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January 21, 2025

Abstract

A mechanism proposal by a privately informed principal is a sig-
nal. The agents’ belief updating endogenizes their incentives in the
mechanism, implying that such design problems cannot be solved
via optimizing subject to incentive constraints. We propose a so-
lution, neo-optimum, that can be interpreted as principal-preferred
perfect-Bayesian equilibrium. Its neologism-based definition allows
an intuitive computation, as we demonstrate in several applications.
Any Myerson neutral optimum is a neo-optimum, implying that a
neo-optimum generally exists. In private-values environments, neo-
optimum is equivalent to strong unconstrained Pareto optimum (Maskin-
Tirole) and strong neologism-proofness (Mylovanov-Tröger). In infor-
mation-design settings, any interim-optimum (Koessler-Skreta) is a
neo-optimum. Our methods can be used to reconstruct the perfect-
Bayesian equilibria in the informed-principal literature.
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1 Introduction

Mechanism design—the theory of designing rules of interaction that provide
incentives to reveal private information towards maximizing the principal’s
goal—is a cornerstone of economics, with many applications ranging from
procurement and the regulation of firms (Laffont and Tirole, 1993) to the
design of public institutions (Laffont, 2000), from macroeconomics (Kocher-
lakota, 2006) to testing and social distancing in pandemics (Tröger, 2025).

The standard approach to solving a mechanism-design problem relies on
the revelation principle, which implies that any mechanism induces a di-
rect revelation mechanism, thus transforming the design problem into an
optimization subject to incentive constraints. As first recognized by Myer-
son (1983) and Maskin and Tirole (1990, 1992), this approach fails if the
principal is privately informed about her own goals or about anything that
concerns the incentives of the agents who participate in the mechanism. The
proposal of a mechanism then is a signal in a signaling game that leads to
an endogenous updated belief about the principal’s private-information type.
The incentives of the agents in the mechanism depend on the updated be-
lief. Thus, the answer to the question which direct revelation mechanism is
induced by a given mechanism proposal becomes endogenous.

An example is a seller who designs a profit-maximizing sales contract
while being privately informed about the quality of her good. If, say, the
contract includes a warranty then a buyer may be willing to pay a higher
price not only because she gets the warranty, but also because she is triggered
into believing in a higher quality of the good.

Modeling the principal as just a sender in a signaling game would, how-
ever, neglect the mechanism-design doctrine according to which the principal
can select an equilibrium for the interaction. It is, for example, implausi-
ble that the principal offers a mechanism that, at the prior belief, yields a
smaller payoff to all her private-information types than another mechanism.
Yet, offering the low-payoff mechanism can be consistent with the logic of
perfect-Bayesian equilibrium in signaling games because offering any alter-
native mechanism may trigger a “pessimistic” off-path belief that makes it
unattractive.

The purpose of the paper is to provide a refinement of perfect-Bayesian
equilibrium, neo-optimum, that is particularly suitable for informed-principal
settings because it can be seen as “sender-preferred equilibrium”. Neo-
optimum exists broadly and connects the known solution approaches to
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informed-principal problems. Moreover, our methods can be used to re-
construct all (including non-refined) perfect-Bayesian equilibria in virtually
all existing papers in the informed-principal literature.

Neo-optima are always at the weak Pareto frontier of the set of perfect-
Bayesian equilibria. Thus the predictions of neo-optimum are generally dif-
ferent from refinements such as the intuitive criterion (Cho and Kreps, 1987)
that are based on Kohlberg-Mertens stability. But neo-optimum is also gen-
erally different from the principal’s ex-ante-optimal perfect-Bayesian equi-
librium. The ex-ante criterion has the obvious limitation that rescaling the
payoff function of some type of the principal—although being strategically
irrelevant—can easily change the prediction. Neo-optimum is invariant with
respect to payoff rescalings. Nevertheless, it turns out that in many settings
the neo-optima are also ex-ante optimal for the principal.

To capture the broadest range of settings, we introduce a reduced-form
description of informed-principal problems that focusses on the principal’s
payoff. A payoff vector refers to a payoff for each private-information type of
the principal. For any (prior or updated) belief about the principal’s type, a
set of feasible payoff vectors is given. That’s all.

In any particular application, the set of feasible payoff vectors at any
belief will be determined by the details of the interaction. For example, a
seller may be able to choose from a set of sales contracts, and each continua-
tion equilibrium in the interaction following the proposal of a sales contract
induces a particular feasible payoff vector. The reduced form specifies the
feasibility sets for all beliefs because, a priori, the principal’s proposal may
trigger any updated belief.

While a reduced-form description is possible for any signaling game,1 the
feasibility structure of informed-principal problems has a very useful addi-
tional property, composition-closedness, that allows us build our entire anal-
ysis around the feasible belief-payoff-vector pairs. Composition-closedness
can be seen as a reduced-form version of the inscrutability principle in My-
erson (1983). To define, consider a finite family of belief-payoff-vector pairs.
Imagine the principal has to choose one pair from this family. A compo-
sition is a belief-payoff-vector pair that arises from each principal type’s
payoff-maximizing choice from the family is Bayes consistent. Composition-
closedness requires that any composition of feasible belief-payoff-vector pairs

1E.g., Mailath (1987).
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is feasible.2 The justification for composition-closedness is that for any fi-
nite family of mechanisms there exists a “grand” mechanism in which the
principal gives herself the option to select a mechanism from the family.

Both established approaches to defining perfect-Bayesian equilibria for
informed-principal signaling games, by Myerson (1983) and by Maskin and
Tirole (1990, 1992), fit into our model. While the two approaches differ
subtly with respect to the set of allowed mechanisms, in either approach,
composition-closedness implies that focussing on fully pooling equilibria is
without loss of generality, that is, all types of the principal propose the same
mechanism on the equilibrium path.

Let us explain neo-optimum in more detail. A crucial ingredient is the
concept of a neologism that is well-established in signaling games (Farrell,
1993). A neologism is a Bayes-consistent and feasible deviation relative to a
given (not necessarily feasible) belief-payoff-vector pair. That is, the deviat-
ing payoff vector comes together with a deviating belief that puts probability
0 on types who would be harmed by the deviation, retains the relative like-
lihood across types that strictly gain, and can shift belief probability mass
from indifferent types to strictly gaining types.

If no neologism exists for some payoff vector together with the prior belief,
te payoff vector is neologism-proof. A payoff vector is a neo-optimum if (i) it
is feasible at the prior belief and (ii) there exists a payoff vector below it that
is a limit of neologism-proof payoff vectors.

Many established signaling-game refinements, including the intuitive cri-
terion, rely on ideas related to neologisms. Farrell (1993) recognized that
asking for a prior-belief feasible and neologism-proof payoff vector is gen-
erally too much; non-existence occurs in very simple signaling games. The
subsequent literature responded by restricting the set of neologisms that are
considered legitimate (e.g., Rabin (1990)), or by focussing on settings where
existence is guaranteed. Neo-optimum is fundamentally different: it allows
for arbitrary neologisms, but drops the requirement that the neologism-proof
payoff vector is feasible. Rather, neo-optimum is content with being a limit
of neologism-proof payoff vectors, or with being at least as good as such a
limit for all types of the principal.

As a concrete example we consider a Spence (1973) job-market setting.

2As for a concrete example, suppose the principal can have two types. If the payoff
vector (1, 0) is feasible at the belief that puts probability 1 on the horizontal type and the
payoff vector (0, 2) is feasible at the belief that puts probability 1 on the vertical type,
then composition-closedness requires that the payoff vector (1, 2) is feasible at all beliefs.
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It belongs to the class of informed-principal problems analyzed in Maskin
and Tirole (1992). The principal is a worker who is privately informed about
her productivity type, which can be high or low. To determine her task level
and wage, she proposes a mechanism to an employer. One payoff vector
that is feasible at all beliefs is the least-cost-separating one. It arises from
both types getting a wage equal to their respective productivity types, the
low-productivity type getting the lowest possible task level, and the high-
productivity type getting the task level at which the low type is indifferent
between the two types’ outcomes. Another prominent payoff vector, feasible
at the prior belief, arises from both types getting the lowest task level and
the wage equal to average productivity; we call this the best-pooling payoff
vector. It is then easy to see that the unique neo-optimum is the least-
cost-separating payoff vector or the best-pooling payoff vector, whichever is
preferred by the high-productivity type.3

As for the perfect-Bayesian equilibria in the Spence example, we recall
that the least-cost-separating payoff vector is a neo-optimum if the prior be-
lief puts a sufficiently high weight on the low-productivity type. From this
it is immediate that the least-cost-separating payoff vector, being feasible
at all beliefs, is a perfect-Bayesian equilibrium at any interior prior belief.
Generalizing this logic to other settings recovers the perfect-Bayesian equi-
libria constructed in Maskin and Tirole (1992) and a number of subsequent
papers (e.g., Koessler and Skreta (2016); Nishimura (2022); Balzer (2017);
Dosis (2022); Zhao (2023))

We show that any Myerson (1983) neutral optimum is a neo-optimum.
From Myerson’s existence result, this implies that a neo-optimum exists in
any Bayesian incentive problem as defined by Myerson. Neo-optimum is
stronger than Myerson’s other solution concepts, core and expectational equi-
librium. Whenever it yields a unique prediction it identifies the unique neu-
tral optimum. But neo-optimum is much more intuitive and easier to handle
than neutral optimum. In particular, neo-optimum avoids any reference to
Myerson’s extension axiom that connects solutions across different settings.

Initiated by Maskin and Tirole (1990), a part of the informed-principal
literature has considered settings with “private values” (e.g., Myerson (1985);
Maskin and Tirole (1990); Tan (1996); Yilankaya (1999); Skreta (2009);

3Undefeated equilibrium (Mailath, Okuno-Fujiwara, and Postlewaite, 1993) yields an
analogous prediction in the classical job-market signaling game where signals are not
mechanisms but just education levels.

5



Mylovanov and Tröger (2014); Wagner, Mylovanov, and Tröger (2015)).
Here, the principal is privately informed about her goals, that is, she “has
private information that is not directly payoff relevant to the agents, but may
influence her design” (Mylovanov and Tröger, 2012). An example would be a
seller with private information about her opportunity cost of selling who de-
signs a profit-maximizing sales procedure. The solution concepts proposed in
this context, strong unconstrained Pareto optimum (SUPO) by Maskin and
Tirole (1990) and its generalization, strongly neologism-proof allocations by
Mylovanov and Tröger (2012, 2014) have so far remained disconnected from
Myerson’s (1983) approach.

We show that, in the generalized-private-values settings for which Mylo-
vanov and Tröger (2012) show the existence of a strongly neologism-proof
allocation, this solution concept is in fact equivalent to neo-optimum. In par-
ticular, in these settings any neutral optimum is strongly neologism-proof.
This result resolves a question that has remained open essentially since the
literature started. Another implication is that in quasilinear private-values
environments (Mylovanov and Tröger, 2014), any neo-optimum, and thus
any neutral optimum, is ex-ante optimal.

Koessler and Skreta (2019) consider an informed principal who can, par-
tially or fully, “certify” her type. The model fits into our framework. Koessler
and Skreta (2019) propose a solution concept, strong Pareto optimum (SPO),
and show that any prior-feasible SPO is a perfect-Bayesian equilibrium and
is ex-ante optimal. But a prior-feasible SPO exists only in settings with suf-
ficiently a rich certifiability structure. Using neo-optimum instead of SPO as
a solution concept in their setting, existence is generally guaranteed and the
qualitative results of Koessler and Skreta (2019) remain largely intact.

Settings in which the principal is an information designer also fit into our
framework. To analyze informed-principal information design, Koessler and
Skreta (2023) introduce a new refinement of perfect-Bayesian equilibrium,
interim optimality, and provide existence and characterization results. We
show that any interim optimum is a neo-optimum. In the different variants of
the introductory prosecutor-judge example in Koessler and Skreta (2023) the
reverse is also true, that is, any neo-optimum is interim-optimal. Thus, the
arguments given by Koessler and Skreta (2023) in favor of interim-optimum
as a solution concept—predictive power and robustness—apply similarly to
neo-optimum.

Balkenborg and Makris (2015) consider a common-value setup similar
to Maskin and Tirole (1992), but in contrast to the latter focus on an
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equilibrium refinement called assured allocation that in two-type settings is
the unique Myerson (1983) core allocation and hence is equivalent to neo-
optimum and neutral optimum. However, in some settings the assured allo-
cation is dominated by a stochastic allocation and is not a core allocation,
implying that it is not a neo-optimum.

Section 2 introduces the model. Section 3 introduces the main concept,
neo-optimum. In Section 4 we compare neo-optimum to the solution concepts
in Myerson (1983). In Section 5 we compare neo-optimum to the established
solution in private-values settings. In Section 6 we compare neo-optimum to
the established solutions in settings with certifiability or information-design.
Some proofs and examples are in the appendix.

2 Model

2.1 Informed-Principal settings

The principal is a privately informed entity. Let T denote the set of the
principal’s feasible private-information types. For technical simplicity, we
assume that T is finite.4 The set of probability distributions with support
in T is denoted B. A belief about the principal’s type is a b ∈ B, where b(t)
denotes the likelihood assigned to type t.

The principal’s payoff is represented by a vector U ∈ IRT , where U(t) for
all t ∈ T denotes the principal’s payoff when she has the type t.

An informed-principal setting is characterized by the set of feasible belief-
payoff-vector pairs

K ⊆ B × IRT .

For any belief b ∈ B, we say that a payoff vector U is feasible at b or b-feasible
if (b, U) ∈ K.5 We assume that K is topologically closed and, for each b ∈ B,
the set of b-feasible payoff vectors is non-empty.

When convenient, we will use the following language. We say that a
payoff vector V is above a payoff vector U (or U is below V ), written V ≥ U ,
if V (t) ≥ U(t) for all t ∈ T . In other words, V is above U if and only if

4We see no obstacle against extending our central concept, neo-optimum, to continuous-
type settings.

5Given any set M ⊆ B × IRT and any b ∈ B, we will also use the notation M(b) =
{U | (b, U) ∈ M}. For example, K(b) is the set of b-feasible payoff vectors.
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all sender types weakly prefer V to U . (We say that V dominates U if V is
above U and V ̸= U .)

Applications

As a first example, following Maskin and Tirole (1992) and inspired by Spence
(1973), let the principal be a worker who proposes a mechanism for determin-
ing her wage w and task level e to a potential employer. The principal has
one of two productivity types, T = {θL, θH}. Any belief b can be identified
with the probability of the high type θH , that is, b ∈ B = [0, 1]. Let w− e/θ
denote the principal’s payoff if she has the type θ, works at level e, and gets
the wage w. The employer then obtains the payoff θ−w, whereas she gets 0
if she does not employ the principal. A mechanism is a game form in which
the principal and the employer play, and each end node is a task-level-wage
pair (e, w) ∈ [0,∞) × [0, θH ]. The mechanism is played if the employer ac-
cepts it. By the revelation principle, given any belief b ∈ B, the mechanism
(or, more precisely, the action of proposing the mechanism) implements a
task-level-wage pair6 (eL(b), wL(b)) for type θL and a task-level-wage pair
(eH(b), wH(b)) for type θH such that incentive compatibility is satisfied,

wL − eL/θL ≥ wH − eH/θL and wH − eH/θH ≥ wL − eL/θH , (1)

and the employer’s participation constraint is satisfied,

b(θH − wH) + (1− b)(θL − wL) ≥ 0. (2)

Thus,

K = {(b, (wL −
eL
θL

, wH −
eH
θH

)) | (1), (2)}.

