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Abstract: People often form mental models based on incomplete information, revis-

ing them as new relevant data becomes available. In this paper, we experimentally

investigate how individuals update their models when data on predictive variables are

gradually revealed. We find that people’s models tend to be ‘sticky,’ as their final mod-

els remain strongly influenced by earlier models formed using a subset of variables.

Guided by a simple framework highlighting the role of attention in shaping model revi-

sions, we document that only participants who exert lower cognitive effort during the

revising stage, relative to the initial model formation stage ± as proxied by time spent ±

exhibit significant model stickiness. Additionally, subjects’ final models are strongly pre-

dicted by their reasoning type ± their self-described approach to extracting models from

multidimensional data. While model stickiness varies across reasoning types, effort al-

location across stages remains a strong predictor of stickiness even when accounting for

reasoning.
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1 Introduction

Mental models are the subjective frameworks through which individuals perceive and

interpret their environment, forming the foundation for inference, prediction, and

decision-making in economic contexts. In settings with limited data availability where

not all relevant variables are observable at once, economic agents make decisions based

on partial mental models that capture the relationship between a subset of variables.

As new variables emerge, rational agents should revise their models in order to reflect

the joint importance of both new and existing explanatory variables.

Consider, for example, a venture capitalist who needs to revisit her model of invest-

ment success as new big data analytics reveal additional insights on the determinants

of startup success. Similarly, a stock market analyst seeking to predict expected asset

returns forms a preliminary model based on a set of risk factors. When additional fac-

tors are proposed, she might fail to adopt the more complex model and instead shift

paradigms between simple models (Hong et al., 2007). Finally, a hiring manager who

uses past work experience to infer qualification should evaluate this applicant character-

istic differently once learning about systemic discrimination by other managers (Bohren

et al. 2023; Pager 2003).

A common feature of all these dynamic learning environments is that irrespective of

the number of observations they have seen so far, optimizing agents may need to funda-

mentally revise their models once additional variables become available. While exten-

sive literature provides evidence on how people update their beliefs ‘within’ models as

they gather more observations, less is known about how people learn ‘between’ models

when faced with new dimensions of information. This raises two important questions:

How do people revise their mental models in dynamic environments when confronted

with new economic variables? Do individuals correctly revise their models, or are they

prone to interpret new evidence through the lens of their pre-existing models?

We address these questions experimentally by investigating how people form mental

models that capture the statistical relationships in data and how they revise these mod-

els once data on additional variables is revealed. We study path dependence in model

formation, whereby pre-existing partial models shape final models. Specifically, we hy-

pothesize that mental models are sticky, meaning that people insufficiently revise their

initial mental models in such dynamic environments.

Understanding how people revise their models and identifying the mechanisms driv-

ing the identified learning dynamics is important for at least two reasons. First, from a

theoretical perspective, most economic models assume that beliefs update seamlessly;

however, cognitive frictions such as selective attention and inertia may prevent the cor-

rect integration of new information in models (e.g., Schwartzstein 2014), suggesting
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that theoretical frameworks of model learning could benefit from explicitly accounting

for such updating distortions. Second, from a policy perspective, clarifying why indi-

viduals sometimes cling to outdated models can help design interventions that promote

the adoption of new, model-relevant information.

To address our research questions, we designed an experimental paradigm that cap-

tures the essence of dynamic model learning. In each stage of our experiment, individu-

als form prediction models about how the independent variables (or ‘predictors’) X and

Z relate to the outcome variable Y (Success or Failure). In the first stage, subjects form a

stochastic model based on a dataset describing the relationship between one randomly

drawn variable and the outcome. We denote the two treatment groups by X-first and

Z-first, respectively. In the second stage, the existing dataset expands by an additional

column for the unobserved variable in the first stage, i.e., Z for the X-first group and

X for the Z-first group. The dataset is such that, in the first stage, both predictors X

and Z are correlated with the outcome, yet in the second stage, conditional on Z, the

predictor X is uncorrelated with the outcome. The data shown to the X-first group in

the first stage thus exhibits a strong omitted variable bias. In each stage, subjects see

40 data points that are initially revealed one by one so that subjects ‘experience’ the

data. Participants then encounter pairs of new projects with unknown outcomes that

differ in the value of exactly one predictor variable and, as a result, potentially differ

in their likelihood of success as well. They decide which project they prefer and re-

port their willingness to pay (WTP) to switch projects. We subsequently elicit beliefs

about the conditional success probabilities of projects across all possible combinations

of predictor variable values. This set of beliefs constitutes a complete statistical model

of the relationship between the predictor variables and the outcome which closely maps

to a parametrized linear regression. To corroborate our measure for people’s statistical

models, we also ask subjects to state whether they expect a ceteris paribus variation in

X or Z to affect the outcome at all.

Several experimental design features enable us to obtain clean proof-of-concept evi-

dence for stickiness in model formation and to shed light on underlying cognitive mech-

anisms. First, the dataset in the second stage is identical for both the X-first and Z-first

groups, ensuring that any treatment differences can be attributed to the variable ob-

served in the first stage. Second, subjects first form partial models, allowing us to study

subsequent model revision without deception, as the induced change in the optimal

model is brought about purely by an expansion in the model space. Third, given our ob-

jective to better understand how people integrate new variables into their models when

learning from data, we explicitly ask subjects to describe their strategy for forming their

conditional beliefs in the second stage. This allows us to gather rich qualitative process

data that provides additional insights into the cognitive foundations of model stickiness.
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We test our central hypothesis by measuring how the observed variable in the first

stage affects subjects’ models in the second stage. We find strong evidence supporting

our hypothesis that initial exposure to a variable leads to stickiness in beliefs when sub-

jects need to revise their models. After both treatment groups have been exposed to the

same full dataset in the second stage of the experiment, subjects in the X-first group, on

average, believe in a stronger marginal effect of X on the outcome and are more likely

to perceive a ceteris paribus effect of X on the outcome. On the intensive margin, sub-

jects in the X-first group estimate the marginal effect of X on success to be, on average,

2.6 percentage points (pp)Ðor about 50%Ðhigher than their counterparts in the Z-first

group. On the extensive margin, X-first subjects are 10 percentage points more likely

to agree that variable X conditionally affects the probability of a successful outcome.

In contrast, both groups have similar beliefs regarding the marginal impact of Z on ei-

ther margin. Evidence from choice data between projects with different predictor value

combinations is qualitatively consistent with results on conditional beliefs, although the

data is noisier overall, such that we partly do not find statistically significant differences

between treatment groups.

We thus find evidence in support of our hypothesis. The X-first group incorporates

(the conditionally predictive) variable Z to the same extent as the Z-first group but

does not fully let go of what they initially learned about (the conditionally unpredictive)

variable X.

To derive our hypotheses and highlight underlying cognitive mechanisms, we intro-

duce a simple conceptual framework based on a two-step model of cognition (Ba et

al., 2023). In the framework, dynamic model learning is driven by how agents allocate

cognitive effort across stages and what summary statistics of the data set they focus

on when revising their model in the second stage. Stickiness then arises from subjects

exerting too little effort in revising their model and thus defaulting to what they already

learned in the first stage.

We investigate how subjects attend to different statistics in the complete data set

by analyzing the alignment of subjects’ beliefs with different empirical benchmarks.

Specifically, we regress subjects’ beliefs on the empirical frequencies of success P (Y |X =

x) (Benchmark X) and P (Y |Z = z) (Benchmark Z). This structural regression reveals

that the treatment effects can be characterized by subjects’ second-stage models more

strongly incorporating the unconditional empirical benchmarks from the variable they

already observed in their respective first stage.

But what drives model stickiness in the data? In line with the predictions from our

theoretical framework, we show that the allocation of cognitive effort across stages

strongly predicts model stickiness: We find that subjects who allocate below-median

time to the second stage relative to the first stage exhibit significant stickiness, while
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those who invest relatively more effort in stage two show no stickiness.

In addition to how much effort subjects allocate to revising their model in the second

stage, how they reason about the problem ± and therefore what summary statistics they

attend to ± may also empirically interact with model stickiness. To test the robustness of

the proposed cognitive effort mechanism and assess the role of heterogeneous mental

representations of the problem, we elicit how subjects go about revising their model in

an open-ended question and use the coded answers to identify three distinct reasoning

styles: Frequentists solve the model revision problem rationally by estimating the rela-

tive success likelihood for all variable value combinations, while Separate reasoners fail

to account for the correlation between X and Z. Absolute success reasoners attend to

the raw number of successes, thereby committing base-rate neglect. Our analyses show

that subjects’ final models are strongly predicted by their reasoning type. Moreover,

while model stickiness varies across reasoning types, effort allocation remains a robust

predictor even when accounting for reasoning type.

Related Literature: To the best of our knowledge, this is the first paper that empirically

investigates how people revise their models when there is an exogenous change to the

environment. Thereby, this project contributes to several strands of the literature.

First, this project contributes to a nascent empirical literature on how people form

models based on data without explicit knowledge of the data-generating process.

Fréchette et al. (2024) use a closely related setting with two binary inputs and one

output to study how people learn stochastic relationships from datasets. They focus on

how the noise in the statistical relationship between variables affects people’s prediction

models and identify two frequently-made types of errors in static model learning from

data: (1) failures to properly condition on the correlations of relevant variables and

(2) failures to use the correlations in the data optimally. Similarly, Kendall and Oprea

(2024) study how people learn models based on data but instead focus on determinis-

tic rules of varying complexity. While the general setting of those papers is similar to

ours to the extent that people extract models from datasets with an ex-ante unknown

data-generating process, we significantly depart from past work by studying dynamics

in data-driven model learning.

We also relate to another strand of the literature that focuses on models as causal nar-

ratives. Charles and Kendall (2024) experimentally illustrate how externally provided

models can influence participants’ data interpretation, supporting the core predictions

of Eliaz and Spiegler (2020) in a setting closely related to ours. In a similar vein, Am-

buehl and Thysen (2024) examine how individuals select among various causal models

and find that people tend to prefer more complex models. While our design is not in-

tended to disentangle all competing causal representations, it provides clean evidence

on how initially perceived causal links can persist even when alternative explanations
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better explain patterns in the data.

Regarding the empirical study of the dynamics of mental models, the most closely

related paper is Esponda et al. (2024). The authors experimentally show that mis-

specified models can persist despite regular feedback in a belief formation environment

where people are prone to base-rate neglect. We depart from their work in several

important ways: First, instead of focusing purely on a notion of models capturing the

mental representation of the task at hand and how to solve it, we study mental models

capturing the relationships between multiple variables at both intensive and extensive

margins. Our conceptualization of models is much less restrictive and applies to a vast

set of problems where agents learn about the relationship between multiple inputs and

one output. Second, instead of knowing all relevant parameters to solve the problem

optimally, subjects in our experiment need to extract models from a dataset. Third and

most importantly, we force a significant model revision for a randomized subsample of

participants, which allows us to cleanly measure model revisions independently of prior

mistakes or misrepresentations of the environment. Finally, we provide novel evidence

on the cognitive mechanisms underlying failures in model revision.

Several findings from the field are consistent with broad interpretations of insufficient

model revision, although it leaves open the question of whether it arises more gener-

ally. For instance, Hanna et al. (2014) show that seaweed farmers neglect pod size - a

relevant production input - and just observing data from the experiment is not sufficient

for them to attend to it. Providing summary statistics, however, helps farmers optimize

along the neglected dimension. Their setting differs from ours in several aspects. Farm-

ers in their setting could, in principle, attend to and optimize all relevant inputs from

the beginning on. In contrast, we study model revision when relevant relationships in

the data can only be learned later on and where strong priors are unlikely to constrain

attention to variables ex-ante.

More closely mapping to the dynamics of our experiment is the work by Liu and Zhang

(2024), who show that initial narratives on genetically modified mosquitoes shape how

people interpret later complementary information despite having the opportunity to

read opposing-side narratives. Similarly, Macchi (2023) shows that in a field setting,

first impressions from personal meetings has a lasting effect on creditors’ loan decisions

despite detailed financial information being revealed subsequently. Building on this

evidence, our experiment allows us to test whether such model stickiness "survives" in

an abstract environment where we provide people with all available data to learn the

relevant relationships between the variables throughout the experiment and prompt

them to think about the relevant contingencies.

We also add to an extensive literature on path dependency in belief updating, such as

confirmation bias (Rabin and Schrag, 1999) and prior-biased updating (see Benjamin
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2019 for a review). Unlike previous theoretical and empirical work that holds the model

space fixed, our study examines a dynamic setting in which the set of explanatory vari-

ables expands across two experimental stages. In the first stage, subjects form models

based on a coarser distribution of Y |X (or Y |Z), and in the second stage, they are

required to revise their models and reason about the refined distribution Y |X,Z. Our

findings not only strengthen existing evidence for path dependence Ð by showing that

initial models continue to influence subsequent belief formation Ð but also shed light

on the cognitive origins of these effects.

We also connect to the literature documenting belief biases in complex environments,

such as subjects stating attenuated beliefs Enke and Graeber (2023), neglecting the

signal-generating process underlying the information (Enke, 2020; Enke and Zimmer-

mann, 2019), or failing to reason through all relevant contingencies (Niederle and

Vespa, 2023).

Finally, this project relates to a recent and growing theoretical literature on misspeci-

fied models and their implications. In this literature, it is generally assumed that agents’

(misspecified) models shape the way new observations are interpreted. Several under-

lying cognitive mechanisms have been proposed to give rise to model misspecification,

among which most prominently are limited attention (e.g., Bordalo et al. 2024; Gabaix

2019; Hanna et al. 2014; Schwartzstein 2014), memory limitations (Bordalo et al.,

2023; Gennaioli and Shleifer, 2010), and misperceptions regarding the data-generating

process (Fudenberg and Lanzani, 2023).

Some recent papers also theoretically study the dynamics of misspecified models:

Gagnon-Bartsch et al. (2023) study the conditions under which agents become aware

of model misspecification, while Lanzani (2024) studies how the concern of being mis-

specified affects dynamic model choice. Ba (2023) examines which misspecified models

persist in the long run and finds that simple models can be more robust than correctly

specified complex models. We provide a simple theoretical model to derive our main

predictions and empirically inform the theoretical literature by providing evidence on

how the environmental dynamics of data availability shape models.

2 Experimental Design

This experiment aims to study path dependence in model formation and revision. While

the introductory examples showcased the broad empirical relevance of dynamic model

formation, the co-occurrence of other, possibly confounding phenomena makes it chal-

lenging to investigate our research question using observational data.

