEM-related:

computer sciences, engineering, mathematics, chemistry, and physics.

Secondary Education and Grades We identify Ąve subjects as STEM subjects in high school

Ű computer sciences, mathematics, physics, and chemistry Ű in alignment with the STEM classiĄ-

cation used for categorizing tertiary education choices. Since it is compulsory to take at least one

subject from a STEM Ąeld, we are able to observe STEM and non-STEM GPAs for all of our sam-

ple. For simplicity, we reversed the order in our analysis such that a higher always GPA indicates

better grades. To assess individual competence in STEM relative to non-STEM subjects, we follow

Goulas et al. (2022). Our Ąrst measure of relative performance, grade-based STEM advantage, is

3The job board jobmensa.de is operated by Studitemps GmbH (jobvalley) and is the largest platform for student
jobs. Participation was incentivized using Amazon vouchers amounting to 1,950 EUR (29 x 50, 1 x 500 vouchers).

4SpeciĄcally, the subjects include math, chemistry, physics, computer science, technology, German, English,
French, Dutch, biology, history, geology, social sciences, Chinese, educational science, art, Latin, music, Spanish,
sport, psychology, and business administration.

5Majors comprise educational sciences, computer sciences, engineering, art, music, mathematics, media sciences,
medicine, health sciences, natural sciences, psychology, legal sciences, social sciences, humanities, sports science,
linguistics, cultural studies, and economics.
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based on grades and constructed for each student i in the following way:

Grade-based STEM advantagei =
STEM GPAi

Non-STEM GPAi

− 1 (1)

A grade-based STEM advantage exceeding 0 indicates that individual i has achieved a higher GPA

in STEM subjects than in non-STEM subjects, signifying a relative proĄciency in STEM based on

grades. A negative value would be interpreted inversely.

To construct our second measure of relative performance, rank-based STEM advantage, we need

to construct two separate rank measures Ű one based on STEM GPA and another based on non-

STEM GPA Ű to capture studentsŠ relative standing within each domain.. Since school cohorts and

classes vary in size, we do not use the raw rank of students in each subject s in their school cohort

c but transform the rank position (nijsc) into a local percentile rank (Rijsc) to make it comparable

across schools j, following Murphy and Weinhardt (2020).

Rijsc =
nijsc − 1

Njsc − 1
× 100 (2)

where Njsc is the cohort size of school j in cohort c of subject s. We multiply this measure by 100,

resulting in a rank scale from 0 to 100, where the lowest-ranked student in each school cohort has

R = 0 and the highest-ranked student has R = 100. In the case of ties, both students are assigned

the lower rank.

Rank-based STEM advantage is deĄned for each student i in the following way:

Rank-based STEM advantagei =
Rijsc of STEM GPA

Rijsc of non-STEM GPA
− 1 (3)

where Rijsc are the local percentile ranks we compute in Equation 2 where s ∈ ¶STEM, non-STEM♢.

2.4. Descriptive Statistics

Our Ąnal sample is drawn from North Rhine-WestphaliaŠs student population. NRW, being the

largest federal state in Germany and comparable in size to the Netherlands, offers a rich context

for examining key characteristics of German pupils, including their university preferences, Ąelds of
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study, and regional distribution. For a more detailed explanation of the variables, please refer to

Section 5.2 of the Appendix.

Table 1: Summary Statistics

Females Males Females - Males

(1) (2) (3) (4) (5) (6) (7)
Variable Mean SD Mean SD Norm.∆ Abs.∆ p-val

A. Performance in high school

High school GPA 2.713 0.622 2.634 0.588 0.09 0.08 0.12
STEM GPA 9.204 3.239 9.470 3.259 -0.06 -0.27 0.33
Non-STEM GPA 11.015 2.218 10.594 2.262 0.13 0.42 0.03
B. Constructed variables in high school

Grade-based STEM advantage -0.140 0.309 -0.071 0.346 -0.15 -0.07 0.01
Rank-based STEM advantage 0.067 1.346 0.169 1.900 -0.04 -0.10 0.45
Rank STEM GPA 58.304 27.525 59.991 27.655 -0.04 -1.69 0.47
Rank non-STEM GPA 68.298 24.024 66.056 24.477 0.07 2.24 0.28
C. Background variables