After standard manipulations, we obtain the following characterization,

K =
⋃

e≥0

⋃

b∈B

{b} × conv

{

(θL, θL +
(θH − θL)

2

θH
), (θL −

e

θL
, θL −

e

θL
),

⋃

e≥0

⋃

b∈B

{b} × conv

{

(θL −
e

θL
, θL +

(θH − θL)
2 − e

θH
),

⋃

e≥0

⋃

b∈B

{b} × conv {(bθH + (1− b)θL, bθH + (1− b)θL)} ,

6Given the linearity of the payoff functions, probability distributions over task-level-
wage pairs need not be considered.
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4
)

K(0)

2rd vertex
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Figure 1: The sets of feasible payoff vectors at different beliefs b in the Spence-job-
market example for generic values of θL and θH . The vertices refer to the points
that span the convex hull for a particular task-level bound e in the definition of
K. The higher b, the larger the feasibility set so that K(0) ⊂ K(1/4) ⊂ K(3/4) ⊂
K(1).

where conv{. . . } is the convex hull of four “vertex” payoff vectors: the first
is called least-cost separating, the second is the payoff vector where the low
type, θL, chooses the task level e and gets the wage θL while the high type,
θH , chooses the task level that, at wage θH , makes her indifferent to choosing
the task level e and getting the wage θL, the third is the payoff vector where
the low type chooses the task level e and gets the wage θL while the high type
chooses the task level such that the low type is made indifferent to choosing
the high type’s task level and getting the wage θH , and the fourth arises from
both types pooling at task level 0. The convex hull captures what is feasible
at the belief b if there is a highest feasible task level e.

The projections of K onto the space of payoff vectors for several beliefs b
are represented graphically in Figure 1.

Secondly, going beyond a particular example, we would like to emphasize
Myerson’s (1983) “Bayesian incentive problems” as a broad framework that
is covered by our model. The framework captures mechanism design prob-
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lems with adverse selection and moral hazard, finitely many agents, arbitrary
finite outcome spaces and arbitrary payoff functions.7 A feasibility set K is
naturally associated to any Bayesian incentive problem Γ, as follows. For
any belief b ∈ B, the set K(b) is determined via the incentive constraints
in Γ when b is interpreted as a normalized likelihood vector in the sense of
Myerson (1983, Section 5), and in the incentive constraints (1983, (3.1)) of
all players except the principal (i.e., player 1) there is an additional factor
b(t1), where t1 is the first component of the summation variable t−i. (An “in-
centive compatible mechanism” in the terminology of Myerson (1983) leads
to a payoff vector that is b-feasible with b the uniform distribution on T .)

As a third application, our model covers the information-design frame-
work of Bergemann and Morris (2019). Suppose the information designer is
one of the players, say player 1 (i.e., v = u1 in the terminology of Bergemann
and Morris). As in the previous example, any belief b is interpreted as a
normalized likelihood vector in the sense of Myerson (1983, Section 5). For
any belief b ∈ B, the set K(b) is determined via the obedience constraints
(Definition 1 in Bergemann and Morris (2019)), augmented with an addi-
tional factor b(t1) for all i ̸= 1.8 A special case of this framework is Koessler
and Skreta (2023), who assume that the principal is fully informed about the
state of the world and the other players have no prior information.9

Compositions and inscrutiblity

Next we introduce our core structural property for feasibility sets, Assump-
tion 1, which is a reduced-form generalization of Myerson’s (1983) inscrutabil-
ity principle. The core underlying concept, composition, is best understood
via a thought experiment. Suppose that the principal had to choose a belief-
payoff-vector pair from a given family. Depending on her type, she cares
about the corresponding dimension in each payoff vector. A composition
is a belief-payoff-vector pair that arises from a payoff-maximizing choice of
each type, and the choice decisions of the various principal types are Bayes-

7 The Spence example with the particular cost structure described above becomes a
Bayesian incentive problem if we cut the outcome space at some highest feasible task level.
Then any outcome can be represented as a probability distribution over four outcomes,
combined of the highest/lowest task/wage levels.

8Correcting a typo in Bergemann and Morris (2019), the summation variables in their
formula (2) should be a−i and t−i, where the latter has t1 as its first coordinate.

9Koessler and Skreta (2023) sketch a more general model in Section 8 of their paper.
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consistent.
A belief-payoff-vector pair (b, U) ∈ B × IRT is the

composition of (bk, Uk)k=1,...,k (k ≥ 1, (bk, Uk) ∈ B × IRT )

if, for all t ∈ T ,

U(t) = max
k=1,...,k

Uk(t) (3)

and if there exist (choice-probability) functions ck : T → [0, 1] (k = 1, . . . , k)

with
∑k

k=1 ck(t) = 1 (t ∈ T ) such that

if ck(t) > 0, then Uk(t) ≥ Ul(t) for all l ̸= k, (4)

and such that, for all k, Bayes’ rule is satisfied,

ck(t
′′)b(t′′)bk(t

′) = ck(t
′)b(t′)bk(t

′′) for all t′, t′′ ∈ T. (5)

To digest the notation, suppose that each type t chooses among the payoff
vectors U1, . . . , Uk, where type t’s probability of choosing any Uk is denoted
ck(t). Then (3) expresses that U is the payoff vector that results from optimal
choice, (4) expresses that each type chooses optimally, and (5) expresses that
the belief bk that is formed upon observing the choice k is consistent with
the grand belief b and the choice probability distributions ck. The fact that
(5) captures Bayes rule is easiest to see if all numbers involved are strictly
positive, implying

bk(t
′)

bk(t′′)
=

ck(t
′)b(t′)

ck(t′′)b(t′′)
. (6)

The right-hand side in this equation expresses the relative probability of
entering the interaction and choosing k, across types t′ and t′′, taking the
initial belief b into account; the equality with the left-hand side expresses
that the belief that is formed upon observing k is consistent with the actual
relative choice probabilities.

A special case covered by (5) is that some k ends up being never chosen.
Formally, this case occurs if ck(t)b(t) = 0 for all t. For such k, the conditions
(5) are void because both sides are equal to 0. In all other k, we can find
a type t′′ such that ck(t

′′)b(t′′) ̸= 0. Then the conditions (5) imply that
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bk(t
′) = 0 for any t′ with b(t′)ck(t

′) = 0 and bk(t
′) > 0 for any t′ with

b(t′)ck(t
′) > 0. Thus, in (6) either the numerators on both sides are strictly

positive or the numerators on both sides are equal to zero, and the same is
true for the denominators.

For any finite family of belief-payoff-vector pairs in K, let K denote the
set of compositions of elements of K.

Assumption 1. The feasibility set K is composition-closed, that is, K = K.

In all applications that we have described, the feasibility setK is composi-
tion-closed. Myerson (1983) calls this the inscrutability principle. Intuitively,
the reason is as follows. For each k, by definition of the feasibility set, there
exists a direct mechanism Mk that induces the payoff vector Uk at the belief
bk. Now consider the indirect mechanism M̂ that gives the principal the
option to select any of the direct mechanisms M1, . . . ,Mk for play. The indi-
rect mechanism then has an equilibrium in which any type t selects any Mk

with probability ck(t), and in Mk the truth-telling and obedient equilibrium
is played because the belief bk prevails at the start of Mk.

2.2 Perfect-Bayesian equilibrium

In the previous section, we posited that the principal chooses among belief-
payoff-vector pairs. That was a preparatory step towards conceptualizing the
idea that the principal is a sender in a signaling game where the signals are
mechanisms.

Which mechanisms should be allowed as signals for the principal in the
mechanism-selection game? The standard literature on mechanism design
where the principal has no private information evokes the revelation principle
and so justifies the focus on direct revelation mechanisms. But now, for any
belief b, any continuation equilibrium in any mechanism corresponds to a
different direct mechanism, and the belief b is endogenous. The role of a
mechanism as a signal generally depends on all its continuation equilibria for
all possible beliefs. Here it can matter which equilibrium concept is used for
continuation equilibria; this is particularly relevant if sequential mechanisms
are allowed. Also, should one allow mechanisms such that a continuation
equilibrium exists for some beliefs about the principal and not for others? It
is not obvious how the set of possible mechanisms and continuation equilibria
can be specified such that it does not appear restrictive and still a perfect
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Bayesian equilibrium exists in the signaling game where the principal is the
sender and signals are mechanisms.

In the literature, there are two different approaches to specifying the
principal’s set of mechanisms. First, Myerson (1983), given any Bayesian
incentive problem, defines “generalized mechanisms” that allow for arbitrary
finite message spaces for all players. The mechanism may reveal information
about these messages privately to each player, to influence her private ac-
tion, and some public outcome is implemented. The equilibrium concept for
continuation equilibria in generalized mechanisms is Nash equilibrium.

The second approach, which can be traced back to Maskin and Tirole
(1990, 1992), is to avoid the explicit specification of the set of feasible mech-
anisms, and instead restrict the continuation-equilibrium payoff properties
of mechanisms. Given any (in whatever way specified) mechanism µ, we
define a set of belief-payoff-vector pairs Mµ, as follows: (b, U) ∈ Mµ if and
only if the payoff vector U can be induced by (in whatever way specified)
continuation-equilibrium play of µ at the belief b. A set of belief-payoff-
vectors M ⊆ B × IRT is called a Kakutani set10 if, for all b ∈ B, the set
of payoff vectors M(b) = {U | (b, U) ∈ M} is non-empty and convex, and
the set M is compact (hence, the correspondence b 7→ M(b) is upper hemi-
continuous). Rather than explicitly describing which µ’s are feasible, Maskin
and Tirole (1990, 1992) assume that only such µ are feasible where Mµ is
a Kakutani set (whether all such µ are feasible will be irrelevant for our
purposes).

Myerson’s (1983) approach allows some mechanisms that are not allowed
by Maskin and Tirole (1990) because, for some generalized mechanisms M
and beliefs b, the set M(b) is a non-singleton set of isolated points, hence
non-convex. Maskin and Tirole’s (1990, 1992) approach, on the other hand,
is not restricted to Myerson’s Bayesian incentive problems.

According to both approaches, in a perfect-Bayesian equilibrium (or,
“expectational equilibrium”, in Myerson’s framework) of the mechanism-
selection game, we can assume without loss of generality from the point of
view of the principal’s equilibrium payoff vector that all types of the principal
pool at the same mechanism.

The possibility of pooling follows from composition-closedness. To see
this, let b∗ denote the (interior) prior belief about the principal.11 Let

10The terminology is adapted from Pȩski (2022).
11Myerson does not need to specify a prior belief as it is implicitly built into the definition
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µ1, . . . , µk denote the list of mechanisms that are chosen with positive prob-
ability by at least one type of principal. In a perfect-Bayesian equilibrium,
each type of principal chooses an optimal mechanism from the list, and the
beliefs bk are consistent with these choices in the sense of Bayes’ rule. For
any k, let Uk denote the payoff vector that is induced by the continuation-
equilibrium play of µk. Let ck(t) denote the probability that any type t
chooses the mechanism µk. By composition-closedness (with b = b∗), the
payoff vector U = maxk Uk is b∗-feasible. Thus, without loss of generality all
types pool at a mechanism that induces U at the belief b∗.

According to Myerson (1983), given any Bayesian incentive problem, in
an expectational equilibrium all types of the principal pool at an incentive-
compatible direct revelation mechanism such that for any generalized mech-
anism µ′ there exists a belief b′ and a continuation equilibrium in µ′ at belief
b′ such that no type of principal gains from deviating to µ′.

The following alternative concept follows the spirit of Maskin and Tirole
(1990, 1992). Given any informed-principal setting K and any interior prior
belief b∗, a payoff vector U is a Kakutani perfect-Bayesian equilibrium if U is
b∗-feasible, and for any Kakutani set M ′ ⊆ K there exists (b′, U ′) ∈ M ′ such
that U ′ is below U .

The following observation is often useful for fencing the set of Kakutani
perfect-Bayesian equilibria; the lemma’s conclusion is immediate from the
assumption because M ′ = B × {U} is a Kakutani set.

Lemma 1. If there exists a payoff vector U that is feasible at all beliefs, then
U is below all Kakutani Perfect-Bayesian equilibria.

To illustrate the concept of Kakutani perfect-Bayesian equilibrium, con-
sider again our Spence-job-market example. The least-cost separating payoff
vector, U lcs = (θL, θL+(θH −θL)

2/θH), illustrated as the 1st vertex in Figure
1, is b∗-feasible for any b∗. Any Kakutani set M leaves a trace ∪b∈BM(b) in
the space of payoff vectors. By definition, the trace includes a 0-feasible pay-
off vector U ′, and from our earlier characterization of the 0-feasibility set in
the Spence example it follows that U ′(t) ≤ U lcs(t) for all t ∈ T . Thus, using
the “pessimistic belief” b′ = 0 we see that U lcs is a Kakutani perfect-Bayesian
equilibrium. On the other hand, because U lcs is feasible at all beliefs, Lemma
1 implies that any Kakutani perfect-Bayesian equilibrium U is above U lcs. It

of a Bayesian incentive problem. Translated to our terminology, Myerson’s prior is the
uniform distribution on T .
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follows that the set of Kakutani perfect-Bayesian equilibria is

{U | U is b∗-feasible, ∀t ∈ T : U(t) ≥ U lcs(t)}.

For later use, we note the following.

Lemma 2. In any informed-principal setting with any interior prior, the set
of Kakutani Perfect-Bayesian equilibria is closed.

Proof. Denote the feasibility set by K and the prior by b∗. Consider a se-
quence of equilibria (Un) → U∗. Then Un is b∗-feasible for all n. Because
the set of b∗-feasible payoff vectors, K(b∗), is closed, it follows that U∗ is
b∗-feasible.

Consider any Kakutani set M ′ ⊆ K. There exists a sequence (b′n, U
′
n) ∈

M ′ such that U ′
n(t) ≤ Un(t) for all n and t. Because M ′ is compact, there

exists (b′, U ′) ∈ M ′ such that (b′n, U
′
n) → (b′, U ′) along some subsequence.

Thus, U ′(t) ≤ U∗(t) for all t, proving that U∗ is a Kakutani Perfect-Bayesian
equilibrium.

3 Neo-optimum

In many informed-principal settings (such as the Spence-job-market exam-
ple above with b∗ being sufficiently close to 1), multiple Kakutani perfect-
Bayesian equilibria exist. Similarly, Myerson (1983) observes that multiple
expectational equilibria exist in many Bayesian incentive problems.

The main goal of our paper is to show how to select perfect-Bayesian
equilibria that are “sender preferred” in an intuitive sense. Importantly, our
refinement will be invariant to scaling the utility of each sender type. Thus,
the refinement is a-priori unrelated to ex-ante optimality for the sender. Our
refinement provides a unified perspective of the informed-principal literature,
and opens the door to solving new problems.