An experiment with minimal framing is necessary to understand the mechanisms un-

derlying model revision since it allows the disentangling of cognitive primitives from
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alternative explanations such as context-driven motivated reasoning or heterogeneity

in priors. Specifically, studying inertia in how individuals revise their models as they

receive new dimensions of information without deception calls for an experimental

paradigm that addresses the following requirements:

1. A sufficiently rich learning environment featuring a multi-dimensional dataset,

where multiple input variables may help predict an outcome variable,

2. a dynamic setting encompassing multiple stages, including an initial model forma-

tion and a subsequent, deception-free model revision stage,

3. exogenous variation in the dynamics of information provision while holding constant

the total amount of information received by the end of the experiment and

4. a data-generating process (DGP) where the degree of model revision can be

mapped to a clear statistical benchmark.

2.1 Setting and Timeline

In the experiment, subjects assume the role of entrepreneurs tasked with identifying

which projects are more likely to be successful among a set of projects with different

variable value combinations. To do so, they learn about the impact of independent

variables on a dependent outcome variable using a dataset of 40 past projects. The

complete data includes two independent variables, Color (Blue or Green) and Card

(Diamonds or Clubs), and an outcome variable (Success or Failure). Henceforth, we

denote the variables Color and Card as X and Z, respectively, and the project outcome

by Y .

Figure 1 Experimental Timeline

Start:

Assign Treatment

and Control

Observe data

{X,Y } and form

model to predict Y

Observe data

{Z, Y } and form

model to predict Y

Decisions &

Beliefs of P (Y )
cond. on X

Decisions &

Beliefs of P (Y )
cond. on Z

Observe full data

{X,Z, Y }, form

revised model to

predict Y

Decisions &

Beliefs of P (Y )
cond. on (X,Z)
& Models (ext.

margin)

Treatment X-first

Treatment Z-first
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Figure 1 shows the timeline of our experiment. At the beginning of the experiment,

subjects first pass a basic attention check before acquainting themselves with the general

setting. Only subjects that pass comprehension questions can proceed to the main part.

The main part consists of two stages. For the main part, subjects are randomly assigned

to a treatment group that exogenously varies the predictor variable in the first stage.

In the first stage, subjects observe past data on only one randomly selected variable

(X or Z) and the project’s outcome. We refer to the treatment groups generated by

the random assignment to the variable observed in the first stage as X-first and Z-first,

respectively. Subjects are told that each project has two features but that they are only

able to observe one randomly selected variable1.

In the second stage, the formerly missing second variable is revealed as an additional

column in the same dataset. A comprehension question ensures that subjects under-

stand that the observations from the second-stage dataset are identical to the first stage

except for the additional predictor variable. Further, in each stage, we ensure that sub-

jects pay at least some attention to the data by forcing them to stay on the page while

revealing data points one by one until the table fills up, after which they can proceed

to the respective tasks. At the end of each stage, we elicit subjects’ models about the

relationship between the predictor variables and the outcome using reported beliefs, bi-

nary project choices, and willingness to pay between projects. At the end of the second

stage, we additionally ask subjects to describe their approach to the task in an open-

ended question2 and elicit an additional measure about the perceived marginal impact

of each variable.

2.2 Data Generating Process

As shown in Figure 2, the data consists of two variables X and Z, and an outcome Y .

All variables are binary. The data contains 40 observations that perfectly resemble the

following relationships between the predictor variables and the outcome variable:

P (Y |X,Z) = 0.2 + 0.6 · Z

P (Y |Z) = 0.2 + 0.6 · Z

P (Y |X) = 0.35 + 0.3 ·X

P (Y ) = 0.5

1Announcing the general information structure at the beginning avoids heterogeneity in beliefs about
the experimental structure by treatment without making it explicit that more information will be available
after the first stage

2We elicit subjects’ reasoning last in order not to influence their other choices or beliefs.

8



Figure 2 Screenshot of data of past projects as observed in the second stage

Subjects learn that future projects with unrealized outcomes are drawn according to

the relationship described by the full data table on past projects, which they have to

extract by studying the data. To further minimize the role of participants’ prior beliefs

about the DGP, we follow Charles and Kendall (2024) and inform subjects that each

row in the dataset corresponds to one thousand projects with identical variable value

combinations and outcomes. Using comprehension questions, we ensure that subjects

have, in fact, understood these properties of the DGP. In this DGP, Z (Card) is highly

predictive of Y (P (Y |Z = 1) − P (Y |Z = 0) = 0.6)), while X (Color) has no predictive

power when controlling for Z. Because of its correlation with Z, X is moderately

predictive of the outcome when not conditioning on Z (P (Y |X = 1) − P (Y |X = 0) =

0.3)).

In the first stage, where subjects only encounter X or Z, the rational benchmark is

the empirical probability of success conditional on the observed variable, i.e., P (Y |X)

for the X-first group and P (Y |Z) for the Z-first group. In the second stage, the rational

benchmark for both groups is the empirical probability of success conditional on both

variables, i.e., P (Y |X,Z). The data structure thus implies a significant change in the

rational benchmark across stages for the group that observes X first. In contrast, the

same rational benchmark applies in both stages for the Z-first group3.

2.3 Measurement of Models and Incentives

We measure subjects’ statistical mental models using different measurements: 1) condi-

tional success likelihoods for projects with different combinations of predictor variable

3Note that this data structure in principle may give rise to stickiness along two dimensions: subjects
in X-first (a) attributing comparatively more (causal) weight to X and (b) putting less weight on Z than
the Z-first group.
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values, 2) binary choices between projects that differ in one independent variable, and

3) willingness to pay for a ceteris paribus variation in one independent variable. In the

second stage, we additionally measure 4) agreement (and confidence in) the statements

that each predictor variable has a marginal effect on the likelihood of success. For each

future project, subjects observe the value of that project’s independent variable, but the

outcome is unknown.

We incentivize choices and beliefs by randomly selecting one of the choices through-

out the experiment to count for their bonus payment for every tenth participant. For

the choice that counts, the outcome was drawn after the experiment according to the

conditional success probability described in 2.2.

Decisions (binary choice and willingness-to-pay): Using a two-step procedure, we

elicit binary choice and willingness-to-pay between two future projects that differ in

exactly one predictor variable’s value and, accordingly, feature different success prob-

abilities. In the first step, we ask subjects to make a binary choice and select their

preferred project. Subjects are incentivized to choose the project they believe to have a

higher likelihood of success, as they receive a bonus payment of $10 if the realization

of the future project is a success and $0 if it is a failure.

Having decided, subjects are asked to indicate their willingness to pay to stay with

their preferred project instead of switching to their less preferred project. For this

purpose, subjects are presented with a multiple price list (MPL) consisting of 21 rows,

where each row reflects a choice between their preferred project and the alternative,

along with an additional fixed payment for choosing the alternative. The fixed payment

increased from $0 to $10 in increments of $0.5. One of these rows is randomly selected

for a potential bonus payment.

Mental models (intensive margin) - conditional success probability: After making

their project decisions, subjects state their belief about the success probability of future

projects with a particular variable value (first stage) or combination of variable values

(second stage) on a slider going from 0% to 100%. By design, this leads to two beliefs

being elicited in the first stage and four beliefs elicited in the second stage. We use the

following question to elicit subjects’ beliefs:

How likely do you think it is that project [description of the project’s variable values] will

be successful?

Beliefs are incentivized using the binarized scoring rule, where subjects can receive a

bonus payment of $10 depending on the accuracy of the stated belief. In each stage, we
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further ask subjects a non-incentivized slider question asking for their confidence (in

%) that all of their stated beliefs were within ±5 percentage points of the true success

likelihoods of the respective projects.

Model formation process: After eliciting conditional success likelihoods in the second

stage, subjects describe in an open-text format how they formed their beliefs, i.e., how

they determined the likelihood of success of the projects with different combinations of

variable values. For this purpose, we use the following prompt:

Please describe how you determined the projects’ success likelihoods. You should explicitly

state what you paid attention to and which strategy you used to arrive at your response in

full sentences.

Mental models (extensive margin): At the end of the experiment, subjects are asked

whether they believe each of the two statements below to be true or false.

Statement 1: Assuming that a project’s Card remains fixed, changing a project’s Color

has an effect on the project’s success probability.

Statement 2: Assuming that a project’s Color remains fixed, changing a project’s Card

has an effect on the project’s success probability.

In addition, subjects provide their confidence in each of their answers on a slider from

0% (not at all confident) to 100% (extremely confident).

3 Framework and Research Hypotheses

To guide our analyses and derive hypotheses, we develop a stylized framework of

dynamic model formation based on a two-step model of cognition (Bordalo et al. 2023,

Ba et al. 2023). Subjects first form a mental representation of the statistical problem

depending on their reasoning type before exerting cognitive effort attending to the

summary statistics of the data set that are comprised in their representation. Both steps

jointly inform the dynamics of model formation.

Framework. Subjects in our experiment are faced with constructing a (statistical) men-

tal model of project success, that is, a complete set of beliefs about conditional success

probabilities4. From this model, agents can directly derive the role of each variable in

4As agents only observe binary dependent and independent variables, this captures agents’ full pre-
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predicting project success. Agents form their mental models by attending to statistics

about the observations of past projects that constitute a data set. While there are many

statistics agents can extract from the data set, only some help to form the correct mental

model. Every agent first forms a representation of the statistical problem. Each repre-

sentation corresponds to an estimator P̂ for the conditional success probabilities and is a

function of various summary statistics extracted from the data. It therefore determines

what summary statistics the agent attends to. In the second step, she (imperfectly)

learns about these statistics by counting observations and combines them according to

her representation to form a model about the success probability of projects with differ-

ent features. The accuracy of extracting and combining statistics depends on the agent’s

cognitive effort.

Agents in our experiment face two statistical problems in the two stages of the exper-

iment that are related to each other. In the first stage, agents face a simpler statistical

problem of learning how one independent variable S1 ∈ {X,Z} affects a project’s suc-

cess probability Y . In the second stage, agents face a more complex statistical problem

in learning how two independent variables X and Z affect the success probability sep-

arately or jointly. In both stages, subjects see a table with 40 rows, each representing

the outcome of 1,000 project realizations, constituting a dataset of 40,000 draws from

the joint distribution of (S1, Y ) and (X,Z, Y ) respectively.5 Based on these observa-

tions, agents learn about the success probability conditional on the available predictor

variables.

In our setting, where agents observe a large number of signals, the importance of

the prior is vanishing, which means that the rational Bayesian approach corresponds

approximately to a Frequentist approach that equates conditional success probabilities

with the corresponding empirical frequencies. The rational benchmark is therefore

given by the data-generating process described in section 2.2.

Dynamics of model formation: In the first stage, subjects exert cognitive effort t1 to

form beliefs µs1(t1) about P (Y = 1|S1), the probability of success conditional on their

observed first-stage variable S1. Let P̂S1
denote their representation of the statistical

problem in the first stage. The accuracy of their beliefs depends on the time t1 they

spend in the first stage as well as their representation:

(1) µs1(t1) = δ(t1) · P̂S1=s1 + (1− δ(t1)) · 0.5

diction model, i.e., the distribution of the outcome conditional on independent variables.
5We ensure in comprehension questions that subjects understand the large number of signals they

observe.
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In the second stage, the space expands for all subjects. For each of the 40 rows of

the data set, subjects can now observe the second variable S2 they did not observe in

the first stage. As subjects move from the first to the second stage of the experiment,

they need to expand their mental model and form beliefs µs1,s2 about P (Y = 1|S1, S2),

the success probabilities based on both independent variables. As the second stage

expands the sample space, subjects can attend to many more statistics. In particular,

they can attend to the relative frequency of success conditional on any subset of the

independent variables {X,Z}.6 Let P̂(S1,S2) denote the subject’s representation of the

statistical problem in the second stage, capturing the summary statistics that the subject

relies on to estimate the probability.

Agents who don’t attend to the additional data in the second stage fully rely on their

corresponding first-stage beliefs. As agents attend to the novel information according to

their representation P̂ , they move away from their reported first-stage belief µs1 towards

a second-stage estimator P̂(S1,S2). Their reported second-stage beliefs µs1,s2 are therefore

a convex combination of first-stage beliefs µs1 and the ‘perfect’ belief according to their

mental representation P̂(S1=s1,S2=s2), that is

µs1,s2(t2) = γ(t2) · P̂(S1=s1,S2=s2) + (1− γ(t2)) · µs1(t1)(2)

= γ(t2) · P̂(S1=s1,S2=s2) + (1− γ(t2))δ(t1) · P̂S1=s1 + (1− γ(t2))(1− δ(t1)) · 0.5(3)

where t2 reflects the time they spend in the second stage and γ(t2) ∈ [0, 1] is weakly

increasing in t2 ∈ [0, Tmax).

Agents that update less in the second stage exhibit beliefs closer to their respective

first-stage beliefs. As long as agents do not perfectly update in the second stage, this

will lead to a stronger dependence of agents’ second-stage models based on the features

they already observed in the first stage.

As described in Hypothesis 1, we therefore expect agents to exhibit sticky models.

In the first stage, both groups learn that their respective first-stage variable S1 has a

marginal impact on the probability of success. Therefore, we expect that agents assign

(weakly) more weight to their first stage variable in explaining project success. This

might be partly reflected in their actions.

Hypothesis 1 (Sticky models): Agents exhibit path dependency in model formation, as

the variable agents observe first predicts their final second-stage model. Agents’ models

are ‘sticky,’ as they tend to incorporate weakly more statistics already observable in their

respective first stage compared to agents who observe these statistics only in the second

6That is, the set of possible features a subject can attend to is the power set of the independent
variables, i.e. 2{X,Z} = {∅, {X}, {Z}, {X,Z}}
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stage.

Second-stage cognitive effort. In the second stage, agents spend time attending to

features unavailable in the first stage. The less time a subject spends in the second

stage, the less they learn about the joint importance of the features of the second stage.

As a result, their second-stage beliefs should be closer to the corresponding first-stage

belief, increasing the difference between treatment groups. In the limit case, an agent

who does not exert any cognitive effort in the second stage only incorporates first-stage

statistics into their model independent of their representation of the problem. The

accuracy of their first-stage beliefs and how strongly they internalize the importance of

their first-stage feature depends on the time spent in the first stage. Consequently, the

propensity for sticky models is more pronounced among agents who spend less time in

the second stage, particularly in relation to their first-stage effort7. Agents investing

more time in the second stage learn more precisely about the second-stage statistics

they attend to. In the limit case, agents who exert sufficient cognitive effort in the

second stage will learn all the statistics they attend to with high accuracy.

