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Abstract

This paper studies how perceived risks of economic downturns affect pollution from the

perspective of political incentives and environmental enforcement. In the context of the

U.S.-China trade war, we őnd a 1% increase in the U.S. tariff leads to 0.9% and 0.7%

increases in SO2 and PM2.5 in Chinese cities. Hourly data suggests the pollution increases

are concentrated at night. The surprising őndings can be largely attributed to lenient

environmental policies enforced by local government officials who are politically motivated.

Cities more exposed to tariffs place less emphasis on environmental issues in local government

reports and impose fewer őnes on őrms violating environmental regulations.
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1 Introduction

The impact of economic growth on the environment has always been a central topic for policymakers

and academics. The Environmental Kuznets Curve (EKC) suggests that there is an inverted

U-shaped curve between income and pollution driven by preference changes. As countries

become richer, there is increased environmental awareness, and governments are better able to

address environmental issues through stricter regulations and enforcement. This paper studies

the impact of economic growth on the environment by exploring a novel channel, namely the

political incentive channel. Faced with heightened risks of economic downturns, government

officials tend to prioritize economic growth and assist őrms in reducing costs by externalizing

pollution externalities.

We investigate how politically motivated government officials respond to perceived risks of

economic slowdowns by providing compelling evidence on lenient environmental enforcement.

Government officials are usually faced with a challenging trade-off between fostering economic

growth and enforcing environmental regulations. Economic growth can generate adverse environmental

consequences through pollutant emissions, natural resource exploitation, and other economic

activities. Therefore, the implementation of stringent environmental regulations can induce

short-term economic slowdowns, job losses, and social unrest. This trade-off necessitates the

balancing of short-term economic gains and long-term sustainable development. Facing the

pressure of short-term performance evaluation and the possibility of social unrest (Campante

et al., 2023), government officials tend to sacriőce long-term sustainable development and give

őrms tacit permission for excess pollutant emissions to offset the negative impacts of adverse

economic shocks. The phenomena are observed in developed countries and developing countries

alike.1

The U.S.-China trade war provides a good setting to test this trade-off. China has experienced

remarkable economic growth since 1978 and transformed into an upper middle-income country

in 2010. The trade war stands out as a remarkable economic event, intensifying the risk of

economic disruptions. It is characterized by the sudden and substantial increases in the U.S.

tariffs across a diverse range of products, which provides exogenous shocks on the heightened risks

of economic downturns in China. Despite the growing literature on the economic consequences

of the trade war (e.g., Chor and Li, 2023; Jiao et al., 2021), less is known about its environmental

consequences. In this paper, we őll in the gap and reveal the hidden cost of the trade war.

This paper studies the unintended environmental consequences of trade protectionism. We

1To foster growth and help the auto industry, the Trump administration announced a new rule on automobile
fuel efficiency in 2019, which rolls back a 2012 standard that had required automakers to cut planet-warming
tailpipe pollution (https://www.nytimes.com/2020/03/31/climate/trump-pollution-rollback.html).

In Brazil, large-scale deforestation of the Amazon and the commercial exploitation of indigenous
lands accelerated under Bolsonaro since 2019 (https://www.reuters.com/article/us-brazil-environment-
idUSKBN22K1U1).

To őght the coronavirus pandemic, Indonesia passed the Omnibus Law in 2020, which introduced
the deregulation of the environment and put less restraint on factories to help lift the economy
(https://sites.lsa.umich.edu/mje/2020/11/16/indonesias-plan-to-őght-the-recession-from-the-pandemic/).

1
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show that environmental enforcement functions as a special form of industrial policy used to

subsidize őrms and assist them in confronting adverse trade shocks. Using novel hourly őrm-level

pollution emission data and hourly monitor-level air quality data, we investigate the impact of

tariff escalations on pollution emissions in China. We őnd that higher U.S. tariffs lead to worse

air quality. Employing a őrst-difference design, we observe that cities with higher U.S. tariff

escalation experience more pronounced air pollution since the trade war. Speciőcally, a 1%

increase in U.S. tariffs results in a 0.9% increase in SO2 and a 0.7% increase in PM2.5. As

SO2 is mainly generated from power generation and manufacturing production, the greater

magnitude of the increase in SO2 compared to other pollutants suggests the great contribution

of power and industrial production. The őndings are surprising. During the trade war, there

was growing concern about possible economic contractions. Indeed, higher U.S. tariffs lead to

reduced economic activities (Chor and Li, 2023), which are supposed to generate fewer pollution

emissions.2 A further exploration of hourly pollution patterns reveals that the increase in air

pollution is more pronounced after sunset and before sunrise, suggesting secret pollution emission

and lenient environmental policies.

To answer the question of who generates additional pollutants, we use the data on őrms’

end-of-pipe emissions from the Continuous Emission Monitoring System (CEMS) to investigate

pollution emission patterns. Firms that emit more pollutants could be those more exposed

to the increased tariffs or those located in cities more negatively affected by the trade war.

To disentangle the two, we incorporate both industry-level tariffs and citywide tariffs into the

regression. Firm-level evidence suggests that it is citywide tariffs rather than industry-level

tariffs that drive the results. Firms located in high-exposure cities in targeted or non-targeted

industries experienced similar changes in emissions. In comparison, a 1% increase in city-level

U.S. tariffs results in a 16.2% increase in particles and a 22.8% increase in SO2 emissions

among the major polluting őrms monitored by the government. Similar to the monitor-level

analysis, China’s retaliatory tariffs do not have any notable impacts on őrm emission intensities,

consistent with the őndings of Chor and Li (2023) that Chinese retaliatory tariffs don’t exert

much negative impact on economic activities. Our őndings show that őrms in cities more

exposed to the U.S. tariffs exhibit higher emission intensities, implying a citywide rollback of

environmental enforcement by local governments. The őndings suggest that politically motivated

local government officials care about the overall economic growth and employment rather than

compensating őrms adversely hit by the trade war.

To demystify the puzzling őndings on increased pollution, we explore the mechanism in

two ways. First, we show that the worsening air quality can be partly attributed to the

lenient environmental enforcement by local governments. While environmental policies make

2In the context of international trade, the Pollution Haven hypothesis makes a similar prediction. Developing
countries like China have less stringent environmental regulations than their developed trade partners.
Consequently, China has experienced high pollution levels especially after its opening up of trade (Bombardini
and Li, 2020; Gong et al., 2023). With increased trade barriers due to the U.S. tariff escalation, we should
anticipate a reduction in China’s air pollution.
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őrms internalize pollution externalities by raising their production costs, lenient environmental

enforcement serves as a unique type of industrial policy used to subsidize őrms. We begin by

constructing a text-based stringency index based on annual reports from local governments.

Our results indicate that high U.S. tariffs result in a decrease in the index, suggesting that local

governments in high-exposure cities place less emphasis on environmental issues in response to

tariff escalation. Further evidence using the environmental őne data shows that local environmental

agencies in more trade-exposed cities conducted fewer inspections and charged smaller amounts

of őnes on őrms violating environmental regulations. Another measure of lenient environmental

policies lies in the manipulation of air pollution data. We show that the bunching of CEMS data

near emission limits becomes less pronounced after the trade war. It reŕects a decrease in őrms’

efforts to either carefully design production just below the emission standard or manipulate

CEMS data, due to regulatory oversight or decreased enforcement during the trade war.

Second, we provide suggestive evidence that political incentives affect politicians’ decisions.

Cities with native or older party secretaries are less likely to experience worsened air pollution

in response to U.S. tariff escalations. A likely explanation is that native officials care more

about long-term sustainable development and older officials have less incentive for promotion.

Furthermore, we leverage the heterogeneity across various locations as a proxy to examine

variations in environmental enforcement. Our analysis reveals that the rise in air pollution

is particularly prominent near regional boundaries. These areas typically experience reduced

monitoring of emissions by inspectors and a general decline in environmental enforcement, which

are likely to be the őrst areas affected by policy rollbacks. The above evidence implies that local

government officials soften environmental enforcement during the trade war.

This paper contributes to the literature on economic growth and the environment (e.g.

Grossman and Krueger, 1995; Brock and Taylor, 2005; Xepapadeas, 2005). There is an extensive

literature documenting the inverted U-shaped relationship between economic growth and environmental

quality in the long run, namely the environmental Kuznets curve. The key mechanism is

the changes in citizens’ environmental awareness. Our paper contributes to the literature by

studying the short-term impact of economic growth on pollution from the perspective of political

incentives and lenient policy enforcement. We őnd that there is an ease in policy enforcement

in times of increased risks of economic downturns. Speciőcally, we investigate local government

officials’ regulatory responses to the trade war and show that they tend to sacriőce environmental

sustainability for economic growth and give őrms tacit permission to emit excess pollutants.

This paper is also related to the literature on the enforcement of environmental regulations.

There are large variations in the implementation of environmental policies within and between

countries (Shimshack, 2014; Greenstone and Jack, 2015), depending on economic conditions

(Greenstone et al., 2012), local officials’ political incentives (Ghanem and Zhang, 2014; Wong

and Karplus, 2017; Jia, 2017; Karplus et al., 2018; Zou, 2021; Buntaine et al., 2022), and őrms

and citizens’ responses (Zhang and Mu, 2018; Shimshack and Ward, 2022). Regarding the

literature on government officials’ political incentives, Buntaine et al. (2022) őnd that social
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media appeals to regulators have been shown to substantially reduce violations and pollution

emissions, while private appeals yield more modest environmental improvements. Jia (2017)

őnds that the establishment of connections with key officials in the central government increases

pollution. Suspicious air quality data by local governments, especially when anomalies are least

detectable, have also been documented (Ghanem and Zhang, 2014). These studies shed light on

the detrimental effects of weak enforcement, such as increased pollution and corruption. Our

paper contributes to the literature by exploring the impact of exogenous adverse economic shocks

in the context of trade protectionism. Local officials have incentives to relax environmental

enforcement when faced with negative trade shocks triggered by the trade war.

Our paper also contributes to the literature on the impact of trade on the environment (e.g.

Poncet et al., 2015; Cherniwchan, 2017; Shapiro and Walker, 2018; Bombardini and Li, 2020).

Bombardini and Li (2020) shows that Chinese cities that had high export growth in łdirtyž

industries between 1990 and 2010 experienced a greater increase in SO2 concentration and

infant mortality. Moreover, they also examine a temporary łtrade warž in 2002 when the U.S.

government announced a tariff increase in 272 different steel product categories. There was

a small but signiőcant improvement in air quality. While the previous works focus on the

production and income channels, our paper contributes to literature by exploring the political

incentive channel.

Moreover, our paper relates to the literature on the trade war by exploring the hidden

cost of the trade war. Despite the growing literature on the economic consequences of trade

protectionism, such as its impact on trade ŕows and prices (Amiti et al., 2019; Fajgelbaum

et al., 2020; Cavallo et al., 2021; Fajgelbaum et al., 2021; Jiao et al., 2021; Feng et al., 2023;

Jiang et al., 2023), nightlight and economic activities (Chor and Li, 2023; Han et al., 2023),

employment (Flaaen and Pierce, 2019; Beck et al., 2023), elections and politicians’ responses

(Blanchard et al., 2019; Li et al., 2023), and stock returns (Amiti et al., 2021; Huang et al.,

2023; Li et al., 2023; Han et al., 2023), little is known about its impact on the environment.

The rest of the paper is organized as follows. Section 2 introduces the background on the U.S.-

China trade war and China’s environmental policies before and during the trade war. Section

3 describes the data and variable construction, while Section 4 illustrates the econometric

speciőcation and presents empirical evidence of the impact of the trade war on China’s air

pollution. Section 5 tests the mechanism of pollution change from the perspectives of lenient

environmental enforcement and political incentives. Section 6 discusses the health effects due to

increased air pollution and concerns about environmental injustice. Section 7 concludes.
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2 Background

2.1 The U.S.-China trade war

The U.S. government initiated a series of tariffs on imports from trade partners starting in early

2018, as described in Table A1. Punitive tariffs were unexpectedly raised on a large scale for a

wide range of products in a short time window and induced a set of tit-for-tat tariff measures

from several trade partners including China. Speciőcally, the Trump administration imposed

global safeguard tariffs on $8.5 billion worth of solar panel imports and $1.8 billion worth of

washing machine imports on February 7, which triggered WTO disputes initiated by China

and South Korea. Furthermore, additional tariffs on steel and aluminium were enforced under

Section 232 on March 23, with temporary exemptions granted to seven trade partners. In

response, trade partners, such as Canada, China, European Union, India, Mexico, and Turkey,

imposed retaliatory tariffs on U.S. goods. At the onset of the trade war, extensive discussions

took place concerning its potential duration and severity due to considerable associated policy

uncertainty.

Starting in mid-2018, the U.S. government shifted its focus to China, as shown in Figure

B1. On June 16, the U.S. announced a list of $50 billion of goods imported from China at a

rate of 25%. Among the list, imports worth $34 billion were taxed from July 6 (wave 1), and

the remaining $16 billion were taxed from August 23 (wave 2). As a countermeasure, China

released retaliation lists targeting U.S. imports amounting to $50 billion, set to take effect on

July 6 (wave 1) and August 23 (wave 2). These goods were subject to 25% punitive tariffs. At

the end of 2019, about 86% of the HS-10 products imported from China in 2017 were subject to

the U.S. punitive tariffs, accounting for around 54% of its total imports from China. Figure B1

plots the dynamics of U.S. punitive tariffs on Chinese products (solid blue line) and its baseline

tariffs, namely the Most-Favored-Nation (MFN) tariffs (dashed blue line). It also displays the

Chinese retaliatory tariffs on the U.S. products (solid red line) and its MFN tariffs (dashed red

line). By adding the punitive tariffs with the baseline tariffs, we learn that the import-weighted

average U.S. tariffs rose from 2.7% in January 2018 to 13.8% in December 2019. Meanwhile, the

Chinese tariffs on U.S. products increased from 5.3% to 16.2%.

From the U.S. trade policy (Figure B3) and import structure (Figure B2), we learn that the

main target of the U.S. is the future competition from China in high-tech sectors rather than

manipulating the terms of trade and reducing the trade deőcit. As shown in Figure B3, the őrst

few waves of punitive tariffs targeted high-tech products from China, such as aircraft, railways,

and optical instruments. Most of these were listed in China’s őve-year plan "Made in China

2025". Their import values were relatively small compared to labor-intensive products that the

U.S. imported heavily from China, such as textiles and electronics (Figure B2). Feng et al. (2023)

further show that the U.S. tariffs were negatively correlated with U.S. imports from China. Apart

from high-tech sectors, the U.S. government was also preoccupied with product substitutability,
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and the economic interest of U.S. importers and consumers, and political elections (Fajgelbaum

et al., 2020; Feng et al., 2023).

2.2 The economic consequences of the trade war

During the trade war, gloomy shadows loomed over the prospect of economic growth, casting

doubt and stirring a rising tide of pessimism. The ominous specter of impending economic

downturns and pervasive pessimism swiftly inőltrated the stock market, triggering a plunge in

the stock market returns for affected őrms (Huang et al., 2023; Li et al., 2023). Furthermore,

the surge in tariff raised the trade policy uncertainty faced by Chinese őrms, especially for

smaller and less capital-intensive őrms, and reduced investment, R&D expenditures, and proőts

(Benguria et al., 2022). Indeed, the U.S. tariffs reduced economic activities in China, measured

with night-time luminosity (Chor and Li, 2023).

Regarding exports, the dynamic effect of the U.S. tariffs on China’s exports to the U.S. is

shown in Figure 1 based on the following econometric speciőcation. We őnd that there is a sharp

decline in exports with the imposition of U.S. punitive tariffs.3

∆Ypt =
t=6∑

t=−6

βt∆USTariffpt +Dp +Dsm +Dt + εXpt

where ∆Ypt denotes the year-to-year log change in export value or export quantity of HS-8

product p. ∆USTariffpt measures the year-to-year log change in tariffs on product p imposed

by the U.S. government. β captures the dynamic effect of the U.S. tariffs on China’s exports

to the U.S. measured in value and quantity, respectively. Dp is the HS-8 product őxed effect.

Dsm controls for shocks that vary by month within broad HS categories m. Dt controls for the

year-month őxed effects that address time-varying macroeconomic shocks.