We start from a concept inspired by Farrell (1993). Consider a feasibility
set K, an interior belief b, and a payoff-vector U ∈ IR|T |. A belief-payoff-
vector pair (b̂, Û) ∈ K is a neologism for (b, U)12 if Û(ť) > U(ť) for some
ť ∈ T , and the following conditions hold for all t ∈ T :

if Û(t) > U(t) then b̂(t)b(t′) ≥ b̂(t′)b(t) for all t′ ∈ T, (7)

if Û(t) < U(t) then b̂(t) = 0. (8)

12Sometimes we say instead that (b̂, Û) is a neologism for U at b.

15



Intuitively, a neologism that can be seen as a Bayes-consistent and feasible
deviation relative to a given (not necessarily feasible) belief-payoff-vector
pair. The deviating payoff vector Û comes together with a belief that puts
probability 0 on types who would be harmed by the deviation (see (8)),
retains the relative likelihood across types that strictly gain (see (7) with
switched roles of t and t′, yielding b1(t)b(t

′) = b1(t
′)b(t)), and can shift belief

probability mass from indifferent types to strictly gaining types (see (7) with
t′ such that Û(t′) = U(t′)).

A payoff vector U is b-neologism-proof if no neologism exists for (b, U).
As implicitly suggested by the principal’s “speeches” proposed in Myerson
(1983), an ideal solution for the principal would be a payoff vector that is
feasible at the prior belief b∗, and is b∗-neologism-proof. In many settings,
however, such a payoff vector does not exist. Below we will review this well-
known fact in our Spence example; see Farrell (1993) for a different example
in an elementary signaling game.

In the spirit of the literature following Farrell (1993), one may respond
to the non-existence problem by restricting the set of neologisms that are
considered legitimate. We follow an alternative approach: we select the
b∗-feasible payoff vectors that are above limits of b∗-neologism-proof payoff
vectors. Note that the selected payoff vector itself may not be b∗-neologism-
proof. Here is the definition.

Given any interior prior belief b∗, a payoff vector U is a b∗-neo-optimum
if U is b∗-feasible and there exists a payoff vector V ≤ U such that V is a
limit of b∗-neologism-proof payoff vectors.

Our first remark is that all neo-optima lie on the principal’s weak Pareto
frontier. This is immediate from the definition of neo-optimum.

Remark 1. Let b∗ denote an interior belief. Consider a payoff vector U
such that U(t) < Û(t) for all t ∈ T for some b∗-feasible Û . Then U is not a
b∗-neo-optimum.

Another important remark is that the notion of neo-optimum is inde-
pendent of each principal type’s utility scale: if a positive affine transfor-
mation is applied to some type’s utility, then the set of neo-optima remains
unchanged. This reveals a fundamental difference to the notion of the prin-
cipal’s ex-ante optimum, which by definition is any payoff vector that maxi-
mizes

∑

t b
∗(t)U(t) among all b∗-feasible payoff vectors U .

In the rest of the paper, we will show that neo-optima are refinements of
perfect-Bayesian equilibria, exist broadly, often lead to a unique prediction,
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and provide a unified perspective to the various solution concepts that have
been proposed in the informed-principal literature.

In a given application, given any b∗, one can find the neo-optima via the
following intuitive steps. First, characterize the b∗-neologism-proof payoff
vectors (independently of their feasibility) by checking any possible neolo-
gism. Then consider the topological closure of this set and include all vectors
above elements of this set. The intersection with the set of b∗-feasible payoff
vectors is the set of neo-optima.

Examples

Consider the Spence setting with a prior belief b∗ > (θH − θL)/θH . This
inequality guarantees that the high type strictly prefers the best pooling
equilibrium,

Upool∗ = (b∗θH + (1− b∗)θL, b
∗θH + (1− b∗)θL),

over the least-cost separating payoff vector, U lcs. Note that in this case there
is a multiplicity of Kakutani perfect-Bayesian equilibria. From Remark 1
it is immediate that Upool∗ is the unique neo-optimum. It is instructive to
explicitly compute the set P (b∗) ⊆ IRT of b∗-neologism-proof payoff vectors.
First, we show that only payoff vectors weakly above the least-cost separating
one can be neologism-proof:

P (b∗) ⊆ {U | U ≥ U lcs}.

To see this, note that (b̂, U lcs) ∈ K for all b̂ ∈ B. Thus, for any U such that
U(θL) < U lcs(θL) and U(θH) ≥ U lcs(θH), the belief-payoff vector pair (0, U lcs)
is a neologism for (b∗, U). Vice versa, for any U such that U(θL) ≥ U lcs(θL)
and U(θH) < U lcs(θH), the belief-payoff vector pair (1, U lcs) is a neologism for
(b∗, U). Lastly, for any U such that U(θL) < U lcs(θL) and U(θH) < U lcs(θH),
the belief-payoff vector pair (b∗, U lcs) is a neologism for (b∗, U).

Second, no payoff vector that is dominated by the best pooling one can
be neologism-proof.

P (b∗) ∩ {U | U ≤ Upool∗, U ̸= Upool∗} = ∅.

This follows from using (b∗, Upool∗) as a neologism.
Third, consider the segment between the least-cost separating payoff vec-

tor and (θH , θH), the best pooling payoff vector at the belief 1. We define
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U(θL)

U(θH)
45◦

prior belief is b∗ = 3
4

K(b∗)

Upool∗

U lcs

P (b∗)

Figure 2: In the Spence-job-market example, at the prior belief b∗ = 3/4, the set
of feasible payoff vectors K(b∗) has an empty intersection with P (b∗), the set of
payoff vectors U such that (b∗, U) is neologism-proof (the set extends infinitely to
the upper right). The unique neo-optimum is Upool∗.

the “lower right” of this segment as the set of payoff vectors U such that
U(θL) ≥ Û(θL) and U(θH) < Û(θH) for some Û in the segment. Given any
such U , the pair (1, Û) is a neologism for (b∗, U). Thus,

P (b∗) ∩
(

lower right of segment between U lcs and (θH , θH)
)

= ∅.

The three restrictions that we have described characterize P (b∗); the set is
sketched in Figure 2.

It is apparent that no b∗-feasible and b∗-neologism payoff vector exists. It
is also apparent that Upool∗ is the unique payoff vector that is above a point
in the topological closure of P (b∗). Thus, Upool∗ is the unique neo-optimum.

In the case b∗ = (θH − θL)/θH , the set of neo-optima equals the segment
spanned by U lcs and Upool∗.

In cases with a prior belief b∗ < (θH − θL)/θH , the payoff vector U lcs

is the unique Kakutani perfect-Bayesian equilibrium and thus is the unique
neo-optimum; this is implied by Proposition 1 below.

Note that neo-optimum in general differs from ex-ante optimum. If the

18



prior belief b∗ is slightly below (θH − θL)/θH , then the payoff vector U lcs is
the unique neo-optimum and the payoff vector Upool∗ is the unique ex-ante
optimum.13

A class of settings in which neo-optimum is trivially unique and identical
to ex-ante optimum is characterized by the property that U(t) = U(t′) for
all (b, U) ∈ K and all t, t′ ∈ T . Such settings are considered in Koessler
and Skreta (2016):14 different types of the principal have identical goals and
represent different information about the agents’ payoffs.

In Appendix B we present several cases of mechanism-design by a pri-
vately informed seller with interdependent values. These examples reveal
some aspects that are not present in our Spence example. In particular, one
example features b-feasibility sets that are not nested across different beliefs
b, and the other example has multiple Kakutani perfect-Bayesian equilibria
such that different types of the principal prefer different equilibria, yet there
is a unique neo-optimum.

Our next result shows that neo-optimum is a refinement of perfect-Bayesian
equilibrium.

Proposition 1. Let b∗ denote an interior belief. Any b∗-neo-optimum is a
Kakutani Perfect-Bayesian equilibrium.

Towards proving this, the main technical hurdle is Lemma 3 below. (This
is also the essential step towards many of the equilibrium constructions in
the informed-principal literature.) It says that from any given finite list of
Kakutani sets belief-payoff-vector pairs can be selected to form a composition
that entails any given belief.

Lemma 3. Let P be a finite set of Kakutani sets. Let b ∈ B.
Then there exists a composition (b, U∗) ∈ B × IRT of some (b∗P , U

∗
P )P∈P ,

where (b∗P , U
∗
P ) ∈ P for all P .

The proof works as follows. For each n = 1, 2, . . . , we define a function
Ψn that continuously maps each list of payoff vectors that can occur in the
signals in P to a vector of smoothed optimal choice probabilities, that is,

13Alternatively, we may maximize the principal’s ex-ante expected payoff among all
Kakutani perfect-Bayesian equilibria. This “ex-ante-optimal equilibrium” is identical to
neo-optimum in the Spence example for all b∗ ̸= (θH − θL)/θH . For an example where
ex-ante-optimal equilibrium and neo-optimum are different for an open set of prior beliefs,
consider the discussion at the end of the informed-seller example in the appendix.

14See also Izmalkov and Balestrieri (2012).
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every type chooses every P ∈ P with a positive probability, and as n tends
to infinity, almost all weight is put on utility-maximizing P s. Requiring
strictly positive choice probabilities is a form of trembling which guarantees
that by Bayesian updating from b a unique belief about the sender’s type is
assigned to each signal.

We have another correspondence given by the signals themselves. Suppose
a belief is given for each signal in P . We consider the correspondence that
assigns to any such list of beliefs a set of lists of payoff vectors by applying
the signals to the beliefs. Combining this correspondence with Ψn, we obtain
a correspondence that has a fixed point by Kakutani’s Theorem.15

A fixed point consists of, for each signal, a belief and a payoff vector that
belongs to the signal at this belief such that the beliefs are consistent with
the sender’s smoothed optimal choice.

By taking n to infinity we consider a sequence of fixed points with trem-
bling probabilities tending to 0. By choosing an appropriate subsequence, we
can guarantee that the sequence converges. In the limit, there is no trembling
restriction so that the beliefs are fully consistent with the sender’s optimal
choice among the signals. Because the signals are compact, each limit payoff
vector belongs to the respective signal at the limit belief. By construction,
the maximum of the limit payoff vectors together with belief b is the compo-
sition of the list of limit payoff vectors together with the limit beliefs. The
details of the proof are in the Appendix.

Proof of Proposition 1. Consider a b∗-feasible and b∗-neologism-proof payoff
vector U . It is sufficient to show that U is a Kakutani perfect-Bayesian
equilibrium. By Lemma 2, the conclusion then extends to limit points. By
definition of equilibrium, it then extends to points above.

Consider any Kakutani set M in K. By Lemma 3, there exists a compo-
sition (b∗, ·) of some (b1, V ) ∈ M and some element of B × {U}.

In particular, (b1, V ) ∈ K. Let c1(t) denote the choice probabilities of M
in the composition.

Suppose that V ≰ U . For any t ∈ T with V (t) > U(t), we have c1(t) = 1
by definition of a composition. Applying (5) with t′′ = t, (7) follows.

By assumption, V (t̂) > U(t̂) for some t̂ ∈ T = supp(b∗), implying c1(t̂) =
1.

15The detour through introducing trembles is needed to guarantee that Ψn is single-
valued, and thus the combined correspondence is convex-valued, a prerequisite for Kaku-
tani’s Theorem.
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Now consider any t ∈ T with V (t) < U(t). Then c1(t) = 0. Because b is
interior, b(t̂) > 0. Applying (5) with t′ = t and t′′ = t̂ now yields (8).

Thus, (b1, V ) is a neologism for (b∗, U). But this contradicts the assump-
tion on U . Hence, V ≤ U , as was to be shown.

As an immediate corollary to Proposition 1, we have a way of establishing
other (and, in many settings, all) Kakutani perfect-Bayesian equilibria. Vir-
tually all equilibria in the informed-principal literature can be reconstructed
in this way.

Corollary 1. Consider any interior prior belief b∗ and another interior belief
b′. Any payoff vector that is b∗-feasible and is a b′-neo-optimum is a Kakutani
perfect-Bayesian equilibrium at the prior belief b∗.

Note that the result applies to the equilibria in Maskin and Tirole (1992)
(see also the correcting formulation in Dosis (2022)) and the literature build-
ing on it: if the “Rothschild-Stiglitz-Wilson allocation” (which is feasible at
all beliefs) is undominated for some interior belief b′, then its induced pay-
off vector is b′-neologism-proof and hence is a b′-neo-optimum, implying by
Corollary 1 that it is a Kakutani perfect-Bayesian equilibrium at any interior
prior belief b∗.

4 Neo-optimum versus Myerson’s solution con-

cepts in Bayesian incentive problems

In this section, we use the simpler term neo-optimum instead of b∗-neo-
optimum because we follow Myerson’s formulation of Bayesian incentive
problems in which the prior belief b∗ is the uniform distribution on T . We
show that a neo-optimum exists in any Bayesian incentive problem and ex-
plain its connection to Myerson’s solution concepts neutral optimum, expec-
tational equilibrium, and core.

Given any Bayesian incentive problem, Myerson (1983) identifies a set of
payoff vectors that he calls neutral optima. He argues that neutral optima
represent a “fair” compromise across all types of the principal. By verifying
Myerson’s axioms in the proof below, we obtain the following reult.

Proposition 2. Consider any Bayesian incentive problem. Any neutral op-
timum is a neo-optimum.
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An immediate conclusion is that in the Spence example above with a
highest feasible task level, the neutral optimum is generically unique and
identical to neo-optimum for all prior beliefs b∗ ̸= (θH − θL)/θH .

Myerson shows that a neutral optimum always exists. Thus, we have the
following.

Corollary 2. In any Bayesian incentive problem, a neo-optimum exists.

This is a very broad existence result because Myerson allows for arbitrary
outcome spaces, any number of agents, arbitrary payoff functions, and moral
hazard; the essential restriction is that type and outcome spaces are assumed
to be finite.

We emphasize that neo-optimum is not only much easier to handle than
neutral optimum in applications, but neo-optimum is also conceptually sim-
pler than neutral optimum because it avoids any reference to Myerson’s
(1983) Extension axiom, which relates properties of solutions across different
Bayesian incentive problems.

While we will not dwell on Myerson’s axioms, we still find it worthwhile to
mention that the axioms are very useful for understanding why a prior-belief-
feasible and neologism-proof payoff vector often fails to exist. The problem
with neologism-proofness as a solution concept is that it violates two axioms,
Openness and Domination. Indeed, as the Spence example above shows, a
payoff vector can be neologism-proof while payoff vectors arbitrarily close
to it may fail to be, and some payoff vectors above it may also fail to be.
The concept of a neo-optimum relaxes the ideal of a prior-belief-feasible and
neologism-proof payoff vector just enough so that all of Myerson’s axioms
are satisfied, thus restoring existence.

Proof of Proposition 2. Let b∗ denote the uniform distribution on T . We say
that a payoff vector U ∈ IRT is neo-blocked if for some ϵ > 0, a neologism
exists for all (b∗, V ) such that V ≤ U + ϵ. To complete the proof, it is
sufficient to show that the concept of neo-blocking satisfies Myerson’s four
axioms.

The axioms Extension, Domination, and Openness are clear by construc-
tion. Consider the axiom Strong Solution. Let U be a strong solution. We
have to show that U is not neo-blocked. For this it is sufficient that no
neologism exists for (b∗, U). Suppose that (b̂, Û) is a neologism. The main
step is to show that (*) there exists a belief b′ such that (b∗,max{Û , U}) is
a composition of (b̂, Û) and (b′, U).
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By definition of a strong solution, (b′, U) is feasible. Given (*), composition-
closedness then implies that (b∗,max{Û , U}) is feasible. Because, by defini-
tion of a strong solution, U is undominated, max{Û , U} = U , implying that
Û ≤ U , contradicting the fact that (b̂, Û) is a neologism.

