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Almost by definition, maintaining high levels of physical and cognitive func-

tioning into old age are key factors for successful ageing. Numerous studies have

studied the factors influencing either physical health or cognition. However, the

bio-medical literature shows both processes to be closely intertwined. On the one

hand, high levels of cognitive functioning allows planning of health-related ac-

tivities, gauging the consequences of actions, and adhering to medication plans.

On the other hand, shocks to physical health have shown to predate declines in

cognitive health. We take a broad and systematic approach to model the interde-

pendency of physical health and cognitive functioning over the last third of the life-

cycle. To do so, we adapt the model by Cunha, Heckman, and Schennach (2010),

originally developed for the development of human capital during childhood and

adolescence. In our case, the approach combines factor models for physical health,

cognition, and investments into both of these with a nonlinear framework to de-

scribe their evolution over time. We use the HRS data from 2002–2016, which

gives us individual trajectories of physical and cognitive capacity, and investments

over ages 68 to 93 years. Our key results indicate 1) the measurement system

and nonlinear dynamics are important modelling components, 2) the rank order

of latent factors is remarkably stable, and 3) physical and cognitive capacity can

be influenced by investments until very high ages.
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1 Introduction

Development and maintenance of human capital throughout the life-course en-

ables individuals to lead longer, more productive and more satisfactory lives. The

notion of human capital thereby comprises a broad range of abilities including

skills, knowledge, health, and functioning, which, in turn, may influence each

other and shape individuals’ capabilities, behaviors and experiences throughout

their life-courses (World Bank, 2018). While there is a large economic literature

on early-life human capital development and its effects on adult outcomes (Heck-

man and Mosso, 2014), fewer studies in economics have analyzed the roles of

context, individual investments and corresponding technologies for the mainte-

nance and depreciation of human capital during later life within an integrated

framework to model later-life human capital dynamics (McFadden, 2008). Re-

flecting economists’ larger focus on early-life human capital accumulation relative

to human capital maintenance and depreciation, economic studies on the later-life

dynamic interplay of key forms of human capital and the role of investments in

these processes remain relatively scarce to date.

Physical and cognitive capacity represent two key forms of human capital

during adulthood and are perhaps the most important forms of human capital

at older ages, especially after retirement. Physical and cognitive capacity are key

determinants of many important outcomes in health economics and beyond such

as mortality, healthcare use and healthcare cost and spending, falls and disability,

long-term care needs and nursing home use, economic and social participation

and subjective wellbeing to name but a few (Organization, 2015). As a result,

investments in the maintenance of physical and cognitive capacity are key to

ensuring a healthier, longer, and happier old-age that puts less strain on health

and long-term care systems. Moreover, since many of these outcomes are highly

uncertain, demand for various healthcare and long-term care related insurance

products depends on the later-life dynamics of physical and cognitive capacity

(Hosseini, Kopecky, and Zhao, 2022). Understanding the later-life dynamics of

physical and cognitive capacity is, therefore, a key pre-requisite and input into

models aimed at studying the role of later-life human capital on these important

later-life outcomes and related investment and insurance decisions.

While physical and cognitive capacity tend to decline during later life (Niccoli

and Partridge, 2012). there is considerable heterogeneity in the onset and speed of

such aging-related declines across individuals, which is often related to individual

differences in exposures and investments (Crimmins, 2020). What is more, several

studies have actually shown significant improvements in later life physical and cog-

nitive capacity following targeted investments such as physical exercise programs

or cognitive trainings, suggesting that both physical and cognitive function remain

malleable even at very high ages (Ball, Berch, Helmers, Jobe, Leveck, et al., 2002;

Fiatarone, O’Neill, Ryan, Clements, Solares, et al., 1994). This evidence suggests
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that aging-related changes in function are not fully pre-determined biologically

but can be postponed, slowed down, compensated and in certain instances per-

haps even (temporarily) reversed or overcompensated through appropriate later-

life investments. These findings highlight the important role of health investments

for physical and cognitive capacity throughout the entire life course. This remains

true even if early-life health investments into health to build up “reserves” for later

life may be more efficient due to a higher degree of malleability early in life, the

longer time horizon available to capitalize on early investments, and potentially

important complementarities of health investments over time (Cunha, Heckman,

and Schennach, 2010).