High school GPA (cohort) 2.561 0.180 2.533 0.172 0.11 0.03 0.07
STEM GPA (cohort) 7.954 1.505 7.967 1.629 -0.01 -0.01 0.92
Non-STEM GPA (cohort) 8.805 1.060 8.472 1.062 0.22 0.33 0.00
Low SES 0.292 0.455 0.474 0.500 -0.27 -0.18 0.00
Migration status 0.088 0.284 0.094 0.292 -0.01 -0.01 0.82
IQ 2.310 1.691 1.782 1.896 0.21 0.53 0.00
D. Tertiary education

STEM degree 0.198 0.399 0.435 0.497 -0.37 -0.24 0.00
Law degree 0.041 0.199 0.039 0.194 0.01 0.00 0.88
Economics and Business degree 0.109 0.312 0.220 0.415 -0.21 -0.11 0.00
Humanities and Social Sciences degree 0.469 0.500 0.228 0.421 0.37 0.24 0.00
Health degree 0.183 0.387 0.078 0.268 0.22 0.11 0.00
University GPA 2.859 0.592 2.700 0.528 0.20 0.16 0.00
University STEM GPA 2.674 0.565 2.532 0.510 0.19 0.14 0.11
University non-STEM GPA 2.899 0.592 2.805 0.514 0.12 0.09 0.11

Note: This table reports statistics of variables by gender for a set of 573 observations. Columns 1 and 3 show the mean for
each group, while Columns 2 and 4 present the standard deviation (sd). Column 5 reports normalized differences between fe-
males and males (Imbens and Wooldridge 2009). Normalized differences are calculated as averages by group status scaled by the
square root of the sum of the variances. Column 6 presents the absolute differences, while Column 7 provides the p-values from
a two-sided t-test for comparing means.

Panel A of Table 1 shows that female students perform better than male students as regards

their overall high school GPA. Moreover, while females display a slightly lower performance in

STEM subjects (0.06 sd), they achieve 0.13 sd better grades in non-STEM subjects compared to

males. Gender differences in high school GPAs are statistically signiĄcant for non-STEM subjects

(p<.05) but not for STEM subjects. The probability density distributions in Figure 1 conĄrm this

pattern, showing signiĄcant gender disparities in distributions of non-STEM GPAs (p<.05) but

smaller, non-signiĄcant differences in STEM Ąelds.
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Figure 1: Kernel Densities of STEM and Non-STEM Performance

Note: The Ągure displays kernel density plots of the number of points achieved in STEM and non-STEM subjects in the
Ąnal exams of upper secondary school for males and females, respectively. Kernel = Epanechnikov; a two-sample Kolmogorov-
Smirnov test indicates a signiĄcant difference between distributions of non-STEM GPA by gender (p<.05), rejecting the null
hypothesis of equal distributions; the test fails to reject the null hypothesis for the distributions of STEM GPA by gender,
indicating no signiĄcant difference between distributions; (a) optimal bandwidth = 0.896 for males, 0.906 for females; (b)
optimal bandwidth = 0.672 for males, 0.614 for females.

Panel B of Table 1 presents gender-based disparities in scholarly achievement of our constructed

metrics. The outcomes reveal a signiĄcant male advantage in STEM subjects relative to non-STEM

subjects, measured by grade-based STEM advantage. Males have a 0.15 sd higher STEM advantage

(p<.01) based on grades. This Ąnding is substantiated by the empirical evidence presented in

Figure 2. Importantly, the higher grade-based STEM advantage for males is mainly driven by

worse performance in non-STEM GPAs of males compared to females. Furthermore, we Ąnd no

signiĄcant difference in rank-based STEM advantage. As shown in Figure 1, the variation in grade-

versus rank-based STEM advantage comes from the fact that there is much more mass at the

upper end of the non-STEM GPA distribution, indicating that it is easier to get a top grade in

these subjects when compared to STEM subjects. We Ąnd no signiĄcant gender differences in
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STEM or non-STEM GPA ranks. Since ranks do not vary across subjects, the grade-based STEM

advantage seems to be driven by generally higher grades in non-STEM subjects compared to STEM

subjects.