To show (*), take any ť such that Û(ť) > U(ť) and define d̂ = b∗(ť)/b̂(ť).
For all t ∈ T , define

c1(t) =
d̂ b̂(t)

b∗(t)
, c2(t) = 1− c1(t), b′(t) =

b∗(t)c2(t)

1− d̂
.

This together with the definition of a neologism implies c1(t) = 1 for all t
with Û(t) > U(t), 0 ≤ c1(t) ≤ 1 for all t with Û(t) = U(t), and c1(t) = 0 for
all t with Û(t) < U(t). Next,

∑

t

b∗(t)c2(t) = 1−
∑

t

b∗(t)c1(t) = 1−
∑

t

d̂ b̂(t) = 1− d̂,

implying that b′ is a probability distribution. Moreover, using the definitions
above it is straightforward to verify that

c1(t
′′)b∗(t′′)b̂(t′) = c1(t

′)b∗(t′)b̂(t′′)

and
c2(t

′′)b∗(t′′)b′(t′) = c2(t
′)b∗(t′)b′(t′′)

for all t′, t′′ ∈ T . This completes the proof of (*).

The following result establishes that neo-optimum is an equilibrium re-
finement.

Proposition 3. In any Bayesian incentive problem, any neo-optimum is an
expectational equilibrium.

Proof. Consider a payoff vector U such that no neologism exists for (b∗, U),
where b∗ is the uniform distribution. Consider any generalized mechanism
µ′ as defined in Myerson (1983). It is sufficient to show that there exists a
belief b′ and a continuation equilibrium in µ′ at belief b′ such that no type of
principal gains from deviating to µ′.

Consider a fictitious game in which the principal (with type distributed
according to b∗) first chooses between getting the payoff vector U and the
game ends, or deciding that µ′ will be played. Because the fictitious game is
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finite, there exists a sequential equilibrium. Let b′ denote a belief at the start
of the continuation game µ′ that is consistent with the sequential equilibrium.
For all t, denote by c1(t) the probability that type t decides to play µ′, and
denote by V (t) her expected payoff in the continuation game µ′.

By definition of a sequential equilibrium, V is b′-feasible.
Suppose that V ≰ U . By the sequential-equilibrium conditions, (b′, V ) is

a neologism for (b∗, U). But this contradicts the assumption on U . Hence,
V ≤ U , so that at belief b′ no type of principal gains from choosing µ′.

To relate neo-optimum to Myerson’s (1983) other solution concept, core,
we need additional notation. We formulate the relation generally for all
informed-principal settings, not restricted to Bayesian incentive problems.
Given any interior belief b∗ and a non-empty set S ⊆ T , let bS denote the
belief derived from the information that the type belongs to S, that is,

bS(t) = 0 for all t ̸∈ S,

and bS(t′)b∗(t′′) = bS(t′′)b∗(t′) for all t′, t′′ ∈ S.

A payoff vector U is called a b∗-core payoff vector if U is b∗-feasible and for any
payoff vector V that dominates U there exists S ⊇ {t ∈ T | V (t) > U(t)}
such that V is not bS-feasible. Myerson motivates the concept with ideas
involving neologisms. While a core payoff vector always exists if b∗ is the
uniform distribution, it is not always an equilibrium. Next we show that
neo-optimum is stronger than the core.

Proposition 4. Let b∗ denote an interior belief. Then any b∗-neo-optimum
is a b∗-core payoff vector.

Proof. Denote D = {t ∈ T | V (t) > U(t)}.
Suppose that U is b∗-feasible, but is not a core payoff vector, that is,

there exists a a payoff vector V that dominates U and V is bS-feasible for all
S ⊇ D.

Fix ϵ > 0 such that V (t) > U(t) + ϵ for all t ∈ D.
Consider any W ≤ U + ϵ.
Note that D ⊆ DW := {t ∈ T |V (t) > W (t)}. Thus, V is bD

W

-feasible,
implying that (bD

W

, V ) is a neologism for (b∗,W ).
We conclude that U is not a b∗-neo-optimum.
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5 Neo-optimum in private-values environments

Mylovanov and Tröger (2012) establish a solution for a principal who “has
private information that is not directly payoff relevant to the agents, but
may influence her design”—the private-values case. The concept, strongly
neologism-proof allocations, is a generalization of strong unconstrained Pareto
optimum (SUPO) defined by Maskin and Tirole (1990). Here we show it is
equivalent to neo-optimum.

Proposition 5. Consider a separable generalized-private-values environment
in the sense of Mylovanov and Tröger (2012). Consider any interior prior
b∗. Then a payoff vector U is strongly neologism-proof if and only if U is a
b∗-neo-optimum.

Together with Proposition 2 this resolves a long-standing open question
concerning the relation between the private-values solution concepts and
neutral optimum: in any separable generalized-private-values environment
that is also a Bayesian incentive problem, any neutral optimum is strongly
neologism-proof. Since strong neologism-proofness often yields sharp prop-
erties related to competitive equilibria (Maskin and Tirole, 1990)—such as
ex-ante optimality in quasi-linear settings (Mylovanov and Tröger, 2014)—
the same properties apply to any neutral optimum.

From the existence result in Mylovanov and Tröger (2012) together with
the only-if part of Proposition 5, we can also conclude that a neo-optimum
broadly exists in private-value settings, including settings that do not sat-
isfy the finiteness properties of Bayesian incentive problems as defined by
Myerson (1983).

As an intermediate step towards proving Proposition 5, we employ yet
another solution concept. In a sense, this is the missing piece that allows
to connect private-values settings to neutral optimum. The concept was
invented by Koessler and Skreta (2023) in a non-private-values context of
information design. Given any belief b∗, a payoff vector U is b∗-interim-
optimal if (i) U is b∗-feasible and (ii) there does not exist a belief b together
with a b-feasible payoff vector V such that supp(b) ⊆ {t ∈ T |V (t) > U(t)}.
Interim-optimality is easily seen to be at least as strong as neo-optimum (and
the result has nothing to do with private values):

Remark 2. Consider any informed-principal setting. Given any interior
belief b∗, any b∗-interim-optimal payoff vector is a b∗-neo-optimum.
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Proof. Consider any b∗-interim optimal payoff vector U . Then, for all ϵ > 0,
no neologism exists for (b∗, U + ϵ). Thus, U is a limit of b∗-neologism-proof
payoff vectors, showing that it is a neo-optimum.

Interim-optimality—in contrast to neo-optimum—is not a generally ap-
plicable solution concept because existence may fail, as can be seen in our
Spence example with b∗ > (θH − θL)/θH .

To prove Proposition 5, we first show that in private-values settings,
interim-optimality and neo-optimality are in fact equivalent. Then we use
the separability assumption in Mylovanov and Tröger (2012) to show that
interim-optimality and strong neologism-proofness are equivalent.

Translated into our current, abstract framework, a private-values setting
is a set of belief-payoff-vector pairs K with the following property. There
exist closed and convex sets of P and Q ⊇ P in some linear space, and a
linear mapping Π from Q into IRT . Each element of Q is a possible “allocation
for a principal type”.

Given any allocation family (ρt)t∈T with ρt ∈ Q, we say that the condition
“Principal’s Incentive Compatibility” (PIC) is satisfied if Π(ρt)(t) ≥ Π(ρt′)(t)
for all t, t′ ∈ T . Given any allocation family (ρt)t∈T in Q together with a
belief b ∈ B, we say that the condition “Agents’ Feasibility” (AF) is satisfied
if
∑

t∈T b(t)ρt ∈ P .
The feasible set K is given as follows: for any belief b ∈ B, we have

U ∈ K(b) if and only if there exists an allocation family (ρt)t∈T in Q such
that U(t) = Π(ρt)(t) and PIC holds, and AF holds for (ρt)t∈T together with
the belief b.

This captures as a special case the “generalized private-values environ-
ments” of Mylovanov and Tröger (2012), where Q is the set of all maps from
the profile of agent types (excluding the principal’s type) into the space of
outcomes, P is the subset of Q in which the agents’ incentive and partici-
pation constraints are satisfied, and Π(x) is the principal’s expected-payoff
vector from any x ∈ Q. What we call an “allocation family” here is called
an “allocation” in Mylovanov and Tröger (2012).

Proposition 6. Consider any private-values setting. Given any interior
belief b∗, a payoff vector is b∗-interim-optimal if and only if it is a b∗-neo-
optimum.

The only-if part was shown in Remark 2. To show the if-part (for details
see the Appendix), we start with a b∗-feasible payoff vector U that is not
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interim optimal and show that it is not a neo-optimum.
By assumption, there exists a feasible “deviation” (b′′, U ′′) such that in

U ′′ all types in the support of b′′ are strictly better off than in U . In general,
(b′′, U ′′) is not a neologism because the relative probabilities of different types
in the support of b′′ are unrestricted, and types outside the support may also
be better off in U ′′ than in U . The idea behind our proof is to apply a
sequence a “surgeries” in which we change the deviation multiple times such
that eventually a neologism (b̂, Û) for (b∗, U) is obtained.

Because in U ′′ all types in the support of b′′ are also strictly better off
than in the payoff vectors in a neighborhood of U and below, the surgery
constructions extend to the existence of neologisms for all such payoff vectors,
implying that U is not a neo-optimum.

Starting with b′′ and an allocation family (ρ′′t ) for U
′′, the basic idea behind

our surgeries is that we build a new belief b′ together with a new allocation
family (ρ′t) such that

∑

t∈T

b′(t)ρ′t =
∑

t∈T

b′′(t)ρ′′t ,

where each type’s ρ′-allocation will be a convex combination of various types’
ρ′′-allocations. By construction, the new allocations belong to Q, and AF
remains true for (ρ′t) (resp., for its resulting payoff vector) together with b′.

If some type t’s new allocation ρ′t arises from a convex combination in-
volving some type ť’s old allocation ρ′′

ť
, then we say that type t obtains a

chunk of type ť’s allocation. Note that in this process a corresponding piece
of probability mass from b′′(ť) must be moved into b′(t) so that AF remains
true.

The possibility of surgeries yields considerable freedom to construct new
deviations (b′, U ′), but care is needed to guarantee that PIC remains true
so that (b′, U ′) is feasible. Several observations are helpful towards verifying
PIC: first, if a type does not gain from choosing some other types’ allocations,
then she also cannot gain from any convex combination of these allocations;
second, if a type does not gain from choosing another type’s allocation, then
any convex combination of her own and that type’s allocation is still at least
as good for her as that type’s allocation; third, if a type strictly loses from
choosing another type’s allocation, then this remains true for any perturba-
tion of her original allocation.

As a first surgery, the belief is kept fixed and each type outside the sup-
port of b′′ gets restricted to choose her most preferred allocation among the
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allocations of types in the support of b′′. This will keep PIC in place and can
only lead to a reduction of utility for the types outside the support.

If after this operation there exists a type t outside the support who still
obtains more than her U utility, then, as a second surgery, we move some
probability mass to her from her most preferred type in the initial support.
AF and PIC are still in place, but now we have included t into the support. In
this way, we obtain a deviation (b′, U ′) such that in U ′ all types in the support
of b′ are strictly better off than in U , and all types outside the support are
weakly better off in U than in U ′.

If the support of b′ contains a single type, we have obtained a neologism
and are done. If it contains two types, say t and ť, the remaining surgeries
are still comparatively easy. It is useful to introduce auxiliary variables that
capture probabilities relative to the prior; we call the numbers b′(t)/b∗(t) and
b′(ť)/b∗(ť) the r-values of the types t and, resp., ť at the belief b′. If both
types have the same r-value, then (b′, U ′) is a neologism for (b∗, U) and we
are done.

Otherwise one type, say t, has a smaller r value than the other type, ť.
Now imagine that we change the deviation continuously, by moving an ever
larger chunk of the allocation of type ť, and a corresponding piece of belief
probability mass, to type t. Along the way, any other type (i.e., the types
outside the support of b′) always chooses her most preferred allocation among
the current allocations of the types t and ť. In this process, the r-value of
type t increases while the r-value of type ť decreases, and the utility of type
t1 can drop. AF und PIC remain intact.

This process is continued until one of two things happens. Either both
types’ r values are equalized, or the utility of type t drops to her U utility.
In both cases we have arrived at a neologism and are done.

The general argument, where the type space (and thus the support of
b′) can have any cardinality, is very much more complicated. The main
reasons for the complications are that the number of incentive constraints
in PIC increases fast (quadratically) with the cardinality of the type space,
and that we have to find a deviation that equalizes the r-values across a
potentially large number of types. These complications may have contributed
to the fact that the underlying puzzle—the relation between neutral optimum
and private-values solution concepts—has remained open essentially since the
start of the informed-principal literature in the 1980s. In the following we
provide a roadmap through the general argument.

The key to the general argument is the introduction of a special class of
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deviations. A feasible pair (b′, U ′) is a *deviation if at least one type has
utility > U , all types not in supp(b′) have utility ≤ U and each of them
obtains the same allocation as one of the types in supp(b′), all types in
supp(b′) have utility ≥ U , and the U -utility types t ∈ supp(b′) have r-values
≤ r∗, where r∗ is defined as the “target value” of r that would be reached if
all r-values of types with > U utility were equal, that is

∑

U ′(t)>U(t)

(r∗ − rb′(t)) b
∗(t) = 0, (9)

where rb′(t) = b′(t)/b∗(t) denotes the r-value of any type t at the belief b′.
(Note that r∗ is defined separately for each *deviation.)

Not all *deviations are allowed deviations in the definition of interim-
optimality because some types in the support of b′ can have utility equal to
U . However, a *deviation, with no U -utility type in the support of b′, exists
by the first and second surgery arguments above.

If a *deviation is such that the r-values of all > U -utility types are equal-
ized then, by construction, the *deviation is a neologism for (b∗, U) and we
are done.

Rather than explicitly describing the sequence of surgeries to be applied to
the initial *deviation, we cut through to the end by considering a *deviation
with the “right” properties.

Consider the *deviations that have a minimal cardinality of the support
of b′ among all *deviations. Among these, consider the *deviations that
have a maximum number of U -utility types in the support. Among these,
we consider a *deviation that has a maximum number of types with r-value
equal to r∗.

We claim that any such *deviation (b′, U ′) has the desired neologism prop-
erties. Suppose otherwise.

Let r∗0 denote the value of r
∗ for (b′, U ′). Then there exists a type t1 in the

support of b′ with > U utility and an r-value below r∗0. Let T≤ denote the
set of > U -utility types with r-values ≤ r∗0. Let T> denote the > U -utility
types with r-values > r∗0.

Starting with (b′, U ′), we now consider the problem of maximizing the
r-value of type t1 via surgery subject to constraints. We consider surgery
that concerns the types in T≤ ∪ T>, while the other types in the support of
b′ keep their allocations, and each type outside the support of b′ chooses her
best available allocation among those of the types in the support of b′.
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Using the numeration from the proof for reference, the constraints are
that (18) all types in T> keep their allocations, (19) each type in T≤ obtains
a convex combination of the allocations of the types in T≤ ∪ T>, (20) the
r-value of type t1 remains ≤ r∗0, (21) the r-values of the types in T≤ \ {t1}
remain the same as at the belief b′, (22) the r-values of the types T> remain
≥ r∗0, (23) each type in T≤ weakly prefers her new allocation to the (old and
new) allocation of each of the types in supp(b′) \ (T≤ ∪ T>), (24) each type
in T≤ weakly prefers her new allocation to the new allocations of the types
in T≤, and to the allocations of the types in T>, and (25) the utility each
type in T≤ does not fall below her U -utility.