2.3 Environmental regulations and policy enforcement before and during the

trade war

Since the 1990s, China has become a predominant recipient of international industrial transfers

and a pivotal global manufacturing hub. Following China’s accession to the World Trade

Organization in 2001, developed nations, especially its trade partners, increasingly outsourced

labor-intensive and capital-intensive industries to China, resulting in severe pollution problems

(Liu and Diamond, 2005). With rapid industrial expansion, China incurred a substantial

environmental toll, leading to its recognition as one of the most environmentally compromised

nations globally (Li and Ramanathan, 2018). The concerns regarding severe air pollution affect

3Perceived risks of future economic downturns compel local officials to take actions to mitigate the looming
threat on economic growth and social unrest posed by the trade war. The increase in China’s exports to the rest
of the world (Table A18) is likely to result from the joint efforts of the governments and exporting őrms.
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Figure 1: Dynamic effects of U.S. tariffs on Chinese exports to the U.S.

Notes. The őgures report the estimated coefficients (solid line) and the 95% conődence intervals (dashed line),
with standard errors clustered by HS-2 product. The őgure on the left shows the impact of U.S. tariffs on
China’s export values to the U.S. The őgure on the right shows the impact of U.S. tariffs on China’s export
quantity to the U.S. We use China’s monthly HS-8-product-level export from January 2017 to December
2019.

not only China but also the environments of neighboring countries and even the whole world

(Liu and Diamond, 2005).

To address the pollution problem, the central government of China declared a łwar against

pollutionž in March 2014 (Greenstone et al., 2021). The timing of this declaration, made at

the outset of a nationally televised conference typically reserved for discussing pivotal economic

targets, underscored a signiőcant departure from the country’s longstanding policy of prioritizing

economic growth at the expense of environmental protection. Furthermore, it marked a notable

shift in the official rhetoric of the government concerning the nation’s air quality. Historically,

state media had sought to downplay concerns about air quality. However, the government now

places a heightened emphasis on environmental responsibility, unequivocally stating that the

nation cannot afford to pollute őrst and clean up later. The central government is committed

to combating pollution with unwavering resolve.

Amidst the tumultuous landscape of the trade war, however, there was a relaxation of policy

implementation. To combat the headwinds of the trade war and alleviate the perceived risk of

economic downturn, the Chinese local governments eased the enforcement of environmental

regulations.4 This is because local government officials’ promotions largely depend on the

economic performance and social stability of the respective regions. Faced with elevated risks of

economic disruptions, politically motivated politicians shift policy priorities. They are reluctant

to enforce stringent environmental policies and are less inclined to levy environmental penalties,

fearing the potential repercussions of further exacerbating short-term economic sluggishness,

job losses, and social unrest. In response, polluting őrms found themselves emboldened to forgo

pollution control measures. There are numerous anecdotes suggesting secret pollution at night.

For example, Figure B9 displays the nighttime emissions of a Chinese paper mill plant in 2019.

4https://www.icis.com/explore/resources/news/2018/10/04/10263657/china-relaxes-environmental-rules-as-
trade-war-bites/.

7

https://www.icis.com/explore/resources/news/2018/10/04/10263657/china-relaxes-environmental-rules-as-trade-war-bites/.
https://www.icis.com/explore/resources/news/2018/10/04/10263657/china-relaxes-environmental-rules-as-trade-war-bites/.


3 Data and variable construction

3.1 Import and export

To capture each city’s exposure to tariff shocks, we draw on Chinese Customs data in 2015 to

calculate the initial import weights. The data is at the őrm-HS-8 product-country level and

covers the universe of Chinese importers and exporters. It provides information on each őrm’s

customs declaration zone, based on which we can infer the city in which the őrm is located.5

Apart from annual őrm-level data, we also acquire monthly product-level aggregate export

data from the Customs General Administration of China to study the impact of the trade war

on Chinese exports. The data records export values (in USD) and quantities at the destination-

HS-8 product level and ranges from January 2017 to December 2019. It contains over 7,000

HS-8 products and nearly 200 export destinations.6 The tariff-exclusive unit value is calculated

as the ratio of export value to quantity.

3.2 Tariff

To construct the local exposure to the tariff shocks for each Chinese city, we collect four data

sets on monthly product-level tariff lines for China and the U.S. First, the annual baseline tariff

schedule. For the U.S., the data are available at the country-HS-8 product level and released by

the United States International Trade Commission (USITC). For China, the data are available

at the country-HS-10 product level and released by the Customs General Administration of

China. Second, punitive tariffs. For the U.S. punitive tariffs imposed on goods imported from

China, the data are available at the country-HS-10 product level and are from the United States

Trade Representative (USTR). For China, its retaliatory tariffs on US goods are available at the

HS-8 level released by the Ministry of Finance of China. Third, tariff exemptions, available at

the country-HS-10 product level for the U.S. and HS-8 product level for China. Fourth, China’s

adjustments in MFN tariff schedule and Free Trade Agreement (FTA) preferential rates, available

at the country-HS-8 product level. When aggregating the data to the monthly level, we scale

the punitive tariffs by the number of days of the month in effect following Fajgelbaum et al.

(2020). Table A19 displays the summary statistics.

Based on the above product-level tariffs, we construct city i’s exposure to the U.S. tariffs:

∆USTariffit =
∑

k

XUS
ik0

Xi0

∆USTariffkt (1)

where
XUS

ik0

Xi0
denotes city i’s export of product k as a share of city i’s total export in 2015 prior to

the U.S.-China trade war. The variation in ∆USTariffit stems from: (i) differences in initial

5We assign each őrm to a city based on the city’s administrative boundary in 2000. The Customs data provides
information on the location of production and the location of export. We use the former one in the analysis.

6Export data at city level is not available.
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export variety (product-country) composition at the city level; and (ii) differences in the U.S.

tariff changes over time at the product level, ∆USTariffkt. A city specializing in exporting

targeted products to the U.S. market would experience a huge drop in external demand when

U.S. tariffs hike.7

Similarly, a city’s exposure to Chinese tariff shocks is calculated as:

∆CHNTariffit =
∑

k∈K,j

Mikj0

Mi0

∆CHNTariffkjt (2)

where K is the set of products k which are deőned as intermediate inputs based on Broad

Economic Codes (BEC).
Mikj0

Mi0
denotes the import share of product k of city i from country j,

relative to total city-level imports in 2015. As constructed, the variation in ∆CHNTariffkjt

stems from: (i) differences in initial import variety (product-country) composition at the city-

level; and (ii) differences in China’s import tariff changes over time at variety-level, ∆CHNTariffkt.

The summary statistics are shown in Table A19. Because we use the data in 2015, the initial

export and import composition at the city level in 2015 (
XUS

ik0

Xi0
and

Mikj0

Mi0
) and variety-speciőc

tariff at national-level (∆USTariffit and ∆CHNTariffkjt) are arguably not correlated with

unobserved shocks uit to pollution, conditional on a set of observables.

3.3 Air pollution

To measure local air quality, we obtain hourly pollution data from China’s air quality monitoring

stations from 2013 to 2019. Due to increasing public concerns about air pollution, the Chinese

government built the National Urban Air Quality Real-Time Publishing Platform, which mandates

regular recordings of local pollution levels at each monitoring station. The platform is required

to report six primary pollutants Ð SO2, NO2, CO, O3, PM10, PM2.5 Ð and Air Quality Indexes

(AQI) since 2013. By the end of our study period, the reporting system covers 341 prefecture-

level cities and 2,016 monitors across China.

We collect data from official monitor reports and restrict our sample to monitor stations built

before 2015 that have consecutive monthly observations during our sample period. To exclude

outliers, we winsorize the pollution concentrations that are above the 99th percentile or below

the 1st percentile. While the monitor stations measure six major pollutants and the air quality

index, we focus our analysis on PM2.5 and SO2. PM2.5 is a mixture of solid and liquid particles

suspended in the air, consisting of various chemical species such as sulfate, nitrate, ammonium,

organic compounds, and elemental carbon. PM2.5 particles are small enough to be inhaled deep

into the respiratory system, posing health risks to exposed individuals. Among all common air

pollutants, PM2.5 is associated with the greatest proportion of adverse health effects related to

7For simplicity, we refer to ∆USTariffit, the change in weighted tariffs across products and importers, as
the U.S. tariffs. ∆USTariffit, the change in tariffs imposed by all importers, is much smaller than the change
in tariffs imposed by the U.S. government on Chinese goods (Figure B1), as non-US countries barely changed
their tariffs on China during the trade war.

9



air pollution (Collaborators et al., 2015). SO2, on the other hand, primarily originates from the

combustion of fossil fuels, particularly coal, and industrial activities such as power generation

and manufacturing processes. Given its association with industrial emissions, SO2 serves as an

indicator of the environmental impacts of energy production and industrial activities. Due to the

long-standing acid rain problem, these two pollutants are also key targets of China’s National

Environmental Protection Plans, and hence face stringent environmental regulations.

We complement our city-wide air pollution measures with őrm-level emission data, which were

scraped from China’s Continuous Emission Monitoring Systems (CEMS), initially constructed by

Karplus et al. (2018). The systems include őrms operating in various high-polluting industries,

including thermal power generation and manufacturing, which collectively contribute to 65% of

the total air pollution in China. To ensure compliance with emission standards, these őrms were

mandated to install devices that automatically measure and upload hourly emission data to the

local environmental bureau’s website. For each őrm, pollution intensity sensors are placed to

monitor the ŕow rate and strength of many pollutants. A őrm may have more than one sensor as

they have different end-of-pipe emission tunnels. If multiple sensors, CEMS would include all the

reports at the sensor-hour level. CEMS data is automatically uploaded to government agencies.

It allows officials to monitor emissions and detect any violations of the prescribed standards.

The CEMS data we utilize in our analysis are at the őrm-hour level and encompass the emissions

of particles, SO2, and NOx. For subsequent analyses, we consider the entire population of őrms

in the CEMS system, as well as a subset of balanced őrms that have reported data for each

quarter.

4 Trade war and air pollution

4.1 Air quality: evidence from monitoring stations

4.1.1 Event study

We visualize the effect of the trade war on local air pollution using an event-study framework

and ascertain the causal impact. We use tariff escalation in June 2018 relative to that in June

2017 as a cross-sectional treatment measure and set June 2018 as the event time. Our regression

is speciőed as follows:

lnPist =
16∑

q=−8

βqI (eventq)×∆USTariffi + γym + ηisy + ηism + tp + ϵist

where lnPist is the logarithm of the average air pollution concentration in the monitor station s

of city i in time t, namely in year y month m. The dynamic speciőcation covers an event window

spanning 42 months before and 16 months after the initiation of the US-China trade war.8 The

8The coefficient of for the period -8 captures the joint effect of all periods prior to November 2017.

10



variables I (eventq) are a set of time dummy variables for each month in the event window. To

establish a baseline, we omit the month immediately preceding the start of the trade war (June

2018). The coefficients of interest are the set of βq. By taking the őrst-difference of the dependent

and independent variables, we are able to control for city-station time-invariant characteristics.

Furthermore, we add station-year and station-month őxed effects to account for station-speciőc

time-variant characteristics. We also control for province time trends tp and year-month őxed

effects γym. Standard errors are clustered at the station-month level. Our identiőcation strategy

relies on the assumption that our treatment assignment based on ∆USTariffi is as good as

random conditional on the controls. In other words, we assume that in the absence of the trade

war, cities with higher trade exposures would have exhibited a similar trajectory of pollution

levels compared to other cities.
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Figure 2: Event study: trade war and air pollution

Notes: The őgure plots the impact of U.S. tariffs on air quality. We use tariff escalation from June 2018 compared

to that of June 2017 as the continuous treatment variable, and SO2 as the outcome variable. Coefficients are

estimated for each month using a dynamic difference-in-difference design. We plot point estimates and their 95%

conődence intervals in each month, with month negative 1 dropped. We control for year-month, station-year,

and station-month őxed effects. Standard errors are clustered at the station-month level.

Figure 2 validates our identiőcation strategy by examining the pre-trends in air pollution

levels before the initiation of the trade war in June 2018. We őnd no discernible pre-trends in

air pollution levels in the pre-periods, which supports our assumption that prior to the trade war,

cities exhibited similar pollution trajectories. In the post-period, SO2 in cities more exposed

to the U.S. tariffs őrst experienced a modest decline and the coefficients are not statistically

signiőcant. A likely explanation is that the air quality improved slightly due to the reduction in

production activities before any government intervention. Half a year later, however, cities more

exposed to the U.S. tariffs witnessed a continuous and signiőcant increase in SO2. These őndings

suggest that it takes some time for local government officials to respond. One explanation is

that it takes time to make decisions and take actions. Another reason could be local government

officials are not sure whether the trade war is going to end very soon and whether they need to

take actions.9

9There were numerous policy discussions in the beginning of the trade war with regard to its duration and
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4.1.2 Baseline results

Motivated by the graphical evidence, we investigate the impact of tariff changes on air pollution.

To do so, we use year-on-year changes in air pollution as dependent variables and year-on-year

changes in tariff as the main independent variables of interest. Our econometric speciőcation is

as follows:

∆ln(Pist) = β∆ln(USTariffit) + α∆ln(CHNTariffit) + γt + ηis + tp + εist (3)

where ∆USTariffit represents the year-on-year log change in U.S. tariffs for city i in month

t relative to one year ago. Similarly, ∆ln(CHNTariffit) captures the year-on-year log change

in Chinese tariffs for the same city and time period. The trade exposures USTariffit and

CHNTariffit are constructed following equations (1) and (2), where we calculate the monthly

tariff exposures for each city by weighting product-level tariffs with city-product level import or

export shares. γt captures year-month őxed effects to control for common time-speciőc factors

that may affect air pollution changes. ηis includes city-monitor őxed effects to account for

time-invariant factors speciőc to each monitor station that may inŕuence air pollution levels. tp

accounts for province-speciőc time trends. The coefficient of interest β measures the effect of

changes in U.S. tariffs on air pollution changes. α quantiőes the impact of changes in Chinese

tariffs on air pollution changes.

The identifying assumption relies on the exogenous changes in U.S. tariffs and Chinese tariffs

over time. As shown in Figure 2, there are no signiőcant pre-trends in air pollution changes

before the trade war period, supporting the assumption of exogenous tariff changes. Table 1

shows the őrst-difference regression results from estimating equation (3). In Column (1), a 1%

increase in U.S. tariffs leads to a 0.596% increase in city-month AQI. This suggests that higher

U.S. tariffs are linked to worsened overall air pollution levels. Disentangling different pollutants,

in Column (2) and (4), a 1% increase in U.S. tariff leads to a 0.95% increase in SO2 and 0.71%

increase in PM2.5. Increases in SO2 levels exhibit a larger magnitude compared to the overall

increases in AQI. This pattern suggests that the trade war has had a more substantial impact

on the pollution originating from power generation and manufacturing production.

As indicated by the coefficients on ∆CHNTariffit, China’s retaliatory tariff shocks do not

have a similar signiőcant positive impact on air pollution. Estimates are small and statistically

imprecise when we use AQI, SO2 and PM10 as dependent variables. These őndings are consistent

with the őndings of Chor and Li (2023) that Chinese retaliatory tariffs don’t exert much

negative impact on economic activities. One potential explanation is that the effects of China’s

retaliatory tariffs on different Chinese őrms cancel each other out. With the increase in tariffs, the

imposition of protectionist measures could potentially reduce import competition and beneőt

severity, given the signiőcant uncertainty involved. As decribed in the background section, a number of countries,
such as Canada, European Union, and Mexico, raised retalitory tariffs. Unlike China, they managed to reach
resolutions with the U.S. shortly after the rise of the U.S. tariffs.
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domestic őrms producing similar products, resulting in positive effects on air pollution. In

contrast, it could lead to higher production costs for local őrms that used to import these

products as intermediate inputs, which would potentially reduce production and air pollution.

It is possible that both channels exist and have similar magnitudes, leading to an ambiguous

overall impact on air pollution.