Besides documenting the continued malleability of physical and cognitive ca-

pacity during later life, the more recent literature in gerontological science has

also found evidence potentially important cross-effects of physical function on cog-

nitive function and vice versa. These cross-effects may go beyond the responses of

physical and cognitive function due to common risk factors such as physical inac-

tivity or diseases affecting both physical and cognitive capacities such as Parkin-

son’s disease and represent more general connections between physical and cogni-

tive capacity (Clouston, Brewster, Kuh, Richards, Cooper, et al., 2013). Evidence

for such connections comes from both observational studies and RCTs, often but

not always focused on the connection between cognitive and gait (dys-)function

(Montero-Odasso, Verghese, Beauchet, and Hausdorff, 2012). In view of these

findings, economic models of human capital maintenance and depreciation during

later life should thus allow for flexible later-life dynamics of physical and cogni-

tive capacities that can incorporate different forms of investment, and possible

cross-effects between physical and cognitive capacities.

Varied existing conceptualizations of physical and cognitive capacity used in

the literature and potentially widespread measurement error in physical and cog-

nitive assessments in survey data and self-reported health investments further

complicate the already complex task of capturing the joint dynamics of later-life

physical and cognitive capacity and related investments (Baker, Stabile, and Deri,

2004; Bound, Brown, and Mathiowetz, 2001; Hosseini, Kopecky, and Zhao, 2022;

Kapteyn, Banks, Hamer, Smith, Steptoe, et al., 2018). Physical capacity, for ex-

ample, is a multifaceted concept that is generally assessed through multiple self-

reported and/or performance-based survey items presenting noisy measurements

for underlying true physical capacity (Kasper, Chan, and Freedman, 2017). Sim-

ilarly, cognition comprises a range of different cognitive functions such as such

as perception, attention, intelligence, knowledge, memory and working memory,

judgement, reasoning, computation, problem solving or comprehension, whose

corresponding measurements have signal value for overall cognitive capacity (Salt-

house, 2010, 2012). Perhaps more surprisingly, even commonly used survey items

for health investments such as self-reported physical activity contain substantial

measurement error relative to actual health investments and, therefore, need to

3



be treated with caution (Kapteyn et al., 2018)). Given the large potential for sig-

nificant measurement error in survey-based assessments of physical and cognitive

capacity and corresponding health investments documented in the literature, it

seems prudent to employ an analytical framework that can readily accommodate

such measurement errors when analyzing the joint dynamics of these outcomes.

The main objective of this paper is to estimate the technology for human cap-

ital maintenance and depreciation in later-life focusing on the dynamic interplay

between later-life physical and cognitive capacity and corresponding investments

among older adults in the US. To this end, we propose the use of a non-linear dy-

namic latent factor model as first proposed by Cunha, Heckman and Schennach

(Cunha, Heckman, and Schennach, 2010) as a framework to model early-life hu-

man capital accumulation to study later-life human capital depreciation processes

using longitudinal data from the US Health and Retirement Study (HRS). Ap-

plying this framework to investigate the joint dynamics of later-life physical and

cognitive capacity and related investments is very attractive as such a non-linear

dynamic latent factor model can incorporate the main aforementioned stylized

facts about human capital depreciation, i.e., (1) allowing for a joint modelling of

physical and cognitive capacity and investments that can incorporate potentially

important cross-domain effects; (2) integrating the continued malleability of both

physical and cognitive capacity into the model to study dynamically optimal in-

vestment paths and (3) accounting for error in the measurement of physical and

cognitive function and corresponding investments in a context where there are

several measurements of each of these domains in many commonly used data set,

but each measurement is like to provide only a noisy signal for the underlying

construct at hand. In addition to accommodating key stylized facts about human

capital maintenance and depreciation into a unified framework, our models also

allows us to identify the distribution of latent factors from noisy measurements,

simulate the effects of different investment patterns on physical and cognitive ca-

pacity, calculate optimal investment patterns, notably the role of investments for

human capital maintenance in younger old vs older old individuals, and anchor

the results in interpretable metrics such as survival probabilities.