We will show that at a solution to the maximization problem, denoted
(b̂, û), the constraints (20), (22), (23), and (25) are not binding. This will
allow us to increase the solution value via a perturbation that satisfies all
constraints, and thus obtain a contradiction.

By construction, the solution (b̂, û) is a *deviation, where b̂ has the same
(minimum cardinality) support as b′. By the assumed maximality of the
number of U -utility types in the support, at the optimum (b̂, û), the utility
of no type in T≤ has dropped to her U -utility, that is, the constraints (25)
are not binding. Note also that the r∗-value for (b̂, û) is still equal to r∗0.

At b̂, the r-value of type t1 must still be strictly below r∗0, and the r-values
of the types in T> must still be strictly above r∗0 because the number of types
with r-values equal to r∗ was assumed to be already maximal at (b′, U ′), and
by constraint (21) any type who before the optimization had an r value equal
to r∗ keeps it. Thus, the constraints (20) and (22) are not binding.

Suppose a constraint (23) is binding, that is, some type ti ∈ T≤ is indiffer-
ent to a type t̊ that belongs to the support of b̂ and who obtains her U utility.
Then we can do a surgery where all the probability mass and allocation of
t̊ is moved to type ti, yielding a new *deviation where the type t̊ does not
belong to the belief support anymore, but this contradicts the minimality of
the support of b̂ among all *deviations.

Now we describe the perturbation of (b̂, Û). Only the allocations of the
types in a subset of T≤ are changed. In the subset we include all types with
allocations that type t1 likes as well as her own allocation, and then include
all types that any type included in the first round is indifferent to, and so
on, until all indifferences in T≤ are exhausted. We denote this subset (which
can be the singleton {t1}) by T≤

= .
As a perturbing surgery, the allocation of each type in T≤

= is now changed
such that a small fraction of her new allocation comes from her respective
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most preferred type in T>. The fraction will be the same for all types in T≤
= ,

implying that incentive compatibility relative to each other and to the types
in T> remains intact. By construction, there are no indifferences from types
in T≤

= to types in T≤ \ T≤
= if the perturbation is small.

Due to the new allocation chunks and corresponding probability masses,
the types in T≤

= will now have increased r-values. For all types except t1, the
r values must be brought back to their previous levels to satisfy constraint
(21).

To this end, we consider a directed graph with nodes T≤
= where each edge

corresponds to an indifference. We select a tree with root t1 in T≤
= . All the

direct predecessor types of the tree’s end nodes get chunks of the end node’s
allocations and corresponding probability masses such that the end nodes
are back to their correct r values. These corrections are iterated backwards
through the tree. Due to the indifferences along the way, the involved types
keep their utility levels. Eventually only type t1 gains probability mass,
yielding the desired contradiction.

To prove Proposition 5 (for details see the appendix), it is—in light of
Proposition 6—sufficient to show that a payoff vector is strongly neologism-
proof if and only if it is interim optimal.

The direction “only if” is immediate from the definitions. To show “if”,
consider an interim-optimal payoff vector U and suppose it is not strongly
neologism-proof. Then there exists a feasible deviation pair (q0, U

′) such that,
for all t ∈ supp(q0), we have that (i) U

′(t) ≥ U(t) with strict inequality for at
least one type t = t′0, and (ii) U(t) is below the “maximum feasible payoff”
as defined in Mylovanov and Tröger (2012). We now do surgery in order to
find a deviation as required in the definition of interim-optimality. By the
“separability” assumption, there exists an allocation such that all agents’
constraints are satisfied strictly; we perturb the allocation family underlying
U ′ by having type t′0 offer this separating allocation with a small probability
and simultaneously slightly increasing the probability mass for type t′0. She
will still be strictly better off than in U . Given the new allocation family,
the agents’ constraints are satisfied strictly. Thus, we can again perturb it
without violating the agents’ constraints; we do this by giving all types in
supp(q0) \ {t′0} their “maximum feasible payoff” with a small probability.
Now all types in the belief support are strictly better off than in U , but
PIC may not hold anymore. It can be restored by further surgery, using
the method from Mylovanov and Tröger (2012). If one type in the belief
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support is attracted to the allocation of another type in the belief support,
then we let the first type offer the average allocation of what both types
used to offer, and move all the probability mass from the second type to the
first type. This procedure continues until incentive compatibility is satisfied
for the types in the (remaining) support. Let the types outside the support
choose their optimum among the allocations of the types in the support.
Then we have a deviation as considered in the definition interim-optimality.

6 Neo-optimum in settings with certification

or information-design

Koessler and Skreta (2019) consider a seller-principal who proposes a mecha-
nism to guide her interaction with a single buyer. Values are interdependent:
each trader has private information concerning both traders’ valuations. The
seller can provide partial or complete evidence about (i.e., “certify”) her type.
The model fits into our framework, with Lemma 1 in Koessler and Skreta
(2019) describing the sets of feasible payoff vectors for all beliefs.

Koessler and Skreta (2019) propose a solution concept, strong Pareto op-
timum (SPO). They show that any prior-feasible SPO is an expectational
equilibrium and is ex-ante optimal, but it exists only in settings with suf-
ficient (e.g., full) certifiability. Using neo-optimum instead of SPO as a so-
lution concept in their setting, existence is generally guaranteed and their
qualitative results remain largely intact. In the following we sketch how.

Remark 3. Let b∗ denote an interior prior belief. Any b∗-feasible SPO as
defined in Koessler and Skreta (2019) is a b∗-neo-optimum.

Proof. Consider a b∗-feasible SPO (payoff/profit vector) V ∗. We show that
for any ϵ > 0, the payoff vector V ∗+ϵ is neologism-proof. Suppose there exists
a neologism (b, U) for (b∗, V ∗ + ϵ). Define a payoff vector V via V (t) = U(t)
for all t ∈ supp(b), and V (t) = V ∗(t) for all other t. Then (using the
terminology of Koessler and Skreta (2019)) V is “buyer-feasible” at the belief
π = b. Moreover, V (t) ≥ V ∗(t) for all t ∈ T , with strict inequality for
all t ∈ supp(b), contradicting the definition of an SPO payoff vector. We
conclude that V ∗ is a limit of b∗-neologism-proof payoff vectors, and hence is
a b∗-neo-optimum.
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Thus, all the properties that we have established for neo-optima also hold
for any prior-feasible SPO. Moreover, in all cases where there is a unique neo-
optimum, it is identical to prior-feasible SPO if the latter exists.

Note that Koessler and Skreta (2019) includes two extreme cases, full
certifiability and no certifiability (“soft information”). Importantly, SPO is
a generally useful solution concept only under sufficient certifiability, while
neo-optimum can always be used.

Remark 4. Let b∗ denote an interior prior belief. A b∗-feasible SPO as
defined in Koessler and Skreta (2019) may not exist with soft information,
but a b∗-neo-optimum always exists.

Koessler and Skreta (2019) themselves remark on the non-existence prob-
lem. Interestingly, non-existence can also be seen from our Spence-job-
market example, restricted via a highest feasible task level e. This setting
is included as a soft-information case in Koessler and Skreta (2019). The
worker-principal is the seller. Selling her labor with a certain probability p
means working at the task level e = pe. Thus, our Spence example with
the prior b∗ slightly below (θH − θL)/θH yields instances where no b∗-feasible
SPO exists because it would be ex-ante optimal by the results in Koessler
and Skreta (2019) and would be a b∗-neo-optimum by our Remark 3.

Neo-optimum, however, always exists: any setting considered in Koessler
and Skreta (2019) is a Bayesian incentive problem, except that feasibility
is defined without truthtelling constraints for the principal; as observed in
Koessler and Skreta (2023), Myerson’s 1983 proof that a neutral optimum
exists still applies and, by the same logic as in our Proposition 2, any neutral
optimum is a neo-optimum.

In the other extreme case, full certifiability, the main qualitative insight of
Koessler and Skreta (2019) is that a prior-feasible SPO exists and is ex-ante
optimal. But this is also true for neo-optimum.

Remark 5. With full certifiability, any neo-optimum is ex-ante optimal.

Indeed, in the proof of Proposition 3 in Koessler and Skreta (2019), the
pair (π0, Ṽ ) is a neologism for (π0, V̂ ) because with full certifiability there
are no incentive constraints for the seller.

Koessler and Skreta (2023) analyze information design by a privately
informed designer. Their setting fits into our framework.16 Koessler and

16Note a special feature of information-design settings: different types of the principal
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Skreta (2023) introduce a new solution concept, interim optimality, which we
have generalized to arbitrary informed-principal settings in Section 5 above.
The main results in Koessler and Skreta (2023) concern existence of interim-
optimum in their setting, the proof that interim-optima are perfect-Bayesian
equilibria, and characterization results in special settings.

From Remark 2 in Section 5 we know that any interim optimum is a
neo-optimum. In the different variants of the introductory prosecutor-judge
example in Koessler and Skreta (2023) the reverse is also true, that is, any
neo-optimum is interim-optimal. The question to what extent this reverse
implication holds in general information-design settings is left for future re-
search.

Consider the three-actions variation of the prosecutor-judge setting in
Koessler and Skreta (2023) with a belief that the defendant is guilty with a
probability b < 1/3. A payoff vector (U(tG), U(tI)) is b-feasible if and only if

U(t) = 2µ(a2|t) + 3µ(a3|t) for t ∈ {tG, tI},

where µ is a mechanism that satisfies the relevant obedience constraints, that
is, µ is b-incentive compatible as defined in Koessler and Skreta (2023).

To prepare, we extend the arguments in Koessler and Skreta (2023) to
show the following.

Lemma 4. Consider a belief 0 < b < 1/3 in the three-actions variation of
the prosecutor-judge setting in Koessler and Skreta (2023). The set of b-
feasible payoff vectors is the convex hull of the points (0, 0), (3, 0), (3, 3

2
b

1−b
),

and (2, 4 b
1−b

).

See Figure 5 for an illustration of the b-feasibility set and the b′-feasibility
set for some 0 < b < b′ < 1/3.

Koessler and Skreta (2023) show that, in the three-action and four-action
prosecutor-judge examples with a prior belief b∗ < 1/3, a payoff vector U∗ is
interim-optimal if and only if

(*) U∗ is b∗-feasible and U∗(tG) = 3.

We claim that condition (*) is also necessary for U∗ to be a b∗-neo-optimum.

cannot imitate each other in a given direct mechanism. Thus, even in settings with state-
independent preferences the feasibility of a payoff vector does not exclude the possibility
that different types obtain different payoffs.
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type tG’s payoff

type tI ’s payoff

b-feasible

b′-feasible

Figure 3: The sets of feasible payoff vectors at different beliefs 0 < b < b′ < 1/3
in the three-action prosecutor-judge example in Koessler and Skreta (2023). The
thick vertices refer to the ex-ante optimal point (2, 4 b

1−b
) (or, resp., (2, 4 b′

1−b′
)) and

the point (3, 32
b

1−b
) (or, resp., (3, 32

b′

1−b′
)) where the information designer splits the

believed probability of the guilty type tG into 0 and 2/3.

Consider the three-action version and consider a b∗-neo-optimum U∗. By
feasibility, U∗(tG) ≤ 3. Suppose that U∗(tG) < 3.

Defining V = (3, 3
2

b∗

1−b∗
), note first that (b∗, V ) is a neologism for all

U ≤ V , U ̸= V .
By Lemma 4, for any b∗-feasible U with U(tG) < 3, there exists a b′-

feasible V with b′ > b∗, V (tG) > U(tG), and V (tI) = U(tI). Thus, (b′, V ) is
a neologism for U .

These arguments contradict the fact that U∗ is a b∗-neo-optimum. This
completes the proof that U∗ satisfies (*) in the three-action version.

The arguments extend easily to the four-action version. Because the de-
signer’s payoff from action a0 is smaller than from action a3, the b-feasibility
sets in the four-action version are more restricted than in the three-action
version, for all b. But the points (0, 0), (3, 3

2
b

1−b
), and (2, 4 b

1−b
) are still fea-

sible for all b < 1/3. Thus the above arguments showing the necessity of (*)
extend to the four-action version.

In the two-action version of the prosecutor-judge example in Koessler and
Skreta (2023), the equivalence between neo-optimum and interim-optimum
follows with the help of Remark 1.
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Appendix A: omitted proofs

Proof of Lemma 3. Fix any ϵ > 0. Denote by U the (compact) convex hull
of ∪P∈P,b′∈BP (b′). Define, for any n ∈ IN, any list of payoff vectors (UP )P∈P

with UP ∈ U , and any t ∈ T , the choice probability

Ψn((UP )P∈P)P (t) =
nUP (t)

∑

P ′∈P nUP ′ (t)
.

Note that, for any n, the map

Ψn : U
|P|

−→ IR|P|·|T |, (UP )P∈P 7→ Ψn((UP )P∈P) is continuous.

Denote by Cn the (compact) convex hull of Ψn(U
|P|
). Note that

∑

P∈P cP (t) =
1 for all t ∈ T and all (cP )P∈P ∈ Cn.

For any (cP )P∈P ∈ Cn, define b̂(cP ) ∈ B by

b̂(cP )(t) =
b(t)cP (t)

∑

t′∈T b(t′)cP (t′)
for all t ∈ T.

Define a correspondence

Cn : U
|P|

× Cn −→ U
|P|

× Cn

by

Cn((UP )P∈P , (cP )P∈P) = (P (b̂(cP )))P∈P ×Ψn((UP )P∈P).

Because b̂ is continuous, the correspondence Cn is upper-hemicontinuous and

convex-valued. Moreover, U
|P|

×Cn is convex and compact. Hence, by Kaku-
tani’s Theorem, Cn has a fixed point

((UP,n)P∈P , (cP,n)P∈P) .

Now choose a subsequence nl → ∞ such that, for all P ,

bP,nl

def

= b̂(cP,nl
) → b∗P for some b∗P ∈ B,

and
UP,nl

→ U∗
P for some U∗

P ∈ U , (10)
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and, for all t ∈ T ,

cP,nl
(t) → c∗P (t) for some c∗P (t) ≥ 0.

Hence,

sP,nl

def

=
∑

t′∈T

bP,nl
(t′)cP,nl

(t′) → s∗P
def

=
∑

t′∈T

b∗P (t
′)c∗P (t

′).

Observe that, by the definition of the fixed point,

UP,nl
∈ P (bP,nl

) for all l.

Taking the limit l → ∞ and using the upper-hemicontinuity of P , we obtain
the conclusion

U∗
P ∈ P (b∗P ). (11)

By definition of b̂, for all P and t,

b(t)cP,nl
(t) = bP,nl

(t)sP,nl
.