Table 1: Trade war and air pollution

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)
(1) (2) (3) (4) (5)

∆ln(USTariff) 0.596∗∗∗ 0.951∗∗ 0.914∗∗∗ 0.711∗∗ 0.662∗∗∗

(0.184) (0.436) (0.261) (0.279) (0.237)
∆ln(CHNTariff) -0.096 -0.115 0.430∗∗∗ -0.633∗∗∗ -0.031

(0.134) (0.272) (0.149) (0.182) (0.158)
Observations 48868 48868 48868 48868 48868
R-square 0.228 0.169 0.178 0.192 0.239
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Sample period is from 2017:1 to 2019:12. Columns (1) to (5) report logged difference in air
pollution regressed logged difference in tariffs. All columns include year-month and monitor őxed effects.
Standard errors are clustered at the station-month level. Signiőcance: * 0.10, ** 0.05, *** 0.01.

One concern is the potential confounding policy occurring simultaneously with tariff changes.

The Chinese government began placing more emphasis on environmental regulation since 2014,

and there are subsequent waves of new regulations or revisions after 2014. To address this

concern, we reviewed the central government’s environmental policies during our study period

and identiőed two potential confounders: the three-year blue-sky plan and the central government’s

national environmental inspections. Regarding the former, the central government announced

blue-sky plan on June 13, 2018, to combat air pollution in key regions. 84 prefecture-level cities

were speciőed as key regions, and the plan concluded on February 25, 2021. To address this

concern, we add an interaction term KeyRegioni × Plant into our equation (3) to control for

pollution changes in key regions during the post-plan period. Results in Table C1 demonstrate

stable estimates on ∆USTariffit, suggesting that our identiőed link between US tariff changes

remains unaffected.

For national inspections, the central government dispatched environmental inspection teams

randomly to certain province-months to detect suspicious pollution activities. Existing literature

has shown that inspections improve air quality, but only temporarily, with pollution rebounding

after the inspectors leave (e.g. Karplus and Wu, 2023; Wang et al., 2021). To address this

potential confounding factor, we include an Inspectionit dummy variable, which equals one if

the province or city i is inspected by the central government in month t, and zero otherwise.

Results in Table C2 indicate that our main őndings are robust.
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To test the robustness of our results, we conducted several additional analyses. Firstly,

we replaced year-on-year changes with month-on-month changes in both tariff and pollution

variables. Results in Table C3 continue to show a positive relationship between higher U.S.

tariffs and increased air pollution. However, the magnitudes are smaller, possibly due to lower

variability across months compared to years or the inŕuence of seasonality effects. In the second

robustness check, we dropped the year 2017 from our analysis, as most tariff changes during that

year were zero. Results in Table C4 using a two-year sample period with more tariff variations

demonstrate positive and signiőcant estimates for ∆USTariffit, with magnitudes stronger than

those in Table 1. For the third exercise, we tested the sensitivity of our sample by using air

quality at the city-month level as the dependent variable. Results in Table C5 are consistent

with the main őndings, although the magnitudes are somewhat reduced. Importantly, we still

do not őnd signiőcant effects of China’s tariffs on air pollution. Furthermore, we employed

weighted regression for the city-month level analysis, assigning weights based on city GDP in

2017. Results in Table C6 indicate that the increases in air pollution are primarily driven by

small cities with lower economic outputs, as estimates on ∆USTariffit become smaller.

Additionally, we conducted a falsiőcation exercise by examining the matching of tariff changes

with air pollution changes in the following year. Results in Table C7 reveal that U.S. tariff

changes do not have signiőcant effects on future air pollution levels. Estimates are small,

statistically imprecise, and even exhibit a ŕipped sign. Another placebo test is to examine

the tariff impact on weather conditions. We obtain temperature, wind speed, and humidity data

from the Climatic Data Centre’s National Meteorological Information Centre (CMA). Results

in Table C8 indicate that U.S. tariff burdens do not exhibit any effects on the observed weather

variables.

In addition, we consider the incidence of pollution levels exceeding established standards as a

binary outcome variable. In China, an AQI below 50 corresponds to łexcellentž air quality, while

AQI levels between 50 and 100 are classiőed as łgoodž. The corresponding threshold values for

excellent air quality for SO2, NO2, PM2.5, and PM10 stand at 50µg/m3, 80µg/m3, 35µg/m3, and

50µg/m3, respectively. We use air quality values and code dummies for each air pollutant that is

considered non-excellent air quality. We use dummies at the monitor-day level and re-estimate

equation (3). Results in Table C9 Panel A show positive and statistically signiőcant estimates

on ∆USTariffit. Speciőcally, a 1% increase in U.S. tariffs results in a 0.93% increase in the

likelihood of the city’s air quality being categorized as non-excellent. Delving into different air

pollutants, we őnd the elasticity of U.S. tariffs to non-excellent SO2 and PM2.5 is 0.349 and

0.314, respectively.

In a similar vein, we use non-good standards to code our outcome variables. Table C9 Panel B

shows the likelihood of AQI exceeding 100 is not signiőcantly affected by U.S. tariffs, though the

point estimate is positive. This implies that tariff increases result in a small rise in air pollution

from excellent to good, but pollution levels are not above the second-tier threshold. Regarding

speciőc air pollutants, Column (2)-(5) shows statistically signiőcant increases of 0.157% and
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0.295% in the probability of SO2 and PM2.5 surpassing the designated good thresholds, for

every 1% increase in U.S. tariffs. In contrast, the impact on PM10 is small and imprecise.

Besides, we show dynamic effects in each quarter in Table A3. In Column (1), we observe that

AQI decreased in the third quarter of 2018, indicating improved air quality. As time went by,

however, AQI started to increase, suggesting a deterioration in air quality. Similar patterns are

found in the case of SO2 and PM2.5. The improvement in air pollution during the őrst quarter

is likely due to the fact that it takes time for government officials to take actions to curb the

negative economic consequences of the trade war. It can also be attributed to switching costs

associated with producing for the U.S. to producing for other countries, which could lead to a

decrease in production and subsequently lower air pollution levels. After the őrst quarter, air

pollution worsened in more trade-war exposed cities during the subsequent quarters. In the next

section, we will provide a set of comprehensive evidence to show that it is mainly due to the

lenient environmental enforcement.

4.1.3 Excess night emission: heterogeneity across hours

In this section, we study the impact of tariff escalation on air pollution at different hours. In

Table 2, we use same-day pollution differences as dependent variables. We collect daily sunset

times for each city in our sample and link it to our hourly pollution data reported by local

pollution monitors. Speciőcally, a 1% increase in U.S. tariff leads to an 11.1% increase in AQI,

3.2%, 6.4% and 15% increase in SO2, PM2.5 and PM10 respectively. The larger magnitudes

observed suggest that secret pollutant discharges, which occur during the actual sunset hour

rather than clock hours, have a more pronounced response to U.S. tariff changes.10 Pollution

emitted at night is less visible, which reduces the likelihood of environmental regulators being

on patrol. Besides, emissions during nighttime pose a lower risk in terms of public outcry. With

pollutants shrouded in darkness, surrounding residents and media coverage are less likely to

őle complaints or write reports. The existence of emissions during unwatched periods has been

documented by previous studies in both China and the U.S. (e.g. Zou, 2021; Agarwal et al.,

2023).

Table 2: Pollution before vs. after sunset

Dark hour - daytime hour
∆∆ln(AQI) ∆∆ln(SO2) ∆∆ln(NO2) ∆∆ln(PM2.5) ∆∆ln(PM10)

(1) (2) (3) (4) (5)

∆ln(USTariff) 11.058∗∗∗ 3.173∗∗ 1.250 6.404∗∗∗ 15.003∗∗∗

(2.260) (1.352) (0.935) (1.918) (2.503)
∆ln(CHNTariff) -4.959∗∗∗ 0.738 0.912∗ -2.809∗∗ -5.264∗∗∗

(1.380) (0.892) (0.466) (1.103) (1.771)
Observations 48847 48847 48847 48847 48847

10For example, Figure B9 displays the nighttime emissions of a paper mill plant in 2019.

15



R-square 0.048 0.066 0.088 0.051 0.048
Y-mean -0.105 0.119 0.054 0.012 -0.033
Y-sd 2.032 1.213 0.915 1.717 2.345

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: The sample period is from 2017:1 to 2019:12. Columns (1) to (5) report the impact of the log-difference
in tariffs on log-difference in excess dark air pollution. All columns include year-month and monitor őxed effects.
Standard errors are clustered at the station-month level. Signiőcance: * 0.10, ** 0.05, *** 0.01.

We plot the estimated coefficients using each hour’s pollution in Figure 3, with the X-

axis representing the relative hour compared to the sunset hour and the Y-axis representing

the estimated coefficients β. Before sunset, estimates are small and statistically insigniőcant,

indicating a minimal impact. However, pollution increases become more pronounced starting

from hour 3 and continue to rise until hour 7. These őndings suggest that the identiőed pollution

increases are primarily driven by secret nighttime discharges. Because the CEMS real-time on-

site monitors have been shown to be effective in detecting and preventing disguised pollution

behaviors (Agarwal et al., 2023), excess pollution at night is very likely due to the less stringent

policy enforcement. We will provide additional evidence on lenient environmental regulations

and softening enforcement in Section 5.
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Figure 3: Pollution before vs. after sunset

Notes: This őgure displays coefficients on ∆ln(USTariff). We separately estimate coefficients at each sunset hour.

Furthermore, we do a similar practice by using clock hours that are the same across time and

cities. Following the econometric speciőcation of equations (2), we examine the event studies in

the morning (9 a.m.) and at night (9 p.m.), respectively. As shown in Figure 4, the change in air

pollution in the morning (9 a.m.) in response to tariff changes is modest. In comparison, there

is a signiőcant increase in pollution at 9 p.m. The effects are larger in magnitude compared
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to those in the morning in most of the periods. The stronger effect during night suggests the

presence of secret dark-time emissions. We őnd a pattern similar to that in Table A2.

-100

-50

0

50

100

150

200

SO
2

-8 -4 0 4 8 12 16
Months relative to July 2018

-100

-50

0

50

100

150

200

SO
2

-8 -4 0 4 8 12 16
Months relative to July 2018

Figure 4: Event study: morning (9 a.m.) vs. night (9 p.m.)

Notes: The őgures plot the impact of U.S. tariffs on air quality at 9 a.m. and 9 p.m., respectively. We use the

tariff increase from June 2018 compared to that of June 2017 as the continuous treatment variable, and SO2 as

the outcome variable. Coefficients are estimated for each month using a dynamic difference-in-difference design.

We plot point estimates and their 95% conődence intervals in each month, with month negative 1 dropped.

We control for year-month, station-year, and station-month őxed effects. Standard errors are clustered at the

station-month level.

We conőrm the above őndings in Table A2. Speciőcally, we use pollution difference after and

before working hours Ð 8 a.m. to 6 p.m. Ð to examine if there are signiőcant differential

responses. Estimates show positive and signiőcant effects of ∆USTariffit on the pollution

differences. Speciőcally, as the U.S. tariff burden increases by 1%, the pollution differences

increase by 9.8%, 2.3%, and 6.3% when using AQI, SO2, and PM2.5 as dependent variables,

respectively. In contrast, estimates on ∆CHNTariffit remain small and have inconsistent

signs across pollutants, suggesting that China’s tariff burdens do not have a signiőcant impact

on pollution differences during working hours.
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4.2 Firm-level pollution emission

4.2.1 City-level tariff exposure

We complement the above city pollution measures with őrm-level end-of-pipe emission data from

China’s Continuous Emission Monitoring Systems (CEMS). The econometric speciőcation is set

as follows:

∆ln(Eit) = β1∆USTariffit + β2 ×∆CHNTariffit + γt + ηi + εit, (4)

where ∆ lnEit represents the year-on-year change in emissions for őrm i in month t. Variables

∆ USTariffit and ∆CHNTariffit capture the changes in U.S. and Chinese tariffs in the

city where őrm i is located during month t. The coefficient of interest is β1, which indicates

the impact of U.S. tariff changes on the year-on-year changes in emissions, and the coefficient

β2 represents the effect of Chinese tariff changes. To account for őrm-speciőc time-invariant

unobserved factors, we include őrm őxed effects denoted by ηi.

Table 3 shows our regression results. In Column (1), there is a signiőcant increase in őrms’

end-of-pipe particle emissions. A 1% increase in U.S. tariffs leads to a 16.2% increase in particle

emissions. Column (2) shows a similar pattern, with a 22.8% increase in SO2 emissions linked to

U.S. tariff changes. However, no signiőcant change is observed in őrms’ NOx emissions, as shown

in Column (3). The magnitudes of the effects on SO2 and particle emissions are notably larger

than those reported in Table 1. This aligns with expectations, as city-wide air quality represents

a steady state resulting from a combination of őrm emissions, pollutant transportation, and

settlement. Among these activities, őrms’ end-of-pipe emissions are more directly inŕuenced by

tariff changes, so they exhibit larger effects. In the second row, the coefficient on ∆CHNTariffit

is statistically imprecise. This suggests that China’s retaliatory tariffs did not have a signiőcant

effect on őrms’ air pollutant emissions. These őndings, together with the results in Table 1,

provide evidence that China’s tariffs had minimal inŕuence on China’s air pollution levels.

We investigate the heterogeneity of őrm emissions across different hours of the day by using

local sunset hours and running separate estimates during daytime and after sunset. In Table

A6, we őnd higher levels of Particles and SO2 emissions in both panels in response to higher

U.S. tariffs, indicating a consistent increase in emissions throughout the day. In Panel A, a 1%

increase in U.S. tariffs leads to a 15.9% rise in daytime particle emissions and a 12.6% increase

in SO2 emissions. In Panel B, the impact of U.S. tariff increases is slightly more pronounced

during dark hours. SO2 experiences a 23% increase as the U.S. tariff increases. This disparity in

emissions before and after sunset aligns with our observations on nighttime emissions in Table

2.
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Table 3: Tariff and őrms’ emissions

∆ln(Particles) ∆ln(SO2) ∆ln(NOx) ∆ln(Particles) ∆ln(SO2) ∆ln(NOx)
(1) (2) (3) (4) (5) (6)

∆ln(USTariff) 16.158∗ 22.830∗∗ -9.710 15.501∗ 23.022∗∗ -9.852
(8.854) (8.268) (7.900) (8.818) (8.399) (7.857)

∆ln(USTariff_Ind) 13.519∗ 7.878 -7.764
(7.046) (9.125) (11.218)

∆ln(CHNTariff) 2.572 -10.210 -0.619 2.741 -8.850 -0.754
(3.302) (7.846) (2.686) (3.145) (7.165) (2.430)

Observations 3965 3689 3705 3829 3561 3554
R-square 0.515 0.522 0.514 0.514 0.528 0.515
Y-mean -0.271 -0.276 -0.155 -0.274 -0.269 -0.160
Y-sd 1.111 1.300 1.035 1.106 1.295 1.042

Firm FEs Y Y Y Y Y Y
Province time trends Y Y Y Y Y Y
Year-Month FEs Y Y Y Y Y Y

Notes: The sample period is from 2018:1 to 2019:12. Columns (1) to (3) report the log-difference in őrms’ air pollutant emissions
regressed logged difference in city-level tariffs. Columns (4) to (6) report log-difference in őrms’ air pollutant emissions regressed
log-difference in both industry-level and city-level tariffs. All columns include year-month and őrm-őxed effects. Standard errors
are clustered at the provincial level. Signiőcance: * 0.10, ** 0.05, *** 0.01.

Given the identiőed evidence of increased emission intensity, what are őrms’ actual behaviors

in response to tariff escalations and relaxed environmental enforcement? It is likely that őrms

curtailed marginal abatement costs by turning off pollution control equipment like scrubbers. A

sample pollution scrubber is shown in Figure B10. The waste air undergoes sulfur and nitrogen

removal processes before being discharged into the atmosphere. The marginal cost of running

scrubbers is estimated to be $84-265 per ton of abated SO2 (Stoerk, 2018) and $80-89 per ton

for CO2 abatement (Du et al., 2015). That said, the marginal cost of pollution abatement is

still high, which motivates őrms to avoid the costs of operation and maintenance (Xu, 2011).

This marginal cost avoidance is supported by empirical őndings. For instance, Karplus and

Wu (2023) shows that China’s environmental inspections conducted by the central government

prompt power plants to operate their existing scrubbers. Though the abatement equipment

has been installed prior to the arrival of inspectors, running a scrubber requires variable inputs

of labor and materials. Plants with SO2 scrubbers show a statistically signiőcant additional

decrease in SO2 pollution during the onsite period.