Figure 2: Kernel Densities of Grade- and Rank-Based STEM Advantage

Note: The Ągure displays kernel density plots of our measures of relative STEM advantage for males and females, respectively.
Kernel = Epanechnikov; a two-sample Kolmogorov-Smirnov test indicates a signiĄcant difference between distributions of a
grade-based STEM advantage by gender(p<.10) and rank-based STEM advantage (p<.05) , rejecting the null hypothesis of
equal distributions; (a) optimal bandwidth = 0.267 for males, 0.222 for females; (b) optimal bandwidth = 0.097 for males, 0.068
for females. We remove 14 outliers by dropping observations where grade-based STEM advantage exceeds 3, or rank-based
STEM advantage exceeds 2. Both measures are standardized.

Panel C of Table 1 displays gender differences in background variables. While we observe con-

siderable variation in our key variables of interest, the selected nature of our sample Ű individuals

from upper secondary education who have enrolled in tertiary education Ű may limit representa-

tiveness. In particular, the selection process for university enrollment could differ between males

and females. To address potential sample selection issues, we control for cohort-level performance

using average GPAs in overall high school performance, STEM subjects, and non-STEM subjects.
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Furthermore, we Ąnd low SES and IQ to be statistically signiĄcant factors, so we also control for

these background characteristics in our empirical analysis.

Panel D of Table 1 provides summary statistics on major choice and academic performance. It

shows the distribution of male and female students across STEM, Law, Economics and Business,

Humanities and Social Sciences, and Health and Natural Sciences degree programs. STEM majors,

characterized by their math-intensive nature, attract a signiĄcantly larger proportion of male stu-

dents, resulting in a gender gap of 24%. In contrast, there is a reversed gender gap of 24% for the

choice of majors in Humanities and Social Sciences, where there is a substantially higher represen-

tation of female students. Further, we see that female students outperform their male counterparts

in terms of academic grades (0.20 sd).

Figure 3 graphically illustrates average marginal effects of STEM GPA and grade-based STEM

advantage on the probability to pursue a STEM degree by gender. We observe a consistently

higher likelihood of males choosing STEM majors over females based on STEM GPA and grade-

based STEM advantage. MalesŠ likelihood of choosing a STEM degree increases with their STEM

advantage, while females show a more modest response.

Figure 3: STEM Enrollment by STEM GPA and Grade-Based STEM Advantage

Note: For (a) STEM GPA, we predict average marginal effects on the probability of studying STEM across a range of
values from 4 (minimum passing grade) to 15 points, separately for males and females. For (b) deciles of grade-based STEM
advantage, we regress STEM enrollment on the deciles of grade-based STEM advantage interacted with a female indicator. We
then calculate predicted probabilities of STEM enrollment across the deciles of grade-based STEM advantage by gender. The
vertical line at the 7th decile represents the threshold, where the right-hand side indicates having a positive grade-based STEM
advantage.
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3. Empirical Results

3.1. The Relationship between STEM Enrollment and Relative Performance

Indicators

We estimate a linear probability model to investigate the relationship between our relative STEM

performance indicators and the choice of a STEM major.

Yi = α + β0 × Femalei +

β1 × Performance indicatorpi +

β2 Femalei × Performance indicatorpi +

γ′Xi + δt + εi

(4)

Yi is a binary variable indicating whether individual i enrolled into a STEM major. Femalei

is a dummy variable equal to one when i is female, zero if male. Performance indicatorpi is a

placeholder for either grade- or rank-based STEM advantage. We introduce an interaction term

of performance indicators and the female dummy. Both performance measures capture the proĄ-

ciency of individual i in STEM subjects compared to non-STEM subjects, with grade-based STEM

advantage focusing on performance differences based on grades and rank-based STEM advantage

being based on information from local percentile ranks. Our control variables, denoted as Xi, in-

clude both GPAs and ranks in STEM and non-STEM subjects to account for studentsŠ absolute

performance levels. We incorporate school-cohort performance by including average STEM and

non-STEM GPAs, along with high school GPAs. To control for ability, we include measures of IQ6

and the individualŠs high school GPA. Additionally, we include personal background information

on socioeconomic status and migration status. To accommodate potential graduation-year charac-

teristics, we introduce graduation-year dummies denoted as δt. The error term is represented by εi.

We estimate the model using robust standard errors. Both performance indicators are standardized

in order to compare effect sizes across variables.

The coefficient of primary interest is β2, denoting potential heterogeneity in the importance

of our performance indicators for the likelihood of pursuing a STEM degree across genders. The

6We measured IQ based on ten items from a Raven-type matrices IQ test (Raven and Court 1998).
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results from estimating this model are displayed in Table 2. The full table is displayed in Table

A.2 of the Appendix, Section 5.3.