Our paper relates to two strands of research in economics, one methodological

one on the use of non-linear dynamic latent factor models for estimating dynamic

human capital production, which has-to the best of our knowledge-so far only

been applied to the case of human capital accumulation in early life but not to

human capital maintenance and depreciation in later life, and one more substan-

tive one on the measurement and modelling of health dynamics during adulthood

and later life. From a methodological point of view, our paper transfers widely

used methods for the study of early-life human capital accumulation to the study

of later-life dynamics of physical and cognitive function and eventual mortality.

As a technical contribution, we show how to incorporate mortality into the frame-

work and improve the numerical stability of a well known maximum likelihood
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estimator. By applying non-linear dynamic latent factor models to questions of

aging and later life health dynamics, we show the usefulness of these methods to

study human development not just in early life but across the entirely life-course,

especially since many of the modelling and measurement issues mentioned above

seem common to both ends of the life-course. As a result, we hope that our paper

will aspire a larger group of life-course and aging researchers to consider such

models in their research both in health economics and related fields.

Substantively, we contribute to the literature on how to measure and model

later-life health dynamics in situations were we observe multiple potentially very

noisy measurements for fewer latent concepts such as physical and cognitive capac-

ity, which has long challenged empirical analyses in health economics and beyond.

More specifically, one important issue in this literature is how to measure health

in a comprehensive yet parsimonious way in view of the multifaceted nature of

health on the one hand and the common need for dimensionality reduction in

econometric models on the other. To address this trade-off, one set of commonly

adopted approach to measuring health is to directly use (usually ordered measure-

ments of) self-rated health as summary measure of health as outcome of interest

(Contoyannis, Jones, and Rice, 2004; Heiss, 2011; Latham and Peek, 2012). This

approach is generally motivated by a high predictive value of self-rated health for

mortality (Idler and Benyamini, 1997). Alternatively to directly using self-reports

to measure health, a commonly used alternative approach is to “instrument” health

via a larger and “more objective” set of individual health measurements,such as

information on specific health conditions, functional limitations, performance test

results or anthropometric measures. This approach endogenously derives weights

for aggregating the more detailed set of individual health measurements into a

single health index that can then be used in further analysis (Cutler and Richard-

son, 1997; Jürges, 2007). Relative to using self-rated health directly as outcome,

the approach aims to improve measurement by using “more objective” measures

of health to construct an underlying health index, whereby the weights attributed

to each detailed and “more objective” health measure in the final health index

is determined by the partial association of the respective detailed health measure

with self-rated health. While this approach can address some known issues with

self-rated health, such as potential age-, sex- or SES-dependent reporting hetero-

geneity (Dowd and Zajacova, 2007, 2010; Lindeboom and Van Doorslaer, 2004),

there is often still considerable measurement error in the “more objective” health

measures that cannot be purged using this approach and may require further

consideration (Baker, Stabile, and Deri, 2004; Maurer, Klein, and Vella, 2011). A

second related approach side-steps the use of self-rated health entirely and instead

uses principal component analysis of the more detailed health measurements to

derive lower dimensional health indices (Jenicek, Cleroux, and Lamoureux, 1979;

Nakazato, Sugiyama, Ohno, Shimoyama, Leung, et al., 2020; Poterba, Venti, and

Wise, 2017). A third and increasingly popular approach simplifies the aggregation
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process for the more detailed health measurements even further by constructing a

so-called “frailty index” or “deficit index”, which simply consists of the total num-

ber of prevalent “health deficits” divided by the total number of potential “health

deficits” (Hosseini, Kopecky, and Zhao, 2022; Rockwood and Mitnitski, 2007). A

such constructed “frailty index”/“deficit index” is thus bounded to lie between

zero and one and represents the percentage of potential “health deficits” already

suffered by a given individual. A final set of studies refrains from performing

some form of dimensionality reduction and uses the more detailed health mea-

sures directly in their analyses, either in isolation or simultaneously. As this is, for

example„ the standard approach of disease-based analyses, most published papers

on health adopt this latter approach.