We obtained data from Karplus and Wu (2023) which includes őrm-level scrubber dummies,

and merged őrm names with our CEMS őrm sample. Only 1,112 őrms exist in both datasets,

14.6% of our CEMS őrm list. We replicate our őrst-difference estimates by introducing interaction

terms of ∆USTariffit and the scrubber dummy. Results using the merged sample are summarized

in Table A4 Panel A. Our estimation precisions are reduced compared with those in Table 3 due

to the smaller sample size. Point estimates on ∆USTariffit × Scrubber have positive values

when using Particles and SO2 as dependent variables. This suggests that őrms equipped with

scrubbers experienced a more substantial increase in pollution emission intensity compared to

other non-scrubber őrms.
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In Panel B, we extend our analysis to encompass the entire CEMS sample, coding the Scrubber

dummies as zeros for őrms without available scrubber information. In Panel B, we still observe

positive point estimates for ∆USTariffit × Scrubber, despite smaller magnitudes and lower

precisions. This practice using scrubber indicators provides suggestive evidence that őrms are

likely to turn off scrubbers in response to lenient environmental enforcement so as to avoid high

marginal abatement costs.

Furthermore, we analyze the heterogeneity across őrm ownership by categorizing őrms into

three groups: state-owned, foreign-őnanced, and private őrms. Results of subsample analysis

are presented in Table A5. We őnd the observed increase in emission intensities is primarily

attributed to private őrms, which exhibit big point estimates and high statistical precision. In

comparison, foreign-őnanced őrms show a slightly smaller effect, while state-owned enterprises

exhibit the smallest impact. This pattern suggests that when őrms are more susceptible to trade

shocks and associated economic costs, they are more inclined to increase their pollution levels

and avoid incurring abatement expenses. Our őndings align with this hypothesis, as private

őrms, often more exposed to market dynamics, display more pronounced effects. Conversely,

state-owned enterprises, characterized by relatively stable proőts and limited exposure to trade

conŕicts, lack strong incentives to elevate their emission intensities.

Since the CEMS data has missing values and strategic reporting concerns, we conduct a

robustness check by requiring őrms with complete data in each quarter between 2017 and 2019.

This leads to a smaller sample size in Table C10. Estimates on ∆USTariffit remain positive and

signiőcant when using őrm-level particles and SO2 as dependent variables. This suggests that the

positive effect of U.S. tariffs on őrms’ emissions holds when considering a more restricted sample.

In addition, we also use relative emissions compared with emission standards as dependent

variables. Results in C11 remain stable, indicating that U.S. tariffs are associated with higher

emissions at the őrm-month level relative to the emission standards.

Moreover, we test whether the number of őrms with non-zero emission data is affected by

tariff burdens. We hypothesize that due to the imposition of rigorous environmental regulations

and pollution abatement costs, polluting őrms may have refrained from operating prior to the

trade war but started operations afterwards. To test this hypothesis, we use the count of őrms at

the city-month level that have reported at least one particle, NOx, and SO2 values as dependent

variables. We also add province-speciőc time trends into the estimation to account for potential

improvements in data quality over time.

Results presented in Table A8 demonstrate a signiőcant increase in the number of emitting

őrms in response to U.S. tariff burdens. Speciőcally, with every 1% tariff increase, the number

of CEMS őrms signiőcantly increases by 17.9% to 26.8%. This pattern is consistent across the

three pollutants and the magnitudes are similar. As our main results in Table 3 include őrm

őxed effects, the estimation does not take account of newly reporting őrms. New őrms that

started to report later would further increase the magnitude of pollution increase in response

to tariff escalation. It is important to note that őrms without positive emission reports could
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experience either non-operating hours or operating but non-reporting hours. The latter scenario

is considered data manipulation when őrms hide their emissions. We provide further discussion

to disentangle pollution increase or manipulation decrease in response to U.S. tariff burdens in

Section 5.1.3.

4.2.2 Industry-level tariff exposure

In this section, we investigate whether the rollback of environmental policies affects the entire

city or if it is speciőcally targeted at affected industries. Based on our observations of local

environmental enforcement in Sections 5.1 and 5.2, we hypothesize that őrms located in cities

with high overall exposure, but operating in low-exposure industries, also emit more pollutants.

This is because politically motivated local government officials mainly care about the overall

economic growth and employment rather than compensating őrms adversely hit by the trade

war.

We use the hourly end-of-pipe emissions at the őrm level to test this hypothesis. The

monitored őrms are major polluters operating in various high-polluting industries. To assign

industry codes to the 7,639 őrms in our CEMS sample, we scrape őrms’ basic information

including industry classiőcation from the Tianyancha website. Our data set includes 76 industries.

We merge the industry names with the HS-8 list and calculate the industry-month-level tariff

burden.

Column (1) to Column (3) of Table 3 report the positive impact of city-level tariffs on

pollution.11 In Column (4) to (6), we add the industry-level tariff as an additional control

in equation (3) to examine whether city- or industry-level tariff drives the observed pollution

increase. We őnd that pollution is affected by both tariff exposures. As shown in Column (4),

for őrms located in the same cities, those operating in high-exposure industries exhibit higher

particle emissions compared to those in industries with lower tariff escalation. Speciőcally, a 1%

increase in industry-wide tariffs leads to a 13.5% increase in őrms’ particle emissions. In Column

(5), the estimate on ∆USTariff_Industryit becomes smaller and statistically imprecise. This

indicates that őrms located in the same cities exhibit similar responses in terms of SO2 emissions,

regardless of the burden due to tariff escalation. In other words, non-targeted industries in

treated cities also experience similar increases in SO2 emissions, indicating a city-wide relaxation

of environmental policies. A likely explanation is that local government officials primarily care

about the overall economic growth and employment. That’s why they adopt a city-wide lenient

environmental enforcement rather than compensating őrms in trade-war affected industries. We

will elaborate on the political incentive channel in the next section.

11The estimated effect of ∆USTariff_Cityit is larger compared to that in our baseline regressions, as the
őrms with emission monitors are major polluting őrms monitored by the government.
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5 Mechanism

In the previous section, we learn that cities with higher exposure to the U.S. tariffs have worse

air quality, especially at night. Polluting őrms located in these cities, regardless of whether

they are adversely affected by the trade war, generate excess pollution emissions. In this

section, we provide a comprehensive set of evidence to show that the above őndings can be

rationalized by politically motivated environmental enforcement. Environmental policies make

őrms internalize pollution externalities by raising their production costs. Accordingly, lenient

environmental enforcement serves as a unique type of industrial policy used to subsidize őrms.

If local governments perceive that the trade war may have a signiőcant adverse effect on the

local economy, they tend to relax environmental enforcement to alleviate the adverse shocks of

trade protection on the economy (Karplus et al., 2021).

5.1 Environmental enforcement

5.1.1 Environmental stringency index

To directly measure how lenient environmental policies are, we use the text-based environmental

stringency index, originally constructed by Chen et al. (2018). Based on local government

reports, this index quantiőes the extent to which environmental protection and emission reduction

are emphasized at the city-year level. It relies on official documents where local authorities

delineate their initiatives and strategies concerning various policies. The underlying assumption

is that if local officials prioritize environmental concerns, the reports will contain more words and

sentences related to the environment. We use 15 keywords and phrases related to environmental

enforcement, including PM10, PM2.5, SO2, CO2, low carbon, emission reduction, COD, pollution,

pollutant discharge, environmental protection, protect the environment, ecology, air, green, and

energy efficiency. The environmental stringency index for each phrase p in city c in year y is

calculated as:

ESIpcy =
#words in phrase p-related sentences in city c year t’s work report

#words in city c year t’s work report

ESIcy =
∑

p

#words in phrase p-related sentences in city c year t’s work report

#words in city c year t’s work report

(5)

We use ESI as the dependent variable and re-estimate equation (3). In Table 4 Column (1),

we őnd a negative and statistically signiőcant effect on ∆ln(USTariff). Speciőcally, as the U.S.

tariff increases by 1%, the environmental stringency index decreases by 0.77 units, equivalent to

a decrease of 118% compared to the average index value of 0.652. In Column (2), we conduct

a phrase-city-year level analysis with phrase őxed effects. Here, we őnd that a 1% increase

in U.S. tariff leads to a 0.07 unit decrease in the phrase-speciőc stringency index, 1.7 times
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the mean and 85% of the standard deviation of the index. These results further support our

previous őndings, indicating that local officials diminish their focus on environmental priorities

and pollution reduction in response to higher U.S. tariff burdens.

5.1.2 Fines

Apart from measuring environmental enforcement with text analysis, we also measure environmental

enforcement using the novel data on environmental penalty. Local environmental agencies

conduct inspections on illegal acts and impose őnes on őrms found to violate environmental

regulations. The őnes measure őrms’ opportunity costs of violating environmental rules and

are documented and made available through annual releases on government websites. Each őne

ticket includes the culpable őrm’s name, industry affiliation, location, details on illegal acts, őne

amount, and environmental agency involved. Additionally, we have access to the release date Ð

when the event is published online Ð and the event date. However, it is worth noting that the

latter is inconsistently recorded, with only 18.9% of records containing the exact event dates.

Therefore, we use release dates to determine the timing and aggregate the data at the city-year

level.12

Figure B5 displays the amount of environmental őnes at the city-year level before and after

the trade war. The distribution of the whole sample shows an increase in őne amounts in each

year in 2016-2019, indicating a rising trend of environmental penalties over time. We then

separate cities into high-exposure and low-exposure groups using the classiőcation in Section

4.1.2. In Figure 5, low-exposure cities experience a more pronounced increase in environmental

őnes. Meanwhile, cities more exposed to U.S. tariffs show mild increases in environmental őnes.

This graphical evidence suggests that high U.S. tariffs lead to a softening of environmental

enforcement and a reduction of opportunity cost of violating environmental regulations, despite

an increasing trend nationwide.

Using the őne data, we construct four measures for policy enforcement, namely the number of

penalty events, events resulting in őnes, total őne amount, and őne amount per event. Results

of estimating equation (3) are presented in Table 4 Column (3) to (6). In Column (3), we őnd

U.S. tariffs have negligible impacts on both the number of penalty tickets issued and tickets

with őnes. This suggests that the local government did conduct more environmental inspections

in response to the U.S. tariff increases, despite the signiőcant impact on the deterioration of

air quality shown in Section 4.1.2. Under similar levels of policy enforcement, greater pollution

levels would lead to more inspections and tickets. Our őndings of no discernible effect provide

suggestive evidence that local environmental agencies are not as stringent as they were before

the trade shock.

12Table C12 displays őrst-difference estimation results using őne months to merge with tariff months. Results
demonstrate qualitative consistency with our favored speciőcation in Table 4 Columns (3) to (6). High exposure
to U.S. tariffs leads to a reduction in both the overall sum of environmental őnes and the őnes incurred per
individual event. This suggests less stringent penalties being imposed by local environmental agencies.
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Figure 5: Environmental őne distribution before and after the trade war

Notes: We calculate total environmental őne at the city-year level, and plot kernel density curves for high-
exposure, and low-exposure cities in Panel (a) and (b) respectively. Grey areas denote the 95% conődence
intervals.

In Columns (5) and (6), the estimates for ∆USTariffit are negative, signiőcant, and large.

We őnd that a 1% increase in U.S. tariffs causes the total őne amount to decrease by 6.9%.

We also őnd that the őne amount per event also decreases signiőcantly by 8.5%. Condition on

inspections taking place, higher exposure to U.S. tariffs corresponds to a decrease in őnancial

penalties and a reduction in the opportunity cost of violating environmental regulations. In other

words, local environmental agencies adopt less stringent enforcement when cities face elevated

tariffs.

We further perform separate estimations of equation (3) using penalty classiőcation in the

data. Each event is ŕagged with serious violations or other violations. Results presented in

Table A10 reveal that the decrease in tariff-induced őnes is primarily driven by non-serious

violations. In Panel B, a 1% increase in U.S. tariffs results in a signiőcant 7.5% decrease in

total environmental őnes and an 8.9% decrease in the őne amount per event. However, the

impact is notably smaller in Panel A, implying penalties for serious environmental violations

remain largely unaffected. The relaxation of environmental policy appears to apply to less severe

violations primarily.

We also use the number of őrms that experienced environmental violations with and without

őnes as dependent variables. The same őrm that was őned multiple times by local environmental

agencies is counted once. As presented in Table A11, the estimates on ∆USTariffit are negative

but have low statistical signiőcance. This suggests that there are no signiőcant changes in the

number of őrms subjected to őnes. The observed reduction in őnes is less likely attributed to

changes in őrm composition but a result of behavioral changes from the local environmental

agencies.

Since each őne event is coded with violation records, we explore heterogeneity across environmental

őnes for different pollutants. We separate events into air, water, and solid waste-related violations.
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In Table A9 Panel A, we őnd similar estimates on ∆USTariffit compared with those in Table

4. This implies that a substantial portion of the local environmental penalties are linked to air

pollution violations. In Panel B, we do not observe any effects on water pollution-related őnes. In

Panel C, Columns (3) and (4) show negative and signiőcant estimates on ∆USTariffit. There

is a similar relaxation in solid waste regulation, and the magnitude is similar to air pollution

őne decrease.

Table 4: Tariff effects on environmental stringency index and environmental őne

∆Stringency index ∆ln(#Events) ∆ln(#Events ∆ln(Total őne) ∆ln(Fine
with őne) per event)

(1) (2) (3) (4) (5) (6)

∆ln(USTariff) -0.770∗∗ -0.074∗∗∗ 0.311 0.785 -6.912∗∗ -8.530∗∗

(0.331) (0.017) (0.769) (0.800) (3.130) (3.815)
∆ln(CHNTariff) 0.255 0.019 -3.590∗∗∗ -4.094∗∗∗ -9.622∗∗ -2.729

(0.189) (0.012) (0.639) (0.591) (4.483) (4.581)
Observations 10008 150120 11880 11880 11880 11880
R-square 0.701 0.714 0.435 0.326 0.301 0.263
Y-mean 0.652 0.043 0.199 0.080 0.285 0.171
Y-sd 0.239 0.087 0.611 0.564 1.671 1.595

Phrase FEs Y
City FEs Y Y Y Y Y Y
Year-Month FEs Y Y Y Y Y Y

Notes: Sample period is from 2017:1 to 2019:12. In Column (1) to (2), we stack our sample 12 times to merge city-year level
stringency index with city-month level tariff. Column (1) sums all 15 environmental phrases together. Column (2) uses separate
ESI for each phrase and adds phrase őxed effects. In Column (3) to (6), we stack our sample 12 times to merge city-year level
őne with city-month level tariff. #Events, #Events with fine, and Total fine are divided by 12, i.e. we assume őne events
are equally distributed across the year. All six columns include year-month and city őxed effects. Column (2) also adds phrase
őxed effects. Standard errors are clustered at the province-year level. Signiőcance: * 0.10, ** 0.05, *** 0.01.

Moreover, we explore the heterogeneity across industries. As illustrated in Figure B6, the

decline in environmental őnes is particularly noteworthy in manufacturing.13 Speciőcally, a

1% increase in U.S. tariffs results in a decrease in őnes of 15.2% for computer and electronic

equipment manufacturing. The effect size is 8.7% for automobile manufacturing, 8.7% for metal

mining, and 21.5% for other manufacturing. Manufacturing and high-end goods industries

bear a heavier burden of U.S. tariff escalation. They also experience the strongest decrease

in environmental őnes, indicating a considerable policy relaxation within these industries. In

contrast, changes in environmental őnes due to tariff burdens are not statistically signiőcant for

research and development, őshery, food production, and pharmaceutical industries.

As a placebo test, we examine the impact of tariff burdens on non-manufacturing industries’

environmental őnes. Non-manufacturing industries include dining and restaurants, sports, entertainment,

insurance, education, hotels, and social work that primarily includes neighborhood committees

and street offices. While these industries are subject to environmental őnes, they are deemed less

13The őnes are deőned as the total őnes for each industry in each city. Alternatively, we also change the
dependent variable to the őne per ticket and the results are very robust.
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susceptible to the impact of tariff burdens. Results in Table C13 show estimates on ∆USTariffit

are negative but have low statistical signiőcance, indicating no discernible effects of U.S. tariff

burdens on these unrelated industries.