Hypothesis 2: (Sticky models are driven by cognitive effort): The less time agents

spend in the second stage, the more their final models incorporate the statistics of their

first stage. The difference in final models is larger for agents exerting less cognitive effort

in the second stage, particularly relative to their effort in the first stage.

Reasoning types: In addition to cognitive effort governing how agents learn summary

statistics that are attended to, which statistics an agent attends to in the first place cru-

cially shapes the model P̂(S1=s1,S2=s2) they would acquire given sufficient effort. We con-

sider heterogeneity in subjects’ mental representation of the problem by assigning each

participant a reasoning type. Reasoning types differ from the cognitive effort discussed

above, as two subjects that spend the same time (exerting the same cognitive effort)

in the second stage can still attend to very different statistics and ultimately form very

different models.

The rational reasoning type represents the conditional success probability as the un-

conditional success probability relative to the base rate. Their estimator P̂R is equal to

the number of successful projects with (X = x, Z = z) relative to the overall number of

projects with (X = x, Z = z).

7There are two possible pathways through which this might operate. First, agents allocating attention
bottom-up to all relevant features might still recall their first-stage features, leading to higher precision
about these statistics. Second, for agents rationally allocating attention in the second stage, the first-stage
attention allocation is akin to a cognitive ‘sunk cost,’ leading to an over-allocation of cognitive bandwidth
to the first-stage features from the agent’s perspective in the second stage. We don’t take a stance here
on which mechanism prevails.
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Agents who don’t attend to the base rate or incorporate other summary statistics

would not learn the true data-generating process even if they exerted sufficient

cognitive effort. In addition to the rational reasoning type, we consider two additional

types, which we refer to as Separate (P̂ S) and Absolute Success (P̂A). We describe these

reasoning types in greater detail in Section 4.4. We expect heterogeneity in beliefs

within both treatment groups based on their representation P̂(S1,S2) of the statistical

problem.

Hypothesis 3 (Reasoning shapes model formation): Subjects’ approach to extracting

information from data or ‘reasoning type,’ as observed from their open text qualitative

reasoning, predicts their second-stage model.

Reasoning and cognitive effort. Subjects’ reasoning types, as we define them, shape

what a subject would learn if she exerted sufficient cognitive effort. As shown in

equation 2, holding constant the reasoning type, higher cognitive effort in the second

reasoning step should ‘sharpen’ a subject’s final model, moving her beliefs from her

first-stage model µS1
towards the model resulting from her mental representation. This

need not move agents closer to the rational model. Conversely, lower cognitive effort

in the second stage leads to greater model stickiness, across reasoning types.

Hypothesis 4 (Final models are determined by reasoning and cognitive effort):

a. Lower cognitive effort in the second stage, measured through more time spent on the

second stage in total and relative terms, increases stickiness across reasoning types.

b. The effect of increased cognitive effort in the second stage depends on agents’ reason-

ing type.

4 Results

In this section, we present the experimental results. First, we examine how subjects’

second-stage models depend on the variables observed in the first stage using both

reduced-form specifications and a structural approach. Second, we investigate the role

of cognitive effort in path dependence using different timing-based measures. Finally,

we examine the impact of reasoning on model formation and assess how the allocation

of effort across stages affects path dependence while accounting for reasoning.

As pre-registered, all analyses exclude subjects who are among the 1% fastest and the

1% slowest as measured by the total time spent on our experiment to limit the results
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being driven by outlier observations. This screening device excludes 16 subjects, which

brings our total sample size to n = 784 subjects.

4.1 Summary Statistics

We ran the experiment in May 2024 on the online platform Prolific, which is generally

known for having a high-quality pool of subjects (Peer et al., 2022). Subjects spent

on average 26 minutes (median: 23 minutes) on the survey. Before participating in

the main part of the survey, subjects are carefully introduced to the setting. We ensure

their understanding with a set of comprehension questions8. Subjects were paid $4 for

completing the experiment and received a bonus payment of $0.59 on average.

As shown in Appendix Table A.1, our subjects are broadly representative of the US

population. However, our subjects tend to be younger and better educated, which is a

common phenomenon in online samples. Across the X-first and Z-first treatment groups,

demographics are well-balanced with no statistically significant differences. Therefore,

we do not include demographic controls in our main regression specifications.

4.2 Path Dependence in Model Formation

We first present a set of reduced-form findings on how subjects’ second-stage models

and decisions vary by treatment. We then report structural findings on the extent to

which subjects’ second-stage beliefs depend on the information received in the first

stage.

4.2.1 Reduced-form Evidence

To test our main hypothesis of path dependence in model formation, we first investigate

second-stage models by treatment. The core feature of subjects’ prediction model is the

role they attribute to each variable in affecting project outcomes. As pre-registered,

we thus examine how the variable subjects see in the first stage affects the final be-

lief in the marginal impact of each predictor variable on project success. While path

dependence in model formation refers to any significant difference in the final model

between groups, stickiness implies a stronger reliance on the initial model. This leads

to the hypothesis that subjects believe (at least weakly) in the greater marginal im-

pact of the variable they encounter first compared to those who see the variable later.

Moreover, this difference is strictly significant for at least one variable. Table 1 reports

subjects’ beliefs about the marginal impact of each predictor variable on the project’s

872% of our subjects pass the comprehension check in the first attempt, 14% in the second attempt.
14% fail comprehension questions twice and cannot participate in our main experiment.
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Table 1 Treatment effect on belief about impact of independent variables on success

Extensive margin Intensive margin Intensive margin - disaggregated
Share agreeing (in %) ∆P (Y = Success| · · · ) ∆P (Y = Success| · · · )

X matters Z matters ∆X ∆Z ∆X, Z = 0 ∆X, Z = 1 ∆Z, X = 0 ∆Z, X = 1

(1) (2) (3) (4) (5) (6) (7) (8)

X-first 9.962∗∗∗ 1.143 2.600∗∗ 2.127 1.458 3.741∗∗ 0.985 3.268∗

(3.130) (2.323) (1.176) (1.771) (1.497) (1.669) (2.171) (1.955)

Constant 68.718∗∗∗ 87.436∗∗∗ 4.687∗∗∗ 30.010∗∗∗ −0.610 9.985∗∗∗ 24.713∗∗∗ 35.308∗∗∗

(2.351) (1.680) (0.903) (1.253) (1.134) (1.185) (1.541) (1.352)

Observations 784 784 1,568 1,568 784 784 784 784
R2 0.013 0.000 0.003 0.001 0.001 0.006 0.000 0.004

Notes: This table presents the treatment effect estimates from an exogenous manipulation of the first-
stage independent variable on subjects’ mental models of project success in the second stage. Columns
(1) and (2) report the share of subjects agreeing to the statement that the predictor variables X and
Z, respectively, have a ceteris paribus impact on the outcome, which measures subjects’ models at the
extensive margin. Columns (3) - (8) consider the intensive margin of model differences. Columns (3)
and (4) report the differences in marginal beliefs for changes in the weak variable ∆X and the strong
variable ∆Z, pooling both marginal beliefs for each subject. Columns (5) - (8) report the individual
marginal belief differences of X and Z, holding constant the other variable at 0 and 1, respectively.
Clustered standard errors (columns 1-4) and robust standard errors (columns 5-8) are in parentheses. *
denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

success likelihood, using two different measures corresponding to the extensive margin

(Columns 1 and 2) and the intensive margin (Columns 3 to 8), respectively. The exten-

sive margin refers to whether subjects believe that a ceteris paribus change in a variable

has any effect on the outcome. For the intensive margin we directly compare subjects’

quantitative beliefs about the marginal effects of the variables Ð namely, how much a

ceteris paribus change in a variable shifts the perceived probability of success. Columns

(3) and (4) pool the beliefs in the marginal effect across the two possible values of the

other variable, such that we obtain an indicator for the average belief in the marginal

impact, which allows for a direct test of our hypothesis on model stickiness.9 We also

show the results from the disaggregated marginal effects that we used for our main

pre-registered specification in columns (5) - (8).

The main finding is that subjects’ beliefs exhibit path dependency at both the exten-

sive and intensive margin. Those who initially observed X are more likely to believe

that a ceteris paribus change in X affects the outcome and attribute a higher marginal

effect to X compared to those who saw Z in the first stage. However, there are no

significant differences in beliefs for a ceteris paribus change in Z.

At the extensive margin, we observe that about 69% of the subjects in Z-first believe

that X has an effect on the outcome, whereas 10pp more subjects in X-first hold that

9Note that in our DGP, the empirical marginal effects do not depend on the value of the other variable
such that ∆X = (∆X,Z = 0) = (∆X,Z = 1) and ∆Z = (∆Z,X = 0) = (∆Z,X = 1). Thus, pooling
across both variable values of the variable that remains constant does not obfuscate the benchmarks.
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belief (p = 0.002). Across both treatment groups, nearly 90% believe that Z affects

the probability of success, indicating a consensus on Z ’s role across treatments with no

significant differences between groups (p = 0.622). The results thus show that initial

exposure to a predictor variable whose importance fades when controlling for the other

predictor has a lasting impact on its perceived relevance.

Turning to the intensive margin, we can observe that both groups predict a signifi-

cantly higher success likelihood for projects that exhibit a high value of X (see column

3). The X-first treatment group estimates X ’s impact on success to be 2.6 pp higher (p

= 0.025) than the Z-first group. In relative terms, the X-first group attributes a more

than 50% higher marginal effect of X compared to the Z-first group. For Z, both groups

infer a marginal effect of roughly 30pp, and we observe no statistically significant dif-

ferences (see column 3). When disaggregating the pooled beliefs in the marginal effects

(columns 5 to 8), we find that the treatment difference for X is driven particularly by

heterogeneous assessments of its role when Z takes a high value (Z = 1): subjects ex-

posed to X first update their success probabilities by about 4 pp more in this case (p =

0.025, column 6). The estimate for Z when X = 1 (column 8) is marginally significant

(p= 0.095) in the opposite direction of our hypothesis, but this result is not robust when

using the pooled belief in the marginal impact of Z, a measure which better controls for

noise-driven differences in a single belief.10

We confirm that adding a second variable in the second stage increases the prob-

lem’s complexity, as reflected in subjects’ reported confidence in their beliefs Enke and

Graeber (2023). As shown in Appendix Table A.9, average confidence in the accuracy

of subjects’ prediction models decreases from about 68% in the first stage to 60% in

the second stage. Crucially, there is no evidence that differentially perceived complex-

ity drives the observed treatment effects: despite adopting different final models, the

average model confidence is very similar in the second stage (p = 0.439).

Overall, these results align with our pre-registered hypothesis that subjects’ beliefs

exhibit path dependency at both margins. The identified path dependency indicates

that initial models about the impact of a variable persist despite its role needing to be

reconsidered after controlling for an additional predictor.

Result 1 (Sticky Models) Subjects’ models are ‘sticky’: their final models depend on

the variable observed in the first stage. Specifically, by the end of the second stage,

subjects who initially observed a predictive first-stage variable (X) that later becomes

conditionally unpredictive, compared to subjects who initially observed a predictive

10In our pre-registration, our primary pre-registered hypothesis was formulated using the disaggre-
gated beliefs in the marginal impact of both variables, as outlined in columns (5) to (8). Since the
average belief in the marginal impact provides a more direct and robust test of our main hypothesis, we
consider it more appropriate for assessing it.
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first-stage variable (Z) that remains conditionally predictive,

a.) are more likely to perceive X as having a ceteris paribus effect on the outcome,

b.) believe that X ’s marginal effect on the outcome is higher.

4.2.2 Spillovers on Decision-making

We now examine whether the path dependency observed in subjects’ beliefs extends

to their decision-making, which we pre-registered as a secondary analysis. Table A.5

presents treatment differences in subjects’ binary choices, while Table A.6 reports the

differences in willingness-to-pay (WTP) for projects.

In the second stage, subjects face four binary decisions between pairs of projects that

differ in one variable value. For each decision, we analyze the probability of choosing

the project with X =1 vs. X =0 or Z =1 vs. Z =0. Under indifference, we expect

random choice (50% probability), whereas a strict preference should lead to selecting

the preferred project with 100% probability.

Table A.5 displays the differences in choice probabilities across project pairs. Subjects’

choices are generally sensitive to the project variables, with the likelihood of choosing

the project with X = 1 or Z = 1 ranging from about 50% to over 90%. Notably,

subjects are, on average, 24pp more likely to select a project with Z = 1 over a project

with Z = 0 (column 2), compared to selecting X = 1 over X = 0 (column 1), reflecting

their higher belief in Z’s conditional predictive power.

The pooled analysis of choice probabilities does not reveal a significant treatment

effect (columns 1 and 2), although the signs of the X-first coefficient align with our

belief analysis. The disaggregated estimates show that subjects who observed X first are

about 7pp more likely to choose the project with the higher X value if Z = 1 compared

to those who observed Z first (p = 0.032). This finding is consistent with the analogous

effect observed in belief elicitation.

We analyze subjects’ WTP for their preferred projects in Table A.6 to obtain a more

detailed picture of model stickiness in decisions.

As before, columns (1) and (2) of Table A.6 pool decisions where projects differ in

their X or Z variables, respectively. Columns (3)-(6) report the WTP for individual

choices. As with beliefs and binary choices, subjects’ WTP varies significantly across

project comparisons, with variations in Z being, on average, valued at about $3.6 more

than variations in X.

Consistent with our pre-registration, results on path dependence for WTP exhibit

a similar qualitative pattern to those for beliefs and binary choices but are generally
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noisier. We thus find no significant treatment differences in WTP for either the pooled

or disaggregated comparisons. One likely explanation is that the transmission of beliefs

to decisions is attenuated by uncertainty over the optimal policy (Yang 2024, Enke et

al. 2023). In support of such behavioral attenuation, we find that belief differences and

WTP are only moderately correlated (ρ = 0.48), and scaled standard errors are larger

for WTPs than for beliefs.

4.2.3 Structural Evidence

Next, we use a structural approach to assess how closely subjects’ second-stage beliefs

align with empirical benchmarks. In line with our pre-registered goal of studying the

dependence of second-stage beliefs on first-stage information, this method offers sev-

eral advantages over a reduced-form treatment comparison. First, it allows us to test

whether the observed differences between treatment groups stem from a stronger re-

liance on first-stage information. Second, it quantifies how closely subjects’ models align

with the rational benchmark. Finally, the structural approach enables a comprehensive

examination of how effort and reasoning types affect model revision. We present the

corresponding analyses for effort and reasoning types in Sections 4.3 and 4.4.

