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Abstract

In this paper, I estimate the causal impact of short-term exposure to nitrogen dioxide
(NO2), ground-level ozone (O3), and particulate matter (PM) on healthcare costs in
France. I construct a large-scale dataset by linking administrative healthcare expen-
ditures for a nationally representative sample with high-resolution air pollution and
meteorological data. To address endogeneity concerns related to economic activity,
I implement an instrumental variable (IV) strategy that exploits weekly variations
in altitude atmospheric conditions—such as thermal inversions, wind speed, and the
height of the planetary boundary layer—that predict local pollutant concentrations
yet are unlikely to affect healthcare utilization except through pollution. My findings
reveal that air pollution, even at concentrations below current European air quality
standards, imposes annual healthcare costs that exceed earlier estimates by a factor of
ten. Heterogeneity analyses show that pollution affects multiple medical specialties,
including cardiology, pulmonology, and ophthalmology, while placebo specialties,
such as trauma surgery, exhibit no significant effects. Contrary to prior work focus-
ing on children and the elderly, I find that adverse health outcomes extend across all
age groups, demonstrating broader population vulnerability. Moreover, marginal ef-
fects prove larger at lower pollution levels, implying a concave dose-response function
that underscores the potential for substantial cost savings from even modest pollution
abatement in relatively clean areas. These results suggest that earlier cost-benefit
analyses likely undervalue the societal gains from stricter environmental regulation.

Keywords: Air pollution, healthcare cost, instrumental variables

1. Introduction

Air pollution is widely recognized as the most significant environmental risk to
public health in Europe. Particulate matter (PM), nitrogen dioxide (NO2), and
ground-level ozone (O3) are of particular concern (EEA, 2020). Exposure to PM
alone is estimated to contribute to approximately 400,000 premature deaths each
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year in Europe, while NO2 and O3 exposures account for around 70,000 and 15,000
additional premature deaths, respectively, in 2017 (Maguire et al., 2020). Even
in France, where pollution levels tend to be relatively low, air pollution remains
among the top ten risk factors for both mortality and disease burden (Institute for
Health Metrics and Evaluation, 2020). Numerous studies have linked exposure to air
pollution with adverse health outcomes, including Chronic Obstructive Pulmonary
Disease (COPD), respiratory distress (e.g., coughing, wheezing, and shortness of
breath), asthma, and increases in hospital admissions for respiratory and cardiovas-
cular diseases. For a review, see Manisalidis et al. (2020).

In response, air quality standards and target concentrations have been established
for several pollutants, yet the stringency of these limits remains controversial. At
present, the EU air quality guidelines are being revised to align more closely with
the World Health Organization’s (WHO) stricter guidelines, which themselves were
updated only recently in 2021 (European Commission, 2016). Accurate estimates of
the health impacts of air pollution are critical for policy makers seeking to deter-
mine the optimal level of environmental regulation. This is especially relevant when
pollution levels are already relatively low, and the marginal benefits of additional
pollution reduction may not obviously outweigh the costs. In this study, I quantify
the healthcare costs imposed on the French healthcare system by acute (short-term)
exposure to air pollution — a context in which average pollution levels remain far
below current EU air quality standards.

Estimating the causal impact of air pollution on healthcare costs is complicated
by the non-randomness of exposure. Individuals tend to select their residential loca-
tions based on preferences and characteristics associated with health status, which
may also correlate with pollution levels, thus biasing the estimates. To address this
concern, many previous studies have used quasi-experimental designs. However, data
or methodological limitations often confine these studies to specific geographic areas
or time periods, or narrow populations and health outcomes. Moreover, much of
the existing literature focuses on mortality, a relatively rare event at moderate pol-
lution levels; in contrast, healthcare costs may accrue even at lower concentrations.
To overcome these limitations, this study combines comprehensive French adminis-
trative data on healthcare expenditure with high-resolution geospatial data on air
pollution and meteorological conditions.

Specifically, I examine the causal effects of exposure to NO2, O3, and PM on
healthcare costs from 2015 to 2018. These costs encompass all types of health ser-
vices and related costs such as pharmaceutical expenditures and all types of medical
specialties. To identify causal effects, I use a location fixed-effects model exploiting
weekly variation in air pollution concentrations at the French zip code level. While
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location fixed effects account for time-invariant, location-specific population charac-
teristics, they cannot fully address potential endogeneity arising from correlations
between pollution and economic activity. Therefore, I also implement an instrumen-
tal variables (IV) approach, where altitude weather conditions serve as instruments
for local pollution concentrations. After flexibly controlling for time and location
fixed effects, and ground-level weather, I assume that changes in air pollution in-
duced by altitude weather conditions are orthogonal to any changes in healthcare
use or costs. These high-dimensional altitude weather instruments strongly predict
air pollution variability across France and allow simultaneous identification of effects
for multiple pollutants. I conduct robustness checks using alternative specifications:
different sets of instruments, varying fixed-effects structures, additional ground-level
weather controls, lagged pollution effects, and extended windows to capture pollution
build-up over prior weeks. Furthermore, I investigate heterogeneity in the estimated
effects by medical specialty, patient characteristics (e.g., age, chronic disease status,
insurance status), and location characteristics (e.g., average income, population size,
baseline pollution levels).

The results reveal that exposure to pollution concentrations predominantly be-
low current European air quality standards imposes healthcare costs on the French
healthcare system of several billion euros per year. Specifically, air pollution increases
annual healthcare spending by at least €12.8 billion, or about 0.5% of France’s 2019
GDP and 6.2% of total 2019 healthcare spending.1 These estimates are approx-
imately ten times larger than those reported in previous studies, suggesting that
earlier assessments have substantially underestimated the health-related costs of air
pollution. Although my estimates exceed prior findings, they should still be viewed
as a lower bound, as they capture only short-term effects and do not include costs re-
lated to mortality or loss of productivity. Additional analyses confirm that pollution
affects healthcare costs through the expected clinical pathways. Significant effects
emerge in cardiology and vascular medicine, pulmonology, otolaryngology (O.R.L.),
ophthalmology, gynaecology, and family practice. By contrast, no effects are detected
in placebo specialties such as trauma and plastic surgery. Age-based analyses show
that pollution affects healthcare costs across all age groups, diverging from prior
studies that primarily highlight impacts on children and the elderly. This discrep-
ancy may arise because most previous work focuses on mortality, while the present
study investigates milder (but more widespread) health effects. These findings sug-
gest that health problems extend beyond groups typically considered at highest risk.

1In 2019, France’s GDP was €2,425.7 billion (INSEE, 2020), and aggregate healthcare expendi-
ture was €208 billion (DREES, 2020).
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Regarding socioeconomic heterogeneity, the analyses do not reveal any clear pattern
of differential impacts by zip-code average income or by low-income status as proxied
by enrolment status in the state funded complementary insurance plan available to
low-income individuals. These findings are consistent with structural features of the
French healthcare system, which ensures affordability through high reimbursement
rates, subsidized or fully covered complementary insurance, and a nationally regu-
lated fee schedule for most medical services. Finally, although total expenditures
associated with air pollution are higher in urban areas (where populations are larger
and baseline pollution is somewhat elevated), the marginal impact of pollution is
greater in less populated regions with relatively low baseline concentrations. This
concave relationship suggests that small pollution shocks may have disproportion-
ately large health effects when levels are already low, echoing evidence from more
recent studies on the non-linear effects of pollution.

This study contributes to the literature on measuring the health costs of air pol-
lution for cost-benefit analyses and to the quasi-experimental literature in economics
assessing the causal effects of air pollution on health. The evaluation of the health-
care costs caused by air pollution has so far been comparatively incomplete. Studies
that seek to evaluate the health costs of air pollution for cost-benefit analysis often
only include a selection of health effects and part of the population for which epi-
demiological evidence is most robust. Taking a policy relevant example from France,
a 2015 Senate Committee of Inquiry into the economic and financial cost of air pol-
lution (Sénat, 2015) searched for estimates of the total costs of air pollution to the
French healthcare system to inform policy decisions. The result was a report on two
studies that considered only asthma and cancer (Fontaine et al., 2007) or respiratory
diseases and cancers, and hospitalisations for respiratory and cardiovascular causes
in Rafenberg (2015). Quasi-experimental studies are similarly limited in scope (see
for example Neidell (2004); Currie and Neidell (2005); Jayachandran (2009); Neidell
(2009); Moretti and Neidell (2011); Currie and Walker (2011); Chen et al. (2013);
Schlenker and Walker (2016); Knittel et al. (2016); Schwartz et al. (2017); Deschênes
et al. (2017); Simeonova et al. (2019); Halliday et al. (2019); Colmer et al. (2021);
Guidetti et al. (2024); Klauber et al. (2024)). Many focus on mortality or particular
health outcomes, and most do not consider expenditures on drugs (see Rohlf et al.
(2020) for a notable exception). The quasi-experimental studies that are probably
the most comparable to the present study in terms of data quality and empirical
strategy are Deryugina et al. (2019) and Barwick et al. (2024). However, Deryugina
et al. (2019) is limited to analysing hospital costs and focuses on the impact on the
elderly population in the USA while Barwick et al. (2024) is limited to using trans-
action data covering half of private healthcare spending in China in 2015 without
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containing information on the specific diagnoses or treatment associated with these
transactions.

This study advances the existing literature in three key ways. First, the study
provides a more accurate and comprehensive assessment of the health costs of acute
(short-term) air pollution exposure by using a nationally representative sample in-
cluding detailed and exhaustive information on all healthcare expenditures. While
existing studies acknowledge that their estimates of short-term health costs are con-
servative, the degree of underestimation remains unclear. Although the current anal-
ysis still captures only a lower bound on the total health costs of air pollution —ex-
cluding costs from chronic exposure or mortality — it represents a substantially more
complete lower-bound estimate than any previous similar studies. Second, the study
analyses treatment effect heterogeneity across multiple patient and location charac-
teristics. This approach sheds light on inequalities and non-linear effects that are
difficult to capture in earlier research, which often relies on less comprehensive data
or smaller geographic coverage. Third, this study considers the effects of multiple
pollutants simultaneously using an instrumental variable approach based on a high-
dimensional vector of instruments. Few studies have attempted to disentangle the
effects of multiple pollutants (Deryugina et al., 2019; Godzinski and Castillo, 2021),
as is challenging due to the high correlation between the pollutants.

From a policy perspective, these findings demonstrate that the health costs im-
posed by air pollution in France are far higher than suggested by earlier estimates.
Because a large portion of these costs occurs even at pollutant concentrations below
existing European air quality guidelines, the results imply that current standards
may not adequately protect public health. Indeed, the concave dose-response pat-
tern indicates that health benefits from pollution reduction are disproportionately
large at low levels of pollution, further underscoring that even the most stringent
WHO guideline values from 2021 should not be viewed as definitively “safe.” These
insights have implications for policy decisions concerning cost-benefit calculations,
the setting of guideline values, and the dissemination of public health information.
In particular, warning systems should emphasize that harmful health effects occur
well below regulatory thresholds and affect not only traditionally vulnerable groups
but the broader population as well.

The rest of the paper is structured as follows. Section 2 provides an overview of
air pollution and air quality in France, and discusses altitude atmospheric conditions
as instrumental variables for ground-level pollution. Section 3 presents the data
sources, Section 4 outlines the empirical strategy, Section 5 reports the results, and
Section 6 concludes.
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2. Background

This section provides background information on air pollution and air quality in
France and contains a discussion on the adequacy of altitude atmospheric conditions
as instruments for air pollution concentrations.

2.1. Air pollution and air quality in France

In this study, I focus on the air pollutants nitrogen dioxide (NO2), ozone (O3),
particulate matter 10 micrometers or less in diameter (PM10). While there are many
other potentially hazardous air pollutants, these air pollutants are considered key
pollutants of major public health concern and have long been the focus of inter-
national and national air quality standards (EEA, 2013). For several decades, the
European Union (EU) has had air quality standards in place for these pollutants
in the ambient air quality directives. Current limit values are a yearly average of
40µg/m3 for NO2, a maximum daily 8-hour mean of 120µg/m3 for O3 not to be ex-
ceeded more than 25 days per year, a yearly mean of 40µg/m3 for PM10 and 25µg/m3

for PM2.5. Although these values were based on the 2005 World Health Organisation
(WHO) air quality guidelines, the EU air quality standards are less demanding than
these guidelines and much less stringent compared to the most recent 2021 WHO
guidelines. Table OA1 in the appendix presents the 2005 and 2021 WHO air quality
guideline values and the current EU air quality standards applicable in France.

Air quality in France improved over the last two decades with the exception of O3

pollution (Le Moullec and Meleux, 2019). I observe an average NO2 concentration
over the years 2015 to 2018 of 13.8µg/m3 and average PM10 and PM2.5 concentrations
are 16.61µg/m3 and 10.58µg/m3, respectively. Figure A1 shows distributions of daily
mean and maximum hourly pollution levels relative to the current EU and the 2005
and 2021 WHO limit values. The EU limit values are respected on most days and
in most zip code locations.

There are strong correlations between the air pollutants. NO2 and particulate
matter tend to be positively correlated as they share common sources. Nitrogen
oxides (NOx), which include nitrogen monoxide (NO) and NO2, are emitted during
the combustion of fuels from industrial plants and road traffic and contribute to
the formation of O3 and PM. PM is either directly emitted as primary particles or it
forms in the atmosphere from emissions of certain precursor pollutants such as sulfur
dioxide (SO2), NOx, ammonia (NH3) and volatile organic compounds (VOCs). O3

is not directly emitted into the atmosphere. It is a secondary pollutant formed from
chemical reactions in the presence of sunlight, following emissions of precursor gases,
mainly NOx, carbon monoxide (CO), VOCs and methane (CH4). The processes of
O3 formation and accumulation are complex. To put it simply, in the short-term,
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NO2 tends to be inversely related to O3 because in many settings NO2 disappears
during the formation of O3 and vice-versa(Lee et al., 2021; EPA, 2024; Clapp and
Jenkin, 2001).

2.2. Altitude atmospheric conditions as instruments for air pollution

The quasi-experimental literature has many times relied on weather conditions
as instrumental variables for pollution concentrations to address concerns of pos-
sible endogeneity bias related to the confounding effect of economic activity. The
general assumption is that, conditional on ground-level weather conditions, altitude
atmospheric conditions affect air pollutant concentrations on the ground while being
unrelated to economic activity. I exploit a vector of instruments based on different al-
titude weather conditions, including thermal inversions, planetary boundary height,
wind speed, and wind direction. Using a range of instruments allows to instrument
for several pollutants simultaneously. As air pollutants are both highly correlated
and considered to have independent effects on health, multi-pollutant approaches
are regarded as desirable (Godzinski and Castillo, 2021; Mauderly et al., 2010; Vedal
and Kaufman, 2011; Johns et al., 2012). Yet, challenges arise when implementing
multi-pollutant approaches such as results of many regression models become unsta-
ble when incorporating more than one pollutant, and very often imprecise due to the
correlation between the pollutants. Instrumenting several pollutants simultaneously
can overcome this problem if different subsets of instruments better predict variation
in some pollutants than in others, allowing to disentangle the effects the of different
pollutants (Godzinski and Castillo, 2021; Deryugina et al., 2019).

Thermal inversions are a deviation from the normal monotonic relationship be-
tween air temperature and altitude. Under normal atmospheric conditions, warm
air at the surface is drawn upwards due to its lower density. This atmospheric ven-
tilation can help reduce air pollution at the surface. During a thermal inversion, a
cooler air mass is trapped under a warm air mass, preventing normal atmospheric
ventilation and trapping the polluted air at the surface. The large-scale movement
of air masses in the atmosphere typically forms thermal inversions at their leading
edge when warm air masses pass over cooler air masses. Thermal inversions also form
when the sun heats the air in the higher parts of the atmosphere faster than the air on
the ground. As variations in surface- and higher-level temperatures within a region
are usually assumed to be exogenous, thermal inversions are assumed to be exoge-
nous. However, inversions occur above ground level but are associated with weather
that can potentially affect economic activity or health outcomes at ground level. To
rule out a possible correlation between thermal inversions, economic conditions and
health outcomes due to weather, I flexibly control for ground-level weather condi-
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tions in all regressions. Thermal inversions have often been used as an instrument for
air pollution (see for example Arceo et al. (2016); Jans et al. (2018); Dechezleprêtre
et al. (2019).

The planetary boundary layer is the part of the atmosphere that is directly and
strongly influenced by the earth’s surface. Pollutants are trapped in this vicinity of
the Earth. The higher the planetary boundary layer, the greater the volume of air
available for pollutants and the lower the concentration (Levi et al., 2020). Planetary
boundary layer height (PBLH) responds to heating flux between the sun and the
earth and can also change under unpredictable large-scale air movements. Similar to
thermal inversions, PBLH is generally considered to vary exogenously, but it also has
a seasonal nature and is partially related to ground-level weather. For the exclusion
restriction to hold, seasonal and ground-level weather controls are included in all
regressions. Although less often than thermal inversions or wind direction, PBLH
has been used in the economic literature as instrument for air pollution (for example
Godzinski and Castillo (2021); Schwartz et al. (2017, 2018)).