Taking the limit l → ∞, we obtain

b(t)c∗P (t) = b∗P (t)s
∗
P for all P and t. (12)

Observe that, for all P ∈ P and t ∈ T ,

if c∗P (t) > 0, then U∗
P (t) ≥ U∗

P ′(t) for all P ′ ∈ P . (13)

Indeed, if we had U∗
P (t) < U∗

P ′(t) for some P ′, then

UP ′,nl
(t)− UP,nl

(t) > ϵ
def

=
U∗
P ′(t)− U∗

P (t)

2
> 0

for all large l, implying—by definition of Ψnl
—that

cP ′,nl
(t)

cP,nl
(t)

= (nl)
UP ′,nl

(t)−UP,nl
(t) > (nl)

ϵ → ∞,

contradicting the fact that 0 < c∗P (t) = liml cP,nl
(t).

Next,
∑

P∈P c∗P (t) = 1 for all t by definition of b̂. Using (12) with t = t′

and t = t′′,

b∗P (t
′)c∗P (t

′′)b(t′′) = c∗P (t
′)b(t′)b∗P (t

′′) for all t′, t′′ ∈ T.

The proof is completed by defining U∗(t) = maxP∈P U∗
P (t) for all t.
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Proof of the if-part of Proposition 6. Consider a b∗-neo-optimum U .
Suppose that U is not interim-optimal, that is, a feasible pair (b′, U ′)

exists such that U ′(t) > U(t) for all t ∈ supp(b′). The pair (b′, U ′) applies
to all payoff vectors in a neighborhood of U and to everything below. Thus,
to obtain a contradiction it is sufficient to show that a neologism exists for
(b∗, U).

Given any belief b′, define rb′(t) = b′(t)/b∗(t) for all t ∈ T .
Call a feasible pair (b′, U ′) a *deviation if there exists an allocation family

(ρ′t)t∈T such that U ′(t) = Π(ρ′t)(t) for all t, U
′(t) ≤ U(t) for all t ∈ T\supp(b′),

{ρ′t | t ∈ T} = {ρ′t | t ∈ supp(b′)},

U ′(t) ≥ U(t) for all t ∈ supp(b′) with a strict inequality for at least one type,
and any type t ∈ supp(b′) with U ′(t) = U(t) satisfies rb′(t) ≤ r∗, where we
define r∗ via the equation

r∗ ·
∑

U ′(t)>U(t)

b∗(t) +
∑

U ′(t)=U(t)

b′(t) = 1. (14)

Note that we can also write this equation in the form (9).
As a first step, we show that a *deviation exists. Because U is not interim-

optimal, a feasible pair (b′′, U ′′) exists such that U ′′(t) > U(t) for all t ∈
supp(b′′). Let (ρ′′t )t∈T denote a corresponding family of allocations. That is,

U ′′(t) = Π(ρ′′t )(t) ≥ Π(ρ′′ť )(t) (15)

for all t, ť ∈ T , and
∑

t′∈T

b′′(t′)ρ′′t′ ∈ P. (16)

For all t ∈ T \ supp(b′′), select a

v(t) ∈ arg max
ť∈supp(b′′)

Π(ρ′′ť )(t), (17)

and let v(t) = t for all t ∈ supp(b′′). Then define ρ′t = ρ′′v(t) and U ′(t) =

Π(ρ′t)(t) for all t ∈ T .
In other words, every type outside supp(b′′) gets restricted to their re-

spective best allocation of a type in supp(b′′), while the types in supp(b′′)
keep their allocations.
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The construction has a second part in which we move from the belief b′′

to a new belief b′. If a type t outside supp(b′′) has utility U ′(t) > U(t), then
we move a bit of probability to her from the type v(t). This includes t into
the support supp(b′), without affecting AF because the types t and v(t) get
the same allocation.

We will now describe the second part of the construction more formally.
For any t′ ∈ supp(b′′), let w(t′) denote the number of types outside supp(b′′)
which choose the allocation of type t′ and still get more than their U utility.
That is,

w(t′) = |{t ∈ T \ supp(b′′) | v(t) = t′, U ′(t) > U(t)}|.

Given any ϵ > 0, define for all t ∈ T ,

b′(t) =







0 if t ̸∈ supp(b′′) and U ′(t) ≤ U(t),
ϵ if t ̸∈ supp(b′′) and U ′(t) > U(t),
b′′(t)− ϵw(t) if t ∈ supp(b′′),

where ϵ is chosen so small that b′(t) > 0 for all t ∈ supp(b′′).
PIC holds for the allocation family (ρ′(t))t∈T . To see this, note that, for

all t, t′ ∈ T ,

Π(ρ′t)(t) = Π(ρ′′v(t))(t) ≥ Π(ρ′′v(t′))(t) = Π(ρ′t′)(t),

where in the cases with t ∈ supp(b′) the above inequality follows from (15)
with ť = v(t′), and in the other cases the inequality follows from (17).

To show that AF holds for the allocation family (ρ′t)t∈T together with the
belief b′, recall (16) and note that

∑

t′∈T

b′(t′)ρ′t′ =
∑

t′∈T

b′′(t′)ρ′′t′ .

We conclude that (b′, U ′) is a feasible pair. Moreover, by construction,

supp(b′) = {t ∈ T | U ′(t) > U(t)}.

Thus, (b′, U ′) is a *deviation.
LetD2 denote the set of *deviations (b

′, U ′) such that |supp(b′)| is minimal
among all *deviations. Let D1 denote the set of *deviations (b′, U ′) in D2

such that |{t ∈ supp(b′) | U ′(t) = U(t)}| is maximal among all *deviations
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in D2. Let D0 denote the set of *deviations (b′, U ′) in D1 such that |{t ∈
supp(b′) | U ′(t) > U(t), rb′(t) = r∗}| is maximal among all *deviations in D1.

In the following, we consider a *deviation (b′, U ′) ∈ D0. Let (ρ′(t))t∈T
denote an allocation family for this *deviation. Let r∗0 denote the r∗-value
for this *deviation.

It remains to show that (b′, U ′) is a neologism for (b∗, U). To prove this,
we have to show that all types t with U ′(t) > U(t) satisfy rb′(t) = r∗0.

Suppose otherwise. Then there exists a type t1 with U ′(t1) > U(t1) and
rb′(t1) < r∗0 as well as a type t with U ′(t) > U(t) and rb′(t) > r∗0. Let t1, . . . , tn
denote the types with U ′(ti) > U(ti) and rb′(ti) ≤ r∗0. Let tn+1, . . . , tn+m

denote the types with U ′(ti) > U(ti) and rb′(ti) > r∗0.
Now consider the following problem, where y stands for the probability

mass assigned to type t1, and xk,i stands for the fraction of the allocation of
type tk that is reassigned to type ti.

max
y, (xk,i)k=1,...,n+m,

i=1,...,n+m

y,

s.t. xk,i = 1k=i for all k and all i ≥ n+ 1, (18)

xk,i ≥ 0 for all k and all i ≤ n,
n+m
∑

k=1

xk,i = 1 for all i ≤ n, (19)

y ≤ b∗(t1)r
∗
0, (20)

b′(tk) = xk,1y +
n
∑

i=2

xk,ib
′(ti) for all k ≤ n, (21)

b′(tk)− xk,1y −
n
∑

i=2

xk,ib
′(ti) ≥ b∗(tk)r

∗
0 for all k > n, (22)

n+m
∑

k=1

xk,iΠ(ρ
′
k)(ti) ≥ Π(ρ′ť)(ti) for all ť ∈ supp(b′) \ {t1, . . . , tn+m},

(23)
n+m
∑

k=1

(xk,i − xk,j)Π(ρ
′
k)(ti) ≥ 0 for all i ≤ n and all j, (24)

n+m
∑

k=1

xk,iΠ(ρ
′
k)(ti) ≥ U(ti) for all i ≤ n. (25)
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Note that all constraints are satisfied at the point y = b′(t1) and xk,i = 1k=i

for all k and i. Thus, the feasibility set is non-empty and the solution value—
which exists by the extreme-value theorem of Weierstrass—is ≥ b′(t1).

Given any solution ŷ, (x̂k,i), define an allocation family (ρ̂t) as follows:

ρ̂ti =
n+m
∑

k=1

x̂k,iρ
′
tk

for all i = 1, . . . , n+m;

ρ̂t = ρ′t for all t ∈ supp(b′) \ {t1, . . . , tn+m}, and ρ̂t = ρ̂v̂(t) for all t ∈ T \
supp(b′), where we choose any

v̂(t) ∈ arg max
ť∈supp(b′)

Π(ρ̂ť)(t).

Define a utility vector Û via Û(t) = Π(ρ̂t)(t) for all t. Define a belief b̂ as
follows: b̂(t1) = ŷ; b̂(tk) = b′(tk) for k = 2, . . . , n;

b̂(tk) = b′(tk)− x̂k,1ŷ −
n
∑

i=2

x̂k,ib
′(ti) for all k = n+ 1, . . . , n+m;

b̂(t) = b′(t) for all t ∈ T \ {t1, . . . , tn+m}. Note that b̂ ∈ B because

∑

t∈T

b̂(t) =
∑

t∈supp(b′)\{t1,...,tn+m}

b′(t) + ŷ +
n
∑

k=2

b′(tk)

+
n+m
∑

k=n+1

(

b′(tk)− x̂k,1ŷ −
n
∑

i=2

x̂k,ib
′(ti)

)

=
∑

t∈supp(b′)\{t1}

b′(t) +

(

1−
n+m
∑

k=n+1

x̂k,1

)

ŷ −
n
∑

i=2

n+m
∑

k=n+1

x̂k,ib
′(ti)

and, recalling b′ ∈ B and using constraint (19), the above chain continues as

= 1− b′(t1) +
n
∑

k=1

x̂k,1ŷ −
n
∑

i=2

(

1−
n
∑

k=1

x̂k,i

)

b′(ti)

= 1−
n
∑

i=1

b′(ti) +
n
∑

k=1

x̂k,1ŷ +
n
∑

i=2

n
∑

k=1

x̂k,ib
′(ti) = 1,
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where the last equation follows from the formula that is obtained by summing
the constraints (21) across all k ≤ n. Next we show that (b̂, Û) is feasible.
To verify condition AF for (b̂, Û), note that

∑

t∈T\{t1,...,tn+m}

b̂(t)ρ̂t =
∑

t∈T\{t1,...,tn+m}

b′(t)ρ′t

and

n+m
∑

i=1

b̂(ti)ρ̂ti = ŷρ̂t1 +
n
∑

i=2

b′(ti)ρ̂ti +
n+m
∑

k=n+1

b̂(tk)ρ
′
tk

= ŷ
n+m
∑

k=1

x̂k,1ρ
′
tk
+

n
∑

i=2

b′(ti)
n+m
∑

k=1

x̂k,iρ
′
tk

+
n+m
∑

k=n+1

(

b′(tk)− x̂k,1ŷ −
n
∑

i=2

x̂k,ib
′(ti)

)

ρ′tk

=
n
∑

k=1

(

ŷx̂k,1 +
n
∑

i=2

b′(ti)x̂k,i

)

ρ′tk +
n+m
∑

k=n+1

b′(tk)ρ
′
tk

(21)
=
∑n+m

k=1 b′(tk)ρ
′
tk
.

We also have to verify PIC. For any t ∈ T \ supp(b′) and t′ ∈ supp(b′),

Π(ρ̂t)(t) = Π(ρ̂v̂(t))(t) ≥ Π(ρ̂t′)(t),

by definition of v̂(t). Similarly, for any t, t′ ∈ T \ supp(b′),

Π(ρ̂t)(t) = Π(ρ̂v̂(t))(t) ≥ Π(ρ̂v(t′))(t) = Π(ρ̂t′)(t).

For all t ∈ supp(b′) \ {t1, . . . , tn} and all t′ ∈ T ,

Π(ρ̂t)(t) = Π(ρ′t)(t) = max
ť∈T

Π(ρ′ť)(t) ≥ Π(ρ̂t′)(t).

For all t ∈ {t1, . . . , tn} and all t′ ∈ {t1, . . . , tn+m}, constraint (24) directly
implies Π(ρ̂t)(t) ≥ Π(ρ̂t′)(t).

This then also implies that for all t ∈ {t1, . . . , tn} and all t′ ∈ T \supp(b′),
Π(ρ̂t)(t) ≥ Π(ρ̂v̂(t′))(t) = Π(ρ̂t′)(t).

For all t ∈ {t1, . . . , tn} and all t′ ∈ supp(b′) \ {t1, . . . , tn+m}, constraint
(23) directly implies Π(ρ̂t)(t) ≥ Π(ρ̂t′)(t). This completes the proof of PIC.
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Next we show that (b̂, Û) is a *-deviation.
For all i = 1, . . . , n, we have Û(ti) ≥ U(ti) by constraint (25). For all

t ∈ supp(b′) \ {t1, . . . , tn+m}, we have Û(t) = U ′(t) = U(t) by construction.
For all i = n+1, . . . , n+m, we have Û(ti) = U ′(ti) > U(ti) by construction.
For all t ∈ T \ supp(b′),

Û(t) = Π(ρ̂v̂(t)) ≤ max
ť∈supp(b′)

Π(ρ′ť)(t) ≤ Π(ρ′t)(t) = U ′(t) ≤ U(t).

In particular, for any type t ∈ T , if Û(t) > U(t) then U ′(t) > U(t), and all
types t ∈ T with Û(t) = U(t) satisfy rb̂(t) ≤ r∗0. Thus, to complete the proof

that (b̂, Û) is a *-deviation, it remains to show that the r∗ value for (b̂, Û)
satisfies r∗ ≥ r∗0.

Using the definition (14),

1 = r∗0 ·
∑

U ′(t)>U(t)

b∗(t) +
∑

U ′(t)=U(t)

b′(t)

≥ r∗0 ·
∑

Û(t)>U(t)

b∗(t) +
∑

U ′(t)>U(t),

Û(t)=U(t)

b̂(t) +
∑

U ′(t)=U(t)

b′(t)

= r∗0 ·
∑

Û(t)>U(t)

b∗(t) +
∑

Û(t)=U(t)

b̂(t),

implying that r∗ ≥ r∗0.
Next we show that the constraints (20), (22), (23), and (25) are not

binding at the solution ŷ, (x̂k,i).

Note that (b̂, Û) ∈ D2 because supp(b̂) = supp(b′). Moreover, because
any type t ∈ supp(b̂) with U ′(t) = U(t) also satisfies Û(t) = U(t), we even
have (b̂, Û) ∈ D1. Thus, Û(ti) > U(ti) for all i = 1, . . . , n, implying that the
constraints (25) are not binding.

As a consequence, r∗ = r∗0.
By construction, any type t ∈ T with rb′(t1) = r∗0 also satisfies rb̂(t1) = r∗0.

Thus, we even have (b̂, Û) ∈ D0, implying that the constraints (20) and (22)
are not binding.

To show that the constraints (23) are not binding, we suppose that

Û(ti) = Π(ρ̂̊t)(ti)
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for some i ≤ n and some t̊ ∈ supp(b′) \ {t1, . . . , tn+m} and derive a contra-
diction. Define an allocation family (ρ̊t)t∈T as follows. Let

ρ̊ti =
b̂(ti)

b̂(ti) + b̂(̊t)
ρ̂ti +

b̂(̊t)

b̂(ti) + b̂(̊t)
ρ̂̊t; (26)

let ρ̊t = ρ̂t for all t ∈ supp(b′) \ {ti, t̊}; for all t ∈ {̊t} ∪ T \ supp(b′), let
ρ̊t = ρ̂v̊(t), where we choose any

v̊(t) ∈ arg max
ť∈supp(b′)\{̊t}

Π(ρ̊ť)(t).