First, we inspect the results without interaction terms in Columns 1 and 2 for grade-based

STEM advantage and Columns 4 and 5 for rank-based STEM advantage. Following this, we explore

gender differences in the effects of grade-based STEM advantage in Column 3 and rank-based STEM

advantage in Column 6. The results indicate a substantial and statistically signiĄcant gender gap of

approximately 17 percentage points in STEM enrollment across all speciĄcations (p<.01). A one-

standard-deviation increase in grade-based STEM advantage boosts the probability of pursuing a

STEM degree by 15-19 percentage points (p<.01), ceteris paribus.

The results from the interaction model displayed in Column 3, indicate that being female reduces

the positive effect of a one-standard-deviation increase in grade-based STEM advantage by 9.7

percentage points relative to males (p<.01). Thus, while grade-based STEM advantage increases

the likelihood of choosing a STEM subject for both genders, the effect is around 50% smaller for

females. Hence, although females show similar performance in STEM subjects, the inĆuence of

grade-based STEM advantage on choosing a STEM major is disproportionately smaller for them

compared to males. That is, females require signiĄcantly stronger signals of relative ability based on

grades in STEM compared to non-STEM subjects to pursue a STEM degree. In fact, to attain an

equivalent probability of pursuing a STEM degree as males, females require a grade-based STEM

advantage that is almost four standard deviations higher.7 In Column 6, the interaction term

(Female × Rank-based STEM advantage) largely offsets or even reverses the main effect. This is a

discouraging Ąnding: FemalesŠ relative STEM performance ranking seems to have no inĆuence on

their likelihood of choosing a STEM major.

Our results point towards substantial selection costs of choosing a STEM occupation among

females. Further, one interpretation of our Ąndings is that non-performance-related factors, such

as Ąeld preferences, perceived future working conditions, and perceived discrimination strongly

discourage females from choosing a STEM occupation, even if they obtain very positive signals

about their STEM abilities. As a consequence, even strong signals about STEM performance

hardly affect female choices compared to males.

7We want to set the probability of males to pursue a STEM degree equal to the probability for females conditional
on grade-based STEM advantage. Given Table 2, we solve for x in 0.188=-0.160+x(0.188-0.097), which leads to an
x=3.8.
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3.2. Quantifying Decision-Making Differences: Male vs. Female Choice Worlds

In the previous sections, we identiĄed gender disparities in STEM performance and observed varying

effects of STEM advantage across genders, indicating that strong signals of having a grade-based

STEM advantage hardly induce females to choose a STEM major. In this section, we conduct

a twofold Kitagawa-Oaxaca-Blinder-type decomposition (Jann 2008) to assess the contributions

of performance differences to the gender gap. Our goal is to run the following thought experi-

ment: How would observed performance differences among males and females affect the sorting

into STEM-related Ąelds, in a world where female (male) major preferences in STEM-related Ąelds

resembled that of males (females)? To assess the relative importance of performance measures in

a non-discriminatory Şmale-choiceŤ or a discriminatory Şfemale-choiceŤ world, we respectively cat-

egorize potential drivers of the STEM gender gap into two groups. The Ąrst group represents the

grade-based performance indicators, incorporating grade-based STEM advantage, STEM GPA, and

non-STEM GPA. The second group represents the rank-based performance indicators, comprising

rank-based STEM advantage, rank of STEM GPA, and rank of non-STEM GPA.

Consider two groups, male and female, with our outcome variable Y representing STEM major,

and our set of predictors X driving the STEM gender gap categorized above in grade- and rank-

based performance indicators. We deĄne the mean outcome difference as follows,

R = E(Ymale) − E(Yfemale). (5)

Given E(Y ) as the expected value of the outcome variable, we seek to understand the extent to

which group differences in predictors contribute to the mean outcome difference. The twofold

decomposition dissects outcome differences into an explained part (Şquantity effectŤ) and an unex-

plained component (which we term Şpreferences effectŤ).

Consider the following linear model:

Yl = X ′

lβl + ϵl. (6)

Assuming E(ϵl) = 0 for each group l ∈ (male, female), within the linear model framework, where

X represents a vector containing predictors and a constant, β encompasses slope parameters and
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intercept, and ϵ denotes the error term, the mean outcome difference in the twofold decomposition

can be expressed as:

R =¶E(Xmale) − E(Xfemale)♢′β∗

+ ¶E(Xmale)′(βmale − β∗) + E(Xfemale)′(β∗ − βfemale)♢.