In this subsection, we focus on two key aspects: (1) alignment with the rational

benchmark and (2) the weight subjects assign to the empirical benchmarks from their

respective first stages. Notably, the empirical benchmarks from Z-first and X-first are

linearly independent. We thus estimate the following regression model to identify dif-

ferential reactions to the benchmarks:

µ(x,z),i = β0 + β1BMX(x,z),i + β2BMZ(x,z),i

+ β3(BMX(x,z),i × X-firsti) + β4(BMZ(x,z),i × X-firsti) + ε(x,z),i,(4)

where µ(x,z),i is subject i’s belief (in %) about the success probability conditional on

(X,Z) = (x, z), and X-firsti is an indicator for whether the subject has seen X in the first

stage. The Benchmark X, BMX(x,z),i, and the Benchmark Z, BMZ(x,z),i, for the second

stage beliefs are defined as if subjects were only focusing on that specific variable. In

other words, BMX(x,z),i corresponds to the benchmarks of P (Y |X = x) and BMZ(x,z),i

corresponds to the benchmarks of P (Y |Z = z). These benchmarks therefore serve

as the rational benchmarks of the respective first stages of the two treatment groups.

Since P (Y |Z = z) = P (Y |(X,Z) = (x, z)), the Benchmark Z also serves as the rational

benchmark for the second stage.

We demean the benchmarks using an uninformative baseline of 50% that corresponds

to the unconditional probability P (Y = Success) so that deviations capture the strength
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Table 2 Path dependence - structural approach

Subjective success probability (pooled), alternative specifications

Linear probability Log odds

(1) (2)

Benchmark X 0.156∗∗∗ 0.156∗∗∗

(0.030) (0.034)

Benchmark X 0.087∗∗ 0.103∗∗

× X-first (0.039) (0.046)

Benchmark Z 0.500∗∗∗ 0.538∗∗∗

(0.021) (0.023)

Benchmark Z 0.035 0.031
× X-first (0.030) (0.032)

Constant 47.348∗∗∗ −0.164∗∗∗

(0.447) (0.025)

Observations 3,136 3,093
R2 0.363 0.342

Notes: This table analyzes second-stage model formation using structural regressions. Column 1 im-
plements equation 4, regressing subjects’ subjective success probability for a project with variables
(X = x, Z = z) on the empirical benchmark Pemp(Y |X = x) and Pemp(Y |Z = z), demeaned by the
overall success frequency in the data Pemp(Y ). Column 2 presents the results for log-odds transformed
variables, as specified in equation 5. For this specification, we drop 43 observations with degenerate
beliefs of 0% or 100%. Clustered standard errors are in parentheses. * denotes significance at 10 pct., **
at 5 pct., and *** at 1 pct. level.

of subjects’ updating toward each benchmark. As summarized in table A.7, a rational

subject should have a constant β0 of 50(%), fully incorporate Benchmark Z (β2 = 1),

and ignore Benchmark X (β1 = 0). The interaction coefficients β3 and β4 indicate

whether treatment groups differentially load on the benchmarks. Stickiness refers to

a greater reliance on information received in the first stage. This implies that β3 is

weakly greater than 0 and β4 is weakly smaller than 0, with at least one of them being

significantly different from 0.

Column 1 of Table 2 tests equation 4. Two main findings emerge. First, both treat-

ment groups, on average, deviate from the rational benchmarks, overreacting to Bench-

mark X and underreacting to Benchmark Z. Second, the differences between treatment

groups stem primarily from the X-first group loading more heavily on Benchmark X, and

therefore, the information already provided in their first stage. In contrast, both groups

similarly load on the Benchmark Z.

More specifically, although X is not predictive of success when conditioning on Z,

both groups react significantly to Benchmark X. The Z-first group responds to Bench-

mark X at roughly β2 = 16%. Strikingly, the X-first group responds an additional

β4 = 9pp more, i.e., X-first loads over 50% more on Benchmark X than Z-first (p =

0.025). In contrast, the Z-first group follows Benchmark Z at about β3 = 50%, while

the X-first group does so insignificantly more (54%, p = 0.325); hence, the weight on Z
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does not differ significantly by treatment.

To further confirm that the observed differences are driven by reliance on first-stage

information, we assess whether participants meaningfully update their beliefs in the

first stage. The analysis of the first-stage beliefs is presented in Table A.2 in the Ap-

pendix. The regression results demonstrate that the treatment is effective, as partic-

ipants’ first-stage beliefs closely align with the empirical benchmarks associated with

their respective first stage.

As a robustness check, Column 2 repeats the analysis using a logit transformation,

i.e., regressing the log odds of both the reported beliefs and benchmarks, estimating

logit(µ(x,z),i) = γ0 + γ1 · logit(BMX(x,z),i) + γ2 · logit(BMZ(x,z))

+ γ3 · logit(BMX(x,z))× X-firsti + γ4 · logit(BMZ(x,z))× X-firsti + η(x,z),i,(5)

where logit(θx,z,i) = ln( θ(Y=1|X=x,Z=z)
(1−θ(Y=1|X=x,Z=z)

) for θ ∈ {Pi,BMX,BMZ}. We find very similar

results, confirming that our specification choice does not drive the results. We use the

linear probability model for the remainder of the paper for ease of interpretation.

4.3 The Role of Cognitive Effort

To assess the role of cognitive effort, we use response time data collected on every page

of the experiment.11 In the literature, response time data has frequently been used as

a proxy for cognitive effort or mental deliberation (e.g., Caplin et al. 2020; Rubinstein

2016; Wilcox 1993).

As described in Section 3, we expect cognitive effort in the second stage to play a key

role in driving stickiness. The less effort participants exert in the second stage, the more

they rely on their first-stage beliefs, thereby amplifying group differences. Conversely,

lower effort in the first stage decreases the likelihood of properly internalizing the first-

stage variable’s predictive importance, resulting in imprecise beliefs. Thus, how effort

is allocated should strongly predict the extent of model stickiness.

Summary statistics are reported in Table A.8. On average, subjects spend 5:44 min-

utes in the first stage and 7:22 minutes in the second stage. Subjects in both treatment

groups spend virtually the same amount of time in the first stage. The mean (median)

X-first subject takes about 15 (36) seconds longer in the second stage than the mean

(median) Z-first subject (p = 0.09).

11We pre-registered to measure cognitive effort based on whether participants clicked on a button to
view the data table again after having seen it once at the beginning of each stage instead of using response
times. However, due to a technical issue, click data was not collected on the pages where subjects report
their willingness to pay for alternative projects. We therefore use response time data, which has been
collected for every page of the experiment. An analysis using click data on the belief page can be found
in the Appendix as Figure A.10.
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Table 3 Path dependence by cognitive effort

All Relative Time S2
high

Relative Time S2
low

Total Time S2
high

Total Time S2 low

(1) (2) (3) (4) (5)

Benchmark X 0.156∗∗∗ 0.163∗∗∗ 0.150∗∗∗ 0.151∗∗∗ 0.161∗∗∗

(0.030) (0.043) (0.042) (0.038) (0.046)

Benchmark X 0.087∗∗ 0.019 0.163∗∗∗ 0.045 0.135∗∗

× X first (0.039) (0.052) (0.059) (0.048) (0.062)

Benchmark Z 0.500∗∗∗ 0.626∗∗∗ 0.392∗∗∗ 0.607∗∗∗ 0.405∗∗∗

(0.021) (0.030) (0.027) (0.029) (0.029)

Benchmark Z 0.035 0.024 0.010 0.056 −0.011
× X first (0.030) (0.041) (0.039) (0.040) (0.040)

Constant 47.348∗∗∗ 46.668∗∗∗ 48.028∗∗∗ 46.406∗∗∗ 48.290∗∗∗

(0.447) (0.640) (0.623) (0.670) (0.588)

Observations 3,136 1,568 1,568 1,568 1,568
R2 0.363 0.476 0.260 0.460 0.272

Notes: This table analyzes the model formation in the second stage of the experiment. In each column,
we regress subjects’ subjective success probability for a project with variables (X = x, Z = z) on the
empirical benchmark for X and Z, that is the empirical frequency of successes in the observed data
conditional on the project’s variable Pemp(Y |X = x) and Pemp(Y |Z = z), demeaned by overall frequency
of successes in the data Pemp(Y ). All columns pool the four subjective probabilities each subject reports.
Column 1 reports the full data. Column 2 (3) presents the analysis only for subjects that spent a larger
(smaller) relative share of their time on the second stage compared to the first stage than the median
participant. Column 4 (5) presents the analysis only for subjects that allocated above (below) median
total time on the second stage, i.e. irrespective of the time spent in the first stage. Clustered standard
errors are in parentheses. * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

Table 3 analyzes second-stage model formation by regressing subjects’ reported suc-

cess probabilities on the empirical benchmarks for X and Z. Column (1) uses the full

sample, while Columns (2)-(3) divide the sample based on a median split of relative

time spent in stage 2 compared to stage 1, reporting results separately for observations

above and below the median. Similarly, Columns (4) and (5) split the sample based on

total time spent in the second stage, reporting results for those above and below the

median.

Four key findings emerge from the analysis. First, while both total and relative time

splits yield similar results, the relative time split consistently results in slightly sharper

differences between the groups. As relative time is also the more important metric in

our theoretical framework, we use the relative time split from Columns (2) and (3) as

a proxy of effort allocation throughout the remainder of the paper.

Second, subjects who spend relatively more time in stage two report models that are

closer to the rational benchmark. These participants follow (the conditionally predic-

tive) Benchmark Z to about 63% to 65%, which is roughly 23pp more than those who

invest less effort (p < 0.001). Additionally, they also rely equally or less on (the condi-

tionally un-predictive) Benchmark X. In the X-first group, high-effort subjects follow X
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to 18% compared to 31% observed for low-effort subjects (p = 0.010). In contrast, the

Z-first group shows negligible differences, with high- and low-effort subjects following

X to 16% and 15%, respectively (p = 0.824).

Third, model stickiness is driven primarily by those exerting less cognitive effort in

stage two. Among X-first subjects with lower relative effort (Column 3), adherence to

Benchmark X is about 16pp higher than for their Z-first counterparts (p = 0.006). In

contrast, among high-effort subjects (Column 2), the difference is only 2pp and not

statistically significant (p = 0.716). We observe no significant treatment differences in

adherence to Benchmark Z for either effort group.

Lastly, even subjects who invest more cognitive effort fall short of the rational bench-

mark, following Benchmark X to approximately 16− 18% (instead of completely disre-

garding X) and Benchmark Z to about 63 − 65% (rather than fully incorporating Z).

This may reflect other mistakes in model updating that persist across effort levels.

Result 2 (Cognitive effort and stickiness): Subjects’ cognitive effort in stage two,

both overall and relative to stage one predicts their model formation and stickiness. In

particular,

a.) subjects that spend less time on stage two (in total or relative terms) exhibit larger

stickiness and

b.) subjects that spend more time in stage two are closer to the rational model.

4.4 Reasoning and Model Formation

After showing that cognitive effort (as measured by response times) interacts strongly

with our measures of model stickiness, we now examine how different reasoning ap-

proaches shape path dependence. Although lower cognitive effort is linked with in-

creased stickiness, individuals vary not only in the effort they invest but also in the

sophistication of their strategies. Differences in reasoning may affect both the required

level of effort to operationalize it and the extent to which early models are maintained

due to improper conditioning when revising the model. By classifying subjects’ reason-

ing types, we can assess whether the effect of cognitive effort on stickiness persists after

accounting for differences in strategy.

We begin by presenting a taxonomy of the most prominent reasoning types, then ex-

amine how these categories relate to second-stage belief formation, and finally explore

the interplay between reasoning types and cognitive effort.
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Figure 3 Reasoning Types by Treatment

4.4.1 Reasoning Types

To classify subjects’ reasoning, we analyze responses to an open-text question in which

subjects explained their approach to forming quantitative beliefs in the second stage.

Based on theoretical considerations (see Section 3) and pilot data, the authors first

identified the most prominent types of reasoning and subsequently independently coded

responses using a coding manual with mutually exclusive labeling. A response was

assigned a reasoning type if at least two coders agreed. Otherwise, the response was

labeled Undetermined. Table C.1 summarizes the coding scheme, and Figure 3 displays

the distribution of reasoning types by treatment. To check the robustness of our coding

approach, we employed OpenAI’s ChatGPT-4o API in a zero-shot reasoning approach

(Kojima et al. 2023), instructing it to assign specific reasoning types conservatively and

the label Undetermined when responses were ambiguous. We provide an overview of

robustness analyses using AI-generated reasoning labels in Appendix C.

Frequentist: Subjects in this category estimate the project’s success likelihood by

counting the successes and failures of past projects with the same values for both in-

dependent variables and dividing the number of successes by the total count.12 For

example, one Frequentist explained:

ªI counted each success in each combination presented. I compared that to the

12Note that in our instructions, we stressed that each data row represents a large number of iden-
tical observations, thereby minimizing the role of priors such that this reasoning category nests both
Frequentist and Bayesian reasoning.
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total number of that combination to come up with a percentage chance of success.

I used those percentages to compare one project with another.º

Separate: These subjects estimate success likelihoods by independently evaluating the

success rates for X and Z. They then aggregate these individual effects, effectively

considering P (Y |X = x) and P (Y |Z = z) separately instead of P (Y |X = x, Z = z).

One separate reasoner described:

ªLooking at the Successes, the Blue Color was significantly more successful than

the Green Color. I chose Blue options over Green options. When Clubs and Dia-

monds were introduced, I saw that the Diamonds were more successful than the

Clubs. Therefore, I chose Diamonds over Clubs. [...]º

Absolute success: Subjects here focus on the number of successes associated with

each combination of independent variable values. They condition either solely on the

outcome or jointly on their first-stage variable and the outcome. This approach leads

to base-rate neglect, as subjects fail to account for the frequency with which certain

combinations appear in the data set. Their strategy is best captured by attending to

P (X,Z|Y = 1). For instance, one absolute success response stated:

ªI revisited the past projects and looked at which combinations had the most suc-

cess outcomes. The ones with more successful outcomes gave me more confidence

in [choosing] that projectº

Figure 3 shows that approximately 31% of responses were categorized as Frequen-

tist, 17% as Separate, and 16% as Absolute Success, with the remaining 36% labeled

Undetermined. Around two-thirds of our respondents can thus be assigned to one of

the three most prominent reasoning types, indicating our collected data’s high quality.