5.1.3 Bunching of pollution data

Another measure of lenient environmental policies lies in the manipulation of air pollution

data. Both őrms’ and local officials’ career advancements hinge on emission and air quality

outcomes, which has been demonstrated to notably stimulate pollution reduction endeavors

by local governments (Yin and Wu, 2022). Consequently, local administrations possess strong

incentives to manipulate air pollution reports, a phenomenon that is documented by existing

empirical studies (Chen et al., 2012; Ghanem and Zhang, 2014). We explore this issue by

examining whether őrms strategically emit pollutants right below the cutoff point.

We start by investigating the impact of tariff burdens on the tendency of local governments to

manipulate őrms’ emission data. Given that production, emission, and scrubber operation are

the result of a complex interplay within őrms, the inherent data generation process is expected

to exhibit a smooth pattern around the government-deőned emission limits. The presence of

discontinuities at this point could indicate deliberate efforts to manipulate data in order to attain

compliance. Given the differences in emission limits across provinces, sectors, and pollutants,

we calculate the difference between actual emission concentrations and the prescribed emission

limits. We conduct similar statistical tests to determine the presence of bunching behavior

in proximity to the zero difference point. The identiőcation of signiőcant bunching tendencies

among negative values would substantiate our hypothesis, suggesting that őrms may deliberately

underestimate emission intensities in order to align with the stipulated emission limits.
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Figure 6: Bunching of CEMS data before and after the trade war

Notes: We use őrm-hour level reports of CEMS emissions for SO2, NOx, and Particles 2017-2019, and calculate
emission concentrations relative to the limits. We test if there are discontinuities around 0µg/m3. McCrary test
shows t-statistics are -52.4778 and -15.682 in the pre- and post-period respectively.

Figure B4 plots the proportion of relative values using each pollutant’s regional emission
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standards. Panel A reveals a notable concentration of relative emissions of 0 from January 2017

to June 2018. During this period, there is a distinct spike in the distribution just below the

emission intensity limit. However, Panel B shows a less pronounced spike in proportions from

July 2018 to December 2019. The descriptive őndings imply that most őrms tend to cluster

their emission intensities below cutoff points, although this pattern is less prevalent after July

2018.

In Figure 6, we őnd that bunching activities diminished after the trade war. The data exhibits

concentration values towards negative, with conspicuous declines observed after the zero point.

These observations imply strategic conduct by őrms aimed at ensuring compliance with the

emission threshold. Speciőcally, the density of bunching manifests a more pronounced reduction

from 0.004 to 0.001 during the pre-trade war period, followed by a comparatively smaller decrease

from 0.002 to 0.001 post the trade war. Corresponding McCrary discontinuity test statistics are

-52.5 and -15.7 respectively, signifying diminished bunching endeavors subsequent to the trade

war.

If the relaxation of environmental policies results from the combined efforts of őrms and

local governments, our őndings indicate that it is predominantly the local governments that

grant leeway to őrms regarding their emission levels. Consequently, őrms appear to have ceased

their efforts to maintain emissions below the prescribed thresholds. Conversely, in a scenario

where őrms wield greater inŕuence than local governments, one would anticipate an upsurge in

data manipulation and an increased prevalence of bunching beneath the threshold in the CEMS

data. Our results provide suggestive evidence that the primary authority for permitting elevated

pollution emissions lies with local governments, granting polluting őrms permission to do so.

In Figure B8, we separately explore bunching patterns before and after the sunset, before

and after the trade war. Both daytime and darktime bunching activities were severe before July

2018. Employing McCrary tests with cutoffs at 0, the t-statistics reveal signiőcant values of

-41.51 and -50.44 before and after sunset, respectively. Post-July 2018, although the severity

of bunching behaviors diminishes, they are still statistically signiőcant. The t-statistics have

values of -7.82 prior to sunset and -14.04 thereafter. We conclude that the reduction in efforts to

manipulate data in response to the relaxation of environmental enforcement exhibits uniformity

across various hours.

As a robustness check, we conduct a falsiőcation test employing a placebo cutoff of 10µg/m3.

Figure B7 visually represents the absence of notable bunching behavior in the vicinity of this

threshold. McCrary tests’ t-statistics are -0.324 and 0.177 and are no longer statistically

signiőcant, further corroborating the robustness of our őndings.

Discussion: data manipulation We investigate the possibility of data manipulation in the

CEMS data by using satellite-derived pollution levels as a benchmark. The satellite pollution

data is sourced from the MCD19A2 V6.1 product, which quantiőes aerosol optical depth (AOD)

at the grid-day level, with a spatial resolution of 1km. To measure őrms’ surrounding pollution,

27



we make 15km buffers around őrms and project them on the gridded AOD products. Then we

calculate the mean AOD at the őrm-day level. If correlations between CEMS particle emissions

and AOD are different before and after the trade war, the tariff burden may have affected data

manipulation efforts. To test this hypothesis, we use AOD as the dependent variable, CEMS

particle data as the running variable, and add CEMS interaction with a post-event dummy.

Results in Table A7 Column (1) show a positive and statistically signiőcant estimate for

the variable CEMS, implying a positive correlation between the CEMS particle data and the

satellite AOD measurements. A 1µg/m3 increase in őrms’ end-of-pipe emissions corresponds to

a 0.07-unit rise in satellite AOD measurements. Focusing on the interaction term, we őnd a

statistically insigniőcant estimate on CEMS×Post, which implies that the correlation between

satellite and CEMS data remains similar both before and after the trade war. The őndings

suggest that the data quality of the CEMS particle data is similar before and during the trade

war and there is not much change triggered by the tariff escalations. Therefore, the main őndings

in Section 4 are unlikely to stem from the change in the emission data quality before and after

the outbreak of the trade war.

Following a similar logic, we employ official air quality monitoring as a benchmark for őrms’

emissions. The potential of data manipulation is more substantial in őrms’ end-of-pipe emissions

compared to air quality data reported by monitoring stations. Compared with government-

owned monitors, őrms have a relatively higher opportunity to alter CEMS readings or upload

manipulated emission reports onto CEMS websites. To do so, we use the nearest city air quality

monitor to merge with őrms’ emission data. We then employ a difference-in-difference model to

estimate the correlation and whether this correlation has changed in the pre and post-trade war

periods.

In Table A7 Column (2) and (3), we őnd positive and signiőcant associations between őrms’

particle emissions and PM2.5 and PM10 levels. This conőrms a substantial contribution from

manufacturing őrms and power plants to the overall particulate matter levels within the city.

The correlations are slightly stronger for PM10 than PM2.5, consistent with the fact that

manufacturing emissions tend to manifest as larger-sized particulates resembling dust, whereas

PM2.5 is more likely to originate from chemical conversions and represents an aggregated, steady-

state measure of multiple emission sources.

In the second row, estimates on CEMS × Post are negative, consistent with the result in

Column (1) when using satellite AOD serves as the benchmark. The interaction term is also

negative and signiőcant when using monitor PM10 as the dependent variable. These results

provide suggestive evidence that a same-level increase in CEMS emissions corresponds to a

proportionally smaller uptick in station-level pollution after the trade war. In other words,

with the same magnitude of actual pollution change, CEMS reports had a relatively smaller

increase before the trade war, suggesting the possibility of data manipulation and potential

underreporting of CEMS emissions are more prevalent in the pre-period. This őnding, together

with lower bunching efforts after the trade war shown in Figure 6, suggests that őrms may
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not consider it necessary to manipulate emission data if local governments no longer regulate

emission activities that much.

5.1.4 Media exposure and public attention

An additional indication of soft environmental enforcement can be observed by analyzing how

tariff burdens affect media attention and public awareness of environmental issues. Local

government officials in cities facing high tariff burdens would have a reduced emphasis on

environmental enforcement, resulting in fewer newspaper reports and web page coverages about

environmental concerns. Consequently, this reduced media coverage can then lead to lower

public awareness and distract attention from pollution issues.

We measure media coverage with Baidu media index and measure public attention with Baidu

search index, where both indexes vary at the county-day level. Baidu is the most popular search

engine in China. The Baidu media index is derived from the number of news articles reported by

major Internet media and included in Baidu News. The index is calculated based on keywords

found in the headlines. Baidu search index serves as an effective indicator of public interest

in speciőc topics. Previous research has shown that this index can reŕect public awareness of

environmental problems (Barwick et al., 2019; Zheng et al., 2014). We use media and search

index for the keyword ‘smog’ as dependent variables and estimate equation (3).

In Table A17, Column (1) shows a negative and signiőcant estimate on ∆USTariffit, suggesting

that the media index on ‘smog’ signiőcantly decreases with U.S. tariff burdens. Speciőcally, a

1% increase in U.S. tariffs leads to a 2.1% decrease in the media index. This result is in line

with Section 5.1 that local officials pay less attention to environmental issues in response to the

escalation of U.S. tariffs. As media in China is subject to strict control by officials, the local

media index serves as a reliable proxy for local officials’ attention. This őnding supports our

hypothesis that U.S. tariffs result in an increase in pollution due to the inŕuence of more lenient

local environmental policies.

In Columns (2) to (4), we őnd negative and imprecise estimates on ∆USTariffit, indicating

that U.S. tariff burdens have no signiőcant impact on citizens’ search behaviors of environmental

topics. The decrease in local awareness is much smaller when compared to the decline observed

in official media coverage. Despite higher levels of air pollution, citizens show little discussion

or concern about environmental issues and their awareness remains unaffected. One potential

explanation is the nighttime emissions discussed in Section 4.1.3. The increase in pollution due

to tariffs predominantly occurs during dark hours, making it less likely for residents to witness

secret pollutant discharges. Consequently, the reduced visibility of these emissions could be a

contributing factor to the lack of public environmental concern.
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5.2 Political incentives

5.2.1 Local officials’ background

Local officials’ place of birth, age, and political incentives can signiőcantly inŕuence local

pollution emissions (Meng et al., 2019; Yu et al., 2019). To begin with, we test whether local

officials are born in the current city using the background information data for party secretaries

and mayors of prefecture-level cities between 2017 and 2019 to measure promotion incentives. In

Table A12 Panel A, we interact ∆USTariffit with Native Party that equals one if the party

secretary is from the same province. We also code Native Mayor to indicate if the mayor is from

the same province. We őnd negative estimates on both interaction terms when using AQI as

the dependent variable. This implies that cities whose local officials are natives are less likely to

experience worsened air pollution in response to the same level of U.S. tariff increases compared

to cities with non-native party secretaries. For party secretaries, estimates on interaction terms

are negative, large, and signiőcant other pollution indicators as well, except for the PM2.5

regression. For mayors, the results are similar. Estimates on ∆USTariffit × Native Mayor

are negative for all pollutants except NO2, and magnitudes and precision are smaller than

party secretaries. A likely explanation for the above őndings is that natives care more about

cities’ long-term sustainable development and personal reputation than short-run economic

development and promotion. Therefore, they tend to stick to environmental regulations and

are less likely to have rollbacks. Since party secretaries have the highest authority over other

administrators on the same level, their political incentives dominate other local leaders, and

we őnd stronger effects for party secretaries than mayors. These political incentives provide

suggestive evidence for the trade-off between long-term sustainable development and short-run

beneőt.

We further assess the heterogeneous effect of age and political incentives. We interact ∆USTariffit

with variable Old Party and Old Mayor to indicate if the party secretary or city mayor is above

the age of 68. This practice is to test whether senior leaders exhibit different responses to U.S.

tariff increases compared to their younger counterparts. Table A12 Panel B shows negative

estimates on ∆USTariffit ×Old Party when using AQI, SO2, PM2.5 and PM10 as dependent

variables. Results are not statistically signiőcant when studying mayor age differences, consistent

with Table A12 Panel A that party secretaries’ incentives play a more important role in environmental

policy. Our őndings suggest that cities with senior local officials who will retire soon and have

fewer chances for promotion have fewer pollution emissions.

In addition, we examine the potential impact of tenure length on local governments’ decisions

regarding environmental relaxations. When local positions feature shorter tenures, there tends

to be a decreased emphasis on long-term environmental performance, with a heightened focus

on short-term economic growth instead. In this context, local officials prioritize addressing

immediate economic challenges such as tariff exposures, rather than the long-term environmental

impact. To delve into this dynamic, we introduce an interaction term between U.S. tariffs and the
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average duration of tenures in each city. Results presented in Table A12 Panel C reveal negative

and statistically signiőcant coefficients on ∆USTariffit × Tenure. This suggests that local

party secretaries with shorter tenures tend to exhibit a more pronounced increase in pollution

levels and a greater inclination towards relaxed environmental implementation.

5.2.2 Public budget

In the realm of economic policy, local governments often resort to subsidies or tax relief measures

to counterbalance the adverse effects of tariffs, thereby reducing production costs for őrms,

helping them explore new trade partners, and making trade diversions easier. Our results

highlight an alternative approach: the possibility of substituting traditional subsidies with the

relaxation of environmental enforcement to mitigate the negative costs of tariff burdens. The

environmental relaxation is hypothesized to be prominent in cities facing budget deőcits, where

őnancial constraints limit the provision of direct subsidies. In such scenarios, local governments

may opt to ease environmental policies as a strategic response to their őscal challenges. To

assess these political incentives, we perform a heterogeneity test of pollution levels in cities with

different levels of public budgets.

We obtain local public őnance data from the China City Statistical Yearbook. This dataset

provides city-year level public expenditure, revenue, and tax collection. To establish the pre-

period public budget, we compute the average budget for 2015 and 2016 as the baseline public

budget. To explore heterogeneity in local public őnancing concerning the impact of U.S. tariff

escalation, we introduce an additional interaction term on the right-hand side between tariff

escalation and cross-sectional budget. This allowed us to test variations in the effects across

different levels of local public őnancing.

The estimation results are presented in Table A13. We őnd negative and signiőcant estimates

on ∆USTariffit × Budget when using SO2 and PM10 as dependent variables. This suggests

that pollution increases are more pronounced in cities with lower budgets or higher őnancial

deőcits. The őndings align with our hypothesis, supporting the notion that the provision of

public subsidies and the relaxation of environmental enforcement act as substitutions in the face

of őscal constraints.

Furthermore, we examine the impact of U.S. tariffs on government revenues, aiming to

ascertain whether local governments reduce tax burdens on local őrms to mitigate the adverse

effects of trade shocks. We use the actual government revenue, expenditure, and őscal surplus

data in 2017-2019 as dependent variables. As is shown in Table A14, higher U.S. tariffs result

in a decrease in government revenue and an increase in expenditure, resulting in a signiőcant

reduction in the őscal surplus. These results affirm that local governments actively adjust their

budgets in response to trade shocks.
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5.2.3 Heterogeneity across locations

For political incentives, we provide further evidence on how pollution emissions vary across

locations. Due to pollution externality, areas closer to administrative boundaries may receive

fewer complaints from citizens, and less monitoring and inspection from local governments,

leading to more lenient environmental enforcement. To make matters worse, due to the transboundary

pollution, local governments may have lower incentives to regulate air quality near boundaries

(Gray and Shadbegian, 2004; Du et al., 2020). With full enforcement, all polluters may be

regulated in the same way. When enforcement is relaxed, polluters far away from administrative

centers may be relaxed őrst. To test this hypothesis, we geocode the locations of pollution

monitors and calculate the distances between each monitor and the nearest administrative

boundary. We then interact these distance variables with the tariff burdens to explore whether

the pollution increases in response to the tariff burdens are more severe for polluters that are

farther away from administrative centers.

Results in Table A15 Panel A and B show positive and signiőcant estimates on ∆USTariffit,

indicating a robust relationship between tariff burdens and pollution increases. Estimates on

the interaction terms, ∆USTariffit×Dist are negative and signiőcant. Monitors located closer

to provincial and city boundaries observe a stronger pollution increase in response to the tariff

burdens compared to monitors situated closer to administrative centers. These results support

our hypothesis that environmental leniency is more prevalent in remote areas near administrative

boundaries, where enforcement may be relatively relaxed.