Wind characteristics are also directly influencing pollutant concentrations. While
wind speed generates variation in pollution concentrations through the dispersion
of locally produced pollutants, wind direction may affect pollution concentrations
by bringing air composed of different pollutants from more or less distant sources,
depending on the wind direction and the relative location of the pollution sources.
Wind speed at altitude is correlated with ground level wind speed, which could affect
health outcomes and thereby violate the exclusion restriction. Ground level wind
speed is therefore included as control variable in all regressions. For wind direction,
the exclusion restriction should apply without restriction. Changes in wind direction
are likely to be exogenous to economic activity and should only affect health outcomes
through their effect on pollution concentrations. However, the effect of wind speed
on air pollution levels is location-dependent. The effect of this instrument must
therefore be able to vary at the local level (see the discussion on the assumption of
monotonicity of the instrument in section 4). Both wind direction and altitude wind
speed have been used as instruments in the literature. For wind direction see for
example Anderson (2015); Deryugina et al. (2019) and for altitude wind speed see
for example Godzinski and Castillo (2021); Schwartz et al. (2017, 2018).

3. Data

I combine detailed administrative healthcare data for a representative sample of
the French population with high-resolution geospatial data on pollutant concentra-
tions and atmospheric conditions. I also use additional data on zip code characteris-
tics, including income and population size, from tax and social benefit data sources.
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The final dataset includes information on healthcare costs, concentrations of various
air pollutants, weather conditions and location characteristics for the years 2015 to
2018 at the French zip code level, which typically represents an area of around 9 km
× 9 km. Most of the data are available at a daily frequency, with the exception of
tax and social benefit data, which are available at an annual frequency. For most
analyses, I aggregate daily data to the week, but the results are qualitatively and
quantitatively similar when analyses are performed with daily-frequency data.

3.1. Healthcare use and cost

I use data on healthcare costs from the French National System of Health Data
(SNDS for Système National des Données de Santé) provided by the National Fund
for Health Insurance (CNAM, 2015-2018). The French health care system is based on
universal coverage by one of several health insurance plans. The SNDS database ag-
gregates anonymous information on reimbursed claims from all these plans and is also
linked to the national hospital discharge database system. The full SNDS database
covers 98.8% of the French population, making it possibly the largest contiguous
homogeneous benefits database in the world. The data base provides information on
the nature of the medical acts, costs of treatment for all types of healthcare, includ-
ing physician visits, drug purchases, and hospital care. The information is available
by exact date of care.

Data on patient characteristics include patient age, sex, information on chronic
health conditions, and zip code of residence. The administrative healthcare data base
does not contain information about the patient’s socioeconomic status. However, it
does contain information about the patient’s insurance coverage, including whether
the individual benefits from subsidised or free supplementary health insurance which
are available to individuals whose income does not exceed certain thresholds. The
information on the nature of the complementary insurance is useful as a proxy mea-
sure of socioeconomic status. The income thresholds for these schemes - the Free
Supplementary health insurance and the Supplementary Health Insurance with par-
ticipation2 - are around 90% and 70% of the poverty threshold, respectively.

2The Universal Complementary Health Coverage “Couverture médicale universelle

complémentaire” (CMU-C), since november 2019 the Free Supplementary health insurance
“Complémentaire Santé Solidaire gratuite” (C2SG) is a free supplementary health insurance
for individuals with low income, covering healthcare expenses that are not reimbursed by the
social security system, without any upfront payments. The Assistance with the Acquisition
of Health Insurance “Aide au paiement d’une Complémentaire Santé” (ACS), since november
2019 the Supplementary Health Insurance with participation “Complémentaire Santé Solidaire

avec participation” (C2SP) is a similar scheme, but with a small financial contribution from the
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I use the general sample of beneficiaries (EGB for “Echantillon Généraliste des
Bénéficiaires”) which is the 1/97th random permanent representative sample of the
SNDS data. The EGB facilitates the implementation of longitudinal studies, as it
provides panel data that makes it possible to track patients’ use of healthcare. See
Tuppin et al. (2010) and Bezin et al. (2017) for more information on the EGB. I use
an extraction of this data with individual data aggregated to the zip code level of
the patient’s place of residence.

3.2. Air pollutant concentrations

I use reanalysis data on hourly concentrations of NO2, O3 and PM10 provided by
the French National Institute for Industrial Environment and Risks (INERIS, 2015-
2018). The data are made available in the form of high spatial resolution raster files
with a cell size of approximately 4x4 km. I convert the hourly data into daily averages
and overlay the raster data with a shapefile of France containing the administrative
boundaries of the zip code areas to extract daily pollution levels by zip code area.
For the main analyses, I then further aggregate the data to the week. Reanalysis
data offers several advantages over data from measurement stations. Since the num-
ber of monitoring stations is limited and they are often only sparsely distributed in
space, researchers usually have to interpolate data points for locations far away from
the monitoring stations (see for example Currie and Neidell (2005); Knittel et al.
(2016); Schlenker and Walker (2016)). The interpolation of pollution levels using
simple distance weights, as is often done in the literature, neglects meteorological
and geographical factors that influence the dispersion of pollution, which can lead
to a discrepancy between the actual and assigned pollution levels, especially at loca-
tions further away from the monitoring stations. The reanalysis data from INERIS
combines information from measurement stations with a climate model rather than
using a statistical procedure to interpolate between observations to address this is-
sue. For more information on the construction of the reanalysis data, see Real et al.
(2022).

For sensitivity analyses I also use raw data from monitoring stations for NO2,
O3 and PM10 and additionally SO2 and CO concentrations provided by the Euro-
pean Environment Agency (EEA, 2015-2018). CO concentrations are recorded at 44
monitoring stations and SO2 concentrations at 173 monitoring stations, which means
that the geographical coverage is relatively sparse. The data on NO2, O3 and PM10

levels are collected at 475, 370 and 411 monitoring stations respectively, which means

individual, aimed at those whose income is slightly above the threshold for the free complementary
health insurance, yet still modest (DSS, 2023).
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that they are less sparse than the CO and SO2 data, but still sparse compared to the
4x4 km grid of the INERIS reanalysis data. I convert the data from the monitoring
stations into average pollutant concentrations in the zip code area by interpolating
the pollution values using an inverse distance weighting, in which measurements that
are geographically closer to the zip code area under consideration are weighted more
strongly than measurements that are further away.

3.3. Atmospheric conditions

The data on atmospheric conditions comes from ERA5, the fifth generation of
global climate and weather reanalysis produced by the Copernicus Climate Change
Service (C3S) at the European Centre for Medium-RangeWeather Forecasts (ECMWF).
The ERA5 reanalysis combines model data with past observations from measuring
stations to create a globally complete and consistent data set. The ERA5-Land
hourly data provide information on atmospheric conditions at ground level, includ-
ing the u and v components of wind, the height of the planetary boundary layer,
temperature and precipitation with a spatial resolution of 0.1◦x0.1◦ (ca. 9x9km).
Atmospheric conditions at altitude can be retrieved for 27 pressure levels (altitude
levels) and include the u- and v-component of the wind, the wind speed and the tem-
perature with a resolution of 0.25◦x0.25◦ (ca.22x22km). The data are freely available
online at the Copernicus Climate Data Store (Muñoz Sabater (2019) for the ground-
level data, Hersbach et al. (2023a) for the altitude data and Hersbach et al. (2023b)
for the planetary boundary layer height). I overlay the ERA5 raster data with a
shapefile of the administrative boundaries of the French zip code areas to extract the
data at the zip code level. I encode the presence of a thermal inversion as a dummy
variable equal to one if the temperature at the surface atmospheric layer (pressure
level 1000 hPa) is lower than the temperature at the atmospheric layer just above
(975 hPa). I construct the strength of the thermal inversion as the temperature dif-
ference between these two atmospheric layers. The planetary boundary layer height
is provided in meters and used as a continuous variable without further transforma-
tion. Wind speed and wind direction are calculated from the u- and v-component
of the wind, which are the eastward and northward component of the wind, respec-
tively. Wind speed can be calculated as WS =

√
u2 + v2, where u and v denote the

u- and v-component of the wind. I use wind speed as a continuous variable. Wind
direction can be calculated as Φ = mod(180 + 180

π
atan2(v, u), 360) to get an answer

in degrees in the range 0 ≤ Φ < 360.Φ indicates the direction from which the wind
is blowing. Zero means the wind is blowing from the north to the south. I use the
average cardinal wind direction to construct wind direction bins. Relative humidity
is calculated using the information on temperature T and dew point temperature Td
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according to the formula RH = 100 × ed
es

where ed = 6.11 × 10
7.5·Td

237.7+Td (saturation

vapour pressure at dew point temperature (Td)) and es = 6.11×10
7.5·T

237.7+T (saturation
vapour pressure at temperature (T )). Relative humidity is expressed in percentage.

I aggregate the hourly data to the week to construct the following ground-level
meteorological variables: weekly sum of precipitation in millimetres, weekly average
temperature and weekly average of daily minimum and maximum temperatures in
degrees Celsius, and weekly average relative humidity in percent. I proceed in the
same way to construct the following altitude atmospheric condition instrumental
variables: the sum of the number of hours of thermal inversion per week, the weekly
average strength of these thermal inversions in degree Celsius, the weekly average of
the planetary boundary layer in meters, average wind speed at twelve pressure levels
in meters per second, and wind direction bins based on weekly average cardinal wind
direction.

In addition, I distinguish altitude atmospheric condition by moment of the day
by constructing 4-hourly within-day averages (0 to 4 a.m., 4 to 8 a.m, 8 a.m. to 12
p.m., 12 p.m. to 4 p.m., 4 p.m. to 8 p.m and 8 p.m to 0 a.m.). I consider these
six within-day averages to capture the likely differences in impact of the instruments
depending on when the pollution emissions are produced. For example, a thermal
inversion during the morning or evening traffic peaks should influence air pollution
concentrations more than when it occurs at night (Godzinski and Castillo, 2021). I
then aggregate these six within-day averages to the week, resulting in the following
additional instrumental variables: the number of hours of thermal inversions per
week by moment of the day, the average strength of these thermal inversions, the
average of the planetary boundary height by moments of the day, the weekly average
wind speed at twelve pressure levels by moment of the day, and wind direction bins
based on average cardinal wind direction by moment of the day. For sensitivity
analyses using daily variation, I aggregate the data in a similar way to the day.

3.4. Additional data

Data on French administrative boundaries at the zip code level are sourced from
the Open Platform for French Public Data (data.gouv.fr, 2014). The data also in-
clude information on population size by zip-code.

Median household income at the zip code level, available at an annual frequency,
is obtained from the FiLoSoFi database (Fichier Localisé Social et Fiscal). This
database compiles administrative records on taxation and social benefits and is main-
tained by the French National Institute of Statistics and Economic Studies (INSEE,
Institut national de la statistique et des études économiques). Aggregated data at
the zip code level are publicly accessible via the INSEE website (INSEE, 2024).

12



Data on public holidays in France are also retrieved from the Open Platform for
French Public Data (data.gouv.fr, 2024). From this dataset, I construct a control
variable reflecting the weekly count of public holidays. This variable accounts for
reduced economic activity during holiday periods, which is expected to influence
both pollution levels and healthcare use.

3.5. Summary statistics

The final data set consists of 1, 257, 984 zip code-week observations of healthcare
costs across 6, 048 French zip code areas from 2015 to 2018. Missing information in
the air pollution and weather databases leads to less than 3.5% missing values for
any variable, with at least 1, 247, 428 observations of each air pollutant concentration
variable and at least 1, 214, 512 observations of each weather variable. The average
weekly healthcare expenditure per zip codes is €3, 609 with a standard deviation of
7, 471. The mean concentration of NO2 is 13.78µg/m3 (standard deviation 7.14);
PM10 averages 16.61µg/m3 (sd 6.32) and O3 averages 55.7µg/m3 (sd 17.49). These
levels of pollutants are far below the air quality standards currently in force in France
(see Table OA1 and the discussion in Section 2). Table A1 in the appendix presents
summary statistics.

4. Empirical strategy

The aim of this study is to quantify the health costs caused by air pollution.
Estimating causal effects presents several challenges. First, the estimates might be
subject to bias due to residential sorting. People choose where they live and thus
the extent of their exposure, which can lead to correlations between air pollution
and personal characteristics, possibly including their health status. Not accounting
for this non-random exposure may lead to biased estimates, with the direction of
bias being theoretically unclear. For example, people with high socioeconomic sta-
tus are on average healthier and can afford to live in areas with low air pollution, but
they may also be more likely to live in highly polluted city centres because of their
occupation or preferences. Second, estimates may be biased due to correlations be-
tween pollutant concentrations and health care utilization associated with economic
activity. Increased economic activity is likely to be tied to increased pollution from
sources such as transportation and manufacturing, and it is also likely to be tied
to increased health care utilization due to work-related stress or injury or due to
increased availability of health care during business hours.
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4.1. Location and time fixed effects model

To address the issue of possible bias from spatial sorting, I estimate a location-
fixed effect model that exploits week-to-week variation in air pollution concentrations
within the same zip code area. The composition of the population in a given zip code
area is plausibly stable from one week to the next, which means that the weekly
variation in air pollution concentration within a zip code area is exogenous to the
average location-specific population characteristics. I estimate the following model

Hwp =
∑

x

βxPwpx + αp + αm/mdep + αy + γXwp + ϵwp, (1)

where Hwp denotes healthcare costs incurred in week w in zip code area p, αp are
zip code area fixed effects, Pwpx is the pollution concentration of pollutant x in week
w in zip code area p, αm/mdep and αy are month or month-by-department3 and year
fixed effects, Xpw stands for a vector of time-varying location characteristics, and
ϵxdp denotes the error term.

I construct the health care cost variable as the weekly sum of expenditure of
all medical specialties and all types of health care, including physician visits, drug
purchases, and hospital care. This is in contrast to existing studies, which focus on a
limited number of health problems or on specific types of healthcare such as hospital
admissions.

The inclusion of time fixed effects allow to flexibly control for seasonality in air
pollution and healthcare use. The month-by-department fixed effects control for
any seasonal correlation between pollution and healthcare use that could vary across
the 96 French departments. The vector of time-varying location characteristics Xpw

includes control variables for ground-level weather conditions. In the preferred model
specification this includes indicator variables for weekly mean temperatures and wind
speed and weekly sum of precipitation falling into 10 bins by decile. In sensitivity
analyses, I also include indicator variables for weekly average relative humidity and
weekly average of daily minimum and maximum temperature. I estimate alternative
specifications with different time fixed effects and location covariates to demonstrate
the robustness of the results. (see section 5.1). Controlling for these ground-level
weather conditions is important. Prior research has shown that extreme weather
events affect health outcomes (see for example Deschenes and Moretti (2009)) while
humidity is known to favour the spread of respiratory infections (Wu et al., 2016).

3The department (département in French) is one of the three levels of administrative divisions
of France, below regions and above communes. There are 96 departments in metropolitan France.
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The vector of time-varying location characteristics also always includes a variable
for the sum of holidays days in a given week, to account for the drop in economic
activity during the holidays that is expected to affect air pollution concentration and
healthcare utilization.

To minimise concerns of auto-correlation, I estimate specifications in which I con-
trol for lags of the weather and pollution variables. I also investigate the possibility
that increased air pollution leads to an anticipation of some healthcare costs that
would have been incurred anyway by conducting sensitivity analyses in which I con-
sider effects over longer time windows of several weeks. For example, I estimate the
effect of pollution on week w on the healthcare costs across week w to w+3. To en-
sure that the estimates do not capture the effects of pollution or weather conditions
over the following two or three weeks, I include two to three leads of the pollution
and weather variables. If there is some short-term displacement of healthcare costs,
then the estimates could decrease when looking at longer time windows. Otherwise,
estimates should remain unchanged or increase in case pollution has some lagged
effects that are not captured when looking at a one-week time window. The results
are generally robust to different lag and lead structures.

While I use weekly variation of pollutant concentrations and healthcare spending
in the main analysis, I also run sensitivity analyses where I exploit the daily frequency
of the data. I estimate the effect of pollution on day d and healthcare spending on
that same day or on the following days using again different lag and lead structures. I
also reproduce the model specification used in Deryugina et al. (2019) that estimates
the effect of pollution on day d on the healthcare costs across day d to d + 3. To
ensure that the estimates do not capture the effects of pollution or weather conditions
over the following two or three days, I include two to three leads of the pollution
and weather variables. To minimise concerns of auto-correlation, I also estimate
specifications in which I control for lags of the weather and pollution variables.