While all of the aforementioned approaches have their respective advantages

and disadvantages in measuring and modelling health in economic applications

and have been employed with some success in the literature, they have mainly

been used to describe the dynamic evolution of health during adulthood as in-

puts for structural models in health economics concerning retirement, housing or

insurance decisions rather than studying the production technology of later life

health maintenance or depreciation directly. Regarding the latter, the aforemen-

tioned approaches have some potential downsides that we aim to address in this

paper. First, to the best of our knowledge, our paper is the first to explicitly study

the dynamic interplay between physical capacity, cognitive capacity and related

investments in the context of a structural non-linear dynamic latent factor model

as first proposed by Cunha, Heckman, and Schennach (2010), which can gen-

erate new insights on the dynamic relationships between physical and cognitive

capacity as well as investment into these important facets of human capital. Sec-

ond, explicitly distinguishing between physical and cognitive capacity is thereby

not only important due to increasing evidence for potentially important cross-

effects between the two health domains cited above but also in view of likely

differences in the consequences of depleted levels of physical vs cognitive capacity

for functioning, participation and other important later life outcomes (Amengual,

Bueren, and Crego, 2021; Crimmins, 2020). In the economics literature, there is

to date only limited evidence on the potential cross-effects between physical and

cognitive capacity maintenance with Schiele and Schmitz (2023) being a notable

exception studying the effects of adverse physical health shocks on cognitive ca-

pacity in later life using non-structural event study methods. Third, our approach

can accommodate a situation where information about a few latent factors needs

to be extracted from many measurements of the underlying construct which can

potentially suffer from severe measurement error.

Our analysis complements the aforementioned approaches to modelling and

analyzing later-life health by delivering new insights on the dynamics of later-

life human capital and related investments among older adults in the US. Our

approach, thereby, highlights the structural production function of older adults
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concerning the maintenance and depreciation of physical and cognitive capacity.

complementing more descriptive approaches. Our key findings are as follows: 1)

There is substantial noise in all observed variables. While most measurements have

a high correlation with the latent factor they measure, no single measurement

dominates to an extent where it would be justified to just use a single variable

and ignore the measurement error in the econometric analysis. 2) Despite a strong

decline in means for physical and cognitive capacity, the rank order of these latent

factors is remarkably stable. 3) Physical and cognitive capacity can be influenced

by investments until very high ages. Cognitive stimulation is a specific investment

into cognitive capacity. Physical exercise has a larger effect on physical capacity

and a small effect on cognitive capacity.

The remainder of the paper is organized as follows: Section 2 provides in-

formation on our main data source and gives detailed description of the factor

measurements. Section 3 describes our empirical approach and the challenges

associated with it. Section 4 presents and discusses our results, and section 5

concludes.

2 Data and measurements

We base our empirical analysis on the 1992-2016 waves of the Health and Re-

tirement Study (HRS) conducted by The University of Michigan. The HRS offers

longitudinal panel data with representative sample of approximately 40, 000 in-

dividuals living in the U.S. and aged 50 and above. The HRS core questionnaire

offers rich set of measures of physical health, mental status, and behaviors. Mea-

sures of physical and cognitive capacities include self-reported diagnoses, subjec-

tive assessments, and objective biomedical markers. Additional off-wave surveys

offer additional measures that are particularly relevant for our analysis. Specif-

ically, we employ the Consumption and Activities Mail Survey (CAMS) (Health

and Retirement Study, 2022b) to extract measurements for Exercise and Cogni-

tive Stimulation.

Wherever possible, we include data prepared by the RAND corporation

(Health and Retirement Study, 2022c), which provides a harmonized and easy-

to-use version of the core HRS data. Out of the many variables we need, several

are not included in the RAND HRS data, however, and we recur to the original

core files (Health and Retirement Study, 2022b).

We start our analysis at age 68, when most people are retired and we start to

see meaningful variation in the measures for physical and cognitive capacity that

we have at our disposal. The last age we consider is 93, after which the sample

size becomes small. Since the HRS questionnaire is administered biannually, we

work with two-year transitions and age groups. For conciseness, we refer to these

age groups by the lower bound included – “age 68” thus includes ages 68 and
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69, and at the other end of the spectrum “age 92” comprises ages 92 and 93.