Define a belief b̊ as follows. Let

b̊(ti) = b̂(ti) + b̂(̊t); (27)

let b̊(ti) = 0; let b̊(t) = b̂(t) for all ∈ T \ {ti, t̊}.
Define a payoff vector Ů via Ů(t) = Π(ρ̊t)(t) for all t ∈ T .
By the supposed indifference, Ů(ti) = Û(ti). Moverover, the set of alter-

native allocations to choose from has shrunk:

{ρ̊t′ |t
′ ∈ T \ {ti}} ⊆ {ρ̂t′ |t

′ ∈ T \ {ti}}.

Thus, because (ρ̂t)t∈T satisfies PIC, the allocation family (ρ̊t)t∈T also satisfies
PIC for t = ti and all t′ ∈ T . The same holds for t ∈ supp(b′) \ {ti, t̊} and all
t′ ̸= ti because ρ̊t = ρ̂i.

The allocation family (ρ̊t)t∈T satisfies PIC for all t ∈ supp(b′) \ {ti, t̊} and
for t′ = ti because

Π(ρ̊ti)(t)
(26)

≤ max{Π(ρ̂ti)(t),Π(ρ̂̊t)(t)} ≤ Π(ρ̂t)(t) = Π(ρ̊t)(t).

Finally, the allocation family (ρ̊t)t∈T satisfies PIC for all t ∈ {̊t}∪T \supp(b′)
and all t′ due to the definition of v̊(t). This completes the verification of PIC.

To verify AF for (ρ̊t)t∈T together with b̊, note that

∑

t∈T\{ti ,̊t}

b̊(t)ρ̊t =
∑

t∈T\{ti ,̊t}

b̂(t)ρ̂t,

and

b̊(ti)ρ̊ti + b̊(̊t)ρ̊̊t = b̂(ti)ρ̂ti + b̂(̊t)ρ̂̊t
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by (26) and (27). Thus, (̊b, Ů) is feasible.
Also note that supp(̊b) = supp(b′) \ {̊t}.
To obtain a contradiction it remains to verify that (̊b, Ů) is a *deviation

because then (b′, U ′) ̸∈ D2.
By construction, Ů(t) = Û(t) for all t ∈ supp(̊b) and Ů(t) ≤ Û(t) for all

t ∈ T \ supp(̊b). Thus, using the definition (14),

1 = r∗0 ·
∑

Û(t)>U(t)

b∗(t) +
∑

Û(t)=U(t)

b̂(t)

= r∗0 ·
∑

Ů(t)>U(t)

b∗(t) +
∑

Ů(t)=U(t)

b̊(t) + b̂(̊t),

implying that the r∗ value for (̊b, Ů) satisfies r∗ > r∗0. Thus, (̊b, Ů) is a
*deviation.

To obtain the final contradiction, we will now define a perturbation of
the presumed max-solution that satisfies all constraints and increases the
solution value.

Denote T≤ = {t1, . . . , tn}. Given the allocation family (ρ̂t)t∈T , we say that
(v1, . . . , vl) (where l ≥ 1) is a chain-indifference path in T≤ if v1, . . . , vl ∈ T≤

and Π(ρ̂vi+1
)(vi) = Π(ρ̂vi)(vi) for all i < l.

Let T≤
= denote the types t ∈ T≤ such that a chain-indifference path

(v1, . . . , vl) exists with v1 = t1 and vl = t.
An indifference graph (T≤

= , g) is defined as a directed graph such that
(i) the set of nodes equals T≤

= and (ii) Π(ρ̂t′)(t) = Π(ρ̂t)(t) for each edge
(t, t′) ∈ g.

By definition of T≤
= , there exists an indifference graph such that, for all

t′ ∈ T≤
= , there exists a (chain-indifference) path from t1 to t′. Requiring this

property, let (T≤
= , g) denote an indifference graph with a minimal number of

edges.
Then (T≤

= , g) is a tree with root t1; that is, no edge points to t1, and there
exists a unique path from t1 to each node in T≤

= . (To see the uniqueness
statement, suppose that paths p1 and p2 lead to the same node, and (t′1, t

′′) ∈
p1, (t′2, t

′′) ∈ p2 with t′1 ̸= t′2 are edges where the two paths join. Then
(T≤

= , g \ {(t′1, t
′′)}) is an indifference graph will a smaller number of edges in

which still there exists a path from t1 to any other node—contradiction.)
For each t ∈ T≤

= , let the index of a “most preferred type” among those
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with r > r∗ (recall that the constraints (22) are not binding) be denoted

ι(t) ∈ arg max
j∈{n+1,...,n+m}

Π(ρ̂tj)(t).

For all i with ti ∈ T≤
= , define

σ(i) = {j ∈ {1, . . . , n} | tj is a direct successor of ti in (T≤
= , g)}.

Note that σ(i) = ∅ means that ti is an end node in (T≤
= , g). For each j ̸= 1

with tj ∈ T≤
= , let σ−1(j) denote the index of the direct predecessor of tj in

(T≤
= , g).
Fix any 0 < ϵ < 1. The following definition works recursively from the

end nodes backwards through the tree. Define

ωj =
b′(tj)

b′(tσ−1(j))

ϵ+ (1− ϵ)
∑

k∈σ(j) ωk

(1− ϵ)
for all j ̸∈ σ(1) with tj ∈ T≤

=

and

zj = b′(tj)
ϵ+ (1− ϵ)

∑

k∈σ(j) ωk

(1− ϵ)
for all j ∈ σ(1).

Define

ẙ =
1

1− ϵ
ŷ +

∑

j∈σ(1)

zj (28)

and

ωj =
zj
ẙ

for all j ∈ σ(1).

Thus, replacing zj = ωj ẙ in (28) and solving for ẙ, we find that

ẙ =
ŷ

(1−
∑

j∈σ(1) ωj)(1− ϵ)
. (29)

For all i with ti ∈ T≤
= and all k = 1, . . . , n+m, define

x̊k,i =



x̂k,i



1−
∑

j∈σ(i)

ωj



+
∑

j∈σ(i)

x̂k,jωj



 (1− ϵ) + 1k=ι(ti)ϵ. (30)
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For all i ≤ n with ti ̸∈ T≤
= , and all i = n+1, . . . , n+m and all k = 1, . . . , n+m,

define x̊k,i = 1k=i.
First note that

0 < ωj →ϵ→0 0 for all j ̸= 1 with tj ∈ T≤
= .

(This is seen recursively, arguing backwards from the end nodes in (T≤
= , g).)

Thus, through choosing ϵ sufficiently close to 0, we can guarantee that
∑

j∈σ(i) ωj is close to 0 for all i = 1, . . . , n, implying

x̊k,i ≥ 0

and, using (29),
ẙ > ŷ.

In particular, once we show that ẙ, (̊xk,i) satisfies all remaining constraints
of our max-problem, then we have a contradiction to the assumption that
ŷ, (x̂k,i) is a solution.

First of all, recall that the constraints (20), (22), (23), and (25) are not
binding at the solution ŷ, (x̂k,i).

Thus, because x̊k,i → x̂k,i and ẙ → ŷ as ϵ → 0, the constraints (20), (22),
(23), and (25) are also strictly satisfied at ẙ, (̊xk,i), assuming ϵ is sufficiently
close to 0.

Define the auxiliary variables b̂(t1) = ŷ and b̂(ti) = b′(ti) for all i =
2, . . . , n. Defining the column vectors b′n = (b′(t1), . . . , b

′(tn))
T and b̂n =

(b̂(t1), . . . , b̂(tn))
T and the square matrix X̂ = (x̂k,i)k≤n, i≤n, constraint (21)

reads
b′n = X̂b̂n. (31)

Defining the square matrices X̊ = (̊xk,i)k≤n, i≤n and H = (hj,i)j≤n, i≤n via
hj,i = 1j=i if ti ̸∈ T≤

= , and

hi,i =



1−
∑

j∈σ(i)

ωj



 (1−ϵ), hj,i = ωj(1−ϵ) for all j ∈ σ(i), hj,i = 0 otherwise,

if ti ∈ T≤
= , definition (30) implies the matrix-product equation

X̊ = X̂H. (32)

47



Now define the auxiliary variables b̊(t1) = ẙ and b̊(ti) = b′(ti) for all i =
2, . . . , n. Defining the column vector b̊n = (̊b(t1), . . . , b̊(tn))

T , the definition
of the ωj variables implies that

b̊(tσ−1(j))ωj(1−ϵ)+̊b(tj)(1−
∑

k∈σ(j)

ωk)(1−ϵ) = b̂(tj) for all j ̸= 1 with tj ∈ T≤
= ,

and (29) implies

b̊(t1)(1−
∑

k∈σ(1)

ωk)(1− ϵ) = b̂(t1).

In matrix notation,
Hb̊n = b̂n.

Together with (31) and (32) this implies

b′n = X̊b̊n.

That is, constraint (21) holds for ẙ, (̊xk,i).
That constraint (19) holds for (̊xk,i) is seen by summing (30) across all

k = 1, . . . , n+m and noting that (19) holds for (x̂k,i).
It remains to verify (24) for (̊xk,i), that is, for all i ≤ n and all j,

n+m
∑

k=1

(̊xk,i − x̊k,j)Π(ρ
′
k)(ti) ≥ 0. (33)

Consider any i with ti ̸∈ T≤
= and any j > n, or j ≤ n with tj ̸∈ T≤

= . Then
(33) is immediate because x̊k,i = x̂k,i and x̊k,j = x̂k,j and (24) holds for (x̂k,i).

Consider any i with ti ̸∈ T≤
= and any j with tj ∈ T≤

= . Then (33) follows
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from (30) because

n+m
∑

k=1

(̊xk,i − x̊k,j)Π(ρ
′
k)(ti)

=
n+m
∑

k=1

(x̂k,i − x̊k,j)Π(ρ
′
k)(ti)

=(1−
∑

l∈σ(j)

ωl)(1− ϵ)
n+m
∑

k=1

(x̂k,i − x̂k,j)Π(ρ
′
k)(ti)

+
∑

l∈σ(j)

ωl(1− ϵ)
n+m
∑

k=1

(x̂k,i − x̂k,l)Π(ρ
′
k)(ti) + ϵ

n+m
∑

k=1

(x̂k,i − x̂k,ι(tj))Π(ρ
′
k)(ti)

≥0,

where the inequality follows because (24) holds for (x̂k,i).
Consider any i with ti ∈ T≤

= and j ≤ n with tj ̸∈ T≤
= . By definition of the

indifference tree, (24) holds as a strict inequality for (x̂k,i). Thus, assuming
that ϵ is sufficiently close to 0, (33) holds.

Consider any i with ti ∈ T≤
= . By definition of the indifference tree,

n+m
∑

k=1

x̊k,iΠ(ρ
′
k)(ti) = (1− ϵ)

n+m
∑

k=1

x̂k,iΠ(ρ
′
k)(ti) + ϵ Π(ρ′ι(ti))(ti). (34)

Because (24) holds for (x̂k,i) with j = ι(ti), we conclude that

n+m
∑

k=1

x̊k,iΠ(ρ
′
k)(ti) ≥ Π(ρ′ι(ti))(ti).

Thus, for any j > n, using the definition of ι(ti),

n+m
∑

k=1

x̊k,iΠ(ρ
′
k)(ti) ≥ Π(ρ′tj)(ti),

implying (33).
Finally, consider any i with ti ∈ T≤

= and any j with tj ∈ T≤
= . Applying
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(34), and applying it again with i replaced by j, we find

n+m
∑

k=1

(̊xk,i − x̊k,j) Π(ρ
′
k)(ti)

=(1− ϵ)
n+m
∑

k=1

(x̂k,i − x̂k,j) Π(ρ
′
k)(ti) + ϵ

(

Π(ρ′ι(ti))(ti)− Π(ρ′ι(tj))(ti)
)

≥0,

where the inequality follows because both terms are ≥ 0—the left term be-
cause (24) holds for (x̂k,i) and the right term by definition of ι(ti).

In summary, we have shown that ẙ, (̊xk,i) satisfies all constraints of the
max problem and ẙ > ŷ, contradicting the fact that ŷ, (x̂k,i) is a solution.

Proof of Proposition 5. In this proof, we use the notation from Mylovanov
and Tröger (2012). The payoff vector that corresponds to an allocation ρ
is Uρ

0 . We now say that the payoff vector is strongly neologism-proof if the
underlying allocation is strongly neologism-proof.

In light of Proposition 6, it is sufficient to show that a payoff vector is
strongly neologism-proof if and only if it is interim optimal.

The direction “only if” is immediate from the definitions. To show “if”,
let ρ denote an allocation such that Uρ

0 is interim optimal and suppose that ρ
is not strongly neologism-proof. Then there exists a belief q0 and a q0-feasible
allocation ρ′ such that q0 puts zero probability on all types that are strictly
better off in ρ than in ρ′ or that already obtain in ρ the maximum feasible
payoff. Moreover, there exists a type t′0 ∈ supp(q0) such that Uρ′

0 (t′0) >
Uρ
0 (t

′
0).
Let f : T−0 → Z denote the expected agent-allocation at the belief q0,

that is,

f(·) =
∑

t0∈T0

q0(t0)ρ
′(t0, ·).

By the q0-feasibility of ρ′, the agents’ constraints are satisfied at f .
By separability, there exists an agent-allocation e : T−0 → Z such that

all agents’ incentive and participation constraints are satisfied strictly.
For any δ < 1, define a belief q̂0 and an allocation ρ̂ such that, for all

t0 ̸= t′0, q̂0(t0) = δq0(t0) and ρ̂(t0, ·) = ρ′(t0, ·), and

q̂0(t
′
0) = 1− δ + δq0(t

′
0))
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and

ρ̂(t′0, ·) =
δq0(t

′
0)

q̂0(t′0)
ρ′(t′0, ·) +

1− δ

q̂0(t′0)
e(·).

Assume δ is close to 1 such that supp(q̂0) = supp(q0).
At the belief q̂0 and the allocation ρ̂, the agents expect to obtain the

allocation f with probability δ, and the allocation e with probability 1 − δ.
Thus, at ρ̂ the agents’ constraints are satisfied strictly. Let e denote an
allocation where each type t0 ∈ supp(q0)\{t

′
0} obtains their maximum feasible

payoff.
By construction, for ϵ > 0 close to 0, the allocation ϵe+ (1− ϵ)ρ̂ satisfies

the agents’ constraints at belief q̂0 and, for all types in supp(q̂0), is strictly
preferred over the allocation ρ.

Now it remains to change q̂0 and ρ̂ so that the principal’s incentive con-
straints are reestablished; this works for all private-value environments: if a
type t0 in the support of q̂0 is attracted to what a type t̂0 offers, then let t0
offer the average of what both types used to offer, and move the probability
from type t̂0 to t0. This procedure continues until incentive compatibility
is satisfied for the types in the (remaining) support. Let the types outside
the support choose their optimum among the offerings of the types in the
support. Then we have a deviation as considered in the definition interim-
optimality.