6 Health effects of air pollution rollback

In this section, we examine the mortality effects of increased air pollution by using the identiőed

pollution increases from Section 4.1.2 to construct a counterfactual baseline pollution level in

the absence of trade shocks. Focusing on SO2 pollution, the marginal contribution of U.S. tariff

changes is calculated as: trade shock-free SO2 = observed SO2 − identiőed SO2 increases due to

tariffs. We follow a similar procedure for the case of PM2.5. The marginal contribution of tariffs

is calculated as: trade shock-free PM2.5 = observed PM2.5 − identiőed PM2.5 increases due to

tariffs.

The next step is to estimate air pollution deaths associated with the marginal contribution

of tariff burdens. We adopt the methodology outlined by Cropper et al. (2021) to calculate

baseline deaths caused by air pollution from anthropogenic sources:

∑

i

Mi = λi ×RR(Pollutioni)× Populationi (6)

where Mi represents deaths in city i. λi denotes the death rate at the background level. While λi

is not observable, we estimate λi using mortality caused by baseline air pollution, 4.5 million per

32



year documented by HEI (2020). RR(Pollutioni) is the relative risk of death at the exposure

level. Populationi is the population size at the city level. Air pollution deaths without the

contribution of tariff changes (
∑

i∆Mi) can then be estimated as:

∑

i

∆Mi = λi ×RR(Pollutioni − TradePollutioni)× Populationi (7)

where TradePollutioni is the identiőed SO2 or PM2.5 pollution increases in city i.

We separately estimate effects of SO2 and PM2.5 using dose-response functions from Orellano

et al. (2021) and Burnett et al. (2018). PM2.5 exhibits a concave relationship with mortality

risk, with hazard ratios ranging from 1 to 1.8. On the other hand, Orellano et al. (2021) conduct

a meta-analysis to aggregate individual results on SO2 exposure and death risks. They őnd that

an increase of 10µg/m3 in the 24-hour average exposure to SO2 is associated with a 1.0059

relative risk for all-cause mortality. Consequently, we employ a linear relative risk function for

PM2.5 estimates based on its levels, while a constant relative risk is utilized for SO2 estimates.

Our őndings reveal that a 1% increase in U.S. tariffs corresponds to a 1% increase in SO2 levels

and a 0.7% increase in PM2.5 levels when considering all city-months collectively. Considering

the dose-response function, the elevated levels of SO2 resulting from tariff burdens are associated

with a 1.1% increase in health risks or approximately 39.2 thousand additional air pollution-

induced deaths from 2017 to 2019. Similarly, for PM2.5, a 1.4% increase or approximately

49.9 thousand additional deaths can be attributed to pollution stemming from environmental

rollbacks. It is important to note that air pollution encompasses the accumulation of various

pollutants, and as such, we do not attempt to combine these two values, as the effects are not

mutually exclusive. Consequently, we consider the estimate of 1.4% additional deaths to be the

lower bound for mortality resulting from intensiőed air pollution.

Earlier studies on the health effects of anthropogenic air pollution vary to a large degree.

Vohra et al. (2021) documents 10.2 million global excess deaths per year are due to PM2.5 from

fossil fuel combustion. In the U.S., 350,000 premature deaths are attributed to emissions from

the fossil industry. The number in India is 2.5 million people per year, representing over 30% of

all-cause deaths. Penney et al. (2009) estimates 6,000 to 10,700 annual deaths are attributed to

88 publicly-őnanced coal power plants worldwide. Cropper et al. (2021) conclude that 112,000

deaths are attributable annually to coal-őred power plants in India. Lueken et al. (2016) őnds

between 7,500 and 52,000 people in the U.S. could be saved if switching from all coal plants

to gas, equivalent to between $20 billion and $50 billion in monetized beneőts. In Europe,

Kushta et al. (2021) identiőes 18,400-105,900 deaths are avoided from the phase-out of coal

power plants’ emissions. In Africa, Marais et al. (2019) show 48,000 premature deaths due to

fossil fuel electricity generation. Results in our paper per unit pollution increase lie in the wide

range of previous estimates. Our őndings indicate the signiőcant impact of tariff-induced policy

relaxation on air pollution-caused deaths.
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The health effects are not evenly distributed across Chinese cities. Cities with high exposure

experience greater increases in U.S. tariffs, higher levels of air pollution, and more severe health

burdens. The relationship between each city’s health burden and socioeconomic variables is

presented in Table A16. Our őndings indicate that high-income cities with larger populations

and higher export values bear the brunt of health burdens. This aligns with our calculation of

tariff exposure based on export structures. In summary, our analysis does not reveal evidence

of environmental injustice concerns resulting from the pollution increases or mortality effects

caused by trade shocks.

7 Conclusion

This paper studies the impact of economic growth on the environment. The Environmental

Kuznets Curve (EKC) suggests that there is an inverted U-shaped curve between income and

pollution. This relationship is mainly driven by citizens’ preferences. As countries become richer,

there is growing environmental awareness among citizens, and governments are better able to

address environmental issues through stricter regulations and enforcement. In this paper, we

contribute to the literature on economic growth and environment by exploring a novel channel,

namely political incentive.

The trade war offers a good setting to study how politicians respond to perceived risks of

economic downturns. The U.S. tariffs have triggered protectionism worldwide and there has

been a growing literature studying the economic consequences of the trade war. The U.S. tariffs

have been found to reduce imports from China, increase U.S. import prices, reduce affected

őrms’ market value, and hinder China’s economic growth. Nevertheless, little is known about

the environmental consequences.

In this paper, we seek to reveal the hidden cost of the trade war and study the impact of

tariff escalation on pollution. Politicians are usually confronted with a difficult trade-off, as they

need to balance economic growth with environmental protection. When faced with perceived

risks of economic slowdown, politically motivated politicians opt to ease the enforcement of

environmental regulations. Despite the importance of this channel, there is limited empirical

evidence. We őll the gap and explore this trade-off in the context of the U.S.-China trade war,

where the series of protective tariffs were raised unexpectedly.

We őnd that cities exposed to higher U.S. tariffs had worse air quality. In the main analysis,

we use the air quality monitor data to explore the environmental consequences of the tariff

increase. As the tariff burden increases by 1%, SO2 and PM2.5 increase by 0.9% and 0.7%,

respectively. The additional pollutants are mostly emitted after sunset and before sunrise,

suggesting that local officials soften environmental enforcement during the trade war. To

further explore the mechanism, we őnd that high-exposure cities also place less emphasis on

environmental enforcement based on a text-based stringency index from local government reports.
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More substantial pollution increases near provincial boundaries using hourly monitor-level air

quality data. The above evidence suggests that local government officials adopt lenient environmental

policies to mitigate the negative effect on economic activities when the economy is at a heightened

risk of economic downturn.

To sum up, the trade war provides us with an exogenous source of perceived economic risks,

which allows us to investigate how local officials’ political incentives affect őrms’ pollution

emissions. Our őndings suggest that local officials tend to ease the enforcement of environmental

regulations in an effort to confront the challenges posed by the trade war and mitigate the

looming threat of economic downturn.
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A Appendix: Tables

Background

Table A1: Timeline

Wave Date of implementation Event

Panel A. United States

Prelude 1 2018-02-07 The U.S. imposes 30% tariffs on solar panels and 20%
on washing machines under two Section 201 cases.

Prelude 2 2018-03-23 The U.S. imposes 25 % Section 232 tariffs on steel and
10 % Section 232 tariffs on aluminum imported from
China and other countries, temporarily exempting
Argentina, Australia, Brazil, Canada, Mexico, the
European Union, and South Korea.

Wave 1 2018-07-06 The U.S. imposes 25% Section 301 tariffs on $34
billion of imports from China.

Wave 2 2018-08-23 The U.S. imposes 25% Section 301 tariffs on $16
billion of imports from China.

Wave 3 2018-09-24 The U.S. imposes 10% Section 301 tariffs on $200
billion of imports from China.

Wave 4 2019-06-15 The U.S. raises Section 301 tariffs from 10% to 25%
on $200 billion of imports from China.

Wave 5 2019-09-01 The U.S. imposes 15% tariffs on $101 billion of
imports from China.

Panel B. China

Prelude 1 2018-04-02 China imposes 15% or 25% retaliatory tariffs on $2.4
billion of imports from the U.S. in response to U.S.
Section 232 tariffs on steel and aluminum tariffs.

Wave 1 2018-07-06 China imposes 25% retaliatory tariffs on $34 billion
of imports from the U.S. in response to U.S. Section
301 tariffs imposed on July 6, 2018.

Wave 2 2018-08-23 China imposes 25% retaliatory tariffs on $16 billion
of imports from the U.S. in response to U.S. Section
301 tariffs imposed on August 23, 2018.

Wave 3 2018-09-24 China imposes 5% or 10% retaliatory tariffs on $60
billion of imports from the U.S. in response to U.S.
Section 301 tariffs imposed on September 24, 2018.

Wave 4 2019-06-01 China imposes an additional 5%, 10%, or 15% tariffs
on a subset of the existing product list implemented
on September 24, 2018, in response to the U.S.
Section 301 tariff increase imposed on June 15, 2019.

Wave 5 2019-09-01 China imposes an additional 5% or 10% tariffs on
$75 billion of imports from the U.S. in response to the
U.S. Section 301 tariff increase imposed on September
1, 2019.
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Table A2: Before vs. after working hours (8 a.m.-6 p.m.)

Off hour - working hour
∆∆ln(AQI) ∆∆ln(SO2) ∆∆ln(NO2) ∆∆ln(PM2.5) ∆∆ln(PM10)

∆ln(USTariff) 9.801∗∗∗ 2.279 1.151 6.250∗∗∗ 11.583∗∗∗

(2.343) (1.440) (1.089) (1.780) (2.425)
∆ln(CHNTariff) -2.744∗∗ -0.018 1.691∗∗∗ -1.804∗ -2.329

(1.383) (1.056) (0.437) (0.990) (1.793)
Observations 48855 48855 48855 48855 48855
R-square 0.066 0.078 0.124 0.064 0.055
Y-mean -0.169 0.068 0.073 -0.012 -0.034
Y-sd 2.057 1.353 0.955 1.597 2.284

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Standard errors are clustered at the monitor-month level.

Table A3: Dynamic effects by quarter

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff)× 2018q3 -2.851∗∗∗ -4.270∗∗∗ -1.955∗∗ -4.981∗∗∗ -3.573∗∗∗

(0.588) (1.646) (0.936) (1.083) (0.728)
∆ln(USTariff)× 2018q4 1.959∗∗∗ 0.135 3.924∗∗∗ 2.611∗∗∗ 2.018∗∗∗

(0.627) (0.988) (0.623) (0.861) (0.743)
∆ln(USTariff)× 2019q1 1.507∗∗ -0.687 2.486∗∗∗ 0.986 2.713∗∗∗

(0.590) (0.929) (0.623) (0.830) (0.651)
∆ln(USTariff)× 2019q2 0.267 -2.643∗∗∗ 1.048∗ 1.278∗∗ 0.226

(0.342) (0.869) (0.545) (0.619) (0.481)
∆ln(USTariff)× 2019q3 .124 1.61∗∗∗ .538 .0703 .124

(.226) (.612) (.421) (.363) (.306)
∆ln(USTariff)× 2019q4 .689∗∗ 2.81∗∗∗ -.454 .976∗∗ .724∗

(.311) (.716) (.426) (.432) (.416)
∆ln(CHNTariff) -.124 -.0974 .35∗∗ -.673∗∗∗ -.0633

(.135) (.275) (.15) (.183) (.158)
Observations 48868 48868 48868 48868 48868
R-square 0.277 0.187 0.195 0.234 0.280
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

FEs Monitor, Prov-Month, Year-Month;
∆ln(USTariff) × 2017q1 to 2018q2

Notes: Standard errors are clustered at the monitor-month level.
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Firm-level pollution emission

Table A4: Heterogeneity across őrms with and without scrubbers

Panel A: Merged sample
∆ln(Particles) ∆ln(SO2) ∆ln(NOx)

∆ln(USTariff) 21.660 -8.399 -18.725∗

(16.854) (21.583) (11.113)
∆ln(USTariff)× SO2 scrubber 14.494 33.278∗ -0.744

(16.429) (18.152) (9.943)
∆ln(CHNTariff) 9.715∗∗ -12.550∗∗ -4.960

(4.747) (5.797) (3.276)
Observations 1363 1241 1317
R-square 0.425 0.526 0.407
Y-mean -0.391 -0.339 -0.134
Y-sd 1.186 1.179 0.897

Panel B: All CEMS sample

∆ln(USTariff) 13.612 22.819 -7.950
(8.351) (14.601) (8.677)

∆ln(USTariff)× SO2 scrubber 9.653 0.066 -9.815
(11.214) (11.600) (7.885)

∆ln(CHNTariff) 2.584 -10.210∗∗ -0.703
(3.037) (4.442) (2.210)

Observations 3965 3689 3705
R-square 0.515 0.522 0.515
Y-mean -0.271 -0.276 -0.155
Y-sd 1.111 1.300 1.035

Firm FEs Y Y Y
Province time trends Y Y Y
Year-Month FEs Y Y Y

Notes: Sample period is 2018-2019. Firms are required to report data every quarter.
Standard errors are clustered at the province level.
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Table A5: Heterogeneity across őrm ownership

Panel A: Private őrms
∆ln(Particles) ∆ln(SO2) ∆ln(NOx)

∆ln(USTariff) 16.171∗ 25.612∗ -9.124
(9.069) (13.015) (9.376)

∆ln(CHNTariff) 2.784 -9.347∗ 0.284
(2.988) (5.073) (2.520)

Observations 3851 3595 3614
R-square 0.514 0.523 0.515

Panel B: Foreign őnanced őrms

∆ln(USTariff) 23.085 75.669 52.079
(26.080) (51.650) (31.407)

∆ln(CHNTariff) 0.737 8.128 18.050
(12.098) (13.859) (17.156)

Observations 609 575 567
R-square 0.712 0.565 0.423
Y-mean -0.139 -0.182 -0.134
Y-sd 1.076 1.244 1.110

Panel C: State owned enterprises

∆ln(USTariff) 9.021 19.075 -7.951
(26.543) (43.362) (19.098)

∆ln(CHNTariff) 30.038∗ 4.327 -10.686
(16.087) (30.051) (35.472)

Observations 319 266 253
R-square 0.679 0.706 0.808

Firm FEs Y Y Y
Province time trends Y Y Y
Year-Month FEs Y Y Y

Notes: Sample period is 2018-2019. Firms are required to report data every
quarter. Standard errors are clustered at the province level.
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Table A6: Firm emissions before vs. after sunset

Panel A: Daytime
∆ln(Particles) ∆ln(SO2) ∆ln(NOx)

∆ln(USTariff) 15.909∗ 12.566∗ -14.479∗∗

(9.197) (6.878) (6.288)
∆ln(CHNTariff) 3.431 -8.838 -0.382

(4.129) (8.536) (2.807)
Observations 3058 2935 3006
R-square 0.489 0.483 0.410
Y-mean -0.284 -0.293 -0.132
Y-sd 1.036 1.160 0.879

Panel B: Nighttime

∆ln(USTariff) 18.340 22.953∗∗ -10.737∗

(16.451) (10.912) (5.828)
∆ln(CHNTariff) 3.248 -12.100 0.850

(4.047) (7.758) (3.554)
Observations 2627 2607 2643
R-square 0.508 0.463 0.456
Y-mean -0.340 -0.292 -0.116
Y-sd 0.959 1.291 0.932

Firm FEs Y Y Y
Province time trends Y Y Y
Year-Month FEs Y Y Y

Notes: Sample period is 2018-2019. Firms are required to report data
every quarter. Standard errors are clustered at the province level.