The similar distribution of reasoning types across treatment groups (χ2(3) = 3.44, p =

0.329) suggests that the order of revealing variables does not significantly affect how

subjects conceptualize the statistical problem.

4.4.2 Second Stage Models by Reasoning Type

We next examine how second-stage beliefs vary by reasoning type, focusing on how each

group incorporates key empirical benchmarks: (i) success frequencies conditional on X

only (Benchmark X), (ii) success frequencies conditional on Z only (Benchmark Z),

and (iii) the demeaned total number of successes for each (X,Z) combination (ªNum-

ber of successes,º), which captures attention to absolute successes. Table C.3 reports

separate structural regressions for each reasoning type.
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Frequentists. Frequentists rely most strongly on Benchmark Z (76%) and largely dis-

regard Benchmark X (5%), with only a modest load on the number of successes (14%).

These findings confirm that Frequentist reasoners most closely approximate the ratio-

nal benchmark, adhering significantly more to Benchmark Z than subjects using other

strategies (p < 0.001 for all pairwise comparisons).

Separate reasoners. This group integrates unconditional beliefs about both X and

Z. They assign a weight of about 28% to Benchmark X (significantly more than any

other group, p < 0.015 for any pairwise comparison) and 36% to Benchmark Z. Their

pattern of partially weighting both benchmarks aligns with their self-reported strategy

of treating X and Z as independently informative.

Absolute success reasoners. Subjects in this category attend mainly on the number

of successes13 (42%), significantly more than other groups (p < 0.032 for all pairwise

comparisons), while placing relatively low weights on Benchmark X (9%) and Bench-

mark Z (22%). This pattern reflects their tendency to focus on raw success counts

rather than relative frequencies.

Overall, these results confirm that our classification into Frequentist, Separate, and

Absolute Success strategies captures meaningful heterogeneity in how participants in-

corporate information. Each group’s distinct pattern of benchmark weighting explains

a substantial portion of the variation in second-stage beliefs. It validates our use of

self-reported reasoning to complement the quantitative measures of belief formation.

4.4.3 Path Dependence across Reasoning Type

Table C.4 reports separate regressions by reasoning type to assess whether stickiness

differs by strategy. Overall, all three prominent reasoning types exhibit some degree of

stickiness Ð a persistent influence of first-stage exposure to X. However, the extent of

this effect varies.

For Frequentist and Separate subjects, the difference in loading on Benchmark X be-

tween the X-first and Z-first groups is about 8 and 6 percentage points, respectively.

However, neither difference is statistically significant from zero, likely due to the smaller

subsample sizes.

13Note that the absolute success approach does not explicitly pin down the denominator for forming
beliefs. We circumvent this problem by ensuring that the number of successes is linear in the number of
successes observed in the dataset for a given combination and that beliefs are centered around 50 percent
to reflect the prior probability of successes. This makes the parameter estimates comparable to those of
the benchmarks of X and Z.

27



Table 4 Path dependence across reasoning types

Subjective success probability (pooled), by reasoning

All Frequentist Separate Abs. success Other

(1) (2) (3) (4) (5)

Benchmark X 0.039 0.004 0.244∗∗∗ −0.014 −0.008
(0.032) (0.040) (0.088) (0.062) (0.062)

Benchmark X 0.087∗∗ 0.080 0.059 0.238∗∗∗ 0.056
× X first (0.039) (0.051) (0.109) (0.081) (0.075)

Benchmark Z 0.383∗∗∗ 0.753∗∗∗ 0.331∗∗∗ 0.207∗∗∗ 0.191∗∗∗

(0.024) (0.032) (0.058) (0.044) (0.041)

Benchmark Z 0.035 0.015 0.046 0.035 0.005
× X first (0.030) (0.035) (0.063) (0.055) (0.051)

Number 0.235∗∗∗ 0.136∗∗∗ 0.253∗∗∗ 0.417∗∗∗ 0.229∗∗∗

of successes (0.021) (0.032) (0.054) (0.054) (0.038)

Constant 47.348∗∗∗ 47.340∗∗∗ 47.189∗∗∗ 42.264∗∗∗ 49.711∗∗∗

(0.447) (0.567) (0.930) (1.352) (0.831)

Observations 3,136 968 528 508 1,132
R2 0.375 0.743 0.407 0.343 0.162

Notes: This table analyzes the model formation in the second stage of the experiment by subjects’ reason-
ing type. In each column, we regress subjects’ subjective success probability for a project with variables
(X = x, Z = z) on the empirical benchmark for X and Z, that is the empirical frequency of successes in
the observed data conditional on the project’s variable Pemp(Y |X = x) and Pemp(Y |Z = z), demeaned
by overall frequency of successes in the data Pemp(Y ). All columns pool the four subjective probabilities
each subject reports. Column 1 reports the full data. Columns 2-5 present the analysis for subjects based
on their reasoning type. The "Other" category (column 5) comprises all responses that cannot be assigned
to any of the other three categories. Clustered standard errors are in parentheses. * denotes significance
at 10 pct., ** at 5 pct., and *** at 1 pct. level.

The most pronounced effect can be observed for Absolute success reasoners. In this

group, X-first subjects incorporate Benchmark X to virtually the same extent as Z (a

24 percentage point difference relative to Z-first subjects, p < 0.004), indicating that

their reliance on absolute counts reinforces model stickiness. This observed stickiness

among the Absolute Success reasoning group is about three to four times larger than for

Frequentist and Separate reasoners, though the differences are at most marginally signif-

icant (p = 0.095 and p = 0.185, respectively). In contrast, adherence to Benchmark Z

does not differ significantly between treatments for any reasoning type.

These findings imply that while path dependence is (qualitatively) present across all

three reasoning types, stickiness is strongest among subjects who only focus on the

absolute number of successes in past data when forming conditional beliefs.

Result 3 (Reasoning types shape dynamic model formation): Subjects’ self-reported

reasoning predicts their model formation. In particular,

a.) there is substantial heterogeneity in reasoning across subjects;

b.) all reasoning types exhibit some degree of stickiness;
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c.) the magnitude of stickiness varies, with Absolute Success reasoners showing the

strongest effect.

4.4.4 Cognitive Effort, Reasoning Types, and Models

Table C.2 demonstrates a strong correlation between reasoning types and cognitive ef-

fort. More than 70% of subjects classified as Frequentist spend above-median time in

stage two relative to stage one, suggesting that this reasoning type is associated with

greater deliberation. In contrast, more than half of participants classified as Separate

and Absolute success reasoners fall below the median, implying less cognitive effort.14

Given these patterns, we investigate whether cognitive effort remains a significant pre-

dictor of model stickiness even after controlling for reasoning types.

Table 5 Path dependence by cognitive effort, controlling for reasoning types

Subjective success probability (pooled), by effort

Baseline Controlling for reasoning Controlling for reasoning ×
treatment

(1) (2) (3)

Benchmark X 0.043 0.059 0.064
× high effort (0.063) (0.065) (0.068)

Benchmark X −0.144∗ −0.145∗ −0.168∗∗

×X-first× high effort (0.079) (0.077) (0.082)

Benchmark Z 0.264∗∗∗ 0.135∗∗∗ 0.134∗∗∗

× high effort (0.047) (0.045) (0.046)

Benchmark Z 0.014 0.012 0.016
×X-first× high effort (0.057) (0.050) (0.057)

Number −0.060 −0.033 −0.033
of succ.× high effort (0.043) (0.044) (0.045)

Not shown: Low effort baseline
Addititional controls ± Reasoning Reasoning × X-first
Observations 3,136 3,136 3,136
R2 0.396 0.457 0.458

Notes: This table analyzes the model formation in the second stage of the experiment by subjects’ exerted
effort, controlling for a subject’s reasoning type. It only reports the differences between high- and low-
effort subjects, as measured by their relative time spent in stage 2. See appendix table A.13 for the full
table. Column 1 reports the differences across high- and low-effort groups without controls. Column 2
repeats the analysis controlling for reasoning types, and column 3 controlling for reasoning types inter-
acted with the treatment variable. Clustered standard errors are in parentheses. * denotes significance at
10 pct., ** at 5 pct., and *** at 1 pct. level.

Table 5 presents a stepwise analysis: Column (2) examines the impact of cognitive

effort on beliefs while controlling for reasoning type. Column (3) assesses whether

cognitive effort remains a consistent driver of stickiness after accounting for differential

stickiness across reasoning types.

14Note that we cannot disentangle the direction of causality between cognitive effort and reasoning
sophistication and in principle, a simultaneous causal relationship in both directions is plausible.
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As can be observed by comparing row 3 across columns, controlling for reasoning, the

effect of exerting high effort on beliefs remains significant across reasoning types. On

average, individuals exerting higher effort load more on Benchmark Z, though the effect

size shrinks from about 26pp to about 13pp when controlling for reasoning types. This

suggests that the initial effect is partially driven by Frequentists being overrepresented

in the high-effort group.

Turning to stickiness, row 2 shows that the difference between low- and high-effort

subjects becomes even more pronounced once controlling for differences across reason-

ing types. When controlling for reasoning-specific stickiness, high-effort subjects across

all groups exhibit, on average, 16.8pp less stickiness (column 3, p = 0.041) than sub-

jects exerting relatively less effort in the second stage.

Our analysis confirms that cognitive resource allocation across stages remains a pri-

mary driver of path dependence, even when accounting for reasoning types. This sug-

gests that, although different reasoning types exhibit varying degrees of stickiness, effort

allocation independently contributes to the persistence of initial models.15

Result 4 (Cognitive effort drives stickiness independent of reasoning type): Cog-

nitive effort remains a robust driver of stickiness even when controlling for reasoning

types. In particular, subjects who allocate less cognitive effort to stage two exhibit sig-

nificantly higher stickiness compared to those who exert more effort.

5 Conclusion

This paper addresses a central question in understanding how economic agents learn

in dynamic environments: How do individuals adjust their mental models when they

encounter new dimensions of information? In answering this question, we provide

proof-of-concept evidence that models are ‘sticky’: many participants fail to sufficiently

revise misspecified models even when correcting data becomes available.

Five design factors suggest that our empirical estimates of the effect are likely to rep-

resent a lower bound: (i) we ensure minimum attention to all potentially relevant vari-

ables, (ii) we provide all the relevant data to infer the relevant relationships throughout

the revision stage, (iii) we limit the role of preference-based model revision by using

minimal framing, (iv) we are transparent about the existence of the second variable

from the beginning to mitigate demand effects and (v) we use elicitations that already

guide people to think in the correct contingencies when revising their models. Besides

15Based on the regression, we still detect qualitatively different degrees of stickiness across reasoning
types when controlling for cognitive effort: Absolute Success maintains the highest degree of stickiness.
These results should be interpreted cautiously, however, as we are not sufficiently powered to establish
significance.
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the proposed cognitive mechanism, other biases may thus act to compound model stick-

iness in many economic situations.

Our insights on model stickiness and the role of cognitive effort and reasoning in

explaining behavioral heterogeneity highlight the importance of better understanding

individuals’ reasoning processes and have implications for designing effective informa-

tion provision policies. In particular, providing subjects with formerly missing data

might lead them to recognize formerly overlooked factors of a model while failing to

let go of conditionally irrelevant factors. In policy contexts where people should cor-

rect their mental models by removing factors (in addition to adding new ones), it may,

therefore, be necessary to provide details on how to combine old and new pieces of

information.

Several open questions point towards promising avenues for further research. First,

many cases of dynamic model formation involve new variables for which very few ob-

servations initially exist. It would thus be interesting to explore how individuals handle

the trade-off between adopting new variables in a model that better fits the data and the

uncertainty arising from limited data. Further, it would be valuable to study whether

the stickiness persists in the long run or to investigate under which conditions people

realize that they have a misspecified model.
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A Additional Tables

Table A.1 Summary statistics and balancing

Variable ACS
(2022)

All X-first Z-first p-value
H0: X-first = Z-first

Gender

Female 50% 50% 49% 51% 0.617
Age

18-34 29% 43% 42% 44% 0.629
35-54 32% 44% 45% 42% 0.378
55+ 38% 14% 13% 14% 0.565
Household net income

Below 50k 34% 34% 35% 32% 0.38
50k-100k 29% 40% 38% 43% 0.116
Above 100k 37% 26% 27% 25% 0.417
Education

Bachelor’s degree or more 33% 59% 58% 60% 0.593
Region

Northeast 17% 23% 25% 21% 0.126
Midwest 21% 20% 20% 21% 0.803
South 39% 37% 36% 37% 0.855
West 24% 19% 18% 21% 0.287

F-Stat (SUR) 0.689
Sample size 1,980,550784 394 390 784

Notes: This table presents summary statistics for the demographics of the main experiment. It compares
them to benchmark characteristics for the US adult population based on data from the American Commu-
nity Survey 2022. Column 5 reports the p-value of a t-test, testing for equality between both treatment
groups, as well as the statistic of a ‘seemingly unrelated regressions’ (SUR) F-test.
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Table A.2 First stage beliefs

First stage subjective success probability (pooled)

X first Z first

(1) (2)

Benchmark X 0.809∗∗∗

(0.043)

Benchmark Z 0.717∗∗∗

(0.025)

Constant 51.852∗∗∗ 50.983∗∗∗

(0.468) (0.425)

Observations 788 780
R2 0.374 0.616

Notes: This table analyzes the model formation in the first stage of the experiment. In each column, we
regress subjects’ subjective success probability for a project on the empirical first stage benchmark, that
is, the empirical frequency of successes in the observed data conditional on the project characteristics,
demeaned by the overall frequency of successes in the data. All columns pool the two beliefs each subject
reports. Column 1 reports the data for the X-first treatment group, while column 2 reports the data for the
Z-first treatment group. Standard errors clustered on the individual level are in parentheses. * denotes
significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

Table A.3 First stage beliefs by time spent in first stage

All Above median time S1 Below median time S1

(1) (2) (3)

Benchmark First Stage Var. 0.717∗∗∗ 0.753∗∗∗ 0.681∗∗∗

(0.025) (0.034) (0.036)

Benchmark First Stage Var. × X first 0.093∗ 0.090 0.095
(0.049) (0.068) (0.072)

Constant 51.420∗∗∗ 51.296∗∗∗ 51.543∗∗∗

(0.316) (0.438) (0.458)

Observations 1,568 784 784
R2 0.532 0.569 0.495

Notes: This table analyzes the model formation in the first stage of the experiment. In each column, we
regress subjects’ subjective success probability for a project with either a high or a low first-stage variable
on the empirical first-stage benchmark, that is, the empirical frequency of successes in the observed data
conditional on the project characteristics, demeaned by overall frequency of successes in the data. All
columns pool the two beliefs each subject reports. Column 1 reports the full data. Columns 2 and 3
report median splits by the total time spent on the first stage, with subjects that spend above (below)
median time in column 2 (3). Clustered standard errors are in parentheses. * denotes significance at 10
pct., ** at 5 pct., and *** at 1 pct. level.