Because men and women show very different aging patterns, we estimate the

model separately for each gender and present all statistics in that way.

We standardize almost all measures to have mean zero and unit variance

in the first age group included in our data. Any age trends are thus preserved.

For example, until age 90, the mean of (residualized) grip strength declines by

around 1.4 original standard deviations. At the same time, the dispersion of grip

strength shrinks to around 80% of its original standard deviation. For categorical

variables, all of which have numerical values with spacing 1, we add noise using

uniform distributions on the unit interval. This preserves the original ordering and

improves the numerical stability of the estimator below. Figure 1 shows the age

trends in averages of all measurements; Figure A.1 in Appendix A presents the

same trends in their standard deviations.

2.1 Physical Capacity

We employ six variables as measurements for physical capacity. Quite naturally,

vital status is a dummy for being alive, which becomes zero in the first HRS wave

after an individual has died. It is set to missing thereafter, so that the average of

this variable can be interpreted as the probability of surviving until the next survey

wave. The first row of Figure 1 shows the age trends in our measures of physical

capacity. Unsurprisingly, survival probabilities decreases in age both for women

(Figure 1a) and men (Figure 1b). Note that the level of survival probabilities is

depressed because the HRS is very good at tracking respondents’ dates of death

even when they have not responded to previous waves. In this version of the data

preparation, individuals who did not respond to a survey round would not enter

the denominator of vital status.

The second measurement shown in Figures 1a and 1b is a version of the

frailty index used, for example, in Hosseini, Kopecky, and Zhao (2022). The

frailty index is the unweighted sum of all recorded medical conditions a doctor

has diagnosed in an individual. These conditions comprise high blood pressure,

diabetes, cancer, lung disease, heart disease, stroke, psychiatric problems, and

arthritis. We reverse it so that higher values indicate better health. The reversed

frailty index declines by 0.4 (women) and 0.3 (men) original standard deviations

until the end of the age range we consider. Note that this trend and all those we

will subsequently discuss are conditional on survival. Due to the high predictive

power of the frailty index for mortality—as noted by Hosseini, Kopecky, and Zhao

(2022) and others—the effect of mortality selection is particularly large here. For

individuals still alive at age 80, average frailty at age 68 is 0.39 among women

and 0.34 among men. By including vital status among the health measures, our

model below will take care of this to some extent, but it is important to keep in

mind for the descriptive statistics.
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Grip Strength measurements were introduced to the HRS survey in 2006 and

consist of in-home physical tests of the hand grip strength, conducted twice for

each hand. To obtain our variable of use, we average the four measurements.

Our measure of grip strength is then the residual of a regression of average grip

strength on individuals’ height. We partial height out because of the high cor-

relation between height and grip strength (Steiber, 2016) and we do not expect

differences in grip strength associated with differences in height to be indicative of

physical capacity. Among all measures pertaining to physical health, grip strength

shows the steepest decline.

Mobility summarizes difficulties in performing the various activities of daily

living: walking several blocks, walking one block, walking across the room, climb-

ing several flights of stairs, and climbing one flight of stairs. As with the frailty

index, we add up indicators for each measurement and reverse the scale so that

higher values are associated with greater mobility. Mobility declines strongly in

age. At the same time, its standard deviation rises as mobility impairments be-

come more frequent over time.

Closely related, the Large Muscle Index summarizes difficulties in performing

a number of activities associated with large muscles’ strength. These activities are

sitting for two hours, getting up from a chair, stooping ot kneeling or crouching,

and pushing or pulling a large object. Again, we revert the order of the values to

have a positive association between the variable and physical capacity.

Finally, Self-Reported Health is a measure of health that is based on the

respondent’s self-assessed rating of their general health status. The values range

from 1 (poor) to 5 (excellent). It probably is the most common health measure

employed by economists as it provides an individuals’ summary of her/his health

in a single measure.

2.2 Cognitive Capacity

HRS interviews include a rich set of tests measuring respondents’ cognitive capac-

ity. For respondents that do not answer some of the cognitive test questions, HRS

assumes non-random missing values and provides cross-wave imputation data in

special data files (Health and Retirement Study, 2022a). Our measures of cogni-

tive capacity are based on these cognitive tests and respondents’ subjective rank-

ing of their general memory status. In total, we employ five measures of cognitive

capacity.