(7)

The Ąrst component,

Q = ¶E(Xmale) − E(Xfemale)♢′β∗, (8)

is the part of the outcome differential that is explained by group differences in the predictors, the

quantity effect. The second component,

U = ¶E(Xmale)′(βmale − β∗) + E(Xfemale)′(β∗ − βfemale)♢, (9)

is the preferences effect, i.e., the part that reĆects differences in decision-making that can be due

to (anticipated) discrimination, considerations about Ąt, unobserved factors or preference hetero-

geneity between males and females.

Table 3 presents two set of results. In Columns 1 and 2, following the literature on STEM

disparities, we posit that the STEM enrollment gap is biased against women rather than men.8

Thus, in Equation 7, we use the coefficients of males, denoted as βmale, for β∗, evaluating the relative

signiĄcance of performance measures in a non-discriminatory Şmale-choiceŤ world. In Columns 2

and 3, we set βfemale = β∗ to analyse the inĆuence of performance measures in a Şfemale-choiceŤ

scenario.

8Determining the components of the twofold decomposition, as shown in Equation 7, requires an estimate for the
unknown non-discriminatory coefficients vector β∗. Oaxaca (1973) suggests that β∗ can equal either βmale or βfemale

based on the direction of discrimination towards a particular group.
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Table 3: Kitagawa-Oaxaca-Blinder Decomposition of the STEM Gender Gap

Male coefficients Female coefficients

(1) (2) (3) (4)
Absolute Share Absolute Share

Difference 0.211∗∗∗ 100.000 0.211∗∗∗ 100.000
(0.039) (0.039)

Explained difference 0.045∗ 21.327 0.059∗∗∗ 27.962
(0.025) (0.017)

Composition effects attributable to

(A) Grade-based performance indicator 0.054∗∗ 25.592 0.013 6.161
(0.023) (0.010)

(B) Rank-based performance indicator -0.010 4.739 0.001 0.474
(0.009) (0.007)

Control variables -0.001 0.474 0.045∗∗∗ 21.327
(0.015) (0.015)

Observations 573 573

Notes: This table decomposes differences in STEM subject choice in tertiary education attributable to differences in
grade- and rank-based performance indicators using a twofold Kitagawa-Oaxaca-Blinder decomposition. We control
for IQ, socioeconomic status, and migration status. Columns 1 and 2 use male coefficients for the unknown non-
discriminatory coefficients vector β∗, while Columns 3 and 4 use female coefficients. For each decomposition, we
also present the share of the difference that is attributable to the respective component. Robust standard errors in
parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01

Conceptually, the β-coefficients can be interpreted as preference parameters, reĆecting the decision-

making tendencies of males and females when confronted with distinct abilities and constraints. By

using male coefficients in Columns 1 and 2, we gain insights into the role of gender differences in

decision-making processes. Assuming that females may decide differently due to preference-related

factors such as discouragement, lack of role models, or concerns about penalties related to family

responsibilities in STEM Ąelds, we can assess the extent to which relative STEM performance

disparities would persist if these barriers were eliminated.

Abstracting from these barriers, 21% of the STEM gender gap stems from group differences

in predictors (quantity effect). Our decomposition reveals that gender differences in grade-based

performance indicators account for 26% (p<.05) of the STEM enrollment gap, while rank-based

metrics show no signiĄcant impact. When examining a counterfactual scenario where preferences

are ŞfemaleŤ (Columns 3-4), neither grade- nor rank-based performance disparities signiĄcantly

inĆuence STEM-Ąeld selection. Instead, the gender gap in STEM enrollment is largely driven by

differences in our control variables: IQ, migration status, and socioeconomic status. This observa-
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tion aligns with our previous Ąnding presented in Table 2 , where rank-based STEM advantage does

not demonstrate signiĄcant economic relevance in relation to the STEM enrollment gap. Since the

coefficients of rank-based STEM advantage and its interaction with gender offset each other, we do

not Ąnd an overall effect of rank-based STEM advantage on STEM choice in a Şfemale-preferenceŤ

world.