3



Table A.4 Impact of learning order on subjective success probabilities

Subjective success probability P(Y | ...), in percent
X=0, Z=0 X=1, Z=0 X=0, Z=1 X=1, Z=1

(1) (2) (3) (4)

X-first −2.549∗ −1.091 −1.563 2.178∗

(1.507) (1.544) (1.648) (1.211)

Constant 33.028∗∗∗ 32.418∗∗∗ 57.741∗∗∗ 67.726∗∗∗

(1.082) (1.126) (1.147) (0.853)

Observations 784 784 784 784
R2 0.004 0.001 0.001 0.004

Notes: This table analyzes the treatment effects of the learning order on the subjective success probabili-
ties in the second stage for projects with different features. Each column reports the success probability
for one combination (X = x, Z = z) of the two binary independent variables. Robust standard errors are
in parentheses. * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

Table A.5 Impact of learning order on project choice

Share choosing project with higher features (in percent)
Pooled Disaggregated

∆X ∆Z ∆X, Z = 0 ∆X, Z = 1 ∆Z, X = 0 ∆Z, X = 1

(1) (2) (3) (4) (5) (6)

Observed 2.420 1.162 −1.792 6.632∗∗ 1.213 1.112
X first (2.461) (2.000) (3.575) (3.084) (2.799) (2.040)

Constant 61.667∗∗∗ 85.513∗∗∗ 51.538∗∗∗ 71.795∗∗∗ 80.513∗∗∗ 90.513∗∗∗

(1.758) (1.453) (2.534) (2.282) (2.008) (1.486)

Observations 1,568 1,568 784 784 784 784
R2 0.001 0.000 0.000 0.006 0.000 0.000

Notes: This table examines the treatment effects of learning order on choice probabilities in the second
stage. The choice probability represents the proportion of subjects who selected one project over another.
Columns 3±6 report choices between two projects that differ in exactly one of the two independent vari-
ables, while columns 1±2 present averages for choices that vary in either X or Z, respectively. Clustered
standard errors (columns 1-2) and robust standard errors (columns 3-6) are in parentheses. * denotes
significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

4



Table A.6 Impact of learning order on project valuation

Willingness-to-pay (WTP) for preferred project
Intensive margin Intensive margin - disaggregated

∆X ∆Z ∆X, Z = 0 ∆X, Z = 1 ∆Z, X = 0 ∆Z, X = 1

(1) (2) (3) (4) (5) (6)

Observed 0.146 0.142 −0.322 0.614 0.045 0.238
X first (0.311) (0.304) (0.435) (0.414) (0.394) (0.324)

Constant 1.611∗∗∗ 5.206∗∗∗ −0.018 3.239∗∗∗ 4.348∗∗∗ 6.065∗∗∗

(0.224) (0.219) (0.308) (0.298) (0.286) (0.230)

Observations 1,568 1,568 784 784 784 784
R2 0.000 0.000 0.001 0.003 0.000 0.001

Notes: This table examines the treatment effects of learning order on willingness to pay (WTP) in the
second stage. The WTP reflects the amount subjects are willing to pay for their chosen project. Columns
3±6 report WTP differences between two projects that vary in exactly one of the two independent vari-
ables, while columns 1±2 present averages for choices that differ in either X or Z, respectively. Clustered
standard errors (columns 1-2) and robust standard errors (columns 3-6) are in parentheses. * denotes
significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

Table A.7 Rational Benchmark for Coefficient Estimates in the Second Stage

Coefficient Rational Benchmark Value Interpretation

β0 50 Intercept; baseline belief level under no information

β2 0 No incorporation of Benchmark X

β3 1 Full incorporation of Benchmark Z

β4 0 No differential effect on X incorporation between treatment groups

β5 0 No differential effect on Z incorporation between treatment groups

Notes: The rational benchmark assumes a frequentist approach that perfectly reflects all relevant in-
formation. The beliefs of a Bayesian learner with full-support prior will be very close to the empirical
benchmark given by the above table since the full dataset contains a total of 40 rows ∗1, 000 identical
observations per row = 40, 000 observations.

Table A.8 Summary statistics on time spent across stages

Variable All X-first Z-first p-value (KS)
H0: X-first = Z-first

Time spent S1 05:44 (04:44) 05:44 (04:44) 05:45 (04:43) 0.519
Time spent S2 07:22 (06:10) 07:30 (06:35) 07:15 (05:59) 0.091
Relative time S2/(S1+S2) 0.55 0.56 0.54 0.147
Above med. rel. time S2 50% 54% 46% 0.201

Sample size 784 394 390 784

Notes: This table reports descriptive statistics on the time allocated by subjects to the first and second
stage of the experiment in minutes and seconds by the assigned treatment group. All columns report the
mean, with the median in parentheses. Row 3 reports the average share allocated to stage 2 relative to
time spent in both stages. Row 4 reports the share of subjects that spent above-median time in the second
stage. Column 4 reports the p-value of a Kolmogorov-Smirnov-test for the equality of distribution across
treatment groups.
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Table A.9 Summary statistics on confidence across stages

Metric All X-first Z-first p-value (KS) H0: X-first = Z-first

Confidence S1 67.82% 66.72% 68.93% 0.261
Confidence S2 60.22% 60.92% 59.52% 0.439

Above Median Confidence S1 56% 55% 58%
Above Median Confidence S2 51% 52% 50%

Sample size 784 394 390

Notes: This table reports descriptive statistics on the self-reported confidence of subjects in the first and
second stage of the experiment in percent by the assigned treatment group. All columns report the mean
level. Row 3 reports share of subjects with spent above-median confidence in the first stage. Row 4
reports share of subjects with spent above-median confidence in the second stage. Column 4 reports the
p-value of a Kolmogorov-Smirnov-test for the equality of distribution across treatment groups.
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Table A.10 Path dependence by click data on belief elicitation page

All Extra Clicks Beliefs S2 No Extra Clicks Beliefs S2

(1) (2) (3)

Benchmark X 0.156∗∗∗ 0.130∗∗∗ 0.170∗∗∗

(0.030) (0.043) (0.040)

Benchmark X 0.087∗∗ 0.099∗ 0.082
× X first (0.039) (0.054) (0.054)

Benchmark Z 0.500∗∗∗ 0.680∗∗∗ 0.404∗∗∗

(0.021) (0.031) (0.025)

Benchmark Z 0.035 −0.012 0.047
× X first (0.030) (0.044) (0.037)

Constant 47.348∗∗∗ 43.607∗∗∗ 49.545∗∗∗

(0.447) (0.738) (0.538)

Observations 3,136 1,160 1,976
R2 0.363 0.499 0.294

Notes: This table analyzes the model formation in the second stage of the experiment. In each column,
we regress subjects’ subjective success probability for a project with variables (X = x, Z = z) on the
empirical benchmark for X and Z, that is the empirical frequency of successes in the observed data
conditional on the project’s variable Pemp(Y |X = x) and Pemp(Y |Z = z), demeaned by overall frequency
of successes in the data Pemp(Y ). All columns pool the four subjective probabilities each subject reports.
Column 1 reports the full data. Column 2 presents the analysis for subjects who revisited the data table
on the belief-elicitation page in the second stage, while Column 3 focuses on those who did not. Clustered
standard errors are in parentheses. * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

Table A.11 Summary statistics on time spent across stages by reasoning type

Variable All Frequentist Separate Absolute Other

Time spent S1 05:44
(04:44)

06:09
(05:15)

04:57
(04:09)

04:59
(04:03)

06:06
(04:56)

Time spent S2 07:22
(06:10)

09:50
(08:51)

05:44
(04:19)

06:21
(05:08)

06:29
(05:05)

Relative time S2/(S1+S2) 0.55 0.61 0.52 0.55 0.52
Above med. rel. time S2 50% 73% 36% 48% 38%

Sample size 784 242 132 127 283

Notes: This table reports descriptive statistics on the time allocated by subjects to the first and second
stage of the experiment in minutes and seconds by the assigned reasoning type group. Rows 1 and 2
report the mean, with the median in parentheses. Row 3 reports the average share allocated to stage 2
relative to time spent in both stages. Row 4 reports the share of subjects that spent above-median time
in the second stage.
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Table A.12 Belief about impact of independent variables across reasoning types

Subjective success probability (pooled), by reasoning

All Frequentist Separate Abs. success Other

(1) (2) (3) (4) (5)

Benchmark X 0.082∗∗∗ 0.047∗ 0.275∗∗∗ 0.090∗∗ 0.020
(0.021) (0.027) (0.061) (0.045) (0.041)

Benchmark Z 0.401∗∗∗ 0.761∗∗∗ 0.355∗∗∗ 0.222∗∗∗ 0.194∗∗∗

(0.019) (0.027) (0.043) (0.038) (0.032)

Number 0.235∗∗∗ 0.136∗∗∗ 0.253∗∗∗ 0.417∗∗∗ 0.229∗∗∗

of successes (0.021) (0.032) (0.054) (0.054) (0.038)

Constant 47.348∗∗∗ 47.340∗∗∗ 47.189∗∗∗ 42.264∗∗∗ 49.711∗∗∗

(0.447) (0.567) (0.929) (1.350) (0.831)

Observations 3,136 968 528 508 1,132
R2 0.374 0.742 0.406 0.338 0.162

Notes: This table analyzes the model formation in the second stage of the experiment. In each column,
we regress subjects’ subjective success probability for a project with variables (X = x, Z = z) on the
empirical benchmark for X and Z, that is the empirical frequency of successes in the observed data
conditional on the project’s variable Pemp(Y |X = x) and Pemp(Y |Z = z), demeaned by overall frequency
of successes in the data Pemp(Y ). All columns pool the four subjective probabilities each subject reports.
Column 1 reports the full data. Column 2-5 present the analysis for subjects based on their reasoning
type. The "Other" category (column 5) comprises all responses that cannot be assigned to any of the other
three categories. Clustered standard errors are in parentheses. * denotes significance at 10 pct., ** at 5
pct., and *** at 1 pct. level.
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Table A.13 Path dependence by cognitive effort, controlling for reasoning type

Subjective success probability (pooled), by effort

Baseline Controlling for reasoning Controlling for reasoning ×
treatment

(1) (2) (3)

Benchmark X 0.018 0.008 0.007
(0.044) (0.044) (0.044)

Benchmark X 0.163∗∗∗ 0.168∗∗∗ 0.180∗∗∗

× X-first (0.059) (0.059) (0.058)

Benchmark Z 0.260∗∗∗ 0.327∗∗∗ 0.328∗∗∗

(0.033) (0.031) (0.031)

Benchmark Z 0.010 0.005 0.003
× X-first (0.039) (0.036) (0.037)

Number 0.265∗∗∗ 0.251∗∗∗ 0.251∗∗∗

of successes (0.033) (0.033) (0.033)

Benchmark X 0.043 0.059 0.064
× high effort (0.063) (0.065) (0.068)

Benchmark X −0.144∗ −0.145∗ −0.168∗∗

×X-first× high effort (0.079) (0.077) (0.082)

Benchmark Z 0.264∗∗∗ 0.135∗∗∗ 0.134∗∗∗

× high effort (0.047) (0.045) (0.046)

Benchmark Z 0.014 0.012 0.016
×X-first× high effort (0.057) (0.050) (0.057)

Number −0.060 −0.033 −0.033
of succ.× high effort (0.043) (0.044) (0.045)

X-first × high effort 0.221 0.283 0.283
(1.289) (1.252) (1.253)

high effort −1.479 −1.284 −1.284
(1.149) (1.205) (1.206)

Constant 48.028∗∗∗ 50.139∗∗∗ 50.139∗∗∗

(0.623) (0.882) (0.883)

Controls ± Reasoning Reasoning × X-first
Observations 3,136 3,136 3,136
R2 0.396 0.457 0.458

Notes: This table analyzes the model formation in the second stage of the experiment by subjects’ reason-
ing type and attention allocation. In each column, we regress subjects’ subjective success probability for
a project with variables (X = x, Z = z) on the empirical benchmark for X and Z, that is the empirical
frequency of successes in the observed data conditional on the project’s variable Pemp(Y |X = x) and
Pemp(Y |Z = z), demeaned by overall frequency of successes in the data Pemp(Y ). Rows 7 through 11
present interactions with an indicator variable, taking the value 1 for each subject that spent relatively
more time on S2 than the median respondent. All columns pool the four subjective probabilities each
subject reports. Column 1 reports the full data. Column 2-5 present the analysis for subjects based on
their reasoning type. The "Other" category (column 5) comprises all responses that cannot be assigned to
any of the other three categories. Clustered standard errors are in parentheses. * denotes significance at
10 pct., ** at 5 pct., and *** at 1 pct. level.
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Table A.14 Path dependence by reasoning type and cognitive effort

All Frequentist Separate Abs. success Other

(1) (2) (3) (4) (5)

Benchmark X 0.018 0.110 0.098 −0.007 −0.047
(0.044) (0.076) (0.110) (0.083) (0.074)

Benchmark Z 0.260∗∗∗ 0.618∗∗∗ 0.286∗∗∗ 0.230∗∗∗ 0.123∗∗

(0.033) (0.069) (0.075) (0.061) (0.048)

Benchmark X 0.163∗∗∗ 0.110 0.151 0.325∗∗ 0.152
× X-first (0.059) (0.107) (0.142) (0.127) (0.094)

Benchmark Z 0.010 −0.016 0.007 0.028 0.021
× X-first (0.039) (0.085) (0.080) (0.084) (0.055)

Number 0.265∗∗∗ 0.190∗∗ 0.297∗∗∗ 0.392∗∗∗ 0.230∗∗∗

of successes (0.033) (0.074) (0.074) (0.080) (0.050)

Benchmark X 0.043 −0.152∗ 0.392∗∗ −0.011 0.110
× high effort (0.063) (0.088) (0.175) (0.123) (0.134)

Benchmark Z 0.264∗∗∗ 0.191∗∗ 0.122 −0.056 0.194∗∗

× high effort (0.047) (0.076) (0.117) (0.089) (0.086)

Benchmark X −0.144∗ −0.026 −0.241 −0.147 −0.252
×X-first× high effort (0.079) (0.120) (0.211) (0.163) (0.156)

Benchmark Z 0.014 0.031 0.115 0.023 −0.062
×X-first× high effort (0.057) (0.091) (0.126) (0.114) (0.109)

Number −0.060 −0.074 −0.121 0.053 −0.003
of succ.× high effort (0.043) (0.082) (0.104) (0.109) (0.075)

Constant 47.348∗∗∗ 47.340∗∗∗ 47.189∗∗∗ 42.264∗∗∗ 49.711∗∗∗

(0.447) (0.569) (0.935) (1.359) (0.833)

Observations 3,136 968 528 508 1,132
R2 0.395 0.751 0.418 0.344 0.173

Notes: This table analyzes the model formation in the second stage of the experiment by subjects’ reason-
ing type and attention allocation. In each column, we regress subjects’ subjective success probability for
a project with variables (X = x, Z = z) on the empirical benchmark for X and Z, that is the empirical
frequency of successes in the observed data conditional on the project’s variable Pemp(Y |X = x) and
Pemp(Y |Z = z), demeaned by overall frequency of successes in the data Pemp(Y ). Rows 7 through 11
present interactions with an indicator variable, taking the value 1 for each subject that spent relatively
more time on S2 than the median respondent. All columns pool the four subjective probabilities each
subject reports. Column 1 reports the full data. Column 2-5 present the analysis for subjects based on
their reasoning type. The "Other" category (column 5) comprises all responses that cannot be assigned to
any of the other three categories. Clustered standard errors are in parentheses. * denotes significance at
10 pct., ** at 5 pct., and *** at 1 pct. level.
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Table C.1 Overview of categories of the coding scheme

Category Explanation Examples

Frequentist Subjects who determine the success likelihood
by correctly grouping the projects based on
their joint Color (X) and Card (Z) combina-
tion. For each combination, they determine
the likelihood of success by dividing the num-
ber of successes compared to the total occur-
rences of projects with the same combination
of X and Z.