Table A7: Correlation: CEMS vs. satellite AOD vs. station-level air quality data

Satellite AOD Monitor station PM10 Monitor station PM2.5

CEMS 0.070∗ 0.029∗∗∗ 0.014∗∗∗

(0.037) (0.007) (0.005)
CEMS × Post -0.139 -0.028∗ -0.014

(0.090) (0.015) (0.011)
Observations 27983 26481 26406
R-square 0.662 0.750 0.745
Y-mean 626.941 72.864 40.816
Y-sd 208.329 32.779 20.668

Firm FEs Y Y Y
Province time trends Y Y Y
Year-Month FEs Y Y Y

Notes: Sample period is 2017-2019. Standard errors are clustered at the province-
month level.
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Table A8: Number of őrms in the CEMS data

∆ln(#Firms with ∆ln(#Firms with ∆ln(#Firms with
Particles data) SO2 data) NOx data)

∆ln(USTariff) 17.884∗∗∗ 21.189∗∗∗ 26.785∗∗∗

(5.261) (6.049) (7.338)
∆ln(CHNTariff) 0.137 0.791 1.194

(2.368) (1.831) (1.837)
Observations 2090 1979 1974
R-square 0.625 0.624 0.601
Y-mean 0.219 0.215 0.227
Y-sd 1.260 1.260 1.222

City FEs Y Y Y
Province time trends Y Y Y
Year-Month FEs Y Y Y

Notes: Standard errors are clustered at the province level.
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Mechanism

Table A9: Tariff and environmental őne: separate by pollution types

Panel A: Air pollution
∆ln(#Events) ∆ln(#Events with őne) ∆ln(Total őne) ∆ln(Fine per event)

(1) (2) (3) (4)

∆ln(USTariff) 0.298 0.768 -6.751∗∗ -8.370∗∗

(0.769) (0.798) (3.134) (3.823)
∆ln(CHNTariff) -3.557∗∗∗ -4.058∗∗∗ -9.620∗∗ -2.794

(0.638) (0.591) (4.484) (4.581)
Observations 11880 11880 11880 11880
R-square 0.434 0.326 0.301 0.263
Y-mean 0.199 0.081 0.286 0.171
Y-sd 0.612 0.565 1.668 1.595

Panel B: Water pollution

∆ln(USTariff) 0.050 0.075 4.689 6.267
(0.104) (0.103) (3.528) (4.415)

∆ln(CHNTariff) -0.054∗ -0.022 -1.894 -3.115
(0.030) (0.027) (1.634) (2.165)

Observations 11880 11880 11880 11880
R-square 0.451 0.446 0.140 0.134
Y-mean -0.002 -0.003 0.078 0.102
Y-sd 0.090 0.086 2.549 3.279

Panel C: Solid waste pollution

∆ln(USTariff) 0.043 -0.097∗∗∗ -6.319∗∗∗ -9.040∗∗∗

(0.047) (0.022) (1.588) (2.210)
∆ln(CHNTariff) 0.013 0.012 1.196 1.738

(0.019) (0.010) (0.855) (1.169)
Observations 11880 11880 11880 11880
R-square 0.044 0.098 0.152 0.159
Y-mean 0.000 0.000 0.008 0.014
Y-sd 0.032 0.019 0.776 1.038

City FEs Y Y Y Y
Province time trends Y Y Y Y
Year-Month FEs Y Y Y Y

Notes: Sample period is from 2017:1 to 2019:12. We stack our sample 12 times to merge city-year level őne with city-month
level tariff. #Events, #Events with fine, and Total fine are divided by 12, i.e. we assume őne events are equally distributed
across the year. All columns include year-month and city őxed effects. Standard errors are clustered at the province-year
level.
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Table A10: Tariff and environmental őne: serious and other violation

Panel A: Serious violation
∆ln(#Events) ∆ln(#Events with őne) ∆ln(Total őne) ∆ln(Fine per event)

(1) (2) (3) (4)

∆ln(USTariff) 0.606∗∗∗ 0.526∗∗∗ 3.692 -0.635
(0.189) (0.140) (5.789) (7.173)

∆ln(CHNTariff) -0.159 -0.160 -8.090∗∗ -9.531∗∗

(0.190) (0.147) (4.018) (4.838)
Observations 11880 11880 11880 11880
R-square 0.309 0.260 0.264 0.261
Y-mean 0.019 0.010 0.545 0.672
Y-sd 0.127 0.089 3.982 4.895

Panel B: Other violation

∆ln(USTariff) 0.087 0.694 -7.533∗∗ -8.887∗∗

(0.775) (0.811) (3.151) (3.798)
∆ln(CHNTariff) -3.621∗∗∗ -4.096∗∗∗ -9.329∗∗ -2.423

(0.660) (0.588) (4.489) (4.579)
Observations 11880 11880 11880 11880
R-square 0.432 0.326 0.298 0.261
Y-mean 0.195 0.078 0.272 0.164
Y-sd 0.614 0.565 1.678 1.592

City FEs Y Y Y Y
Province time trends Y Y Y Y
Year-Month FEs Y Y Y Y

Notes: Sample period is from 2017:1 to 2019:12. We stack our sample 12 times to merge city-year level őne with city-month
level tariff. #Events, #Events with fine, and Total fine are divided by 12, i.e. we assume őne events are equally distributed
across the year. All columns include year-month and city őxed effects. Standard errors are clustered at the province-year level.

Table A11: Tariff and the number of őrms with environmental violations

∆ln(#Firms) ∆ln(#Firms with őne)
(1) (2)

∆ln(USTariff) -0.934 -0.863
(1.154) (1.249)

∆ln(CHNTariff) -5.684∗∗∗ -6.953∗∗∗

(1.096) (1.469)
Observations 11880 11880
R-square 0.471 0.333
Y-mean 0.301 0.121
Y-sd 0.904 0.871

City FEs Y Y
Province time trends Y Y
Year-Month FEs Y Y

Notes: Sample period is from 2017:1 to 2019:12. We stack our sample
12 times to merge city-year level őrm count with city-month level tariff.
Both columns include year-month and city őxed effects. Standard errors
are clustered at the province-year level.
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Table A12: Heterogeneity across local leader characteristics

Panel A: Native provinces or not
∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff) 1.033∗∗∗ 3.107∗∗∗ 3.347∗∗∗ 0.466 1.265∗∗∗

(0.275) (0.619) (0.405) (0.416) (0.354)
∆ln(USTariff)× Native Party -0.475∗ -3.492∗∗∗ -3.252∗∗∗ 0.129 -0.760∗∗

(0.288) (0.636) (0.416) (0.425) (0.362)
∆ln(USTariff)× Native Mayor -1.672∗ -0.715 2.432∗ -1.599 -1.188

(0.941) (1.817) (1.283) (1.350) (1.368)
∆ln(CHNTariff) -0.018 -0.380 0.323∗∗ -0.578∗∗∗ 0.156

(0.138) (0.257) (0.147) (0.188) (0.159)
Observations 44375 44375 44375 44375 44375
R-square 0.231 0.170 0.173 0.192 0.243
Y-mean -0.047 -0.195 -0.027 -0.073 -0.062
Y-sd 0.218 0.403 0.269 0.293 0.270

Panel B: Above or below 68

∆ln(USTariff) 0.662∗∗∗ 0.471 0.905∗∗∗ 0.564∗ 0.701∗∗∗

(0.198) (0.441) (0.288) (0.298) (0.253)
∆ln(USTariff)× Old Party -1.032 -8.443∗∗∗ 0.855 -2.827 -2.959∗

(1.235) (2.258) (1.678) (1.960) (1.564)
∆ln(USTariff)× Old Mayor 0.905 9.644∗∗ 2.248 0.575 0.395

(2.202) (4.243) (2.425) (3.244) (2.888)
∆ln(CHNTariff) -0.020 -0.405 0.230 -0.549∗∗∗ 0.163

(0.138) (0.259) (0.147) (0.192) (0.159)
Observations 44375 44375 44375 44375 44375
R-square 0.231 0.170 0.171 0.192 0.243
Y-mean -0.047 -0.195 -0.027 -0.073 -0.062
Y-sd 0.218 0.403 0.269 0.293 0.270

Panel C: Local leaders’ tenure length

∆ln(USTariff) 1.169∗∗∗ 0.103 2.450∗∗∗ 3.391∗∗∗ 0.572
(0.448) (1.051) (0.675) (0.655) (0.566)

∆ln(USTariff)× Tenure Party -0.132 0.068 -0.471∗∗ -0.896∗∗∗ 0.086
(0.131) (0.298) (0.207) (0.193) (0.165)

∆ln(CHNTariff) -0.112 0.033 0.440∗∗∗ -0.620∗∗∗ -0.056
(0.136) (0.274) (0.152) (0.183) (0.160)

Observations 45182 45182 45182 45182 45182
R-square 0.230 0.172 0.175 0.193 0.241
Y-mean -0.047 -0.196 -0.027 -0.073 -0.063
Y-sd 0.218 0.404 0.270 0.292 0.270

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Standard errors are clustered at the monitor-month level.
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Table A13: Heterogeneity across local government budgets

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff) 0.581∗∗∗ 0.586 0.929∗∗∗ 0.823∗∗∗ 0.530∗∗

(0.191) (0.455) (0.273) (0.293) (0.243)
∆ln(USTariff)× Budget -0.004 -0.088∗∗∗ 0.003 0.027∗∗ -0.032∗∗∗

(0.009) (0.019) (0.010) (0.011) (0.010)
∆ln(CHNTariff) -0.096 -0.114 0.430∗∗∗ -0.633∗∗∗ -0.031

(0.134) (0.272) (0.149) (0.182) (0.158)
Observations 48868 48868 48868 48868 48868
R-square 0.228 0.170 0.178 0.192 0.239
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Standard errors are clustered at the monitor-month level.

Table A14: Tariff and local government budgets

∆ln(Revenue) ∆ln(Expenditure) ∆ln(Fiscal surplus)

∆ln(USTariff) -11.592 95.376 -106.968∗∗

(38.870) (69.073) (52.433)
∆ln(CHNTariff) -92.575∗∗∗ -152.126∗∗∗ 59.551∗∗

(10.949) (29.615) (26.714)
Observations 9264 9264 9264
R-square 0.996 0.994 0.955
Y-mean 246.752 471.445 -224.693
Y-sd 365.770 429.102 136.699

City FEs Y Y Y
Province time trends Y Y Y
Year-Month FEs Y Y Y

Notes: We stack our sample 12 times to merge city-year level public budgets with city-month level
tariff. Standard errors are clustered at the province-month level.
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Table A15: Heterogeneity across distances to local boundaries

Panel A: Provincial boundaries
∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff) 1.018∗∗∗ 1.496∗∗ 1.417∗∗∗ 1.701∗∗∗ 0.893∗∗

(0.279) (0.606) (0.382) (0.422) (0.349)
∆ln(USTariff)× Dist -0.006∗∗ -0.008 -0.007 -0.014∗∗∗ -0.003

(0.003) (0.006) (0.005) (0.004) (0.004)
∆ln(CHNTariff) -0.095 -0.113 0.432∗∗∗ -0.629∗∗∗ -0.031

(0.134) (0.272) (0.149) (0.182) (0.158)
Observations 48868 48868 48868 48868 48868
R-square 0.228 0.169 0.178 0.192 0.239
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

Panel B: City boundaries

∆ln(USTariff) 0.956∗∗∗ -0.911∗ 0.553∗ 1.413∗∗∗ 1.165∗∗∗

(0.245) (0.528) (0.328) (0.372) (0.308)
∆ln(USTariff)× Dist -0.014∗∗ 0.072∗∗∗ 0.014 -0.027∗∗∗ -0.020∗∗

(0.007) (0.013) (0.009) (0.010) (0.009)
∆ln(CHNTariff) -0.104 -0.077 0.437∗∗∗ -0.647∗∗∗ -0.042

(0.134) (0.273) (0.150) (0.181) (0.158)
Observations 48868 48868 48868 48868 48868
R-square 0.228 0.170 0.178 0.192 0.239
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Standard errors are clustered at the monitor-month level.

Table A16: Mortality effects and city covariates

PM2.5-induced
mortality increase

GDP 0.405
(0.603)

Population 8.579
(5.797)

Export value added 0.001
(0.001)

Observations 288 329 329
R-square 0.002 0.007 0.005
Y-mean 0.442 0.416 0.416
Y-sd 0.332 0.337 0.337

Notes: Sample period is average effect at the city level in
2017-2019.

S11



Table A17: Tariff and media and search index on łsmogž

Media index Search index
Overall PC Mobile

∆ln(USTariff) -2.128∗∗∗ -0.334 -0.001 -0.177
(0.591) (1.541) (1.661) (1.384)

∆ln(CHNTariff) 1.090∗∗∗ -0.224 -0.622 -0.555
(0.245) (0.681) (0.952) (0.763)

Observations 10656 10656 10656 10656
R-square 0.917 0.863 0.788 0.833
Y-mean 2.434 3.812 2.658 3.358
Y-sd 1.849 1.422 1.427 1.476

County FEs Y Y Y Y
Province time trends Y Y Y Y
Year-Month FEs Y Y Y Y

Notes: Standard errors are clustered at the province-month level.

Table A18: Tariffs and exports

(1) (2) (3) (4)
Export to the U.S. to third countries
∆ln(V ) ∆ln(Q) ∆ln(V ) ∆ln(Q)

∆ln(USTariff) -0.60*** -0.58*** 0.14** 0.10**
(0.12) (0.12) (0.06) (0.05)

∆ln(Tariff_world) -0.22 -0.07
(0.29) (0.28)

Observations 109,340 108,968 4,479,791 4,434,843
R-squared 0.31 0.29 0.19 0.18
HS-6 FE YES YES NO NO
HS-6 × Country FE NO NO YES YES
Country × Year-month FE NO NO YES YES
Year-month FE YES YES NO NO

Notes. Columns (1) - (4) report the impact of year-to-year log change of U.S. tariff on year-to-year log change
of export values and quantities. Columns (1) and (2) include HS-6 product őxed effects and time őxed effects.
Columns (3) - (4) include HS-6-product-country őxed effects and country-time őxed effects. For Columns (1)
and (2), we use China’s monthly HS-8-product-level export data to the U.S. from January 2017 to December
2019. For Columns (3) and (4), we use China’s monthly HS-8-product-country-level export data to third
countries from January 2017 to December 2019. Regressions in Columns (1) and (2) are weighted by last
year’s HS-8 product-level export value. Regressions in Columns (3) - (4) are weighted by last year’s HS-8
product-country-level export value. Standard errors in Columns (1) and (2) are clustered by HS-6 product.
Standard errors in Columns (3) - (4) are clustered by HS-6 product and country. Signiőcance: * 0.10, ** 0.05,
*** 0.01.
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Table A19: Summary statistics

Obs Mean SD Min Max P1 P5 P10 P25 P75 P90 P95 P99
Panel A. China

∆lnp∗igtqigt 2,127,210 0.00 0.71 -14.89 14.81 -1.86 -0.82 -0.50 -0.19 0.20 0.50 0.82 1.87
∆lnqigt 2,127,210 0.00 0.76 -18.66 18.73 -1.91 -0.83 -0.52 -0.19 0.20 0.51 0.83 1.90
∆lnp∗igt 2,127,210 0.00 0.39 -17.39 16.11 -1.14 -0.34 -0.17 -0.05 0.06 0.17 0.33 1.13
∆lnpigt 2,127,210 0.00 0.39 -17.39 16.11 -1.14 -0.34 -0.17 -0.05 0.06 0.17 0.33 1.13
∆ln(1 + τigt) 2,127,210 0.00 0.01 -0.37 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B. United States

∆lnp∗igtqigt 3,318,350 -0.00 0.66 -11.04 11.57 -1.96 -0.78 -0.48 -0.19 0.19 0.46 0.76 1.93
∆lnqigt 3,318,350 -0.00 0.73 -16.75 16.61 -2.24 -0.86 -0.52 -0.20 0.19 0.50 0.83 2.20
∆lnp∗igt 3,318,350 0.00 0.52 -15.60 15.47 -1.60 -0.47 -0.22 -0.06 0.07 0.23 0.46 1.62
∆lnpigt 3,318,350 0.00 0.52 -15.60 15.47 -1.60 -0.46 -0.22 -0.06 0.07 0.24 0.46 1.63
∆ln(1 + τigt) 3,318,350 0.00 0.01 -0.44 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

Notes. All the statistics are weighted by the country-product-level import data in 2017. For China and the
U.S., product codes are deőned at the HS-8 level and HS-10 level, respectively. Sample in Panel A: China’s
monthly country-HS-8-product-level import data from all countries from 2017:1 to 2019:12. Sample in Panel
B: U.S. monthly country-HS-10-product-level import data from all countries from 2017:1 to 2019:12.
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B Appendix: Figures

Figure B1: U.S. and Chinese tariffs

Notes: The őgure presents the U.S. punitive tariffs on Chinese products (solid blue) and its MFN tariffs (dash-
dotted blue), as well as the import-weighted average Chinese retaliatory tariff rates on U.S. products (solid red)
and its MFN tariffs (dash-dotted red). U.S. tariffs are weighed by the U.S. country-HS-10-product-level imports
in 2017. Chinese tariffs are weighed by China’s country-HS-8-product-level imports in 2017.
Source: Authors’ calculations based on data from China’s Ministry of Commerce, Customs General
Administration of China, the United States Census Bureau, United States Trade Representative (USTR), and
United States International Trade Commission.