In my empirical strategy, I assume that the zip code area of residence corresponds
to the location of exposure to air pollution. However, people are also exposed to air
pollution at their place of work, place of leisure or while commuting. If this leads to a
large measurement error in pollution exposure, my estimates could suffer from bias.
I check whether the results are robust to conducting the analysis at a higher level
of spatial aggregation by running the analyses at the employment zone level. The
employment zone (“zone d’emploi” in French) is a division of the French territory
into 306 geographical areas within which most of the working population resides and
works. For a map showing the boundaries of the employment zones, see Figure OA1
in the Online Appendix.

Standard errors are clustered at the zip code area level. The results are robust

15



to clustering at more aggregate geographical levels (see section 5.1 on sensitivity
analyses at the employment zone level).

4.2. Instrumenting air pollution using altitude atmospheric conditions

Models with location fixed effects can account for bias by capturing cross-sectional
and time-invariant location-specific population characteristics, but they cannot fully
address endogeneity bias due to correlations between pollution concentrations and
economic activity. Controlling for location and time fixed effects means that the
remaining variation in air pollution comes from any non-seasonal events affecting
local air quality, such as local traffic restrictions or economic activity. However,
traffic congestion or economic activity are potentially associated with stressful con-
ditions that could be related to healthcare use. To avoid this kind of endogeneity
bias, I instrument for changes in air pollution concentrations using altitude weather
conditions.

A valid instrumental variable approach requires that the instrument is relevant,
i.e. that it is sufficiently correlated with the endogenous variable of interest, and
that the exclusion restriction is met, i.e. that the instrument is not correlated with
unobserved determinants of the outcome of interest. As for the first condition, atmo-
spheric conditions are known to affect air pollution concentrations. See Section 2.2
for a discussion of the relationship between air pollution and weather conditions
at altitude. The results of the first-stage regressions confirm that weather condi-
tions at altitude are strong predictors of air pollution concentrations (see section 5).
Regarding the exclusion restriction, the identifying assumption in the present ap-
plication is that, after flexibly controlling for various time and location fixed effects
and ground-level weather conditions, the variation in pollution due to changes in
weather conditions at altitude is not associated with changes in health care utili-
sation or costs, except through the effect on air pollution. It is plausible that this
assumption holds. Although weather conditions at ground level can directly influ-
ence individual behaviour and health outcomes, atmospheric conditions at altitude
are unlikely to directly influence health. Atmospheric conditions at altitude are not
associated with economic activity, which means that the IV approach allows me to
estimate the impact of air pollution on health costs without inadvertently capturing
correlations due to economic activity.

The first stage specification is as follows:

Pwpx =
∑

k

βkIVwpk + αp + αm/mdep + αy + δXwp + ϵwpx (2)

where Pxdp denotes the mean concentration of pollutant x in week w in zip code
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area p and IVwpk is atmospheric conditions k in week w and location p. The control
variables and the fixed effects are the same as in equation 1.

The vector of altitude atmospheric conditions includes the number of hours of
thermal inversion per week and the number of hours of thermal inversions per week
by moment of the day, the average strength of these thermal inversions, the average
of the planetary boundary layer taken over the entire week and over the moments
of the day, the weekly average wind speed at twelve pressure levels, and wind di-
rection bins based on average cardinal wind speed. Depending on the first stage
specification, I also add interactions of the instruments with the location indicators
to capture potential geographical variations of the atmospheric phenomena. See sec-
tion 2.2 for a description of the altitude weather phenomena that serve as the basis
for the construction of the instruments, as well as a discussion of exogeneity and the
exclusion restriction. See section 3.3 for a detailed description of the construction of
the instrumental variables.

Using a high-dimensional vector of instruments has the advantage of allowing
to instrument for several pollutants simultaneously. This is interesting because air
pollutants are both highly correlated and estimated to have independent effects on
health. Instrumenting for several pollutants simultaneously can overcome problems
that arise when implementing multi-pollutant approaches such as results becoming
unstable and imprecise when incorporating more than one pollutant due to the cor-
relation between the pollutants. If different subsets of instruments better predict
variation in some pollutants than in others, then using a high-dimensional vector of
instrument should allow to disentangle the effects the of different pollutants (Deryug-
ina et al., 2019; Godzinski and Castillo, 2021). This is plausible because the different
pollutants are not perfectly transported together, can be generated by sources in dif-
ferent locations, and are affected differently by atmospheric conditions at altitude.
Using a set of instruments that includes frequently occurring events such as changes
in planetary boundary height and changes in wind direction is also useful because
Bagilet and Zabrocki (2021) show that an IV strategy with low-frequency events
as instruments, such as using an indicator variable for the presence of a thermal
inversion, can lead to inflated estimates due to low statistical power. At the very
least, instrumenting for several pollutants is interesting for sensitivity analyses and
validating the results of previous studies. With the exception of a few recent studies
(Deryugina et al., 2019; Godzinski and Suarez Castillo, 2019), most of the existing
literature is based on single-pollutant models.

I test the sensitivity of the results to different first-stage specifications including
different combinations of instruments. I also test whether the results are robust when
only one of the pollutants is instrumented while the others are included as controls.
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To see if different sets of instruments indeed better predict a certain pollutant, I
apply the IV LASSO approach proposed by Belloni et al. (2012) and implemented in
ivlasso (Ahrens et al., 2020) to select pollutant-specific vectors of instruments. I then
compare the model fit when the pollutant-specific instruments predict the pollutant
for which they were selected with the model fit when these instruments are used
to predict the concentrations of the other pollutants using the Bayes Information
Criterion (BIC) and the Akaike Information Criterion (AIC) for model selection.

IV estimates a weighted average of the individual causal effects, also called the
local average treatment effect (LATE). The term local emphasises that it is the
weighted average that places the most weight on those entities whose treatment
probability is most influenced by the instrumental variable. Interpreting IV estimates
as a LATE requires imposing a monotonicity assumption (Imbens and Angrist, 1994;
Mogstad et al., 2021). In the present application it means that I need to assume
that air pollutant concentrations are always (weakly) positively or always (weakly)
negatively correlate with a certain instrument in all zip code areas. The monotonicity
assumption would be violated if the direction of the instrument-pollution relationship
differs across zip code areas. To test whether the monotonicity assumption holds,
I interact the instruments with location fixed effects which relaxes the assumption
that the effect has to be monotonous across locations. The results remain robust to
this approach.

4.3. Heterogeneity analyses

Besides estimating the overall healthcare costs of exposure to air pollution, I am
also examining which types of health problems are particularly affected. To do so,
I run separate regressions for 10 different categories of medical specialities. The de-
pendent variable in these regressions is constructed as the weekly sum of expenditure
on medical care in the respective medical specialty, including the costs of physician
fees and all related expenditures such as drugs and exams. While interesting in
itself, this exercise also serves as a sanity check. I examine both a set of medi-
cal specialties that are expected to be affected by air pollution and - as a placebo
exercise - medical specialties that are not expected to be affected. I should find
that air pollution has no effect on expenditure in the placebo categories. Otherwise,
it would suggest that the estimates pick up some spurious correlation between air
pollution and health expenditure and that the estimates of overall health effects are
likely biased. The categories that I expect to be affected are family practice (primary
care physician), cardiology and vascular medicine, pulmonology, otorhinolaryngology
(O.R.L.), ophthalmology, and gynaecology. Family practice has been chosen because
the first point of contact with the healthcare system in France is the family doctor,
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unless the health problem is an emergency that needs to be treated in the hospital
emergency department. In France, the healthcare system is a gate-keeping system in
which people must first visit their family doctor, who then refers them to specialists.
Cardiology and vascular medicine, and pulmonology have been chosen because these
are medical specialties that are frequently considered in the literature and for which
effects of acute (short-term) exposure to air pollution has repeatedly been shown.
O.R.L. and ophthalmology were selected because the short-term effects of air pollu-
tants are irritation of the respiratory tract and mucous membranes. Gynaecology is
considered as an additional category because there is evidence of short term effects of
air pollution exposure on pregnancy outcomes (see Leiser et al. (2019)). Recent epi-
demiological research also shows that exposure to air pollution can affect the central
nervous system and lead to cognitive issues (see for example Calderón-Garcidueñas
et al. (2007)). Neurology was considered as an additional medical specialty likely to
be affected by air pollution, but the results are not reported here as these analyses
yielded only null results. As placebo, I consider the specialties of gastro-hepatology,
nephrology, trauma surgery, and plastic surgery. Problems with the digestive system
should not be affected by air pollution and trauma surgery and plastic surgery should
not be affected, as accidents and planned operations should not react to air pollution
exposure.

To identify populations at particular risk, I study heterogeneity in the effects of
air pollution exposure as a function of patient characteristics, including age, chronic
disease status and insurance status, and location characteristics, including average
zip code area income, population size and average pollution concentrations. Previous
literature has shown that air pollution-related mortality is higher in the very young
and the very old, so a similar pattern might be expected for morbidity. Previous
studies have also shown that the effects of air pollution are more pronounced in
chronically ill and low-income populations. Many of these studies are correlative in
nature, so it will be interesting to see if I find similar results. Analysis of heterogeneity
by insurance status serves as an additional analysis of differential effects by economic
status. I compare the results of those eligible for subsidized or publicly funded
supplementary health insurance with those who are not. The income thresholds for
these plans are between 70% and 90% of the poverty line (for more information,
see Section 3. I expect the effects to be greater in more populated areas because of
the size of the population, but also because more populated areas are generally more
polluted. As regards heterogeneity by baseline pollution level, the results are a priori
ambiguous. Some studies show that marginal effects are greater at high pollution
levels (convex dose-response function), while others show that marginal effects are
greater at low pollution levels (concave dose-response function). For references, see
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the discussion in section 5.4. These heterogeneity analyses can provide information
for defining policy priorities. If effects are concentrated in densely populated, highly
polluted cities, and marginal effects are greatest at higher concentrations, then policy
efforts should clearly focus on improving local air pollution in large cities. If the
effects are still significant outside cities, and marginal effects are higher at lower
concentrations, it may be unwise to focus solely on air pollution reduction in the big
cities.

5. Results

This section first presents the results of the effects of air pollution exposure on
aggregate health costs comparing the location-fixed effects model and the model in-
strumenting air pollution with atmospheric conditions including sensitivity analyses.
Then the results of heterogeneity analyses are presented, where the effects are esti-
mated separately by medical specialty and by patient and location characteristics.
This is followed by a discussion of effect size and policy implications.

5.1. Effect of air pollution exposure on healthcare costs

Table 1 reports the main estimates of the relationship between weekly average air
pollutant concentrations and weekly healthcare expenditure at the zip code area level.
The first two columns show results for the location fixed effect model (FE) and the
last two columns show results for the location fixed effect instrumental variable model
(FE-IV) in which altitude atmospheric conditions are used as instruments for the air
pollutant concentrations. Columns 1 and 3 present results for a model excluding any
lags of the pollutants and columns 2 and 4 present the model including one week
lag of pollutant concentrations. The coefficients indicate the increase in average
additional healthcare spending per zip code area for a 1 µg/m3 increase in weekly
average pollutant concentrations. For example, in the FE-IV model in column 4, each
1 µg/m3 increase in weekly average NO2 leads to an average €17.23 of additional
healthcare expenditure per zip code area during the same week. This corresponds to
a 0.48% increase relative to the average weekly zip code area healthcare spending.
The €17.23 of additional healthcare expenditure per zip code area per week in a
sample of 1/97 of the French population is linearly extrapolated to €525,620,310 of
additional overall healthcare spending in France per year or 0.02% of France’s GDP
in 20194. For a discussion regarding the effect size, see section 5.4.

4The calculation €17.23 · 97 · 52 · 6,048 = €525,620,310 for the effect times the adjustment for
the sample of the total population, times the number of weeks in a year, times the number of zip
code areas. The GDP of France in 2019 was 2.43 trillion (INSEE, 2020).

20



Table 1: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly healthcare
expenditure

Weekly healthcare expenditure

FE FE-IV
(1) (2) (3) (4)

NO2 44.33∗∗∗ 43.36∗∗∗ 18.42∗∗∗ 17.23∗∗∗

(2.692) (2.420) (3.820) (3.719)

O3 4.189∗∗∗ 4.837∗∗∗ 6.282∗∗∗ 3.275∗∗∗

(0.383) (0.387) (0.773) (0.662)

PM10 -12.06∗∗∗ -13.34∗∗∗ 12.37∗∗∗ 3.540
(0.981) (0.996) (2.815) (2.843)

Lag NO2 8.947∗∗∗ -3.423
(2.119) (4.062)

Lag O3 -0.175 6.497∗∗∗

(0.364) (0.795)

Lag PM10 -1.412 18.14∗∗∗

(0.872) (2.616)

Observations 1,209,572 1,186,311 1,209,572 1,186,311
First-stage F-stat. 2055.4 824.2
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table reports the main estimates
of the relationship between average weekly air pollutant concentrations and
weekly healthcare expenditure. The coefficients indicate the increase in aver-
age healthcare spending per zip code area per week for a 1 µg/m3 increase in
weekly average pollutant concentrations. The first two columns show results for
the location fixed effect model (FE) and the last two columns show results for
the location fixed effect instrumental variable model (FE-IV) in which altitude
atmospheric conditions are used as instruments for the air pollutant concentra-
tions. Columns 1 and 3 present results for a model excluding any lags of the
pollutants and columns 2 and 4 present the model including one week lag of
pollutant concentrations. Table OA2 in the appendix shows the corresponding
first stage regressions. All regressions include month, year and zip code fixed
effects and ground-level weather controls. Robust standard errors clustered at
the zip code level in parenthesis.
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The instruments used in the first stage regressions corresponding to the FE-IV
models in Columns 3 and 4 are the number of hours of thermal inversion per week
and the number of hours of thermal inversions per week by moment of the day, the
average strength of these thermal inversions by moment of the day, the average of
the planetary boundary layer taken over the moments of the day, and the weekly
average wind speed at twelve pressure levels. The large F-statistics shown at the
bottom of Table 1 indicate that the instruments are strong predictors of pollution
concentration. Table OA2 in the Online Appendix shows the corresponding first
stage regressions.

Disentangling the effects of different air pollutants in a multi-pollutant model is
challenging. The location fixed effects model produces negative coefficients for the
effect of PM on healthcare expenditure as shown in columns 1 and 2 of Table 1. This
result is counter-intuitive, as it would mean that the increase in particle pollution has
protective effects on health, since it leads to a reduction in healthcare expenditure.
Unexpected negative coefficients and unstable results have also been found in the
previous literature when incorporating more than one pollutant due to the correlation
between the pollutants. The estimation of an instrumental variable model appears to
solve this problem, since it produces the expected positive signs as shown in columns
3 and 4 of Table 1). The use of a high-dimensional vector of instruments could
indeed make it possible to distinguish the effects of different pollutants if different
subsets of instruments are better at predicting the variation of some pollutants than
others (see for example Godzinski and Castillo (2021)). When I apply an IV LASSO
approach to select pollutant-specific instrument vectors for the first stage regression
I find that each pollutant is indeed better predicted by a different set of instruments.
Table OA3 in the Online Appendix shows the first stage regression results where each
pollutant is regressed over the LASSO-selected variables. Different instruments are
selected for each pollutant and when the same instruments are selected, the sign and
magnitude of their effect differs by pollutant. The model fit in terms of the Bayesian
Information Criterion (BIC) and the Akaike Information Criterion (AIC) is greater
when the vector of instruments predicts the pollutant that it has been chosen to
predict compared to when it predicts the other pollutants. See Table OA4 in the
Online Appendix. The results using the LASSO-selected instruments are almost
identical to the results using the FE-IV approach as can be seen in Table OA5 in the
Online Appendix.
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5.2. Sensitivity analyses

5.2.1. Lagged effects and effects over longer time windows

My estimation strategy relies on short term variation in atmospheric conditions
and air pollutant concentrations. The estimation results therefore reflect only the
short term health effects of air pollution exposure. Without capturing the effects of
chronic exposure, linearly scaling the estimated effects to obtain yearly healthcare
costs should yield a lower bound for the overall health effects of air pollution expo-
sure. There are two potential problems with this interpretation as a lower bound.
First, despite the inclusion of month and season fixed effects, pollutant concentra-
tions might be auto-correlated and exposure could have some lagged effects. The
estimates for the effect of air pollution concentration on health expenditure in the
same week could therefore pick up the effects of the previous week and therefore
be inflated. Second, the estimates may be overestimated if exposure to increased
air pollution leads to an anticipation of some healthcare costs that would have been
incurred anyway. To address the first issue, I estimate models that include lags of
the pollutants. Column 4 in Table 1 shows results for the preferred model specifica-
tion with one week lags of the pollution concentrations, using one week lags of the
atmospheric conditions as instruments. The coefficient for the effect of NO2 pollu-
tion on health expenditure in the same week remains unchanged, but the size of the
coefficient for the effect of O3 pollution is reduced by half and the effect of PM10 is
no longer statistically distinguishable from zero. The coefficients for the lags of O3

and PM10 pollution are statistically significant and of a similar order of magnitude
to the coefficients for the same week effects in the model that excludes lags. This
suggests that there are some lagged effects of exposure and that these effects are
partially captured by the coefficients for the same week effects in models that do not
consider lags. For a more conservative approach, I use the estimates of the same-
week effects from the model including the lags in the calculation of the healthcare
costs in section 5.4. To investigate the second issue of whether some of the estimated
healthcare costs might result from a shift in spending over time rather than from
additional costs arising from pollution, I conduct sensitivity analyses in which I con-
sider effects over longer time windows of several weeks. If there is some short-term
displacement of healthcare costs, then the estimates could potentially decrease when
longer time windows are considered. Otherwise, the estimates should remain un-
changed or increase in case pollution has some lagged effects that are not captured
when considering a one week window. Table OA6 in the Online Appendix shows
results for models where I estimate the effect of weekly air pollution exposure and its
one week lag on healthcare expenditure over two weeks to four weeks, controlling for
the appropriate number of weather and instrument leads. I find that the estimates
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increase with the length of the time window, with one exception for the coefficient
for the lag of NO2 pollution, where a sign reversal occurs. Overall, this suggests that
pollution has some lagged effects and that the effects are not due to a displacement
of expenditure over time. When I consider even longer time windows, the results be-
come unstable, including some sign changes. However, these results are likely due to
the difficulty of estimating a model with multiple pollutants, rather than evidence for
expenditure displacement, as the coefficients increase monotonically when I estimate
single-pollutant models.