Serial 7 Subtraction is our first measure and is based on the test of serial

sevens (SST) during which respondents are asked to subtract 7 from 100 and

continue subtracting 7 from each resulting number for a maximum of five times.

The respondents are then assigned scores based on the total number of correct

answers. In psycho-medical literature SST has widely been used to assess cognitive

status of patients with dementia and been generally regarded as a measure of
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(a) Physical capacity, females (b) Physical capacity, males

(c) Cognitive capacity, females (d) Cognitive capacity, males

(e) Exercise, females (f) Exercise, males

(g) Cognitive Stimulation, females (h) Cognitive Stimulation, males

Figure 1. Average measurements by age

10



concentration (Karzmark, 2000). Figures 1c and 1d demonstrate a steady decline

in concentration, as measured by the serial sevens, for both men and women, from

our youngest age group to the oldest one being somewhat larger for women (0.5

units of original standard deviaton) than for men (0.4 units of original standard

deviation).

Our second measure of cognitive capability is Vocabulary which is a test sum-

marizing respondents’ ability to provide correct definitions of words from a list of

five words. One of two sets of words is assigned randomly at the first interview,

and alternating sets are given during subsequent interviews. The two alternating

sets of words are 1) repair, fabric, domestic, remorse, plagiarize; and 2) conceal,

enormous, perimeter, compassion, audacious. We can see in Figures 1c and 1d

that the vocabulary test has an age trend similar to that of the Serial 7 Subtrac-

tion, both in terms of absolute slopes and relative differences between men and

women.

Immediate Word Recall is the third variable in Figures 1c and 1d and results

from a test that asks the respondents to recall words (in any order) form a list of

ten (later waves) or twenty (earlier waves) words, directly after being read the

list. Examples of words included in a list are lake, car, army, etc. In in the initial

wave, respondents were randomly assigned a list from the set of four lists and

during the consequent four waves there were assigned a different list (McCammon,

Fisher, Hassan, Faul, Rodgers, et al., 2022). Delayed Word Recall has the same

structure as immediate word recall. In this task, respondents are asked to recall

the same list of words once more, after spending several minutes on answering

other survey questions. Word recall tests are widely used as measures of episodic

memory frequently administered to patients with alzheimer’s disease (see, e.g.,

Dixon and Frias, 2014; Runge, 2015).

Both of the word recall variables being measures of the same conceptual vari-

able (episodic memory) perhaps explains the similar trends that they display. Of all

the measurements of cognitive capacity, word recall variables have the sharpest de-

cline over the age span in our model, and as with other measurements, the decline

is larger for women than for men, with the caveat that our data are conditional

on survival.

Finally, Self-Rated Memory, is our last measure of cognitive capacity and is

based on respondents’ self-assessed rating of their general memory status. The val-

ues range from 1 (poor) to 5 (excellent). Self-Rated Memory displays a moderate

decline in both genders, which has a somewhat more pronounced trend among

men.

2.3 Exercise and Cognitive Stimulation

We use Vigorous, Moderate and Light Activities as measures for investment in

physical health. Each of these survey questions asks respondents how often they
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do vigorous (running, jogging, cycling, etc.), moderate (gardening, cleaning the

car, walking at moderate pace, dancing, stretching) and light/mildly energetic

(vacuuming, laundry, home repair), respectively.v Figures 1e and 1f show that

with age people do less of all types of physical activities, with largely similar

trends for men and women.

To obtain measures for cognitive stimulation, we utilized the CAMS survey

which allowed us to construct measures of time respondents spend on different

cognitively stimulating activities. Among these, our first measurement of cognitive

stimulation is Reading that counts weekly hours spent on reading books, news-

papers, or magazines. The association between reading and cognitive decline has

been studied in psycho-medical literature, and reading has been found to be posi-

tively associated with hampered cognitive decline (Chang, Wu, and Hsiung, 2021).

In Figures 1g and 1h we see that Reading has declining trend among women and

is rather stable among men.