Proof of Lemma 4. Note first that the feasibility set belongs to the set of
realizable payoff vectors [0, 3]2. Koessler and Skreta (2023) show that all four
points mentioned in the lemma are b-feasible; let µ1 denote a mechanism
that yields the payoff vector (0, 0), let µ2 denote a mechanism that yields
the payoff vector (3, 0), let µ3,b denote a mechanism that yields the payoff
vector (3, 3

2
b

1−b
), and let µ4,b denote a mechanism that yields the payoff vector

(2, 4 b
1−b

). In the following, we fix µ4,b as follows:

µ4,b(a0|G) = µ4,b(a3|G) = µ4,b(a3|I) = 0, µ4,b(a2|G) = 1,

µ4,b(a0|I) =
1− 3b

1− b
, µ4,b(a2|I) =

2b

1− b
.

To further discuss the feasibility restrictions, we need to consider the obe-
dience constraints. To this end, we must fix a payoff function for the agent
that induces the agent’s belief-dependent action as described in Koessler and
Skreta (2023). Let

u1(a0|G) = u1(a0|I) = 0, u1(a2|G) = 2, u1(a2|I) = −1, u1(a3|G) = 3, u1(a3|I) = −3.
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Define

g = −2
b

1− b
and g =

5

2

b

1− b
.

We will show that, for all g ∈ [g, g], the mechanism µ4,b maximizes the
weighted average of the principal-types’ payoffs, where g denotes the weight
on type tG, while the payoff of type tI has the weight 1. Formally, we show
that (*) µ4,b is a maximizer of the function

ϕg(µ) = g(2µ(a2|tG) + 3µ(a3|tG)) + 2µ(a2|tI) + 3µ(a3|tI)

subject to the b-feasibility constraints for the mechanism µ. This proves the
lemma because

ϕg(µ
4,b) = ϕg(µ

3,b) and ϕg(µ
4,b) = ϕg(µ

1).

To show (*), we verify that the Karush-Kuhn-Tucker first-order conditions
are satisfied at the point µ = µ4,b for all g ∈ [g, g]. Let λ3,0 denote the
Lagrangian multiplier for the obedience constraint that the agent when the
recommended action is a3 cannot gain from taking action a0 instead. Let
λ3,2, λ2,0, λ2,3, λ0,2, and λ0,3, denote the Lagrangian multipliers of the other
obedience constraints, where in all variables the first lower index indicates
the recommended action and the second indicates a non-recommended action.
The KKT conditions require that

λ2,3 = λ0,2 = λ0,3 = 0

because the corresponding obedience conditions are not binding at µ4,b. The
other three obedience constraints are binding at µ4,b, implying that the KKT
conditions require the inequalities

λ3,0 ≥ 0, λ3,2 ≥ 0, λ2,0 ≥ 0. (35)

Let λG and λI denote the Lagrangian multipliers for the probability con-
straints

µ(a0|tG) + µ(a2|tG) + µ(a3|tG) = 1,

µ(a0|tI) + µ(a2|tI) + µ(a3|tI) = 1.

We will not introduce Lagrangian multipliers for the probability-boundary
constraints 0 ≤ µ(a|t) ≤ 1, but will write the KKT conditions as appropriate
inequalities.
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Differentiating the Lagrangian with respect to µ(a0|tI) yields the first-
order condition

λI = 0.

(Note that the condition is an equality because 0 < µ4,b(a0|tI) < 1, implying
that the probability-boundary constraints are not binding.)

Differentiating the Lagrangian with respect to µ(a0|tG) yields the first-
order condition

λG ≤ 0.

Differentiating the Lagrangian with respect to µ(a2|tI) yields the first-order
condition

2 + λ2,0(1− b)(−1) = 0,

where we have already used that λI = 0. Differentiating the Lagrangian with
respect to µ(a2|tG) yields the first-order condition

r · 2 + λG + λ2,0b · 2 ≥ 0. (36)

Differentiating the Lagrangian with respect to µ(a3|tI) yields the first-order
condition

3 + λ3,0(1− b)(−3) + λ3,2(1− b)(−2) ≤ 0.

Differentiating the Lagrangian with respect to µ(a3|tG) yields the first-order
condition

r · 3 + λG + λ3,0b(−3) + λ3,2b · 1 ≤ 0. (37)

Here we can interpret (36) as an upper bound for −λG and (37) as a lower
bound (essentially we are applying the Fourier-Motzkin algorithm in the
following). Thus we can remove λG from the first-order system of equations
and inequalities and conclude that a solution to the Karush-Kuhn-Tucker
condition exists if and only if the following system has a solution:

2 + λ2,0(1− b)(−1) = 0,

r · 2 + λ2,0b · 2 ≥ 0,

3 + λ3,0(1− b)(−3) + λ3,2(1− b)(−2) ≤ 0,

r · 2 + λ2,0b · 2 ≥ r · 3 + λ3,0b(−3) + λ3,2b,
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and (35). The first equation implies λ2,0 = 2/(1− b) > 0. Plugging this into
the remaining conditions yields the simplified system

r · 2 + 4
b

1− b
≥ 0,

b

1− b
4− r ≥ 3bλ3,0 + bλ3,2,

3 ≤ 3(1− b)λ3,0 + 2(1− b)λ3,2,

λ3,0 ≥ 0,

λ3,2 ≥ 0.

This can be rearranged as follows.

r ≥ g,

λ3,2 ≤
1

1− b
4−

1

b
r − 3λ3,0,

3

2

1

1− b
−

3

2
λ3,0 ≤ λ3,2,

λ3,0 ≥ 0,

λ3,2 ≥ 0.

Now we can remove λ3,2 and simplify to

r ≥ g,

0 ≤
1

1− b
4−

1

b
r − 3λ3,0,

3

2

1

1− b
−

3

2
λ3,0 ≤

1

1− b
4−

1

b
r − 3λ3,0,

λ3,0 ≥ 0.

After rearranging terms,

r ≥ g,

λ3,0 ≤
1

1− b

4

3
−

1

b
r
1

3
,

λ3,0 ≤
1

1− b

5

3
−

1

b
r
2

3
,

λ3,0 ≥ 0.
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Thus, a solution exists if and only if

r ≥ g,

0 ≤
1

1− b

4

3
−

1

b
r
1

3
,

0 ≤
1

1− b

5

3
−

1

b
r
2

3
,

which is equivalent to g ≤ r ≤ g.

Appendix B: examples of mechanism-design

by a privately informed seller with interdepen-

dent values

For another illustration of Kakutani PBE and neo-optimum, let the principal
be a seller who proposes a mechanism for determining the probability q ∈
[0, 1] that she receives a unit of an indivisible good, and let p ∈ R denote the
buyer’s paymentm as in the informed-seller example in Dosis (2022). The
principal has one of two (non-negative) cost types, T = {c1, c2}. Any belief
b can be identified with the probability of the type c2, that is, b ∈ B = [0, 1].
Let p − ciq (i = 1, 2) denote the principal’s payoff if she has the type ci,
sells with probability q, and receives the payment p; the buyer then obtains
the payoff −p + viq, where v1 > c1, v2 > c2, and v2 > v1. If the payments
were bounded, the analysis would remain the same and the setting would
be a Bayesian incentive problem, implying that a neo-optimum exists (cf.
Corollary 2).

A mechanism is a game form in which the seller and the buyer play,
and each end node is a probability-payment pair (q, p) ∈ [0, 1] × R. The
mechanism is played if the buyer accepts it. By the revelation principle, given
any belief b ∈ B, the mechanism (or, more precisely, the action of proposing
the mechanism) implements a probability-payment pair17 (qi(b), pi(b)) for
each type ci such that incentive compatibility is satisfied,

p1 − c1q1 ≥ p2 − c1q2 and p2 − c2q2 ≥ p1 − c2q1, (38)

17Given the linearity of the payoff functions, probability distributions over probability-
payment pairs need not be considered.
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and the buyer’s participation constraint is satisfied,

(1− b)(v1q1 − p1) + b(v2q2 − p2) ≥ 0. (39)

Thus,
K = {(b, (p1 − c1q1, p2 − c2q2)) | (38), (39)}.

We now distinguish two cases. In the first, c1 < c2; this is consistent with the
interpretation that the seller has a low-quality good if her type is c1 and has
a high-quality good if her type is c2. In the second case, c1 > c2; recalling
v1 < v2, this case can be interpreted in terms of fit: if the seller’s type is c1
then the good is a relatively better fit for the seller, and otherwise fits the
buyer relatively better.

For any set of payoff vectors S, denote the payoff vectors that are below
some payoff vector in S along a 45 degree ray by

diagray(S) = {U | ∃x ≥ 0 : U + (x, x) ∈ S}.

As is clear from the constraints (38) and (39), if all payoff vectors in a set
S are b-feasible for some b ∈ B, then all payoff vectors in diagray(S) are b-
feasible as well because the payments to all types of the seller may be changed
by the same amount x.

Consider now the quality-uncertainty case c1 < c2. After standard ma-
nipulations of the constraints (38) and (39), we obtain the following charac-
terization,

K =
⋃

b∈B

{b} × diagray (conv {((1− b)v1 + bv2 − c1, (1− b)v1 + bv2 − c2)),

⋃

b∈B

{b} × diagray(conv ((1− b)(v1 − c1), (1− b)(v1 − c1))}) .

where conv{. . . } denotes the line section between two “vertex” payoff vectors.
The first of these arises from both types selling with probability 1, and the
payment is equal to the buyer’s expected valuation. The second vertex payoff
vector arises from type c1 selling with probability 1 and type c2 selling with
probability 0, where the payments are determined such that the incentive
constraint of type c1 (that is, the left constraint in (38)) and the agent’s
participation constraint (39) are binding (in particular, whenever b < 1 so
that the buyer is not certain to face type c2, a seller of this type obtains a
payment although she is not selling anything).
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As illustrated in Figure 4, the bounding line sections tilt around a com-
mon point U that is feasible at all beliefs. This point is characterized as
follows. The payoff of a type-c1 seller is maximized across all points in the
0-feasible set K(0), that is, under the constraint that the buyer is sure to face
type c1 and accepts the mechanism. This is achieved via the type-c1 seller
selling the good for sure (i.e., q1 = 1) and have the buyer pay p1 = v1. The
vertical component of the tilting point can be computed by the type-c2 seller
maximizing her payoff across all points in the 1-feasible set that satisfy the
incentive constraint of type c1 given her outcome (q1, p1). This is achieved
at the outcome (q2, p2) such that −c1 + v1 = −q2c1 + p2 and q2v2 − p2 = 0,
that is,

q2 =
v1 − c1
v2 − c1

, p2 =
v1 − c1
v2 − c1

v2.

(In particular, q2 < 1 so that the high-quality seller keeps the good with
positive probability.)

By Lemma 1, any Kakutani PBE is above U . Thus, whenever the 1st
vertex does not dominate U (that is, at all interior prior beliefs b∗ sufficiently
close to 0), the point U is the unique Kakutani PBE which, by Proposition
1 then also is the unique neo-optimum. Using Corollary 1, we conclude that,
for all interior priors, the set of Kakutani PBEs is equal to the points above
U that are feasible given the prior. Using Remark 1, the 1st vertex is the
unique neo-optimum if it dominates U strictly. In the non-generic case where
a seller of type c2 is indifferent between U and the 1st vertex, the line section
connecting these two points is the set of neo-optima.

Consider now the fit-uncertainty case c1 > c2. After standard manipula-
tions of the constraints (38) and (39), we obtain the following characteriza-
tion,

K =
⋃

b∈B

{b} × diagray (conv {((1− b)v1 + bv2 − c1, (1− b)v1 + bv2 − c2),

⋃

b∈B

{b} × diagray(conv (b(v2 − c2), b(v2 − c2))}) .

The first “vertex” payoff vector argument in conv{. . . } is the same as in
the quality-uncertainty case (i.e., both seller types sell with probability 1 at
a price equal to the buyer’s expected valuation). The second vertex payoff
vector arises from type c1 selling with probability 0 and type c2 selling with
probability 1, where the payments are determined such that the incentive
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type c1’s payoff

type c2’s payoff
K(0)

K(1
4
)

2nd vertex at b = 1
4

1st vertex at b = 1
4

K(3
4
)

K(1)

U

45◦

Figure 4: The sets of b-feasible payoff vectors at different beliefs b in the informed-
seller example with quality-uncertainty (we omit the parts of the feasible sets that
are to the left of the vertical axis). In contrast to the Spence example, the feasibility
sets are not nested across different beliefs. Each b-feasibility set is bounded by the
line section between the corresponding 1st and 2nd vertices, and includes all points
below this line section along 45 degree rays. As b changes, the line sections tilt
around a common point U that is feasible at all beliefs. (The diagram corresponds
to the case c1 = 1, c2 = 3, v1 = 2, v2 = 4.)
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type c1’s payoff

type c2’s payoff

K(0)

K(1
4
) \K(0)

1st vertex at b = 1
4

2nd vertex at b = 1
4

K(3
4
) \K(1

4
)

K(1) \K(3
4
)

U

45◦

Figure 5: The sets of b-feasible payoff vectors at different beliefs b in the informed-
seller example with fit-uncertainty (we omit the parts of the feasible sets that are to
the left of the vertical axis). The feasibility sets are nested across different beliefs.
Each b-feasibility set is bounded by the line section between the corresponding 1st
and 2nd vertices, and includes all points below this line section along 45 degree
rays. The largest payoff vector that is feasible at all beliefs is U . (The diagram
corresponds to the case c1 = 1, c2 = 0, v1 = 2, v2 = 4.)

constraint of type c2 (that is, the right constraint in (38)) and the agent’s
participation constraint (39) are binding (in particular, whenever b > 0 so
that the buyer is not certain to face type c1, a seller of this type obtains a
payment although she is not selling anything).

As illustrated in Figure 5, the b-feasibility sets are nested, with a larger
probability b of the type c2 leading to more feasible points. The largest point
that is common to all b-feasibility sets, U , arises from the 1st vertex at b = 0,
that is, both seller types sell with probability 1 at the price v1.

Given any interior prior belief b∗, the set of Kakutani PBE is easily char-
acterized. By Lemma 1, any Kakutani PBE is above U . On the other hand,
any b∗-feasible point above U is a Kakutani PBE because the “pessimistic”
off-path belief b = 0 can always be used.

Using Remark 1, the 1st vertex is the unique neo-optimum if it dominates
all other b∗-feasible points strictly (which happens for all b∗ sufficiently close
to 0 and is the case if b∗ = 1/4 in Figure 5).

For all b∗ sufficiently close to 1 (such as in the case b∗ = 3/4 in Figure 5),
there exist multiple b∗-feasible points above U that are on the b∗-weak-Pareto
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frontier. Thus, neither Proposition 1 nor Remark 1 are useful to determine
which of these points is a neo-optimum. Similar arguments as in our Spence
example show that the 1st vertex is the unique neo-optimum.

We conclude that the 1st vertex, where the good is sold with probability
1 by both types, is the unique neo-optimum at all interior prior beliefs.

It is straightforward to show that the 1st vertex also is the ex-ante opti-
mum. However, given any sufficiently large b∗, a trivial change of the setting
will let the ex-ante optimum switch to the 2nd vertex while the neo-optimum
remains at the 1st vertex: just assume that the payoff function of the type
c1-seller is instead given by α(p− c1q), where α is large; this will stretch Fig-
ure 5 horizontally by the factor α. The example is noteworthy because then
the 2nd vertex is both a Kakutani PBE and yields a higher ex-ante expected
payoff than the 1st vertex, yet the 1st vertex is the unique neo-optimum.
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