5.2.2. Importance of considering multiple pollutants

It is important to estimate the effect of multiple pollutants simultaneously. In-
cluding only one of the pollutants at a time or including either NO2 or PM together
with O3 in a two-pollutant model yields coefficients that are mostly of the expected
positive sign in both the FE and FE-IV models, as can be seen in Table OA8 in
the Online Appendix. However, excluding some of the pollutants mean that part
of their effect are now captured by the coefficients on the included pollutants. The
coefficients in the FE-IV model main specifications in Table1 that include all of
the pollutants are indeed different from the coefficients in the one or two-pollutant
models. In the one and in the two-pollutant models, the coefficients on NO2 and
PM are larger while the coefficient on O3 is smaller. The direction of the bias is
consistent with the correlations between the pollutants. NO2 and PM are positively
correlated, meaning that an omission of one of these pollutants leads the coefficient
on the included pollutant to overstate its effect. O3 is mostly inversely related to
NO2 and PM. When O3 increases, NO2 and PM tends to increase and the health
effects of an increase from O3 are therefore attenuated by the health benefits from
the increased PM and NO2 when these pollutants are not included in the regression.
For a discussion on the correlation between the pollutants, see section 2. The results
are robust to instrumenting only one pollutant at a time while including the others
as controls as shown in Table OA9 in the Online Appendix.

In the preferred model specification I use PM10 pollutant concentrations to esti-
mates the effect of particulate matter on healthcare costs. This choice is motivated
by the fact that PM2.5 is nested within PM10 and PM10 is therefore a broader mea-
sure of particulate matter pollution. Both pollutants are highly correlated and the
results for models including PM2.5 instead of PM10 pollution are quantitatively and
qualitatively similar to the results from the preferred model specification using PM10

as can be seen in Table OA10 in the Appendix.
A remaining concern is that there are other air pollutants that impact health and

are correlated with the pollutants examined in this study. While I am analysing the
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effects of the three pollutants that are generally considered to have the greatest im-
pact on health, sulphur dioxide (SO2) and carbon monoxide (CO) are two additional
pollutants that are also widely considered key pollutants and the subject of regu-
latory measures. Unfortunately, I do not have high quality, high spatial resolution
data for these pollutants. Instead, I use data from monitoring stations provided by
the European Environment Agency (EEA) for sensitivity analyses. See section 3 for
information about this data source. Table OA11 in the Online Appendix shows that
the results for the effect of NO2, O3 and PM pollution are robust to including SO2

and CO pollution as control variables (columns 1 and 2). The results are also similar
when SO2 and CO are included as additional instrumented pollutants (columns 3
and 4), except for unexpected negative coefficients on the effect of CO pollution and
the lag of NO2 pollution in the model with one week lagged effects. This is probably
due to the fact that it becomes more difficult to disentangle the effects of a greater
number of pollutants.As an additional sensitivity analysis, I use the EEA measuring
station data on NO2, O3 and PM10 instead of the more high-resolution reanalyses
data from INERIS. The results are qualitatively similar as long as a one week lag
of the pollutants are included as control variables or as instrumented variables. See
Table OA12 in the Online Appendix).

5.2.3. Robustness to alternative model specifications and placebo exercise

In general, the results are robust to different first-stage specifications including a
different number and different combinations of instruments. The regression results
shown in Table 1 are the most conservative across different first-stage specifications.
The second-stage coefficients tend to be larger when I use fewer instruments. See
Columns 1 and 2 of Table OA13 in the Online Appendix that show results for a
regression including as instruments only the number of thermal inversions per week,
their average strength, average planetary boundary height and average wind speed
at the lowest altitude layer above ground-level. Adding in addition wind direction
as instrument where I interact dummies for the weekly average wind direction by
90-degree intervals with location dummies similar to the IV specification used by
Deryugina et al. (2019) yields results that are very similar to the results from the
main specification as can be seen in Columns 3 and 4 of Table OA13 in the Online
Appendix. The wind direction instrument must necessarily be interacted with the
location fixed effects to account for the fact that wind direction shifts pollution con-
centrations differently depending on the location of pollution sources relative to the
location under consideration. The results are robust to interacting the instruments
with location fixed effects more in general. Columns 5 and 6 of Table OA13 show
results where all instruments are interacted with location (employment zone) fixed
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effects. Adding interactions of the instruments with the location indicators should
capture potential geographical variations of the effect of the atmospheric conditions
instruments on pollutant concentrations. Similar results for models with and with-
out location FE interactions suggests that the monotonicity of instrument effects
across location holds. The monotonicity assumption requires that air pollutant con-
centrations are always weakly positively or always weakly negatively correlated with
an instrument in all zip code areas. The interaction of instruments with location
fixed effects relaxes the assumption of monotonicity between locations since only
monotonicity of the instrument effect within a given location is required. The mono-
tonicity assumption is necessary to be able to interpret the IV estimates as the local
average treatment effect (LATE) (Imbens and Angrist, 1994).

The results are also robust to changing the way the weather control variables are
included as can been seen in Table OA14 in the Online Appendix. Column 1 shows
results for a model including humidity and minimum and maximum temperatures as
additional ground-level weather controls. Column 2 shows the results using weather
fixed effects where the variables have been partitioned into 5 bins by quintiles of their
values and Column 3 shows results for 15 bins. The results are similar to the results
from the preferred specification using 10 bins. The results are also similar when I
use the non-transformed weather variables as shown in column 4. Column 5 shows
that the results are also robust to using month-by-department fixed effects rather
than month fixed effects to allow for different effects of seasonality in pollution and
healthcare expenditure across the 96 French Departments.

I conduct a placebo exercise where I randomly reshuffle the values of the instru-
mental variables and use those shuffled instruments in the first stage instead of the
actual instruments. As can be seen in Table OA15 in the Online Appendix, the
first-stage F-statistics are very small, which provides evidence that the instruments
are picking up meaningful rather than spurious variation in pollution levels. Using
the shuffled instruments also leads to second-stage estimates that are statistically
not significant.

In the main analyses, the standard errors are clustered at the level of the zip
code area but the results are robust to clustering at the more aggregate level of the
employment zone that divide the French territory into 306 zones.

5.2.4. Robustness to different levels of spatial and temporal aggregation

As an additional robustness exercise, I run regressions using the data at daily
frequency to estimate the very short-term impact of an increase in pollution on a
given day on the impact of health care spending on the same day. The results
are shown in Table OA7 in the Online Appendix. Controlling for two days lag of
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pollutant concentrations, I find that an increase of daily average NO2 pollution by 1
µg/m3 leads to an increase in daily zip code area healthcare costs of €4.95 while an
increase in daily average O3 pollution by 1 µg/m3 leads to an increase in healthcare
spending of €0.7. Linearly scaling these effects to a week yields an effect of €34.7 and
€4.9 additional healthcare costs for increases in NO2 and O3 pollution, respectively.
While qualitatively similar, the results from models using weekly frequency data are
comparatively more conservative - €17.2 and €3.3 for a one-unit increase in NO2

pollution and O3 pollution, respectively.
In my empirical strategy, I assume that the zip code area of residence corresponds

to the location of exposure to air pollution. However, people are also exposed to air
pollution at their place of work, place of leisure or while commuting. I check whether
the results are robust to conducting the analysis at a higher level of spatial aggrega-
tion by running the analyses at the employment zone level. The employment zone
(“zone d’emploi” in French) is a division of the French territory into 306 geographical
areas within which most of the working population resides and works. For a map
showing the boundaries of the employment zones, see Figure OA1 in the Online Ap-
pendix. Table OA16 in the Online Appendix shows that the results are qualitatively
similar when the analysis is carried out at the employment zone level, albeit less
statistically significant. Some of the results at the employment zone level are even
quantitatively close to the results at the zip code area level. Column 3 indicates that
an increase of one unit in the weekly average NO2 and O3 exposure increases weekly
health expenditure at the employment zone level by €438.3 and €83.68 respectively.
A linear scaling of these amounts to the annual costs for the entire French population
results in €663,235,560 and €126,624,576. These estimates are similar to the addi-
tional healthcare costs of €525,620,310 and €99,907,517 resulting from a one-unit
increase in average NO2 and O3 pollution, respectively, estimated using the weekly
frequency data.

5.3. Effect heterogeneity

This section presents the results of heterogeneity analyses, including the results
of regressions conducted separately by medical speciality, patient and location char-
acteristics.

Results by medical speciality

I investigate which type of health condition is affected by exposure to air pollu-
tion by running separate regressions for 10 categories of medical specialities. While
interesting in its own right, this exercise also serves as a sanity check. I examine
both a set of medical specialities that should be affected by air pollution and - as
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a placebo exercise - medical specialities that should not be affected. I should find
that air pollution has no effect on expenditure in the placebo categories. Other-
wise, it would suggest that the estimates pick up some spurious correlation between
air pollution and health expenditure and that the estimates of overall health effects
are likely biased. The categories that I expect to be affected are family practice
(primary care physician), cardiology and vascular medicine, pulmonology, otorhino-
laryngology (O.R.L.), ophthalmology, and gynaecology. The placebo specialties are
gastro-hepatology, nephrology, trauma surgery, and plastic surgery.

Table 2 shows results by medical speciality using the preferred FE-IV specifica-
tion. The dependent variable in these regressions is constructed as the weekly sum
of expenditure on medical treatments in the respective medical specialty, including
the costs of physician fees and all related expenditures such as drugs and exams.
Family practice shows the strongest response, with coefficients for all air pollutants
statistically significantly different from zero. This is consistent with the fact that the
family practitioner is the first point of contact with the healthcare system before ori-
enting patients to specialist care or the only point of contact in case of minor health
problems. The estimates suggest that cardio-vascular issues are affected by NO2 and
O3 pollution while pulmonology is affected by PM10 pollution. For O.R.L., effects
are found for the lags of O3 and PM10 exposure, while there are effects of NO2 and
the lags of O3 and PM10 pollution on expenditures for ophthalmology. For gynaecol-
ogy, I find effects for the lag of O3 exposure but the coefficient is only significant at
the 5% level. These effects are consistent with the findings from the economic and
epidemiological literature, which have shown effects of all three pollutants on health
problems falling into these medical specialities. All but one of the coefficients have
the expected positive sign and the only statistically significant negative coefficient is
only significant at the 5% level. The placebo categories do not appear to be affected,
as none of the estimates are statistically significantly different from zero. In contrast,
many of the estimates from the simple location FE model shown in Table OA17 in
the Online Appendix are negative, highlighting again the difficulty of estimating the
effects of multiple correlated pollutants simultaneously without using instruments.
The simple location FE model also yields statistically significant estimates for the
placebo categories which suggests that model estimates from models that do not use
instruments for pollution concentrations pick up spurious correlation.

Assuming no knowledge of which outcomes are affected and which pollutants
affect the outcomes, I conduct a total of 60 hypothesis tests across 10 specialties
for three pollutants and three pollutant lags. This increases the likelihood of false
positives by a factor of 60 compared to analysing a single treatment. To control the
Family-Wise Error Rate (FWER) — the probability of at least one false rejection
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Table 2: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly healthcare
expenditure - regressions run separately by medical specialty

Family practice Cardio-vasc. Pulmo. O.R.L. Ophthalmo.

NO2 4.956∗∗∗ 0.466∗ 0.0177 0.0236 1.108∗∗∗

(1.492) (0.223) (0.179) (0.084) (0.228)

O3 0.927∗∗∗ 0.0401 0.0127 0.00108 0.107∗

(0.235) (0.040) (0.035) (0.017) (0.042)

PM10 -1.180 -0.0541 0.180 -0.0468 -0.336∗

(1.143) (0.159) (0.139) (0.062) (0.170)

Lag NO2 2.513 -0.00495 -0.300 0.0897 0.192
(1.297) (0.225) (0.202) (0.084) (0.240)

Lag O3 1.217∗∗∗ 0.178∗∗∗ 0.0273 0.0476∗∗ 0.206∗∗∗

(0.264) (0.041) (0.031) (0.017) (0.044)

Lag PM10 3.329∗∗∗ 0.239 0.260∗ 0.140∗∗ 0.318∗

(0.835) (0.142) (0.126) (0.052) (0.149)

Gynaeco. Nephro. Gastro-hep. Trauma surg. Plastic surg.

NO2 0.102 0.0517 -0.513 -0.107 -0.0235
(0.147) (0.082) (0.345) (0.218) (0.108)

O3 0.00422 0.0130 0.0480 0.0276 0.0306
(0.029) (0.017) (0.084) (0.040) (0.021)

PM10 0.170 -0.0335 0.370 0.172 0.129
(0.111) (0.060) (0.278) (0.159) (0.080)

Lag NO2 0.0581 0.0115 -0.285 0.327 -0.111
(0.160) (0.091) (0.410) (0.222) (0.106)

Lag O3 0.0644∗ 0.0138 0.0281 0.0756 -0.0109
(0.031) (0.017) (0.074) (0.041) (0.022)

Lag PM10 0.0318 0.0418 0.206 -0.0926 0.0409
(0.094) (0.056) (0.286) (0.139) (0.068)

Observations 1186311 1186311 1186311 1186311 1186311
FS F-stat 824.2 824.2 824.2 824.2 824.2
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table reports results for regressions run separately
by medical speciality using the preferred FE-IV specification including a one week lag of
the pollutant concentrations. The dependent variables are the weekly sum of expenditure on
medical treatments in the respective medical specialty. The coefficients indicate the increase in
average healthcare spending per zip code area per week for a 1 µg/m3 increase in weekly average
pollutant concentrations. The medical specialties expected to be affected are family practice
(primary care physician), cardiology and vascular medicine, pulmonology, otorhinolaryngology
(O.R.L.), ophthalmology, and gynaecology. Gastro-hepatology, nephrology, trauma surgery,
and plastic surgery are placebo categories. All regressions include month, year and zip code
fixed effects and ground-level weather controls. Robust standard errors clustered at the zip
code level in parenthesis. 29



— I use the Holm-Bonferroni correction (Holm, 1979), which ranks p-values in as-
cending order p(1) ≤ p(2) ≤ · · · ≤ p(60) and sequentially compares the p-value (p(i))
against the threshold ( α

m−i+1
), stopping at the first failure to reject. Using this ap-

proach, the coefficients that remain statistically significant are NO2 and lagged O3

for ophthalmology, lagged O3 for cardio-vascular disease, lagged PM10, O3, lagged
O3 and NO2 for family practice (see Table OA18 in the Online Appendix). Alterna-
tively, one could remain agnostic only about which pollutants affect spending within
each specialty, rather than across all specialties. In that scenario, each speciality’s
regressions form a separate “family” of hypotheses, and one applies the correction
within each specialty for 6 hypotheses (3 pollutants and their lags). This is a less
conservative approach, but still reasonable as the categories are selected based on
evidence from the literature. This leads to 3 statistically significant coefficients for
ophthalmology (NO2, lagged O3, and O3), 1 for cardio-vascular disease (lagged O3),
2 for O.R.L.(lagged O3 and lagged PM10) and 4 for family practice (NO2, O3, lagged
O3 and lagged PM10).