ªI counted the number of relevant successes
and failures for each set of features and then
derived a probability of success based on num-
ber of successes divided by the total number of
experiments for that set of features.º

ºTo determine the success likelihoods I consid-
ered the number of successful examples ver-
sus the number of failures of the same exam-
ple to estimate the percent of success. Those
with a higher success to failure ratio therefore
had a higher percentage likelihood and were
favored.º

Separate Subjects who determine the success likelihood
of a project by assessing the variables X and
Z separately and then aggregate the uncon-
ditional effects of both variables to derive the
likelihood of success. By simply aggregating
the unconditional effects, they fail to account
for the correlation between X and Z.

ºI looked at the table and made a rough es-
timate of how likely each symbol was associ-
ated with success. When it came to combin-
ing symbols I combined those odds. So a low
chance of success symbol combined with an-
other low chance symbol would have a lower
chance than either separately. A high chance
combined with a low chance would be some-
where in the middle.º

ºI first counted how likely each individual met-
ric was to succeed individually: Blue Circle
= 65% Green Circle = 35% Club = 20% Di-
amond = 80% Then I based my predictions
on these. For the single metric predictions,
I simply estimated around what they would
be individually. For the the multi-metric (e.g.
Blue Diamond) I averaged the two metrics and
picked the project that was most likely to suc-
ceed based on past outcomes.º

Absolute success Subjects who compare the absolute number of
successes with for variable combinations. By
focusing only on the number of successes in-
stead of the relative success likelihood, they
fail to account that some types of projects oc-
cur more frequently in the sample.

ªI looked at the trends in the suit or the color.
For instance I looked at the diamonds with
green to see how many of them were success-
ful to determine how likely it was to be suc-
cessful. I then compared it to the other option
(diamond blue, clubs blue, clubs green, etc. )
to determine which one would be more suc-
cessful and which one I would have a better
chance with.º

ºI counted how many successes there were
on each project and used that information to
choose.º

Undetermined Responses that are not clearly classifiable in
the categories above. This may be because
the responses do not specify any strategy, be-
cause they are ambiguous and in principle con-
sistent with several of the above strategies, or
because they suggest that the specified beliefs
were random or without explicit consideration
of the data.

ªI took into consideration the color, card and
outcomeº

ªI was indifferent to which project I choose. I
like green so I picked green. I like diamonds
so I picked diamonds.º

Notes: This table provides an overview of the different categories in our coding scheme, an explanation
for each category, and example extracts from the open-text responses.
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Table C.2 Summary statistics on time spent across stages by reasoning type (AI codes)

Variable All Frequentist Separate Absolute Other

Time spent S1 05:44
(04:44)

06:30
(05:21)

04:58
(04:13)

05:13
(04:03)

05:37
(04:39)

Time spent S2 07:22
(06:10)

09:49
(08:33)

05:41
(04:26)

06:05
(04:41)

06:10
(05:06)

Relative time S2/(S1+S2) 0.55 0.6 0.52 0.53 0.53
Above med. rel. time S2 50% 68% 38% 41% 40%

Sample size 784 285 182 87 230

Notes: This table reports descriptive statistics on the time allocated by subjects to the first and second
stage of the experiment in minutes and seconds by the assigned reasoning type group. Rows 1 and 2
report the mean, with the median in parentheses. Row 3 reports the average share allocated to stage 2
relative to time spent in both stages. Row 4 reports the share of subjects that spent above-median time
in the second stage.
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Table C.3 Belief about impact of independent variables across reasoning types (AI
Codes)

Subjective success probability (pooled), by reasoning

All Frequentist Separate Abs. success Other

(1) (2) (3) (4) (5)

Benchmark X 0.082∗∗∗ 0.017 0.219∗∗∗ 0.101∗ 0.048
(0.021) (0.027) (0.050) (0.060) (0.044)

Benchmark Z 0.401∗∗∗ 0.615∗∗∗ 0.415∗∗∗ 0.181∗∗∗ 0.206∗∗∗

(0.019) (0.030) (0.037) (0.048) (0.035)

Number 0.235∗∗∗ 0.226∗∗∗ 0.248∗∗∗ 0.392∗∗∗ 0.176∗∗∗

of successes (0.021) (0.033) (0.040) (0.071) (0.043)

Constant 47.348∗∗∗ 45.361∗∗∗ 46.769∗∗∗ 45.072∗∗∗ 51.129∗∗∗

(0.447) (0.706) (0.775) (1.370) (0.910)

Observations 3,136 1,140 728 348 920
R2 0.374 0.599 0.446 0.310 0.148

Notes: This table analyzes the model formation in the second stage of the experiment. In each column,
we regress subjects’ subjective success probability for a project with variables (X = x, Z = z) on the
empirical benchmark for X and Z, that is the empirical frequency of successes in the observed data
conditional on the project’s variable Pemp(Y |X = x) and Pemp(Y |Z = z), demeaned by overall frequency
of successes in the data Pemp(Y ). All columns pool the four subjective probabilities each subject reports.
Column 1 reports the full data. Column 2-5 present the analysis for subjects based on their reasoning
type. The "Other" category (column 5) comprises all responses that cannot be assigned to any of the other
three categories. Clustered standard errors are in parentheses. * denotes significance at 10 pct., ** at 5
pct., and *** at 1 pct. level.
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Table C.4 Path dependence across reasoning types (AI Codes)

Subjective success probability (pooled), by reasoning

All Frequentist Separate Abs. success Other

(1) (2) (3) (4) (5)

Benchmark X 0.039 −0.032 0.168∗∗ −0.015 0.046
(0.032) (0.037) (0.075) (0.088) (0.067)

Benchmark X 0.087∗∗ 0.095∗ 0.100 0.225∗∗ 0.005
× X first (0.039) (0.049) (0.093) (0.110) (0.080)

Benchmark Z 0.383∗∗∗ 0.573∗∗∗ 0.449∗∗∗ 0.205∗∗∗ 0.182∗∗∗

(0.024) (0.038) (0.048) (0.062) (0.043)

Benchmark Z 0.035 0.082∗∗ −0.066 −0.047 0.052
× X first (0.030) (0.039) (0.056) (0.070) (0.056)

Number 0.235∗∗∗ 0.226∗∗∗ 0.248∗∗∗ 0.392∗∗∗ 0.176∗∗∗

of successes (0.021) (0.033) (0.040) (0.072) (0.043)

Constant 47.348∗∗∗ 45.361∗∗∗ 46.769∗∗∗ 45.072∗∗∗ 51.129∗∗∗

(0.447) (0.707) (0.776) (1.374) (0.911)

Observations 3,136 1,140 728 348 920
R2 0.375 0.602 0.448 0.316 0.149

Notes: This table analyzes the model formation in the second stage of the experiment by subjects’ reason-
ing type. In each column, we regress subjects’ subjective success probability for a project with variables
(X = x, Z = z) on the empirical benchmark for X and Z, that is the empirical frequency of successes in
the observed data conditional on the project’s variable Pemp(Y |X = x) and Pemp(Y |Z = z), demeaned
by overall frequency of successes in the data Pemp(Y ). All columns pool the four subjective probabilities
each subject reports. Column 1 reports the full data. Columns 2-5 present the analysis for subjects based
on their reasoning type. The "Other" category (column 5) comprises all responses that cannot be assigned
to any of the other three categories. Clustered standard errors are in parentheses. * denotes significance
at 10 pct., ** at 5 pct., and *** at 1 pct. level.
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Table C.5 Path dependence by cognitive effort, controlling for reasoning type (AI
Codes)

Subjective success probability (pooled), by effort

Baseline Controlling for reasoning Controlling for reasoning ×
treatment

(1) (2) (3)

Benchmark X 0.018 0.009 0.005
(0.044) (0.044) (0.043)

Benchmark X 0.163∗∗∗ 0.150∗∗ 0.158∗∗∗

× X-first (0.059) (0.059) (0.058)

Benchmark Z 0.260∗∗∗ 0.301∗∗∗ 0.297∗∗∗

(0.033) (0.033) (0.033)

Benchmark Z 0.010 −0.002 0.009
× X-first (0.039) (0.037) (0.038)

Number 0.265∗∗∗ 0.266∗∗∗ 0.266∗∗∗

of successes (0.033) (0.034) (0.034)

Benchmark X 0.043 0.064 0.071
× high effort (0.063) (0.064) (0.066)

Benchmark X −0.144∗ −0.128∗ −0.143∗

×X-first× high effort (0.079) (0.077) (0.080)

Benchmark Z 0.264∗∗∗ 0.185∗∗∗ 0.195∗∗∗

× high effort (0.047) (0.047) (0.048)

Benchmark Z 0.014 0.030 0.007
×X-first× high effort (0.057) (0.052) (0.056)

Number −0.060 −0.062 −0.062
of succ.× high effort (0.043) (0.044) (0.045)

X-first × high effort 0.221 0.268 0.268
(1.289) (1.286) (1.287)

high effort −1.479 −0.732 −0.732
(1.149) (1.193) (1.194)

Constant 48.028∗∗∗ 51.364∗∗∗ 51.364∗∗∗

(0.623) (0.958) (0.959)

Controls ± Reasoning Reasoning × X-first
Observations 3,136 3,136 3,136
R2 0.396 0.440 0.442

Notes: This table analyzes the model formation in the second stage of the experiment by subjects’ reason-
ing type and attention allocation. In each column, we regress subjects’ subjective success probability for
a project with variables (X = x, Z = z) on the empirical benchmark for X and Z, that is the empirical
frequency of successes in the observed data conditional on the project’s variable Pemp(Y |X = x) and
Pemp(Y |Z = z), demeaned by overall frequency of successes in the data Pemp(Y ). Rows 7 through 11
present interactions with an indicator variable, taking the value 1 for each subject that spent relatively
more time on S2 than the median respondent. All columns pool the four subjective probabilities each
subject reports. Column 1 reports the full data. Column 2-5 present the analysis for subjects based on
their reasoning type. The "Other" category (column 5) comprises all responses that cannot be assigned to
any of the other three categories. Clustered standard errors are in parentheses. * denotes significance at
10 pct., ** at 5 pct., and *** at 1 pct. level.
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Table C.6 Path dependence by reasoning type and cognitive effort (AI Codes)

All Frequentist Separate Abs. success Other

(1) (2) (3) (4) (5)

Benchmark X 0.018 −0.025 0.065 0.037 0.009
(0.044) (0.063) (0.090) (0.126) (0.082)

Benchmark Z 0.260∗∗∗ 0.340∗∗∗ 0.389∗∗∗ 0.199∗∗ 0.147∗∗∗

(0.033) (0.070) (0.066) (0.085) (0.050)

Benchmark X 0.163∗∗∗ 0.187∗∗ 0.206∗ 0.180 0.077
× X-first (0.059) (0.093) (0.119) (0.164) (0.105)

Benchmark Z 0.010 0.116 −0.097 −0.093 0.031
× X-first (0.039) (0.073) (0.074) (0.078) (0.067)

Number 0.265∗∗∗ 0.325∗∗∗ 0.284∗∗∗ 0.359∗∗∗ 0.175∗∗∗

of successes (0.033) (0.069) (0.056) (0.107) (0.057)

Benchmark X 0.043 −0.016 0.259∗ −0.146 0.106
× high effort (0.063) (0.077) (0.156) (0.155) (0.143)

Benchmark Z 0.264∗∗∗ 0.361∗∗∗ 0.149 0.028 0.099
× high effort (0.047) (0.081) (0.093) (0.124) (0.094)

Benchmark X −0.144∗ −0.118 −0.268 0.126 −0.184
×X-first× high effort (0.079) (0.108) (0.187) (0.206) (0.164)

Benchmark Z 0.014 −0.081 0.096 0.074 0.021
×X-first× high effort (0.057) (0.084) (0.111) (0.148) (0.119)

Number −0.060 −0.145∗ −0.094 0.081 0.002
of succ.× high effort (0.043) (0.077) (0.076) (0.137) (0.088)

Constant 47.348∗∗∗ 45.361∗∗∗ 46.769∗∗∗ 45.072∗∗∗ 51.129∗∗∗

(0.447) (0.708) (0.778) (1.384) (0.914)

Observations 3,136 1,140 728 348 920
R2 0.395 0.619 0.459 0.322 0.154

Notes: This table analyzes the model formation in the second stage of the experiment by subjects’ reason-
ing type and attention allocation. In each column, we regress subjects’ subjective success probability for
a project with variables (X = x, Z = z) on the empirical benchmark for X and Z, that is the empirical
frequency of successes in the observed data conditional on the project’s variable Pemp(Y |X = x) and
Pemp(Y |Z = z), demeaned by overall frequency of successes in the data Pemp(Y ). Rows 7 through 11
present interactions with an indicator variable, taking the value 1 for each subject that spent relatively
more time on S2 than the median respondent. All columns pool the four subjective probabilities each
subject reports. Column 1 reports the full data. Column 2-5 present the analysis for subjects based on
their reasoning type. The "Other" category (column 5) comprises all responses that cannot be assigned to
any of the other three categories. Clustered standard errors are in parentheses. * denotes significance at
10 pct., ** at 5 pct., and *** at 1 pct. level.
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D Experimental Instructions

Welcome

Thank you for participating in this study about your reasoning! This study consists of

two parts and will take approximately 24 minutes to complete. You will earn a reward

of $4 for completing the study in its entirety. To complete the study and earn the full

reward, you have to read all instructions carefully, correctly answer the comprehension

questions and pay attention during the entire study.