The second variable in Figures 1g and 1h is Listening to Music, and it meaus-

res how many hours weekly respondents listen to music. The effects of music

listening on cognitive functioning of at-risk patients have been studied in psycho-

medical literature, and listening to music has been found to be beneficial for

cognitive functioning (see, e.g., Sąrkąmö and Soto, 2012; Sąrkąmö, Tervaniemi,

Laitinen, Forsblom, Soinila, et al., 2008). As with most measurements of cognitive

stimulation, we observe a declining age trend for Listening to Music both among

men and women.

Our last variables for cognitive stimulation are Stimulating Hobbies and Com-

munication which summarize how many hours respondents spend weekly on var-

ious hobbies that may be expected to stimulate cognition, and the weekly hours

spent on interacting with others, respectively. Stimulating Hobbies aggregates the

survey variables that ask how many hours respondents spend on: 1) playing cards

or solving jigsaw puzzles, 2) singing or playing instruments, 3) doing arts and

crafts, and 4) going to movies or lectures. We construct the Communication vari-

able as the sum of hours spent on visiting with others in person and communica-

tion via letters/phone/email. Looking at Figures 1g and 1h, Communication has

similarly declining tred among men and women, whereas Stimulating Hobbies has

a steeper slope for women and than for men.

2.4 Raw correlations in the data

Figures 2 and 3 show correlation matrices for women and men, respectively. Each

figure contains two panels. The upper panels show within-period correlations until

1. The continuous availability of these three measures is one of the reasons for not using the

first few HRS waves. Up until the sixth wave (year 2002) respondents were only asked if they do

vigorous activities at least three times a week. Starting from wave seven, this questionnaire item

was replaced by the three activity questions that we use in our study.
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age 79, the lower panels do the same ages 80 and above. We show the lower

triangular part of the correlation matrix. We leave out the indicator for being

alive because we only measure the other variables whenever it is one. In addition

to showing the numbers, we color the matrix’ elements such that a correlation of

1 is dark red, 0 is white, and −1 is dark blue. Scaling is linear on both sides of the

origin. Variables are ordered by factor, which we include in the label of the first

measure pertaining to it. The measures in the first five rows and columns—from

the reversed frailty index until self-reported health—load on physical capacity.

The subsequent block of five rows and columns load on cognitive capacity. In the

lower part of the matrix, exercise and cognitive stimulation load on three and four

measures, respectively.

Several patterns are visually apparent in all four correlation matrices. First of

all, the blocks of measures pertaining to each factor are clearly visible as having

substantial cross-correlation throughout. For example, the first four entries in the

first columns are the correlations of the reversed frailty index with the other

measures loading on physical capacity. Across all four panels, correlations are at

least 0.3 with the exception of the correlation of reversed frailty and grip strength,

which is at least 0.1 throughout.

Similarly, the triangle with correlations for measurements pertaining to cogni-

tive capacity—with the three corners (Serial 7 Subtraction, Vocabulary), (Serial

7 Subtraction, Self-Rated Memory), and (Delayed Word Recall, Self-Rated Mem-

ory)—has distinctly dark colors throughout. Unsurprisingly, correlations are par-

ticularly large between the two word recall tasks. The three correlations between

the various types of physical activity are high throughout. The six elements to the

bottom right to the matrix contain the correlations among the measures loading

on cognitive stimulation. Among all factors, these have the weakest within-factor

correlations with values ranging from 0.09 to 0.25. This is not very surprising

as the variables do cover a much wider range of activities than, say, the various

activity levels that load on exercising.

A second salient feature is that almost all elements are positive. This implies

that it is important to model physical and cognitive capacity jointly with each

other and with the two types of investments. This being written, there are clear

level differences. Maybe unsurprisingly, the largest correlations are between mea-

sures of exercise and those of physical capacity. Most measures of cognitive capac-

ity are substantially and positively related to variables measuring physical capac-

ity and exercise, respectively. The correlation patterns are somewhat more mixed

when it comes to cognitive stimulation and the other three factors.