Results by patient and location characteristics

Many of the existing studies on the health effect of air pollution focus on the
young or elderly populations as these populations are generally considered to be
the most vulnerable (see for example Manisalidis et al. (2020) for a review). The
middle-aged adult population is often omitted from these studies, which makes it
impossible to compare the severity of the impact in this group compared to other
age groups. I find evidence of effects across all age categories, suggesting that adverse
health effects also manifest in parts of the population that are less often considered.
See Table OA19 in the Online Appendix that shows the FE-IV model results for
regressions run separately for observations divided into age groups. One possible
explanation is that many studies conducted so far focus on mortality, an outcome
that may concern only the most vulnerable populations. I look at healthcare costs,
which include the costs of treating milder health outcomes that are likely to occur
in all age groups. Another possibility is that the middle-aged population is often
under-represented in many epidemiological studies. The effects appear to be most
pronounced in the 40-60 age group, possibly because people in this age group already
have some pre-existing health conditions and may be frailer than younger people, and
because this age group is also likely to be more exposed to air pollution than older
people as they are more likely to lead active lives and spend more time outdoors.

To determine whether there are geographic disparities in the impact of pollution
on health expenditures, I run separate regressions for observations divided into groups
according to their average zip code area characteristics. Tables OA20 and OA21 in
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the Online Appendix shows the results of the regressions for observations categorised
into groups below and above the median in terms of zip code average household
income, pollutant concentration and population size. Examination of the impact of
pollution on healthcare expenditure in absolute terms reveals that most healthcare
expenditure is incurred in the more populated areas, which are on average also higher-
income and more polluted areas (see Table OA20 in the Online Appendix). Higher
expenditure in areas where the number of people affected by air pollution is higher
is not surprising.

A more interesting picture emerges when studying the effect on per capita health-
care expenditure. First, I find no clear evidence of differential effects of pollution
on per capita healthcare spending based on zip code average household income. As
can be seen in Panel A of Table OA21, the increase in weekly per capita health
care spending for a one-unit increase in average pollutant concentration is similar in
locations with average household income below and above the median. When the
observations are categorised into groups in a different way - for example into terciles
and quartiles of average income - no clear pattern emerges either. It is possible that
there are differences between low- and high-income locations but that they are not
detectable in the data. There might exist significant income heterogeneity within a
particular zip code area that is unobserved here and that is relevant for differences
in the health effects. However, analyses of effect heterogeneity by economic status
as approximated by enrolment status in the state funded complementary insurance
plan available to low-income individuals (see Section 3 also do not yield any clear
pattern. Individuals of low socio-economic status could sort into more polluted areas
but consume less healthcare services because they are liquidity constrained. How-
ever, affordability of care should not be a concern in the French context. The French
healthcare system is universal, and reimbursement rates for medical expenses are
generally high. In addition to compulsory basic health insurance, which reimburses
70-80% of costs, most people have supplementary insurance, often through their
employer, which reimburses the remainder. For people on low incomes, the state
provides subsidies or covers the full cost of supplementary health insurance. France
also has nationally-regulated fee schedules for most medical services, ensuring that
basic costs are relatively consistent across the country. Differences in healthcare
prices depending on location should therefore not play a significant role. The most
likely explanation is that, given the characteristics of the French healthcare system,
exposure to air pollution generates similar healthcare costs across income groups.

Second, I find differences in the effects by zip code average NO2 concentration
and population size. The results in panels B and C of Table OA21 indicate that the
effects of pollution on per capita healthcare expenditure are stronger in locations
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with NO2 concentration and population size below the median. While pollution in
more populated urban areas affects a greater number of people and therefore has
a large effect on overall spending, pollution seems to have greater marginal health
effects in relatively clean and less populated areas. These results are consistent
with a concave relationship between air pollution exposure and health effects where
pollution has greater marginal effects on health at low concentrations. To further
examine the non-linearity of the effects, I run piece-wise linear regressions in which I
interact the weekly pollutant concentration with a dummy variable that categorises
that week’s pollutant concentration into four categories per quartile of its value.
Table OA22 in the Online Appendix shows that the effect of a one-unit increase
of average weekly pollution concentration when the pollution concentration during
that week belongs into the lowest quartile is greater than the effect of a one-unit
increase when the pollution concentration is in the second, third or fourth quartile.
The same applies to the effect of O3 and PM pollution. This is consistent again with
a concave relationship between air pollution exposure and health effects or concave
concentration-response function. Greater marginal effect of pollution at low pollution
levels is in contrast with some of the findings in the literature (Schlenker and Walker,
2016; Arceo et al., 2016; Dechezleprêtre et al., 2019) but some more recent studies
have indeed suggested that the concentration-response function for pollution might
be supra-linear. For example, Miller et al. (2021) and Henderson et al. (2024) show
that small air PM2.5 pollution shocks have proportionally larger mortality effects
than large air pollution shocks.

5.4. Effect size and policy discussion

The results from the preferred FE-IV model specification indicate that a 1 µg/m3

increase in weekly average NO2 concentrations leads to an average €17.23 of addi-
tional healthcare expenditure per zip code area during the same week. Similarly, a
on 1 µg/m3 increase in weekly average O3 levels leads to an average €3.28 of ad-
ditional healthcare expenditure. These €17.23 and €3.28 of additional healthcare
expenditure per zip code area per week in a sample of 1/97 of the French population
corresponds to €525,620,310 and €100,060,047 of additional healthcare spending in
France per year or 0.03% of France’s GDP in 2019.5. These are changes in annual
health expenditures for a 1µg/m3 change in air pollution concentration. To bet-
ter understand the magnitude of the effect, consider the total effect of air pollution

5To illustrate, consider the calculation for NO2: €17.23 · 97 · 52 · 6,048 = €525,620,310 where
the effect is adjusted for the sample size, multiplied by 52 to obtain the yearly effect and multiplied
by the number of zip code areas to obtain the effect for France.
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by multiplying the estimated annual health costs for a one-unit change by the 2015-
2018 average air pollution concentrations in the data. The total effect of air pollution
are then a yearly additional healthcare expenditure of €7,243,047,872 for NO2 and
€5,573,344,618 for O3 pollution, resulting in an overall effect of €12,816,392,4906.
These €12.8 billion of additional healthcare costs per year correspond to 0.5% of
France’s GDP in 2019 and 6.2% of France’s total healthcare expenditure in 20197.

These cost estimates are around 10 times larger than previous estimates of the
costs of air pollution to the French health system. A 2015 Senate Committee of
Inquiry into the economic and financial cost of air pollution (Sénat, 2015) searched
for estimates of the total costs of air pollution to the French healthcare system,
resulting in a report on two studies that considered only a fraction of the total possible
healthcare costs and a recommendation that more research be conducted in this
area. One of the studies is a 2007 impact study conducted by the French Agency for
Environmental and Occupational Health Safety (Fontaine et al., 2007) investigating
the costs related to asthma and cancer and presenting an estimate of the overall cost
situated between 0.3 and 1.3 billion euros. The other study dates from 2015 and was
carried out by the General Commission for Sustainable Development (Rafenberg,
2015) arriving at an overall cost of between 0.9 billion euros and 1.8 billion euros
per year. The study covered only the costs related to respiratory diseases (asthma,
acute bronchitis, chronic bronchitis, chronic obstructive pulmonary disease, cancers),
and hospitalisations for respiratory and cardiovascular issues. I am not aware of any
other study that quantified healthcare costs in France more comprehensively.

In general, the assessment of the health costs of air pollution has been com-
paratively incomplete in both the quasi-experimental and epidemiological literature.
Studies that attempt to assess the health costs of air pollution for cost-benefit anal-
yses often include only a selection of health effects and a part of the population for
which the epidemiological evidence is most robust. For example, the Environmen-
tal Benefits Mapping and Analysis Program–Community Edition (BenMAP-CE), a
tool historically used by the Environmental Protection Agency (EPA) and widely
employed to estimate the economic impact of the health outcomes of air pollution,
considers in its default features only the costs of hospital and emergency department
admissions. When an additional quantification including also ambulatory care is
added, only a subset of health effects have been considered (see for example Birn-

613.78 ·N525, 620, 310 = N7, 243, 047, 872 for NO2 and 55.7 ·N100, 060, 047 = N5, 573, 344, 618
for O3 pollution.

7In 2019, the GDP of France reached €2.43 trillion (INSEE, 2020) and aggregate healthcare
spending was €208 billion (DREES, 2020).
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baum et al. (2020) who consider only two disease categories, respiratory and all
cardiovascular disease). Quasi-experimental studies are similarly limited in scope,
since they focus on relatively narrow geographical areas and time periods and/or
concern only a specific part of the population and a selection of health effects, often
concentrating on mortality. The quasi-experimental studies that is most comparable
to the present study in terms of data quality and empirical strategy is Deryugina
et al. (2019). Using wind direction as instrument for PM 2.5 pollution, the study
investigates the health effects on Medicare beneficiaries in the US, i.e. people aged
over 65. While the focus lies on mortality costs, the study also provide an estimate
of hospital costs. A decrease in average PM 2.5 concentrations of 4.9µg/m3 in the
US between 1999 and 2013 is estimated to have saved hospital costs of USD 1.5
billion per year. Considering €13.03 of additional weekly healthcare costs at the
zip code area level for a one unit increase in weekly average PM2.5 concentrations
from the multi-pollutant FE-IV model in Table OA10, scaling it to a yearly estimate
for France and multiplying it by 4.9 for the change considered in Deryugina et al.
(2019) yields €1,947,723,733. Scaling the cost for the French population of roughly
67 million to the size of the population of 55 million people aged over 65 in the US
yields €1,598,877,691 or USD 1,647,219,757. My estimate of the overall costs for the
French healthcare system is not too far away from the USD 1.5 billion estimate for
the United States from Deryugina et al. (2019), which only considers hospital costs.
However, healthcare costs are on average much higher in the US than in France and
also any other country in the world(Papanicolas et al., 2018)8. This comparison
shows that it is important to have separate cost estimates for Europe, as the cost
estimates from the USA are not applicable to other health systems.

The healthcare cost estimates presented in this study are sizeable compared to
estimates of the costs of further pollution reduction. The total cost of complying with
the EU National Emission Commitment (NEC) Directive (European Parliament,
2016) 2030 air pollution target values considering 2017 pollution levels has been
estimated at €9.9 billion per year by Amann et al. (2017). This includes not only
the cost of reducing NO2 but also the cost of reducing other pollutants. Compliance
with the NEC Directive requires France to reduce nitrogen oxides (NOx, composed
of both NO2 and NO) by 50% compared to 2005 values, to be achieved from 2030.
In 2005, annual NO2 concentrations in France were 17.5 µg/m3 (INERIS, 2024),
which means that France should reduce NO2 by 8.75 µg/m3 from its 2005 levels

8To illustrate, an appendectomy performed in the United States will cost an average of USD
33,000, or around €29,000, compared with only €600 in France. Taken as an example from the
website of an international health insurance for expatriates availablehere.
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until 2030. Given the 2017 average of 12.01 µg/m3 (INERIS, 2024), this implies
a further decrease of 3.26 µg/m3 of annual NO2 concentration. According to my
estimate, this 3.26 µg/m3 of annual NO2 concentration should lead to savings of €1.7
billion in annual health expenditure. The health cost savings from complying with
the NO2 pollution reductions alone (disregarding other pollutants) should therefore
account for 17% of the estimated total cost of complying with the NEC Directive
for France. My estimate of €1.7 billion savings in annual health expenditure for
compliance with the NO2 limit values in France alone are almost as large as the
estimate of €2.4 billion of annual health cost savings of full compliance with the
NEC Directive for the entire European Union (EU28) considered in Amann et al.
(2017). My health cost savings estimate for France (home to 13% of the total EU
population) for compliance regarding NO2 standards disregarding reductions of other
air pollutant concentrations already corresponds to 70% of the health cost savings
considered in Amann et al. (2017), suggesting that the health cost savings considered
in Amann et al. (2017) are largely underestimated.

Although the health costs presented in this study are higher than those from
the previous literature, they still represent a lower bound for the total health costs
of air pollution. The estimates only reflect the short-term effects of air pollution,
not the effects of chronic exposure. The cost estimates do not include the costs of
unobserved behavioural responses. Short-run increases in air pollution have been
shown to cause people to stay indoors (Neidell, 2009; Zivin and Neidell, 2009) or
buy indoor air purifiers (Ito and Zhang, 2020). Mortality costs or the costs of lost
productivity due to illness are not considered in this study. Finally, the choice of
estimates for the cost calculation is conservative. Some model specifications produce
larger health cost estimates.

The results of this study provide highly relevant information for public policy de-
cisions. My cost estimates show that the health costs of air pollution to the French
health system have been severely underestimated. Previous policy decisions were
therefore based on cost-benefit calculations that did not take into account health
cost savings from further reductions in air pollution in the order of several billion
euros per year. The health costs estimated here are caused by air pollution levels
that are mostly far below the current European air quality guideline values, indicat-
ing that the current guideline values are set too high. A review of EU air quality
guidelines is currently underway. On 26 October 2022, as part of the European Green
Deal, the Commission proposed to revise the Ambient Air Quality Directives to align
the air quality standards more closely with the 2021 recommendations of the WHO
(European Commission, 2016). This planned revision is a step in the good direction.
It would signify a reduction of the limit values for NO2, PM10 and PM2.5. However,
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this study provides evidence that there are likely significant health benefits from re-
ducing pollutant levels even further below the current WHO guideline values. I find
that the marginal effects are greater in relatively low-pollution and less populated
areas. Reducing population exposure even at low air pollution concentrations should
therefore be an important public health goal. When I consider the current WHO
air quality guideline values of 10 µg/m3 annual mean for NO2 and 15 µg/m3 annual
mean for PM10 pollution more specifically, I find that an increase in pollutant concen-
trations of one unit below the guideline values has a greater impact than an increase
of one unit above the guideline values. See Table OA23 in the Online Appendix.
Even the most stringent 2021 WHO guideline values should not be considered safe
for human health. The results also have implications for public health communica-
tion. Usually, warning messages are addressed to the population on days with peak
levels of air pollution and typically target populations considered to be particularly
vulnerable, such as the elderly and children. The messages should be updated to
inform the population that pollution can have a significant impact on health even
at low concentrations and that health effects can occur even in apparently healthy
adults.

6. Conclusion

This study quantifies the healthcare costs caused to the French healthcare system
by acute exposure to air pollution. Air pollution remains the greatest environmental
risk to the health of Europeans. Air quality standards and targets have been set for a
number of air pollutants, but the appropriateness of these limits remains the subject
of debate and the object of recent policy changes. Accurately quantifying the effects
of air pollution exposure is essential to determine the optimal level of environmental
policy.

I combine comprehensive French administrative health data for a nationally rep-
resentative sample with high-resolution geospatial data on air pollution and mete-
orological conditions to estimate the health costs of air pollution more accurately
and comprehensively than previous studies, which tend to be limited to relatively
narrow geographical areas and time periods, look at only a specific part of the popu-
lation, or examine the effects of air pollution on a limited range of health conditions.
Using high-quality data from a nationally representative sample also makes it pos-
sible to analyse treatment effect heterogeneity as a function of patient and location
characteristics in a way that has not been possible in previous studies based on non-
representative samples. To estimate causal effects, I adopt an instrumental variable
approach that exploits weekly variations in local concentrations of nitrogen dioxide,
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ground-level ozone and particulate matter caused by variations in altitude weather
conditions. Weather conditions at altitude are good instruments because they are
highly predictive of air pollution concentrations and are unlikely to be associated
with changes in health care use other than through their effect on air pollution, con-
ditional on controlling for various time and location fixed effects as well as weather
at ground level.

Exposure to air pollution concentrations that are predominantly below the cur-
rent European air quality standard values causes healthcare costs to the French
health system in the order of several billions a year. The costs are about 10 times
higher than those estimated in previous studies, suggesting that the health costs of
air pollution have been severely underestimated. Air pollution causes health costs
in all age groups, suggesting that adverse health effects also occur in parts of the
population that were considered less vulnerable and were less frequently studied.
While air pollution in more populated urban areas has a large impact on total health
expenditure, pollution in relatively cleaner and less populated areas appears to have
a larger marginal effect on healthcare costs. These results are consistent with a con-
cave relationship between air pollution exposure and health outcomes, with pollution
having larger marginal health effects at low concentrations.

These results are highly relevant for environmental policy. Previous policy deci-
sions have been based on estimates that do not account for health cost savings of
several billion per year and should be updated. Significant health costs are caused
by air pollution levels that are below current European air quality guideline val-
ues, suggesting that the guideline values are set too high. The apparent concave
relationship between air pollution and health costs means that reducing population
exposure, even at low air pollution concentrations, should be an important public
health objective.
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INERIS, 2024. La qualité de l’air en france métropolitaine cartographiée
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Muñoz Sabater, J., 2019. Era5-land hourly data from 1950 to present. DOI:
10.24381/cds.e2161bac. Accessed: 2020-01-01.