One out of every ten participants is eligible for an additional bonus of up to $20!

Instructions

In this survey, you will take on the role of an entrepreneur. Your task will be to evaluate

and select potential projects to undertake based on past data. The data you will observe

includes the features and outcomes of past projects.

Example data: In the table below, you can observe example past data. Each entry

in this example has the feature Weather (Sun or Cloud ) and an outcome (Success or

Failure).

[Table with 6 example projects]

Data structure:

• In the table columns, you can find the project identifier, its features and the out-

come.

• Each feature can only take on two possible values (e.g. and ), and the outcome

is Success or Failure.

• Each feature can only take on two possible values (e.g. and ), and the outcome

is Success or Failure.

Role of features:

• A project’s success likelihood is determined by its features.

• Changing the value of a feature (e.g. from to ) can affect the success likelihood

of a project.

• The success likelihood is the same across all projects with identical features.

Learning from past projects:
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• The data on past projects is the only information you should use to determine the

impact of features on project outcomes.

• The order of rows in the table does not matter.

Your Bonus:

• If eligible, one randomly selected task will determine your bonus payment of up

to $20.

• The answers you provide influence the bonus payment you receive.

Comprehension questions

You have to answer all comprehension questions correctly in order to receive your pay-

ment.

According to the example data, which statement is correct?

• For the example data, approximately 33% of the projects with symbol are suc-

cessful.

• For the example data, approximately 67% of the projects with symbol are suc-

cessful.

• For the example data, 100% of the projects with symbol are successful.

Please select the correct statement.

• I can use the information about past projects to learn about the impact of features

on project outcomes.

• I cannot use the information about past projects to learn about the impact of

features on project outcomes.

Please select the correct statement.

• In the past data, each row represents a single past project.

• In the past data, each row represents one thousand identical past project.

• In the past data, each row represents several past projects but I cannot tell the

exact number.

Please select the correct statement.

20



• The decisions I make throughout this study affect my bonus payment. This study

has real stakes!

• The decisions I make throughout this study don’t matter for my bonus payment.

• I cannot obtain a bonus payment in this study.

Stage 1 [Example: Z-first]

Data

Each project listed in the table has two features, Card and Color, and an outcome (Suc-

cess or Failure). However, you can only observe information about one randomly deter-

mined feature. The feature you observe is Card (Clubs ♣ or Diamonds ♦).

To reveal the information about past projects, please click on the button below and

think about how the feature Card might affect the outcome.

You don’t have to memorize the table of data as you can access it at any later point

by clicking the "Revisit past projects" button.

[Reveal past projects]

Stage 1: Choice Elicitation

Your Decisions

Your next decisions revolve around undertaking one of two potential projects. The

project you undertake will pay you $10 if it is a Success and $0 if it is a Failure.

Your next two tasks are:

• You choose the project you prefer to undertake.

• You indicate how much you prefer the chosen project.

Note for your bonus:

Both tasks are equally likely to determine your bonus.

Your preferred project: F1(♣) vs. F2(♦)

[Revisit past projects]

In the table below you can find two potential future projects, F1(♣) and F2(♦). Each

project pays $10 if it becomes a Success and $0 if it becomes a Failure.
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[Table: N° Card Outcome

F1 ♣ ?

F2 ♦ ? ]

Click here to learn more about the bonus [If you are eligible for a bonus, you will

receive the payoffs associated with the realized outcome of the selected project. The

outcome will be drawn according to the true relationship between features and out-

come. The project will pay you $10 if it is a success and will pay you $0 if it is a

failure.]

Please select the project you prefer to undertake. Note: If you are indifferent you can

select either of the two projects.

• F1 (♣)

• F2 (♦)

Project F2(♦) vs. F1(♣) [if previous choice = F2]

[Revisit past projects]

You just answered that your preferred project is F2(♦). Next, we are interested in

how much you prefer project F2(♦) compared to project F1(♣), when the project you

undertake will pay you $10 if it is a Success and $0 if it is a Failure.

Each row below is a distinct choice between either project F2(♦) or project F1(♣)

along with an increasing amount of money. The amount shown in each row is an

additional payment regardless of the outcome of the project.

For each row you will need to select which of the two options you prefer. Each choice

is equally likely to be drawn to be relevant for your bonus payment.

Instructions:

• Click on the row with the minimum amount for which you would switch to your

less preferred project F1(♣).

• The computer then automatically completes your choices, highlighting the options

you prefer.

• The more you prefer project F2(♦), the higher should be the row number you

select.

• If you are indifferent between either project, it is your best strategy to select the

first row.

Click here to learn more about the bonus
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[If you are eligible for a bonus, the computer will randomly select a row and your

choice in that row will determine your reward. The project you choose will pay you $10

if it is a success and will pay you $0 if it is a failure. If, for the selected row, you have

chosen your less preferred project, you will receive the additional payment indicated in

that row.]

[MPL: Project F2(♦) Project F1(♣)

1 F2(♦) F1(♣) + $0

2 F2(♦) F1(♣) + $0.5

3 F2(♦) F1(♣) + $1

4 F2(♦) F1(♣) + $1.5

5 F2(♦) F1(♣) + $2

6 F2(♦) F1(♣) + $2.5

7 F2(♦) F1(♣) + $3

8 F2(♦) F1(♣) + $3.5

9 F2(♦) F1(♣) + $4

10 F2(♦) F1(♣) + $4.5

11 F2(♦) F1(♣) + $5

12 F2(♦) F1(♣) + $5.5

13 F2(♦) F1(♣) + $6

14 F2(♦) F1(♣) + $6.5

15 F2(♦) F1(♣) + $7

16 F2(♦) F1(♣) + $7.5

17 F2(♦) F1(♣) + $8

18 F2(♦) F1(♣) + $8.5

19 F2(♦) F1(♣) + $9

20 F2(♦) F1(♣) + $9.5

21 F2(♦) F1(♣) + $10

[Dynamic Text: Based on your chosen row, you value project F2(♦) at least as much

as project F1(♣) plus $X, but no more than project F1(♣) plus $(X+0.5).]

Stage 1: Model Elicitation (intensive margin)

Your assessment

[Revisit past projects]

Your next task is to assess the likelihood of success for the two potential future

projects, F3(♣) and F4(♦).

[Table: N° Card Outcome
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F3 ♣ ?

F4 ♦ ?

Click here to learn more about the bonus

[If this question is chosen to determine your bonus payment, we use the following

formula to compute your payment: Probability of winning $10 (in percent) = 100 -

1/100(Estimate (in percent) - Truth)ˆ2, where Truth = 100 if the selected project is a

Success, and 0 if it is a Failure. The outcome of the project will be drawn according to

its true probability of success, which is determined by the feature of the project.]

How likely do you think it is that project F3(♣) will be successful?

• Slider from 0% (Never Successful) to 100% (Always successful)

How likely do you think it is that project F4(♦) will be successful?

• Slider from 0% (Never Successful) to 100% (Always successful)

How certain are you that all your above-stated project assessments are within +/- 5

percentage points of the true success likelihoods?

• Slider from 0% (Not at all certain) to 100% (Always certain)

Stage 2

Part 2 (Example: Z-first)

You now entered the second part of this study!

On the next screen you will be shown a table with information about the same 40

past projects as in the first part but you now observe additional information about the

second feature Color (Green ●) or Blue ●) which you were unable to observe in the

first part.

Before proceeding to the next page, please select the option that best describes the

data you will see next.

• The data I will see is unrelated to the data I saw in the first part.

• The data I will see contains information on potential projects that exhibit the same

relationship between features and outcome as in the first part.

• The data I will see contains information on the same projects as before, but now

with an additional feature that I was unable to see before.
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Part 2: Data

To reveal the previously unavailable feature Color (Green ● or Blue ●) in past projects,

please click on the button below and think about how the features might affect the

outcome.

You don’t have to memorize the table of data as you can access it at any later point

by clicking the "Revisit past projects" button.

[Reveal past projects]

Stage 2: Choice Elicitation

Your Decisions

Similar to the first part, your next decisions revolve around undertaking potential

projects. In total you will make decisions for four pairs of potential projects.

For each pair of projects, your tasks are the following:

• You choose the project you prefer to undertake.

• You indicate how much you prefer the chosen project.

Note for your bonus: Both tasks are equally likely to determine your bonus.

Your preferred project: P1(♦,●) vs. P2(♣,●) [Example]

[Revisit past projects]

In the table below you can find two potential future projects, P1(♦,●) and P2(♣,●).

Each project pays $10 if it becomes a Success and $0 if it becomes a Failure.

[Table: N° Card Color Outcome

P1 ♦ ● ?

P2 ♣ ● ?]

Click here to learn more about the bonus [as in Stage 1]

Please select the project you prefer to undertake. Note: If you are indifferent you can

select either of the two projects.

• P1(♦,●)

• P1(♣,●)
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Your preferred project: P1(♦,●) vs. P2(♣,●) [Example]

[Revisit past projects]

You just answered that your preferred project is P1(♦,●). Next, we are interested in

how much you prefer project P1(♦,●) compared to project P2(♣,●), when the project

you undertake will pay you $10 if it is a Success and $0 if it is a Failure.

Each row below is a distinct choice between either project P1(♦,●) or project P2(♣,●)

along with an increasing amount of money. The amount shown in each row is an

additional payment regardless of the outcome of the project.

For each row you will need to select which of the two options you prefer. Each choice

is equally likely to be drawn to be relevant for your bonus payment.

Instructions:

• Click on the row with the minimum amount for which you would switch to your

less preferred project P2(♣,●).

• The computer then automatically completes your choices, highlighting the options

you prefer.

• The more you prefer project P1(♦,●), the higher should be the row number you

select.

• If you are indifferent between either project, it is your best strategy to select the

first row.

Click here to learn more about the bonus [as in Stage 1]

[MPL: Project P1(♦,●) Project P2(♣,●)

1 P1(♦,●) P2(♣,●) + $0

2 P1(♦,●) P2(♣,●) + $0.5

3 P1(♦,●) P2(♣,●) + $1

4 P1(♦,●) P2(♣,●) + $1.5

5 P1(♦,●) P2(♣,●) + $2

6 P1(♦,●) P2(♣,●) + $2.5

7 P1(♦,●) P2(♣,●) + $3

8 P1(♦,●) P2(♣,●) + $3.5

9 P1(♦,●) P2(♣,●) + $4

10 P1(♦,●) P2(♣,●) + $4.5

11 P1(♦,●) P2(♣,●) + $5

12 P1(♦,●) P2(♣,●) + $5.5

13 P1(♦,●) P2(♣,●) + $6

14 P1(♦,●) P2(♣,●) + $6.5
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15 P1(♦,●) P2(♣,●) + $7

16 P1(♦,●) P2(♣,●) + $7.5

17 P1(♦,●) P2(♣,●) + $8

18 P1(♦,●) P2(♣,●) + $8.5

19 P1(♦,●) P2(♣,●) + $9

20 P1(♦,●) P2(♣,●) + $9.5

21 P1(♦,●) P2(♣,●) + $10]

[Dynamic Text: Based on your chosen row, you value project P1(♦,●) at least as much

as project P2(♣,●) plus $X, but no more than project P2(♣,●) plus $(X+0.5).]

Stage 2: Model Elicitation (intensive margin)

Your assessment

[Revisit past projects]

Your next task is to assess the likelihood of success for the four potential future

projects P9(♣,●), P10(♣,●), P11(♦,●) and P12(♦,●).

[Table: N° Card Color Outcome

P9 ♣ ● ?

P10 ♣ ● ?

P11 ♦ ● ?

P12 ♦ ● ?]

Click here to learn more about the bonus [as in Stage 1]

How likely do you think it is that P9(♣,●) will be successful?

• Slider from 0% (Never Successful) to 100% (Always successful)

How likely do you think it is that P10(♣,●) will be successful?

• Slider from 0% (Never Successful) to 100% (Always successful)

How likely do you think it is that P11(♦,●) will be successful?

• Slider from 0% (Never Successful) to 100% (Always successful)

How likely do you think it is that P12(♦,●) will be successful?

• Slider from 0% (Never Successful) to 100% (Always successful)

How certain are you that all your above-stated project assessments are within +/- 5

percentage points of the true success likelihoods?

• Slider from 0% (Not at all certain) to 100% (Extremely certain)
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Stage 2: Reasoning Elicitation

Important

You have now finished the main part of this survey.

On the next page, you will encounter an open question in which we will ask you to

explain how you determined the success likelihood of a project.

From our experience, it can take about 2 minutes to complete this question.

Your responses are very valuable for this research project. Therefore, please take your

time to respond carefully.

Your explanation

[Revisit past projects]

On the last pages, you made decisions based on your perceived success likelihood of

different projects.

Please describe how you determined the projects’ success likelihoods. You should

explicitly state what you paid attention to and which strategy you used to arrive at your

response in full sentences.

[Free form text box]

Stage 2: Model Elicitation (extensive margin)

Your model

[Revisit past projects]

You have almost finished this study! Please assess the statements below about how

the features affect the outcome.

Assuming that a project’s Card remains fixed, changing a project’s Color (Green ● or

Blue ●) has an effect on the project’s success probability.

• True

• False

How certain are you about your above answer?

• Slider from 0% (Not at all certain) to 100% (Extremely certain)

Assuming that a project’s Color remains fixed, changing a project’s Card (Clubs ♣ or

Diamonds ♦) has an effect on the project’s success probability.
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• True

• False

How certain are you about your above answer?

• Slider from 0% (Not at all certain) to 100% (Extremely certain)
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