Figure B2: Import share by products

Notes: The őgure presents China’s imports from U.S. as a share of its total imports from the world (orange) and
U.S. import share from China in 2017 (pink) by product category. Food refers to cooking oil, sugar, drinks, and
tobacco. Plastics refers to plastics, leathers, wood, and paper. Raw Materials refers to chemicals, crude oil, and
mineral products. Textiles refers to textiles and footwear, toys, and furniture. Electronics includes electronics and
equipment. Vehicles includes motor vehicles, ships, and boats. Aircraft includes aircraft, railways, and weapons.

Source: Authors’ calculations based on data from UN Comtrade.
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(a) U.S. statutory tariffs (%)

(b) Chinese statutory tariffs (%)

Figure B3: U.S. and Chinese statutory tariffs by products

Notes: Panel A presents the import-weighted U.S. tariff on Chinese products by industry, where weights are U.S.
HS-10 imports from China in 2017. Panel B presents the import-weighted Chinese tariff rates on U.S. products
by industry, where weights are China’s imports from the U.S. in 2017 varying by HS-8. Food refers to cooking
oil, sugar, drinks, and tobacco. Plastics refers to plastics, leathers, wood, and paper. Raw Materials refer to
chemicals, crude oil, and mineral products. Textiles refer to textiles and footwear, toys, and furniture. Electronics
refers to electronics and equipment. Vehicles refer to motor vehicles, ships, and boats. Aircraft refers to aircraft,
railways, and weapons.
Source: Authors’ calculations based on data from China’s Ministry of Commerce, Customs General
Administration of China, the United States Census Bureau, the United States Trade Representative (USTR),
and the United States International Trade Commission (USITC).
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Figure B4: Distribution of CEMS data using emission relative to standard

Notes: We use őrm-hour level reports of CEMS emissions for SO2, NOx, and Particles 2017-2019, and calculate

emission concentrations relative to the limits. The connected dots show the proportion of relative values for each

0.1 interval. The reductions in bunching behaviors before and after the trade war are consistent with the results

on the reduction in the opportunity cost of pollution emission in Table C12.
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Figure B5: Environmental őne distribution

Notes: We calculate total environmental őne at the city-year level, and plot kernel density curves for all cities.

Grey areas denote the 95% conődence intervals.
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Leather, fur, feathers and their products
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Chemical raw materials and products manufacturing

Non-ferrous metal smelting and processing

Coal mining

Textile and garment

Ferrous metal smelting and processing
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Metal products
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Textile

Mining and auxiliary activities
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Effects on total fine

Figure B6: Tariff and environmental őne, heterogeneity across industries

Notes: This őgure plots the estimated coefficients on ∆USTariffit and 95% conődence intervals. We use the

total őne of different industries as dependent variables. Sample and speciőcations are the same as Table 4

Column(5).
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Figure B7: Bunching of CEMS data before and after the trade war using placebo cutoffs

Notes: We use őrm-hour level reports of CEMS emissions for SO2, NOx, and Particles 2017-2019, and calculate

emission concentrations relative to the limits. We test if there are discontinuities around 10µg/m3. McCrary test

shows t-statistics are -0.3242 and 0.1769 in the pre- and post-period respectively.
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(a) Daytime emissions, January 2017 - June 2018
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(b) Daytime emissions, July 2018 - December 2019
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(c) Nighttime emissions, January 2017 - June 2018
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(d) Nighttime emissions, July 2018 - December 2019

Figure B8: Bunching of CEMS data before and after the trade war, before and after sunset
hours

Notes: We use őrm-hour level reports of CEMS emissions for SO2, NOx, and Particles 2017-2019, and calculate

emission concentrations relative to the limits. We test if there are discontinuities around 0µg/m3. McCrary test

shows t-statistics are -41.5055 and -50.4410 in the pre-period before and after sunset hours respectively. After

July 2018, t-statistics are -7.8167 and -50.4410 in the pre- and post-sunset hours, respectively. We also learn that

the bunching behaviors are similar in the daytime and at night (a vs. c; b vs. d).
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Figure B9: Night time emissions

Notes: Steel mill pollution during the night in Guangxi, June 2019.

Figure B10: Sulfur removal scrubber

Notes: This őgure shows an example desulfurization equipment with the ammonia desalination method.

The discharged gas is treated with cooling and a wet electrostatic precipitator to achieve the elimination

of visible emissions at the chimney exit. The equipment is claimed to remove 99% of particulate

matter, tar, aerosols, acid mist, and free water from the ŕue gas, and 80% of sulfur dioxide and 40%

of nitrogen oxides. Source: Jufeng Environmental Protection Equipment Company, Guangdong, China,

https://www.jfhuanbao.com/xinwenzhongxin/huanbaoxinwenzixun/2209.html.
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C Appendix: Robustness

Table C1: Control for blue-sky plan

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ US Tariff 0.604∗∗∗ 0.923∗∗ 0.974∗∗∗ 0.825∗∗∗ 0.703∗∗∗

(0.183) (0.440) (0.262) (0.278) (0.237)
∆ China Tariff -0.097 -0.112 0.422∗∗∗ -0.647∗∗∗ -0.036

(0.134) (0.272) (0.150) (0.182) (0.158)
KeyRegion × Plan -0.002 0.008 -0.016∗∗ -0.031∗∗∗ -0.011

(0.007) (0.012) (0.008) (0.009) (0.008)
Observations 48868 48868 48868 48868 48868
R-square 0.228 0.169 0.178 0.192 0.239
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Sample period is from 2017:1 to 2019:12. Columns (1) to (5) report logged difference in air
pollution regressed logged difference in tariffs. All columns include year-month and monitor őxed effects.
Standard errors are clustered at the station-month level. Signiőcance: * 0.10, ** 0.05, *** 0.01.

Table C2: Control for environmental inspections

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ US Tariff 0.597∗∗∗ 0.951∗∗ 0.914∗∗∗ 0.711∗∗ 0.662∗∗∗

(0.184) (0.436) (0.261) (0.279) (0.237)
∆ China Tariff -0.096 -0.115 0.430∗∗∗ -0.633∗∗∗ -0.032

(0.134) (0.272) (0.149) (0.182) (0.158)
Inspection 0.014∗∗ -0.014 -0.002 0.006 0.008

(0.006) (0.014) (0.009) (0.009) (0.008)
Observations 48868 48868 48868 48868 48868
R-square 0.228 0.169 0.178 0.192 0.239
Y-mean -0.048 -0.193 -0.027 -0.075 -0.064
Y-sd 0.221 0.402 0.271 0.296 0.275

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Sample period is from 2017:1 to 2019:12. Columns (1) to (5) report logged difference in air
pollution regressed logged difference in tariffs. All columns include year-month and monitor őxed effects.
Standard errors are clustered at the station-month level. Signiőcance: * 0.10, ** 0.05, *** 0.01.
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Table C3: Robustness: Month-on-month change in pollution

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff) 3.402∗∗∗ 0.980 0.149 5.030∗∗∗ 1.920
(0.978) (1.176) (0.973) (1.277) (1.176)

∆ln(CHNTariff) -1.612∗∗∗ -1.017∗∗ -0.183 -1.777∗∗∗ -2.103∗∗∗

(0.354) (0.472) (0.459) (0.567) (0.463)
Observations 49044 49044 49044 49044 49044
R-square 0.400 0.211 0.444 0.409 0.438
Y-mean -0.008 -0.021 -0.004 -0.009 -0.010
Y-sd 0.227 0.301 0.250 0.309 0.275

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Standard errors are clustered at the station-month level.

Table C4: Robustness: Dropping 2017

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff) 0.733∗∗∗ 1.845∗∗∗ 0.900∗∗∗ 1.053∗∗∗ 0.696∗∗∗

(0.202) (0.459) (0.299) (0.309) (0.268)
∆ln(CHNTariff) 0.324∗∗ 0.330 0.794∗∗∗ -0.158 0.477∗∗

(0.159) (0.289) (0.171) (0.208) (0.190)
Observations 32334 32334 32334 32334 32334
R-square 0.265 0.230 0.209 0.236 0.282
Y-mean -0.065 -0.215 -0.061 -0.089 -0.089
Y-sd 0.217 0.383 0.251 0.291 0.271

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Standard errors are clustered at the station-month level.

Table C5: Robustness: City-month level pollution

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff) 0.629∗∗ 1.649∗∗ 0.482 0.853∗ 0.571
(0.309) (0.683) (0.337) (0.437) (0.393)

∆ln(CHNTariff) -0.084 -0.077 0.669∗∗∗ -0.658∗∗ -0.140
(0.229) (0.432) (0.207) (0.295) (0.265)

Observations 11844 11844 11844 11844 11844
R-square 0.241 0.209 0.239 0.206 0.257
Y-mean -0.052 -0.193 -0.034 -0.081 -0.069
Y-sd 0.213 0.333 0.223 0.278 0.266

City FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y
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Notes: Standard errors are clustered at the city-month level.

Table C6: Robustness: Weighted regression using city GDP

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff) 1.102∗∗ 0.289 0.600 1.529∗∗ 0.966
(0.558) (0.905) (0.490) (0.739) (0.649)

∆ln(CHNTariff) -0.107 -0.910∗ -0.244 -0.577 0.032
(0.354) (0.476) (0.268) (0.498) (0.392)

Observations 10332 10332 10332 10332 10332
R-square 0.251 0.254 0.288 0.220 0.268
Y-mean -0.050 -0.211 -0.035 -0.078 -0.065
Y-sd 0.202 0.283 0.186 0.257 0.240

City FEs Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Standard errors are clustered at the city-month level.

Table C7: Placebo: effect of the current tariff on last year’s pollution

∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff) -0.788∗ -0.314 -0.338 -1.028∗ -0.772
(0.420) (0.627) (0.451) (0.580) (0.501)

∆ln(CHNTariff) -0.048 -0.003 0.036 -0.205 0.053
(0.238) (0.381) (0.215) (0.304) (0.266)

Observations 48630 48630 48630 48630 48630
R-square 0.232 0.161 0.158 0.194 0.232
Y-mean -0.051 -0.172 -0.010 -0.082 -0.057
Y-sd 0.233 0.433 0.306 0.308 0.287

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Standard errors are clustered at the monitor-month level.

Table C8: Placebo: effect of the tariff on weather conditions

∆ln(Temperature) ∆ln(Wind speed) ∆ln(Humidity)

∆ln(USTariff) -0.192 -0.077 -0.056
(0.570) (0.278) (1.416)

∆ln(CHNTariff) 0.313 0.009 0.732
(0.357) (0.153) (0.576)

Observations 9306 9306 9306
R-square 0.275 0.223 0.218
Y-mean -0.001 0.000 -0.047
Y-sd 0.286 0.124 0.475

Monitor FEs Y Y Y
Year-Month FEs Y Y Y
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Notes: Standard errors are clustered at the city-month level.

Table C9: Effect on air pollution non-attainment relative to air quality standards

Panel A: Excellent standards
∆ln(AQI) ∆ln(SO2) ∆ln(NO2) ∆ln(PM2.5) ∆ln(PM10)

∆ln(USTariff) 0.929∗∗∗ 0.349∗∗∗ 0.258∗∗∗ 0.314∗∗ 0.870∗∗∗

(0.122) (0.102) (0.083) (0.136) (0.128)
∆ln(CHNTariff) 0.178∗∗∗ 0.035 0.079∗ -0.106 0.271∗∗∗

(0.064) (0.054) (0.044) (0.072) (0.065)
Observations 52812 52812 52812 52812 52812
R-square 0.736 0.771 0.810 0.748 0.742
Y-mean 0.591 0.092 0.084 0.458 0.586
Y-sd 0.266 0.241 0.230 0.292 0.271

Panel B: Good standards

∆ln(USTariff) 0.153 0.157∗∗ 0.258∗∗∗ 0.205∗ 0.058
(0.107) (0.080) (0.083) (0.107) (0.091)

∆ln(CHNTariff) -0.015 0.098∗∗ 0.079∗ 0.012 0.057
(0.057) (0.045) (0.044) (0.054) (0.054)

Observations 52812 52812 52812 52812 52812
R-square 0.750 0.833 0.810 0.743 0.767
Y-mean 0.201 0.068 0.084 0.173 0.141
Y-sd 0.267 0.228 0.230 0.262 0.247

Monitor FEs Y Y Y Y Y
Province time trends Y Y Y Y Y
Year-Month FEs Y Y Y Y Y

Notes: Standard errors are clustered at the monitor-month level.

Table C10: Restricting őrms with observations every quarter

∆ln(Particles) ∆ln(SO2) ∆ln(NOx)

∆ln(USTariff) 25.717∗∗∗ 30.882∗∗ -12.692
(8.629) (14.268) (8.894)

∆ln(CHNTariff) 0.347 -4.999 -2.744
(3.125) (5.251) (3.511)

Observations 773 702 762
R-square 0.512 0.501 0.494
Y-mean -0.115 -0.204 -0.106
Y-sd 1.066 1.228 0.745

Firm FEs Y Y Y
Year-Month FEs Y Y Y

Notes: Sample period is 2018-2019. Firms are required to report data
every quarter. Standard errors are clustered at the province level.
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Table C11: Emission concentration relative to limits

(Concentration - limit) / limit
∆∆ln(Particles) ∆∆ln(SO2) ∆∆ln(NOx)

∆ln(USTariff) 26.817∗∗∗ 24.209 -10.608
(7.903) (27.569) (17.314)

∆ln(CHNTariff) 3.347 -7.400 2.419
(7.570) (17.809) (10.377)

Observations 2868 2739 2711
R-square 0.489 0.478 0.328
Y-mean -0.303 -0.309 -0.123
Y-sd 1.244 1.885 1.839

Firm FEs Y Y Y
Year-Month FEs Y Y Y

Notes: Standard errors are clustered at the province level.

Table C12: Tariff and environmental őne using őne month

∆ln(#Events) ∆ln(#Events with őne) ∆ln(Total őne) ∆ln(Fine per event)
(1) (2) (3) (4)

∆ln(USTariff) -1.836 -2.132 -8.263 -7.224
(1.915) (1.831) (10.657) (9.926)

∆ln(CHNTariff) -4.451∗∗∗ -4.729∗∗∗ -26.203∗∗∗ -23.055∗∗∗

(1.270) (1.189) (6.200) (5.738)
Observations 11593 11593 11593 11593
R-square 0.187 0.159 0.100 0.086
Y-mean 0.103 0.078 0.390 0.330
Y-sd 1.248 1.181 5.943 5.451

City FEs Y Y Y Y
Year-Month FEs Y Y Y Y

Notes: Sample period is from 2017:1 to 2019:12. We use the inconsistently-recorded őne month to merge with city-month
level tariff. All columns include year-month and city őxed effects. Standard errors are clustered at the province-year level.

Table C13: Tariff and environmental őne of unrelated sectors

∆ln(Total őne) ∆ln(Fine per event)
(1) (2)

∆ln(USTariff) -10.948 -27.959
(18.140) (21.690)

Observations 5904 5904
R-square 0.169 0.168
Y-mean 0.069 0.109
Y-sd 3.999 5.182

City FEs Y Y
Year-Month FEs Y Y
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Notes: Sample period is from 2017:1 to 2019:12. We stack our
sample 12 times to merge city-year level őne with city-month level
tariff. Non-manufacturing industries include dining and restaurants,
sports, entertainment, insurance, education, hotels, and social work,
which primarily includes neighborhood committees and street offices. All
columns include year-month and city őxed effects. Standard errors are
clustered at the province-year level.
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