Neidell, M., 2004. Air pollution, health, and socio-economic status: the effect of
outdoor air quality on childhood asthma. Journal of health economics 23, 1209–
1236.

Neidell, M., 2009. Information, avoidance behavior, and health the effect of ozone
on asthma hospitalizations. Journal of Human resources 44, 450–478.

Papanicolas, I., Woskie, L.R., Jha, A.K., 2018. Health care spending in the united
states and other high-income countries. Jama 319, 1024–1039.
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Appendix

Figure A1: Level of pollutants relative to the limit values presented in Table OA1. The Figure shows
the distribution of pollution concentrations in 2017 across zip code areas in light blue, the current
limit values in France/the EU (solid green), the average value across zip codes (grey, dashed) and
the WHO 2005 and 2021 guideline values (yellow dashdot and red dotted, respectively). Pollution
levels in France are generally below the prevailing EU air quality guideline values.
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Table A1: Summary statistics - pooled postcode-week observations

Variable Mean Std. Dev. Min. Max. N

Sum of healthcare spending in €

Total spending 3608.63 7471.21 0 370436.63 1,257,984
Family practice 1212.08 2502.24 0 75846.8 1,257,984
Cardiology and vascular medicine 50.9 184.84 0 37266.45 1,257,984
Pulmonology 22.76 142.19 0 15688.04 1,257,984
Otorhinolaryngology 19.34 74.56 0 10203.16 1,257,984
Ophtalmology 82.36 228.2 0 9585.98 1,257,984
Gynecology 43.19 150.61 0 9300.96 1,257,984
Nephrology 11.48 79.62 0 11234.26 1,257,984
Gastroenterology and hepatology 32.37 305.67 0 26562.06 1,257,984
Trauma surgery 36.01 164.33 0 14695.7 1,257,984
Plastic surgery 5.22 76.64 0 6468.49 1,257,984

Pollution concentrations in µg/m3

NO2 13.78 7.14 2.68 76.84 1,247,428
O3 55.7 17.49 0.4 119.09 1,247,428
PM10 16.61 6.32 4.28 92.76 1,247,428
PM2.5 10.57 5.75 1.97 79.67 1247428
NO2 (data from EEA) 21.72 5.58 12.44 41.56 1,257,984
O3 (data from EEA) 54.55 15.78 19.68 89.71 1,257,984
PM10 (data from EEA) 18.76 5.37 10.69 52.76 1,257,984
SO2 (data from EEA) 2.22 0.39 1.4 3.91 1,257,984
CO (data from EEA) 0.23 0.1 0.06 0.55 1,257,984

Altitude atmospheric conditions

Thermal inversions (sum of occurrence) 0.36 0.94 0 7 1,257,984
Temperature difference (mean, C◦) -1.2 0.47 -3.56 3.06 1,257,984
Planetary boundary height (mean, m) 539.85 186.81 12.05 1590.81 1,257,984
Wind speed at altitude ((mean, m/s) 12.52 4.52 2.89 32.6 1,257,984

Ground-level meteorological conditions

Precipitation (sum, mm) 14.11 16.44 0 297.2 1,257,984
Wind speed (mean, m/s) 2.52 1.12 0.08 11.71 1,214,512
Temperature (mean, C◦) 12.52 6.37 -12.43 32.09 1,257,984
Relative humidity (mean, in %) 76.11 9.58 33.78 97.86 1,257,984

Postcode-level characteristics

Household income 22096.28 4050.53 7910 52670 1,251,536
Population size 10377.76 15258.49 0 236715 1,257,984
Holidays (nb. of days) 0.21 0.44 0 2 1257984

The table presents summary statistics of the pooled postcode-week observations. The information
on healthcare spending come from the French National System of Health Data (SNDS) provided
by the National Fund for Health Insurance (CNAM, 2015-2018). The data sources for pollutant
concentrations are reanalysis data provided by the French National Institute for Industrial Envi-
ronment and Risks (INERIS, 2015-2018) and measurement station data provided by the European
Environment Agency (EEA, 2015-2018). Information on atmospheric and meteorological condi-
tions come from ERA5 reanalysis data produced by the Copernicus Climate Change Service (C3S,
Muñoz Sabater (2019); Hersbach et al. (2023a,b)). Information on household income comes from the
FiLoSoFi social and fiscal localized database provided by the French National Institute of Statistics
and Economic Studies (INSEE, INSEE (2024)). The data on population size is included in the
French shapefile data available at the Open platform for French public data (data.gouv.fr, 2014).
Data on holidays in France are also obtained from the Open platform (data.gouv.fr, 2024).



Online appendix

Figure OA1: Division of France into employment zones. The employment zone (“zone d’emploi” in
French) is a division of the French territory into 306 geographical areas within which most of the
working population resides and works.

48



Table OA1: Summary of the main WHO and EU Air Quality Standard values

Pollutant Averaging time WHO 2005 WHO 2021 EU/France
Guidelines Guidelines limit values

Nitrogen dioxide (NO2) Annual 40 10 40
Nitrogen dioxide (NO2) 24-hour N/A 25 N/A
Ozone (O3) 8-hour 100 100 120
Ozone (O3) Peak seasona N/A 60 N/A
Particles �≤ 10µm (PM10) Annual 20 15 40
Particles �≤ 10µm (PM10) 24-hour 50 45 50
Particles �≤ 2.5µm (PM2.5) Annual 10 5 25
Particles �≤ 2.5µm (PM2.5) 24-hour 25 15 N/A

The table presents a summary of the main World Health Organisation (WHO) and European Union
(EU) air quality standard values. Guidelines and limit values are expressed in µg/m3.
a Average of daily maximum 8-hour mean O3 concentration in the six consecutive months with the
highest six-month running- average O3 concentration.
Sources: WHO, https://www.who.int/news-room/feature-stories/detail/

what-are-the-who-air-quality-guidelines

Airparif, https://www.airparif.asso.fr/la-reglementation-en-france
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Table OA2: First stage regression regression, preferred FE-IV model specification

NO2 O3 PM10

Thermal inversion (nb. h per week) 0.176∗∗∗ 0.0126 0.347∗∗∗

(0.009) (0.021) (0.012)

TI 0-4 h (nb. h per week) 0.0953∗∗∗ 0.0124∗∗ 0.189∗∗∗

(0.002) (0.004) (0.004)

TI 4-8 h (nb. h per week) -0.0416∗∗∗ 0.119∗∗∗ -0.0567∗∗∗

(0.002) (0.005) (0.004)

TI 8-12 h (nb. h per week) -0.0759∗∗∗ -0.425∗∗∗ -0.0397∗∗∗

(0.005) (0.010) (0.006)

TI 12-16 h (nb. h per week) 0.201∗∗∗ -0.663∗∗∗ 0.319∗∗∗

(0.007) (0.019) (0.009)

TI 16-20 h (nb. h per week) 0.0764∗∗∗ -0.282∗∗∗ 0.155∗∗∗

(0.006) (0.014) (0.008)

TI 20-24 h (nb. h per week) 0.0630∗∗∗ 0.163∗∗∗ 0.0142∗∗∗

(0.002) (0.006) (0.004)

TI strength 0-4 h (diff degree C) 1.445∗∗∗ -0.225∗∗ 0.0965∗

(0.034) (0.072) (0.047)

TI strength 4-8 h (diff degree C) -0.842∗∗∗ -1.500∗∗∗ 0.641∗∗∗

(0.032) (0.066) (0.036)

TI strength 8-12 h (diff degree C) -1.222∗∗∗ 1.657∗∗∗ -1.571∗∗∗

(0.045) (0.104) (0.043)

TI strength 12-16 h (diff degree C) 1.905∗∗∗ -6.413∗∗∗ 3.612∗∗∗

(0.050) (0.133) (0.069)

TI strength 16-20 h (diff degree C) -0.138∗ -1.503∗∗∗ -0.776∗∗∗

(0.061) (0.153) (0.080)

TI strength 20-24 h (diff degree C) 0.765∗∗∗ 0.455∗∗∗ 1.084∗∗∗

(0.034) (0.073) (0.046)

PBLH 0-4 h (m) 0.0000389 0.0114∗∗∗ -0.00636∗∗∗

(0.000) (0.000) (0.000)

PBLH 4-8 h (m) -0.00327∗∗∗ -0.00595∗∗∗ 0.00115∗∗∗

(0.000) (0.000) (0.000)

PBLH 8-12 h (m) -0.00284∗∗∗ 0.00266∗∗∗ -0.00370∗∗∗

(Continued on next page)
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Table OA2: (continued) First stage regression, preferred FE-IV model specification

NO2 O3 PM10

(0.000) (0.000) (0.000)

PBLH 12-16 h (m) 0.00108∗∗∗ 0.0192∗∗∗ -0.000876∗∗∗

(0.000) (0.000) (0.000)

PBLH 16-20 h (m) -0.00254∗∗∗ -0.00219∗∗∗ 0.000179∗∗

(0.000) (0.000) (0.000)

PBLH 20-24 h (m) -0.00420∗∗∗ 0.00310∗∗∗ 0.00263∗∗∗

(0.000) (0.000) (0.000)

Wind speed at 350 hPa (m/s) 0.0608∗∗∗ -0.638∗∗∗ -0.212∗∗∗

(0.005) (0.013) (0.008)

Wind speed at 400 hPa (m/s) -0.254∗∗∗ 0.997∗∗∗ -0.0726∗∗∗

(0.012) (0.031) (0.019)

Wind speed at 450 hPa (m/s) 0.182∗∗∗ -1.117∗∗∗ 0.217∗∗∗

(0.016) (0.041) (0.027)

Wind speed at 500 hPa (m/s) 0.0279 1.713∗∗∗ 0.0238

(0.018) (0.055) (0.027)

Wind speed at 550 hPa (m/s) 0.122∗∗∗ -1.852∗∗∗ 0.150∗∗∗

(0.019) (0.061) (0.032)

Wind speed at 600 hPa (m/s) -0.00984 1.520∗∗∗ 0.0843∗

(0.023) (0.061) (0.039)

Wind speed at 650 hPa (m/s) -0.738∗∗∗ -0.526∗∗∗ -1.193∗∗∗

(0.025) (0.068) (0.045)

Wind speed at 700 hPa (m/s) 0.774∗∗∗ 0.168∗ 1.244∗∗∗

(0.025) (0.071) (0.045)

Wind speed at 750 hPa (m/s) -0.166∗∗∗ -1.422∗∗∗ -0.651∗∗∗

(0.028) (0.076) (0.050)

Wind speed at 800 hPa (m/s) -0.965∗∗∗ 2.390∗∗∗ -0.0596

(0.054) (0.149) (0.114)

Wind speed at 825 hPa (m/s) 1.285∗∗∗ -3.477∗∗∗ 0.288∗

(0.063) (0.180) (0.142)

Wind speed at 850 hPa (m/s) -0.309∗∗∗ 2.437∗∗∗ -0.0563

(0.028) (0.079) (0.064)

Constant 13.79∗∗∗ 65.18∗∗∗ 18.48∗∗∗

(Continued on next page)
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Table OA2: (continued) First stage regression, preferred FE-IV model specification

NO2 O3 PM10

(0.127) (0.305) (0.169)

Observations 1209572 1209572 1209572
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table shows the first stage regression corresponding

to the FE-IV models in Columns 3 and 4 in table 1. The instruments are the number of hours

of thermal inversion (TI) per week and the number of hours of thermal inversions per week by

moment of the day, the average strength of these thermal inversions in terms of weekly average

temperature difference between the lowest and second lowest atmospheric layer by moment of the

day, the average of the planetary boundary layer height (PBLH) taken over the moments of the

day, and the weekly average wind speed at twelve pressure levels. All regressions include month,

year and zip code fixed effects and ground-level weather controls. Robust standard errors clustered

at the zip code level in parenthesis.
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Table OA3: First stage using LASSO selected instruments

NO2 O3 PM10

Thermal inversion (nb. h per week) 0.294∗∗∗ 0.339∗∗∗

(0.009) (0.012)

TI 0-4 h (nb. h per week) 0.0809∗∗∗ 0.00256 0.186∗∗∗

(0.002) (0.004) (0.003)

TI 4-8 h (nb. h per week) 0.00956∗∗∗ 0.160∗∗∗ -0.0548∗∗∗

(0.002) (0.005) (0.003)

TI 8-12 h (nb. h per week) -0.0309∗∗∗ -0.607∗∗∗ -0.0488∗∗∗

(0.005) (0.010) (0.006)

TI 12-16 h (nb. h per week) -0.658∗∗∗ 0.278∗∗∗

(0.020) (0.009)

TI 16-20 h (nb. h per week) -0.190∗∗∗ 0.208∗∗∗

(0.014) (0.006)

TI 20-24 h (nb. h per week) 0.0227∗∗∗ 0.157∗∗∗

(0.002) (0.005)

TI strength 0-4 h (diff degree C) 1.019∗∗∗ -0.419∗∗∗

(0.021) (0.068)

TI strength 4-8 h (diff degree C) -0.894∗∗∗ 0.767∗∗∗

(0.058) (0.026)

TI strength 8-12 h (diff degree C) -1.078∗∗∗ -1.756∗∗∗

(0.048) (0.043)

TI strength 12-16 h (diff degree C) 0.882∗∗∗ -6.229∗∗∗ 3.266∗∗∗

(0.026) (0.114) (0.060)

TI strength 20-24 h (diff degree C) 0.793∗∗∗

(0.021)

PBLH 0-4 h (m) 0.0120∗∗∗ -0.00535∗∗∗

(0.000) (0.000)

PBLH 4-8 h (m) -0.00369∗∗∗ -0.00626∗∗∗

(0.000) (0.000)

PBLH 8-12 h (m) -0.00196∗∗∗ 0.00249∗∗∗ -0.00317∗∗∗

(0.000) (0.000) (0.000)

PBLH 12-16 h (m) 0.0182∗∗∗ -0.000915∗∗∗

(Continued on the next page)
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Table OA3: (continued) First stage using LASSO selected instruments

NO2 O3 PM10

(0.000) (0.000)

PBLH 16-20 h (m) -0.00156∗∗∗

(0.000)

PBLH 20-24 h (m) -0.00433∗∗∗ 0.00168∗∗∗ 0.00265∗∗∗

(0.000) (0.000) (0.000)

Wind speed at 350 hPa (m/s) -0.0156∗∗∗ -0.257∗∗∗ -0.117∗∗∗

(0.001) (0.003) (0.002)

Wind speed at 500 hPa (m/s) 0.391∗∗∗

(0.006)

Wind speed at 650 hPa (m/s) -0.126∗∗∗ -0.143∗∗∗

(0.002) (0.003)

Wind speed at 750 hPa (m/s) -0.863∗∗∗

(0.015)

Wind speed at 850 hPa (m/s) 0.144∗∗∗ 0.879∗∗∗

(0.006) (0.021)

Observations 1209572 1209572 1209572

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table presents the first stage regression

results where each pollutant is regressed over the LASSO-selected variables. The

instruments are the number of hours of thermal inversion (TI) per week and the

number of hours of thermal inversions per week by moment of the day, the average

strength of these thermal inversions in terms of weekly average temperature difference

between the lowest and second lowest atmospheric layer by moment of the day, the

average of the planetary boundary layer height (PBLH) taken over the moments of

the day, and the weekly average wind speed at twelve pressure levels. All regressions

include month, year and zip code fixed effects and ground-level weather controls.