To address potential concerns about the choice of reference coefficients in decomposition anal-

yses (Neumark 1988, Oaxaca and Ransom 1994), we additionally estimate a pooled model where

coefficients are derived from a regression. Results presented in Table A.3 of the Appendix largely

align with our main speciĄcations: the explained portion of the gender gap remains substantial at

21%, with grade-based performance indicators continuing to be the primary driver, accounting for

14% of the gap (p<.05). The insigniĄcant role of rank-based measures persists across all speciĄ-

cations. This is unsurprising given that there are no male-female differences in rank-based STEM

advantage.

Given that performance differentials minimally inĆuence female STEM enrollment, we examine

alternative drivers. Prior literature suggests anticipated gender discrimination may deter STEM

pursuit (e.g., Porter and Serra 2020). Using a linear probability model (Table 4), we examine

whether female students in STEM programs report higher levels of anticipated discrimination.

Our preferred speciĄcation (Column 4) shows females experience a 32 percentage point higher

probability of anticipated gender discrimination (p<.01), with an additional 19.8 percentage point

increase among STEM-enrolled females (p<.05). This implies that females pursuing STEM degrees

expect additional obstacles. To the extent that only those women select into STEM Ąelds who

expect less discrimination in a STEM-related occupation, our estimates provide a lower bound

estimate of perceived barriers or discrimination in the STEM occupations. For detailed table

contents, we refer to Table A.4 of the Appendix in Section 5.3.
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Table 4: Anticipated Discrimination and STEM Enrollment

Anticipated gender-based discrimination

(1) (2) (3) (4)

Female 0.382∗∗∗ 0.375∗∗∗ 0.336∗∗∗ 0.319∗∗∗

(0.036) (0.038) (0.041) (0.043)

STEM major 0.043 0.037 -0.036 -0.057
(0.040) (0.044) (0.041) (0.043)

Female×STEM major 0.169∗∗ 0.198∗∗

(0.082) (0.087)

Relative STEM advantages No Yes No Yes

Grades No Yes No Yes
Ranks No Yes No Yes
Other controls No Yes No Yes
Observations 573 573 573 573
Adjusted R2 0.150 0.138 0.154 0.144

Notes: Columns 1-2 present estimated effects of gender and STEM enrollment on the expectation of gender-based
discrimination. Columns 3-4 interact STEM enrollment with gender to identify heterogeneous effects. Regressions
are estimated with a constant. ŚRelative STEM advantagesŠ includes our grade- and rank-based measures of STEM
advantage. ŚGradesŠ controls for STEM and non-STEM GPA and ŚRanksŠ controls for rank of STEM and non-STEM
GPA. Other controls include school-cohort performance as measured by STEM, non-STEM, and high school GPA,
individual ability approximated by IQ and high school GPA, personal background such as socioeconomic status,
migration status, and graduation-year dummies, which are omitted in this table for brevity. We use robust standard
errors, reported in parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01
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4. Conclusion

Gender disparities in relative performance across STEM and non-STEM Ąelds have long-lasting

effects, potentially affecting not only educational decisions, but also leading to wage disparities

(e.g., Blau and Kahn 2017, Kleven et al. 2019), especially in sectors such as science and technology

(Goldin 2014) and countries like Germany where occupational mobility is low (SOEP 2022). The

scarcity of STEM graduates, particularly among women, poses a signiĄcant challenge to the tech

industry and innovation in general (Carnevale et al. 2011, Bianchi and Giorcelli 2020, Del Carpio

and Guadalupe 2022, Coff 1997).

Our study examines how performance indicators affect human-capital investment and selection

into STEM-related Ąelds in Germany. GermanyŠs publicly funded, tuition-free education system,

coupled with standardized curricula and compensation schemes for teachers, minimizes Ąnancial

constraints on educational choices. Persistent gender-based disparities in tertiary-education choices

thus seemingly reĆect signiĄcant non-monetary factors in educational decision-making.

Our study identiĄes important gender dynamics in educational decision-making. Women gradu-

ate from high school with better GPAs. Although there are no signiĄcant or large gender disparities

in STEM subject performance, males perform signiĄcantly worse than females in non-STEM sub-

jects. Additionally, we observed a 24% gender gap in male-female STEM major choices, aligning

with trends observed across OECD countries, including Germany (OECD 2024). Our analysis re-

veals that an grade-based STEM advantage is positively associated with STEM enrollment among

both genders, though the impact is much smaller for females compared to males. This Ąndings

indicate that, despite similar proĄciency in STEM subjects, females require substantially stronger

grade-based performance signals in STEM relative to non-STEM subjects to pursue a STEM de-

gree. However, women who do enter STEM programs ultimately outperform their male peers in

terms of GPA.