Robust standard errors clustered at the zip code level in parentheses.
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Table OA4: First stage model fit in terms of the Bayesian Information Criterion (BIC) and the
Akaike Information Criterion (AIC)

First stage regression - estimating NO2 pollution
Use NO2 instruments Use O3 instruments Use PM10 instruments

AIC 5854194.7 5857163.3 5864386.1
BIC 5854879.1 5857883.6 5865082.4

First stage regression AIC and BIC estimating O3 pollution
Use NO2 instruments Use O3 instruments Use PM10 instruments

AIC 8074782.3 7958247.7 7974813.1
BIC 8075466.6 7958968.0 7975509.4

First stage regression AIC and BIC estimating PM10 pollution
Use NO2 instruments Use O3 instruments Use PM10 instruments

AIC 6932516.4 6925064.4 6919790.2

BIC 6933200.8 6925784.7 6920486.6

The table compares the model fit in terms of the Bayesian Information Criterion (BIC) and
the Akaike Information Criterion (AIC) when the pollutant-specific instruments predict
the pollutant for which they were selected with the model fit when these instruments are
used to predict the concentrations of the other pollutants. The terms in bold show the
model fit for models where the pollutant-specific instruments predict the pollutant for
which they have been selected, which corresponds to the best model fit (lowest AIC and
BIC).
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Table OA5: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - FE-IV LASSO regression results

Weekly healthcare spending
(1) (2)

Weekly mean NO2 20.40∗∗∗ 20.18∗∗∗

(3.881) (3.750)

Weekly mean O3 6.177∗∗∗ 3.296∗∗∗

(0.783) (0.666)

Weekly mean PM10 10.75∗∗∗ 1.519
(2.839) (2.842)

Lag weekly mean NO2 -6.877
(4.134)

Lag weekly mean O3 7.033∗∗∗

(0.814)

Lag weekly mean PM10 23.10∗∗∗

(2.724)

Observations 1,209,572 1,186,311
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table presents the re-
sults for the FE-IV regressions using LASSO selected pollutant-
specific instrument vectors for the first stage regression. The
corresponding first stage regression results are presented in ta-
ble OA3. All regressions include month, year and zip code fixed
effects and ground-level weather controls. Robust standard er-
rors clustered at the zip code level in parenthesis.
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Table OA6: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure over a time window of several weeks

Sum of healthcare spending

Same week Over 2 weeks Over 3 weeks

Weekly mean NO2 17.23∗∗∗ 25.63∗∗∗ 54.10∗∗∗

(3.719) (5.503) (7.602)

Weekly mean O3 3.275∗∗∗ 2.692∗∗ 8.057∗∗∗

(0.662) (1.009) (1.675)

Weekly mean PM10 3.540 6.277 23.63∗∗∗

(2.843) (4.356) (5.824)

Lag weekly mean NO2 -3.423 1.672 -29.71∗∗∗

(4.062) (6.089) (8.766)

Lag weekly mean O3 6.497∗∗∗ 8.627∗∗∗ 16.55∗∗∗

(0.795) (1.377) (1.628)

Lag weekly mean PM10 18.14∗∗∗ 41.77∗∗∗ 69.78∗∗∗

(2.616) (3.966) (5.740)

Observations 1186311 1163050 1139789
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table shows results for the effect of weekly
air pollution exposure and its one week lag on healthcare expenditure over a longer
time window of two to four weeks, controlling for the appropriate number of weather
and instrument leads. Column 1 shows results for the baseline model that estimates
the effects of weekly average air pollution concentration and its lag on healthcare
expenditure during the same week for reference. Column 2 shows results for the
effects during the same week and the following week and Column 3 shows the effects
for the same week and the following two weeks of healthcare expenditure. The total
lag considered is a month for the effect of the one week lag of air pollution (week
-1) on healthcare spending during the following three weeks (week 1 to 3) shown
in Column 4. All regressions include month, year and zip code fixed effects and
ground-level weather controls. Robust standard errors clustered at the zip code level
in parenthesis.
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Table OA7: Impact of average daily NO2, O3 and PM10 pollutant concentrations on daily healthcare
expenditure

Daily healthcare spending
(1) (2)

Daily NO2 3.488∗∗∗ 4.946∗∗∗

(0.488) (0.522)

Daily O3 0.429∗∗ 0.692∗∗∗

(0.136) (0.119)

Daily PM10 2.059∗∗ -0.0566
(0.676) (0.466)

One day lag NO2 -2.036∗∗∗

(0.481)

Two day lag NO2 0.957∗

(0.450)

One day lag O3 -0.417∗∗

(0.133)

Two day lag O3 0.813∗∗∗

(0.150)

One day lag PM10 2.447∗∗∗

(0.530)

Two day lag PM10 -1.343∗∗

(0.437)

Observations 8484329 8484121
First-stage F-stat 2068.6 2328.7
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table shows results
for the effect of average daily pollutant concentrations on
daily healthcare expenditure. All regressions include day-of-
the-week, month, year and zip code fixed effects and ground-
level weather controls. Robust standard errors clustered at
the zip code level in parenthesis.
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Table OA8: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - single- and two-pollutant models

Dependent variable: Sum of weekly healthcare spending

Panel A: Location FE model, no lags

(1) (2) (3) (4) (5) (6)

Weekly mean NO2 30.33∗∗∗ 33.34∗∗∗ 44.33∗∗∗

(1.927) (2.029) (2.692)

Weekly mean O3 0.362 4.076∗∗∗ 0.754∗ 4.189∗∗∗

(0.353) (0.381) (0.355) (0.383)

Weekly mean PM10 4.053∗∗∗ 4.251∗∗∗ -12.06∗∗∗

(0.570) (0.573) (0.981)

Observations 1209572 1209572 1209572 1209572 1209572 1209572

Panel B: Location FE-IV model, no lags

(1) (2) (3) (4) (5) (6)

Weekly mean NO2 22.71∗∗∗ 32.29∗∗∗ 18.42∗∗∗

(1.952) (2.152) (3.820)

Weekly mean O3 0.957 5.984∗∗∗ 5.477∗∗∗ 6.282∗∗∗

(0.680) (0.756) (0.789) (0.773)

Weekly mean PM10 16.87∗∗∗ 22.77∗∗∗ 12.37∗∗∗

(1.375) (1.607) (2.815)

Observations 1209572 1209572 1209572 1209572 1209572 1209572
First-stage F-stat 2648.7 5768.1 3763.8 2648.7 5768.1 2648.7

(Continued on the next page)
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Table OA8: (continued) Impact of average weekly NO2, O3 and PM10 pollutant concentrations on
weekly healthcare expenditure - single- and two-pollutant models

Dependent variable: Sum of weekly healthcare spending

Panel C: Location FE model, lags

(1) (2) (3) (4) (5) (6)

Weekly mean NO2 27.44∗∗∗ 31.12∗∗∗ 43.36∗∗∗

(1.689) (1.814) (2.420)

Lag weekly mean NO2 8.213∗∗∗ 8.322∗∗∗ 8.947∗∗∗

(1.518) (1.580) (2.119)

Weekly mean O3 0.939∗∗ 4.769∗∗∗ 1.256∗∗∗ 4.837∗∗∗

(0.339) (0.386) (0.342) (0.387)

Lag weekly mean O3 -0.890∗ -0.294 -0.760∗ -0.175
(0.351) (0.362) (0.355) (0.364)

Weekly mean PM10 2.665∗∗∗ 3.022∗∗∗ -13.34∗∗∗

(0.598) (0.604) (0.996)

Lag weekly mean PM10 2.380∗∗∗ 2.237∗∗∗ -1.412
(0.562) (0.567) (0.872)

Observations 1186311 1186311 1186311 1186311 1186311 1186311

Panel D: Location FE-IV model, lags

(1) (2) (3) (4) (5) (6)

Weekly mean NO2 15.87∗∗∗ 17.85∗∗∗ 17.23∗∗∗

(1.805) (2.140) (3.719)

Lag weekly mean NO2 8.286∗∗∗ 19.98∗∗∗ -3.423
(1.873) (2.082) (4.062)

Weekly mean O3 -0.618 3.015∗∗∗ 2.345∗∗∗ 3.275∗∗∗

(0.557) (0.653) (0.625) (0.662)

Lag weekly mean O3 4.699∗∗∗ 6.528∗∗∗ 6.890∗∗∗ 6.497∗∗∗

(0.688) (0.775) (0.804) (0.795)

Weekly mean PM10 11.59∗∗∗ 12.85∗∗∗ 3.540
(1.335) (1.514) (2.843)

Lag weekly mean PM10 8.493∗∗∗ 15.48∗∗∗ 18.14∗∗∗

(1.242) (1.485) (2.616)

Observations 1186311 1186311 1186311 1186311 1186311 1186311
First-stage F-stat 2063.7 6746.1 4417.5 2063.7 6746.1 2063.7
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. This table shows results for one and two-pollutant models.
Panels A and C presents results for the location fixed effects (FE) model while Panels B and
D present results for the location fixed effects instrumental variable model (FE-IV). Panels C
and D include one week lag of the pollutants. Columns 1 to 3 show results for models including
only one pollutants at a time. Columns 4 and 5 show results for two-pollutant models and
column 6 shows results for the model including all three pollutants. All regressions include
month, year and zip code fixed effects and ground-level weather controls. Robust standard
errors clustered at the zip code level in parenthesis.



Table OA9: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - instrumenting only one pollutant and including the others as controls

Weekly healthcare spending

NO2 32.69∗∗∗

(3.223)

O3 5.482∗∗∗

(0.766)

PM10 6.853∗∗

(2.429)

Observations 1209572 1209572 1209572
First-stage F-stat 2016.3 6165.0 2853.5
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table shows results
for models instrumenting only one pollutant at a time while
the other pollutants are included as controls (not shown
in the table). All regressions include month, year and zip
code fixed effects and ground-level weather controls. Robust
standard errors clustered at the zip code level in parenthesis.
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Table OA10: Impact of average weekly NO2, O3 and PM2.5 pollutant concentrations on weekly
healthcare expenditure - model investigating the effect of PM2.5 instead of PM10

Dependent variable: Sum of weekly healthcare spending

Panel A: Location FE model

(1) (2) (3) (4) (5) (6)

Weekly mean PM2.5 2.779∗∗∗ 1.365∗ 3.189∗∗∗ 2.209∗∗∗ -16.45∗∗∗ -16.31∗∗∗

(0.638) (0.653) (0.651) (0.667) (1.209) (1.158)

Lag weekly mean PM2.5 4.919∗∗∗ 3.854∗∗∗ -0.567
(0.550) (0.573) (1.023)

Weekly mean O3 1.021∗ 1.905∗∗∗ 5.532∗∗∗ 4.303∗∗∗

(0.413) (0.406) (0.449) (0.380)

Lag weekly mean O3 -1.571∗∗∗ 0.887∗

(0.295) (0.420)

Weekly mean NO2 48.12∗∗∗ 42.86∗∗∗

(2.826) (2.393)

Lag weekly mean NO2 9.236∗∗∗

(2.247)

Observations 1209572 1186311 1209572 1186311 1209572 1186311

Panel B: Location FE-IV model

(1) (2) (3) (4) (5) (6)

Weekly mean PM2.5 17.36∗∗∗ 12.09∗∗∗ 29.78∗∗∗ 17.05∗∗∗ 15.24∗∗∗ 13.03∗∗∗

(1.434) (1.461) (1.860) (1.901) (3.172) (3.284)

Lag weekly mean PM2.5 11.26∗∗∗ 23.29∗∗∗ 24.75∗∗∗

(1.435) (1.801) (2.868)

Weekly mean O3 12.43∗∗∗ 7.186∗∗∗ 14.63∗∗∗ 7.868∗∗∗

(0.947) (0.907) (1.031) (0.987)

Lag weekly mean O3 12.31∗∗∗ 11.99∗∗∗

(1.066) (1.151)

Weekly mean NO2 24.84∗∗∗ 7.287
(4.398) (4.274)

Lag weekly mean NO2 -2.208
(4.234)

Observations 1209572 1186311 1209572 1186311 1209572 1186311
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table reports the main estimates of the relation-
ship between average weekly air pollutant concentrations and weekly healthcare expenditure
including PM2.5 instead of PM10. The coefficients indicate the increase in average healthcare
spending per zip code area for a 1 µg/m3 increase in weekly average pollutant concentrations.
Panel A presents results for the location fixed effect model (FE) and Panel B shows results for
the location fixed effect instrumental variable model (FE-IV) in which altitude atmospheric
conditions are used as instruments for the air pollutant concentrations. All regressions include
month, year and zip code fixed effects and ground-level weather controls. Robust standard
errors clustered at the zip code level are in parenthesis.



Table OA11: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - robustness to controlling and instrumenting for CO and SO2 pollution

Weekly healthcare spending
(1) (2) (3) (4)

NO2 23.32∗∗∗ 11.69∗∗ 22.61∗∗∗ 27.20∗∗∗

(4.062) (3.704) (5.061) (5.180)

O3 7.035∗∗∗ 3.115∗∗∗ 6.707∗∗∗ 4.208∗∗∗

(0.797) (0.689) (0.860) (0.785)

PM10 12.64∗∗∗ 6.056∗ 12.42∗∗∗ 2.252
(2.818) (2.776) (2.815) (2.935)

Lag NO2 3.359 -16.56∗∗∗

(4.230) (4.798)

Lag O3 7.413∗∗∗ 3.923∗∗∗

(0.873) (0.923)

Lag PM10 16.60∗∗∗ 18.48∗∗∗

(2.594) (2.569)

CO -61.04 -1756.7∗∗∗

(294.946) (257.931)

SO2 -43.46 -33.12
(29.125) (29.695)

Lag CO 1790.6∗∗∗

(257.966)

Lag SO2 73.94∗

(29.274)

CO and SO2 controlled controlled instrumented instrumented

Observations 1209572 1186311 1209572 1186311
First-stage F-stat 2106.8 1023.9 917.8 845.4
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table shows results for the effects of the
three main pollutants NO2, O3 and PM10 including in addition SO2 and CO pollution
concentrations as control variables in columns 1 and 2 and as additional instrumented
pollutants in columns 3 and 4. All regressions include month, year and zip code fixed
effects and ground-level weather controls. Robust standard errors clustered at the zip
code level in parenthesis.
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Table OA12: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - robustness to using EEA measuring station data

Weekly healthcare spending
(1) (2) (3) (4)

NO2 (EEA data) 53.55∗∗∗ 50.23∗∗∗ 77.78∗∗∗ 76.44∗∗∗

(3.645) (4.190) (5.440) (5.709)

O3 (EEA data) 10.60∗∗∗ 9.382∗∗∗ 12.86∗∗∗ 11.57∗∗∗

(1.188) (1.204) (1.281) (1.246)

PM10 (EEA data) -3.553 -4.618 -3.995 -2.048
(3.836) (2.823) (3.904) (2.856)

Lag NO2 (EEA data) 26.41∗∗∗ 27.99∗∗∗

(3.157) (3.882)

Lag O3 (EEA data) 3.745∗∗ 1.269
(1.303) (1.342)

Lag PM10 (EEA data) 3.994 1.269
(2.667) (2.735)

CO -1671.5∗∗∗ -1800.9∗∗∗

(344.310) (251.484)

SO2 -351.5∗∗∗ -349.7∗∗∗

(36.966) (40.012)

Lag CO 519.5∗

(253.911)

Lag SO2 -282.5∗∗∗

(38.559)

CO and SO2 controlled conrolled instrumented instrumented
Lagged pollutants controlled instrumented controlled instrumented

Observations 1191156 1191156 1191156 1191156
First-stage F-stat 2009.5 1909.8 1559.9 1317.1
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table shows results of weekly average pollution concen-
trations on weekly healthcare expenditure for models using EEA measuring station data on NO2,
O3 and PM10 instead of the reanalyses data from INERIS. Columns 1 and 2 show results including
the pollutants from the main analyses while columns 3 and 4 also include SO2 and CO pollution
concentrations. A one week lag of the pollutants are included as control variables in columns 1 and
3 (coefficients not shown) or as instrumented variables in columns 2 and 4. All regressions include
month, year and zip code fixed effects and ground-level weather controls. Robust standard errors
clustered at the zip code level in parenthesis. 64



Table OA13: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - robustness to different first stage specifications

Weekly healthcare spending
(1) (2) (3) (4) (5) (6)

NO2 67.13∗ 34.96∗ 14.19∗∗ 17.18∗∗∗ 35.60∗∗∗ 26.71∗∗∗

(28.411) (17.679) (4.843) (4.706) (3.950) (3.419)

O3 13.10∗∗∗ 5.033∗ 4.809∗∗∗ 3.223∗∗∗ 5.172∗∗∗ 3.308∗∗∗

(3.193) (1.954) (0.891) (0.860) (0.794) (0.799)

PM10 -12.91 -14.28 10.42∗∗∗ 3.814 -3.967 -2.776
(15.795) (11.717) (2.698) (2.583) (2.376) (2.214)

Lag NO2 65.44∗∗ 13.65∗∗ 23.30∗∗∗

(21.345) (4.781) (4.180)

Lag O3 17.09∗∗∗ 6.963∗∗∗ 5.742∗∗∗

(2.458) (0.895) (0.756)

Lag PM10 -6.946 2.708 -4.354
(10.971) (2.536) (2.572)

Observations 1209572 1186311 1014676 995163 1014676 995163

First stage Fewer instruments Fewer instruments Instruments interacted
and wind speed with location FE

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Columns 1 and 2 show results for models including as
instruments only the number of thermal inversions per week, their average strength, average
planetary boundary height and average wind speed at the lowest altitude layer above ground-
level. Columns 3 and 4 show results for models that include in addition to the instruments
in Columns 1 and 2 the weekly average wind direction by 90-degree intervals interacted with
zip code fixed effects. Columns 5 and 6 show results for models where all instruments are
interacted with location (employment zone) fixed effects.
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Table OA14: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - robustness to different fixed effects structures

Sum of weekly healthcare spending
(1) (2) (3) (4) (5)

NO2 14.37*** 12.00∗∗∗ 17.36∗∗∗ 19.29∗ 25.71∗∗∗

(4.101) (3.450) (3.901) (7.950) (3.692)

O3 7.600*** 4.440∗∗∗ 2.760∗∗∗ -0.370 4.194∗∗∗

(0.987) (0.617) (0.671) (0.653) (0.667)