Our decomposition analysis examines how differences in relative performance indicators and

control variables contribute to the STEM gender gap under different preference scenarios. We

show that in a male-choice world, where female preferences mirror those of males, 21% of the

STEM gender gap can be attributed to group differences in predictors. SpeciĄcally, differences

in grade-based STEM advantage and performance gaps across STEM and non-STEM subjects
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account for 26% of the gender gap, while rank-based differences explain only 5%. Conversely, in a

female-choice world grade- and rank-based performance differences account for merely 6% and 0.5%,

respectively. These results underscore that performance variations play a minimal role in femalesŠ

STEM choices, with rank-based STEM advantage showing consistently low economic signiĄcance

across speciĄcations.

We interpret these Ąndings of being indicative of substantial perceived selection costs to entering

a STEM occupation among females and we show that women who selected into STEM majors indeed

expect more gender-related on-the-job discrimination.

Our analysis is informative as regards policies that address the underrepresentation of women

in STEM and the ongoing discourse on gender inequality in education and labor markets (Goldin

2014, Marianne 2011, Blau and Kahn 2017, Kleven and Landais 2017, Goulas et al. 2022, Breda

and Napp 2019, Breda et al. 2019, 2018, 2023, Francesconi and Parey 2018, Zafar 2013, Wiswall

and Zafar 2018). Our results suggest that a change in STEM grades or respective grading policies

in secondary school will have little impact on reducing the gender gap in STEM. On the positive

side, this also implies that Şeasier gradesŤ as observed mostly in non-STEM subjects might not

systematically drive females out of STEM Ąelds, although this could differ when comes to grades

in higher education (Ahn et al. 2024).

Our results further indicate that, despite similar proĄciency in STEM subjects, females seem

to be held back by differential preferences or barriers when it comes to pursuing a STEM degree.

Non-performance-related factors such as Ąeld preference, perceived future working conditions, and

perceived discrimination seemingly discourage females from choosing a STEM occupation even if

they obtain very positive signals about their STEM abilities. SpeciĄcally, females require a STEM

advantage that is four standard deviations higher than males to have the same probability of

studying a STEM subject, highlighting the need for more encouragement and support for women

in science. In line with Breda et al. (2023), our Ąndings suggest signiĄcant overselection costs, em-

phasizing the importance of addressing gender-speciĄc barriers in STEM Ąelds to ensure equitable

opportunities for all aspiring students.

A systematic analysis of measures and programs aiming to effectively counter perceived on-the-

job discrimination in STEM occupations would be an interesting endeavor for future research. In
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light of our Ąndings, such policies could reduce the STEM-enrollment gap, improve the talent pool

in STEM occupations, and may ultimately improve a countryŠs growth and competitiveness.
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5. Appendix

5.1. Institutional Background

Upon completing primary school, students are channeled into different secondary-school types. The

four main types of secondary schools are: Gymnasium (academic secondary school/high school,

ISCED Level 3), Realschule (intermediate secondary school, ISCED Level 2), Hauptschule, and

Gesamtschule (comprehensive school, ISCED Level 2).9 In our analysis we focus on the Gymnasium,

which can either last eight (G8) or nine (G9) years depending on the state and cohort. It culminates

in the Abitur, the highest secondary-school certiĄcate and a prerequisite for admission to tertiary

education. While transitions between these four types of tracks are theoretically possible at any

time, the frequency and structure of such transitions vary by state, with most upward movements

occurring after the completion of lower secondary programs. This tracking system plays a crucial

role in shaping studentsŠ future academic and professional paths within the German education

landscape. For those interested in further details, we direct their attention to the regulatory

framework governing both the upper secondary level of Gymnasium and the Abitur examination in

North Rhine-Westphalia. This framework is established by the ŞVerordnung über den Bildungsgang

und die Abiturprüfung in der gymnasialen OberstufeŤ (APO-GOSt).10 Enacted on 5 October 1998,

this foundational regulation provides the legal and structural basis for the educational processes

and assessment methods analysed in our study. The APO-GOSt serves as a cornerstone document,

outlining the curriculum structure, examination procedures, and qualiĄcation requirements for

students in the upper secondary level of Gymnasiums in North Rhine-Westphalia.