PM10 6.138* 4.852 2.370 -5.493 -1.476
(2.803) (2.787) (2.927) (5.031) (2.593)

Lag NO2 0.594 0.528 -3.675 7.638 -3.079
(4.153) (3.962) (4.101) (7.504) (3.530)

Lag O3 12.59*** 4.328∗∗∗ 7.831∗∗∗ 7.449∗∗∗ 7.022∗∗∗

(1.139) (0.647) (0.853) (0.948) (0.736)

Lag PM10 23.00*** 15.78∗∗∗ 18.28∗∗∗ 12.99∗∗∗ 17.77∗∗∗

(2.601) (2.470) (2.645) (3.726) (2.420)

Observations 1186311 1186311 995163 1186311
First-stage F-stat 876.4 734.7 70.21 999.3
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Column 1 shows results for a model includ-
ing humidity and minimum and maximum temperatures as additional ground-level
weather controls. Column 2 and 3 show results for models including weather fixed
effects variables partitioned into 5 and 15 bins instead of the 10 bins used in the
main model specification. Column 4 shows results for a model including the non-
transformed weather variables. Column 5 shows results for a model including month-
by-department FE rather than month fixed effects.
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Table OA15: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - placebo regressions using shuffled instruments

Weekly healthcare spending
(1) (2)

NO2 37.09 89.04
(164.970) (133.743)

O3 19.51 20.79
(61.500) (51.431)

PM10 -96.78 -3.562
(116.092) (105.872)

Lag NO2 206.0
(135.917)

Lag O3 91.33
(54.970)

Lag PM10 -14.70
(89.382)

Observations 1209572 1186311
First-stage F-stat 0.833 0.619
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. The table presents
results for a placebo exercise where the values of the in-
strumental variables are randomly reshuffled. All regres-
sions include month, year and zip code fixed effects and
ground-level weather controls. Robust standard errors
clustered at the zip code level in parenthesis.
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Table OA16: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure at the level of the employment zone

Weekly healthcare spending at employment zone level
(1) (2) (3) (4)

NO2 520.9∗ 550.8 438.3∗∗∗ 210.4∗

(240.411) (353.243) (107.389) (104.483)

O3 45.08 7.188 83.68∗∗∗ 81.81∗∗∗

(39.424) (40.754) (16.960) (17.488)

PM10 -115.9 -526.2 19.21 25.56
(206.098) (467.519) (52.511) (59.223)

Lag NO2 983.6 737.0
(653.242) (385.839)

Lag O3 145.9∗∗∗ 143.6∗∗∗

(42.129) (33.353)

Lag PM10 -239.5 -44.42
(244.924) (141.435)

Observations 59696 58548 59696 58548
First-stage F-stat 320.2 262.7
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
This table shows results for analyses at the employment zone level instead of
the zip-code level. Columns 1 and 2 show the results for models using as in-
struments the vector of altitude atmospheric conditions from the main specifi-
cation. Columns 3 and 4 show the results for models using fewer instruments,
including the number of thermal inversions per week, their average strength,
average planetary boundary height, average wind speed at the lowest altitude
layer above ground-level and wind speed interacted with the employment zone
location indicator variables. All regressions include month, year and employ-
ment zone fixed effects and ground-level weather controls. Robust standard
errors clustered at the employment zone level in parenthesis. The employment
zone (“zone d’emploi”) is a higher level of spatial aggregation as it divides the
French territory into 306 geographical areas within which most of the working
population resides and works.
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Table OA17: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - by medical specialty, location FE

Family practice Cardio-vasc. Pulmo. O.R.L. Ophthalmo.

NO2 8.912∗∗∗ 0.749∗∗∗ 0.0721 0.332∗∗∗ 1.187∗∗∗

(0.610) (0.104) (0.072) (0.040) (0.109)

O3 1.018∗∗∗ 0.0419∗ 0.0306 0.0383∗∗∗ 0.122∗∗∗

(0.121) (0.019) (0.017) (0.008) (0.021)

PM10 -2.747∗∗∗ -0.131∗ 0.0495 -0.0827∗∗∗ -0.172∗∗∗

(0.350) (0.052) (0.038) (0.018) (0.049)

Lag NO2 2.722∗∗∗ 0.304∗∗ -0.118 0.146∗∗∗ 0.376∗∗

(0.586) (0.100) (0.075) (0.044) (0.114)

Lag O3 -0.557∗∗∗ 0.0376∗ -0.0218 0.00457 0.0372
(0.133) (0.019) (0.019) (0.008) (0.024)

Lag PM10 -0.680∗ -0.127∗∗ 0.0141 -0.0449∗ -0.225∗∗∗

(0.302) (0.044) (0.034) (0.020) (0.049)

Gynaeco. Nephro. Gastro-hep. Trauma surg. Plastic surg.

NO2 0.488∗∗∗ 0.0413 0.394∗ 0.642∗∗∗ 0.177∗∗∗

(0.071) (0.044) (0.158) (0.092) (0.053)

O3 0.0222 0.0279∗∗∗ 0.104 0.0788∗∗∗ 0.0210∗

(0.015) (0.008) (0.063) (0.021) (0.010)

PM10 -0.0663 -0.0378 -0.0837 -0.122∗ -0.0163
(0.035) (0.023) (0.089) (0.048) (0.024)

Lag NO2 0.317∗∗∗ -0.0218 0.218 0.223∗ 0.0641
(0.091) (0.044) (0.149) (0.091) (0.048)

Lag O3 0.00326 -0.00501 0.00481 0.0340 -0.0165
(0.015) (0.009) (0.038) (0.020) (0.010)

Lag PM10 -0.167∗∗∗ -0.0160 -0.0245 -0.0629 -0.0476∗

(0.039) (0.021) (0.085) (0.046) (0.023)
Observations 1186311 1186311 1186311 1186311 1186311
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. This table presents results for regressions run separately
by medical speciality using the location fixed effect (FE) model including a one week lag of
the pollutant concentrations. For results using the FE-IV model, see table 2. All regressions
include month, year and zip code fixed effects and ground-level weather controls. Robust
standard errors clustered at the zip code level in parenthesis.
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Table OA18: Statistically significant coefficients from the heterogeneity analyses by medical spe-
cialty - Bonferroni–Holm multiple hypothesis testing correction

# Specialty Variable Coefficient SE p-value Holm Threshold

1 Ophthalmology NO2 1.108 0.228 0.0000012 0.000833
2 Ophthalmology Lag O3 0.206 0.044 0.0000029 0.000847
3 Cardio-vascular disease Lag O3 0.178 0.041 0.000014 0.000862
4 Family Practice Lag PM10 3.329 0.835 0.00007 0.000877
5 Family Practice O3 0.927 0.235 0.00008 0.000893
6 Family Practice Lag O3 1.217 0.264 0.0001 0.000909
7 Family Practice NO2 4.956 1.492 0.0009 0.000925
8 O.R.L. Lag O3 0.0476 0.017 0.0052 0.000943

The table shows the coefficients from the heterogeneity analyses by medical specialty that
remain statistically significant after adjusting for multiple hypothesis testing according to
Holm-Bonferroni Stepwise Adjustment. We fail to reject at step 8 as 0.0052 > 0.000943. The
first 7 tests are rejected at the 5% FWER level.
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Table OA20: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure in locations with below and above postcode average income, NO2 pollution
concentrations and population size

Dependent variable: Weekly healthcare spending

Panel A: Heterogeneity by average postcode average income

Below median Above median Below median Above median
income income income income

NO2 15.47∗∗ 22.01∗∗∗ 22.04∗∗∗ 16.12∗∗∗

(5.937) (4.746) (5.992) (4.542)

O3 5.792∗∗∗ 7.174∗∗∗ 3.171∗∗ 3.378∗∗∗

(1.279) (0.869) (0.974) (0.884)

PM10 10.33∗ 13.40∗∗∗ -1.149 4.677
(4.301) (3.450) (4.322) (3.514)

Lag NO2 -7.131 0.644
(6.431) (4.898)

Lag O3 5.748∗∗∗ 7.642∗∗∗

(1.249) (0.977)

Lag PM10 22.00∗∗∗ 14.41∗∗∗

(4.139) (3.051)

Observations 607672 596076 595986 584613
First-stage F-stat 1288.0 1059.9 477.7 495.9

Panel B: Heterogeneity by postcode average NO2 concentration

Below median Above median Below median Above median
pollution pollution pollution pollution

NO2 3.197 26.95∗∗∗ 10.09∗ 21.91∗∗∗

(4.130) (5.148) (4.225) (4.852)

O3 2.669∗∗∗ 12.27∗∗∗ 1.423∗ 6.221∗∗∗

(0.632) (1.499) (0.631) (1.201)

PM10 16.11∗∗∗ 13.13∗∗∗ 6.881∗ 1.700
(2.954) (3.867) (3.062) (3.604)

Lag NO2 -17.48∗∗∗ 4.989
(4.779) (5.380)

Lag O3 3.159∗∗∗ 12.61∗∗∗

(0.708) (1.508)

Lag PM10 20.20∗∗∗ 17.43∗∗∗

(2.921) (3.590)

Observations 599092 610480 587571 598740
First-stage F-stat 1628.6 1454.4 672.7 682.3

(Continued on the next page)72



Table OA20: (continued) Impact of average weekly NO2, O3 and PM10 pollutant concentrations on
weekly healthcare expenditure in locations with below and above postcode average income, NO2

pollution concentrations and population size

Dependent variable: Weekly healthcare spending

Panel C: Heterogeneity by postcode population size

Below median Above median Below median Above median
population population population population

NO2 2.229 26.92∗∗∗ 4.381 29.18∗∗∗

(2.896) (6.368) (2.857) (6.134)

O3 2.531∗∗∗ 9.723∗∗∗ 1.382∗∗ 4.660∗∗∗

(0.492) (1.444) (0.475) (1.197)

PM10 8.032∗∗∗ 17.44∗∗∗ 3.722 0.503
(2.010) (4.927) (2.059) (4.725)

Lag NO2 -8.585∗∗ -2.112
(3.083) (6.571)

Lag O3 1.725∗∗ 11.19∗∗∗

(0.559) (1.458)

Lag PM10 11.81∗∗∗ 24.33∗∗∗

(2.004) (4.369)

Observations 601536 608036 589968 596343
First-stage F-stat 1136.4 1042.7 441.3 431.3
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. This table shows the results of the impact of
pollution on healthcare expenditure in absolute terms from regressions run separately for
observations categorised into groups below and above the median in terms of postcode av-
erage household income (panel A), pollutant concentration (panel B) and population size
(panel C). All regressions include month, year and zip code fixed effects and ground-level
weather controls. Robust standard errors clustered at the zip code level in parenthesis.

73



Table OA21: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly per

capita healthcare expenditure in locations with below and above postcode average income, NO2

and population size

Dependent variable: Weekly per capita healthcare spending

Panel A: Heterogeneity by average postcode income

Below median Above median Below median Above median
income income income income

NO2 0.0584 0.0750 0.171∗ 0.0699
(0.070) (0.039) (0.070) (0.040)

O3 0.0441∗∗∗ 0.0492∗∗∗ 0.0210 0.0230∗∗

(0.012) (0.009) (0.012) (0.008)

PM10 0.117∗ 0.133∗∗∗ -0.0197 0.0557
(0.050) (0.029) (0.049) (0.029)

Lag NO2 -0.166∗ -0.0621
(0.073) (0.038)

Lag O3 0.0424∗∗ 0.0423∗∗∗

(0.013) (0.009)

Lag PM10 0.237∗∗∗ 0.158∗∗∗

(0.048) (0.025)

Observations 607672 596076 595986 584613
First-stage F-stat 1288.0 1059.9 477.7 495.9

Panel B: Heterogeneity by postcode average NO2 concentration

Below median Above median Below median Above median
pollution pollution pollution pollution

NO2 0.0941 0.0934∗∗ 0.194∗ 0.0764∗

(0.081) (0.032) (0.083) (0.034)

O3 0.0357∗ 0.0475∗∗∗ 0.0143 0.0216∗

(0.017) (0.009) (0.014) (0.008)

PM10 0.115∗ 0.0872∗∗∗ -0.0331 0.0382
(0.056) (0.023) (0.058) (0.025)

Lag NO2 -0.169 -0.0496
(0.105) (0.031)

Lag O3 0.0321 0.0486∗∗∗

(0.017) (0.009)

Lag PM10 0.228∗∗∗ 0.131∗∗∗

(0.064) (0.020)

Observations 599092 610480 587571 598740
First-stage F-stat 1628.6 1454.4 672.7 682.3

(Continued on the next page)



Table OA21: (continued) Impact of average weekly NO2, O3 and PM10 pollutant concentrations
on weekly per capita healthcare expenditure in locations with below and above postcode average
income, NO2 and population size

Dependent variable: Weekly per capita healthcare spending

Panel C: Heterogeneity by postcode population size

Below median Above median Below median Above median
population population population population

NO2 0.0640 0.0641∗ 0.144 0.0663∗

(0.082) (0.028) (0.082) (0.028)

O3 0.0564∗∗ 0.0308∗∗∗ 0.0306∗ 0.00997
(0.019) (0.006) (0.015) (0.006)

PM10 0.165∗∗ 0.0868∗∗∗ 0.0458 0.0206
(0.059) (0.021) (0.058) (0.022)

Lag NO2 -0.298∗∗ 0.000430
(0.096) (0.027)

Lag O3 0.0268 0.0476∗∗∗

(0.019) (0.006)

Lag PM10 0.319∗∗∗ 0.0997∗∗∗

(0.063) (0.017)

Observations 601536 608036 589968 596343
First-stage F-stat 1136.4 1042.7 441.3 431.3
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. This table shows the results of the impact of pollu-
tion on healthcare expenditure per capita from regressions run separately for observations
categorised into groups below and above the median in terms of postcode average house-
hold income (panel A), pollutant concentration (panel B) and population size (panel C).
All regressions include month, year and zip code fixed effects and ground-level weather
controls. Robust standard errors clustered at the zip code level in parenthesis.
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Table OA22: Impact of average weekly NO2, O3 and PM10 pollutant concentrations on weekly
healthcare expenditure - heterogeneity by pollution quartile, piece-wise linear regression

Weekly healthcare expenditure

NO2 x first NO2 quartile 200.6∗∗∗

(42.270)

NO2 x second NO2 quartile 102.0∗∗∗

(19.183)

NO2 x third NO2 quartile 103.6∗∗∗

(22.807)

NO2 x fourth NO2 quartile 61.74∗∗∗

(9.416)

O3 x first O3 quartile 38.78∗∗∗

(5.548)

O3 x second O3 quartile 35.49∗∗∗

(3.213)

O3 x third O3 quartile 25.99∗∗∗

(3.055)

O3 x fourth O3 quartile 23.76∗∗∗

(2.307)

PM10 x first PM10 quartile 215.2∗∗∗

(24.213)

PM10 x second PM10 quartile 120.6∗∗∗

(16.096)

PM10 x third PM10 quartile 102.2∗∗∗

(15.918)

PM10 x fourth PM10 quartile 84.58∗∗∗

(9.103)

Observations 1209572
First-stage F-stat 609.5
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. This table shows results for piece-wise
linear regressions in which the weekly pollutant concentration are interacted
with a dummy variable that categorises that week’s pollutant concentration into
four categories per quartile of its value. All regressions include month, year and
zip code fixed effects and ground-level weather controls. Robust standard errors
clustered at the zip code level in parenthesis.



Table OA23: Impact of average weekly NO2, O3 and PM10 pollutant concentrations above and
below the annual average WHO limit value on weekly healthcare expenditure

Weekly healthcare spending
(1) (2)

NO2 x below WHO limit 48.53∗∗∗ 30.33∗∗

(11.972) (11.714)

NO2 x above WHO limit 29.96∗∗∗ 18.80∗∗∗

(4.882) (4.645)

PM10 x below WHO limit 84.70∗∗∗ 11.20
(11.755) (8.458)

PM10 x above WHO limit 43.08∗∗∗ 6.981
(5.874) (4.445)

Lag NO2 x below WHO limit 45.34∗∗∗

(11.832)

Lag NO2 x above WHO limit 10.97∗

(5.159)

Lag PM10 x below WHO limit 12.58
(8.532)

Lag PM10 x above WHO limit 13.33∗∗

(4.163)

O3 9.471∗∗∗ 3.482∗∗∗

(0.903) (0.757)

Lag O3 6.894∗∗∗

(0.886)

Observations 1209572 1186311
R2 0.015 0.021
First-stage F-stat 196.2 143.8
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. This table presents results for the
effect of average weekly pollutant concentrations above and below the an-
nual average World Health Organisation (WHO) limit value of 10 µg/m3

and 15 µg/m3 on weekly healthcare expenditure. All regressions include
month, year and zip code fixed effects and ground-level weather controls.
Robust standard errors clustered at the zip code level in parenthesis.
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