9ISCED-97 deĄnitions provided by the OECD (2017).
10This translates to ŞOrdinance on the Educational Path and Abitur Examination in Upper Secondary EducationŤ

and can be accessed here: https://recht.nrw.de/lmi/owa/br_text_anzeigen?v_id=10000000000000000186.
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5.2. Variable Descriptions

Table A.1: Variable DeĄnitions

Variable Description

High school GPA Between 1.0 and 4.0 (higher better)

STEM GPA 0-15 points (higher better)

Non-STEM GPA 0-15 points (higher better)

Rank of STEM GPA Between 0 and 100 (higher better)

Rank of non-STEM GPA Between 0 and 100 (higher better)

High school GPA (cohort) Between 1.0 and 4.0 (higher better)

STEM GPA (cohort) 0-15 points (higher better)

Non-STEM GPA (cohort) 0-15 points (higher better)

Low SES
Dummy that equals 1 if at least one parent has a high
school diploma, 0 else

Migration status
Dummy that equals 1 if individual grew up in another
country, 0 else

University GPA Between 1.0 and 4.0 (higher better)

University STEM GPA Between 1.0 and 4.0 (higher better)

University non-STEM GPA Between 1.0 and 4.0 (higher better)
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Table A.3: Kitagawa-Oaxaca-Blinder Decomposition of the STEM Gender Gap

Pooled regression model

(1) (2)
Absolute Share

Difference 0.211∗∗∗ 100.000
(0.038)

Explained difference 0.045∗∗∗ 21.327
(0.016)

Composition effects attributable to

(A) Grade-based performance indicator 0.030∗∗ 14.218
(0.013)

(B) Rank-based performance indicator -0.002 0.948
(0.007)

Control variables 0.017∗ 8.057
(0.010)

Observations 573

Notes: This table decomposes differences in STEM subject choice in tertiary education attributable to differences in
absolute and relative performance indicators using twofold Kitagawa-Oaxaca-Blinder decomposition from a pooled
regression model. We control for IQ, socioeconomic status, and migration status. For each decomposition, we also
present the share of the difference that is attributable to the respective component. Robust standard errors in
parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.4: Anticipated Discrimination and STEM Enrollment

Anticipated gender-based discrimination

(1) (2) (3) (4)

Female 0.382∗∗∗ 0.375∗∗∗ 0.336∗∗∗ 0.319∗∗∗

(0.036) (0.038) (0.041) (0.043)

STEM major 0.043 0.037 -0.036 -0.057
(0.040) (0.044) (0.041) (0.043)

Female×STEM enrollment 0.169∗∗ 0.198∗∗

(0.082) (0.087)

Grade-based STEM advantage 0.004 0.008
(0.066) (0.065)

Rank-based STEM advantage 0.029 0.031
(0.025) (0.026)

STEM GPA 0.031 0.033
(0.032) (0.031)

Non-STEM GPA 0.000 0.001
(0.028) (0.027)

Rank STEM GPA -0.003 -0.004
(0.003) (0.003)

Rank non-STEM GPA 0.000 0.000
(0.002) (0.002)

STEM GPA (cohort) -0.013 -0.017
(0.027) (0.027)

Non-STEM GPA (cohort) 0.009 0.004
(0.025) (0.025)

High school GPA (cohort) -0.114 -0.097
(0.175) (0.174)

IQ 0.004 0.008
(0.011) (0.011)

High school GPA 0.034 0.035
(0.055) (0.055)

Low SES 0.007 -0.001
(0.042) (0.042)

Migration status -0.068 -0.074
(0.057) (0.055)

Grad.-year No Yes No Yes
Observations 573 573 573 573
Adjusted R2 0.150 0.138 0.154 0.144

Note: Columns 1-2 present estimated effects of gender and STEM enrollment on the expectation of gender-based discrimina-
tion. Columns 3-4 interact STEM enrollment with gender to identify heterogeneous effects. Regressions are estimated with
a constant, control for grade- and rank-based STEM advantage, STEM and non-STEM GPAs, and ranks of STEM and non-
STEM GPA. Other controls include cohort performance as measured by STEM, non-STEM, and high school GPA, individual
ability approximated by IQ and high school GPA, and personal background such as socioeconomic status and migration status.
Graduation-year dummies are omitted in this table for brevity. We use robust standard errors, reported in parenthesis.
* p < 0.1, ** p < 0.05, *** p < 0.01
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