This is related to our third broad observation: While the general patterns

noted so far hold up across age groups and genders, there are some important

differences. For example, the correlations of grip strength with other health mea-

sures are higher among women than among men, particularly at higher ages. Cor-

relation patterns of individual measures pertaining to cognitive stimulation and
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(a) Aged below 80

(b) Aged 80 and above

Figure 2. Cross factor measurement correlations (female).
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(a) Aged below 80

(b) Aged 80 and above

Figure 3. Cross factor measurement correlations (male).
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cognitive capacity are quite distinct among men and women, particularly at older

ages. For example, among individuals aged 80 and above, reading and serial 7

subtraction have a correlation of 0.27 among women whereas it is 0.18 among

men. Among women in this age group, listening to music is slightly negatively

correlated with serial 7 subtraction and vocabulary scores. For men, the same

correlations are small and positive.

While these patterns are informative, the 2× 2× 153 numbers in Figures 2

and 3 are clearly too many to make sense of directly – and the matrices already

reduce the 13 periods we observe in our data to 2. In the next section, we outline

a framework that constructs latent variables for our four factors and which allows

us to interpret their joint evolution.

3 Model

3.1 The Technology of Aging

Analyzing the joint evolution of physical and cognitive capacity and the effect

physical exercise and cognitive stimulation have on both poses many econometric

challenges.

(1) As discussed in the previous section, there are many potential observed vari-

ables to measure each concept we analyze. In order to make the results inter-

pretable, their dimensionality has to be reduced.

(2) All observed variables are subject to measurement error, which is potentially

large in many cases.

(3) Physical and cognitive capacity, exercise, and cognitive stimulation are dynam-

ically intertwined in the sense that each of them has a potential effect on all

others. For example, exercise should improve physical capacity. Conversely, it

may well be that the cost of exercise might be higher at low levels of physical

capacity because physiotherapy is less enjoyable than a walk in nature.

(4) The relationships between variables might change over time.

The Technology of Skill Formation (Cunha and Heckman, 2007; Cunha, Heck-

man, and Schennach, 2010) is an econometric framework that emerged to deal

with very similar challenges in the context of skill formation during childhood.

It distinguishes observed variables—for example an IQ test—from latent factors

such as cognitive and non-cognitive skills. The technology is the law of motion of

latent factors over multiple discrete time periods. Observed variables are stochas-

tic functions of one or more latent factor. In addition to the latent factors of

interest, the framework allows for observed or latent investments such as parental

investments in skills or schooling.
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To account for the multitude of potential effects, each latent factor may de-

pend on lagged values of itself and all other latent factors. The law of motion

of the latent factors is usually nonlinear. This is necessary to allow for different

productivity of investments at different levels of skills. Moreover, it allows for dy-

namic complementarity, i.e., the fact that earlier investments may increase the

productivity of later investments (Cunha and Heckman, 2007).

The Technology of Skill Formation maps in a straightforward way into our

setting. Instead of of cognitive and non-cognitive skills, our Technology of Aging

models physical and cognitive capacity. Instead of parental investments, we have

exercise and cognitive stimulation.

Transition functions. We assume the following law of motion of our latent factors:

x1,t+1 = β1,t +

4∑

i=1

γ1,t,ixt,i +

4∑

i=1

i∑

j=1

δ1,t,i,jxt,ixj,t + η1,t

x2,t+1 = β2,t +

4∑

i=1

γ2,t,ixt,i +

4∑

i=1

i∑

j=1

δ2,t,i,jxt,ixj,t + η2,t

x3,t+1 = β3,t +

∑

i∈{1,2,3}

γ3,t,ixt,i + η3,t

x4,t+1 = β4,t +

∑

i∈{1,2,4}

γ4,t,ixt,i + η4,t

(1)

Where x1, x2, x3, and x4 are physical capacity, cognitive capacity, exercise, and

cognitive stimulation, respectively. β , γ and δ denote the technology parameters

to be estimated. η denotes a stochastic shock.

The first two equations in (1) mean that physical and cognitive capacity follow

a flexible functional form containing all lagged factors, their squares, and their

interaction terms. This is known as the translog function in the skill formation

literature (because skills are typically assumed to be measured in logs, not levels)

and has been used by, for example, Agostinelli and Wiswall (forthcoming). The

translog function allows for dynamic complementarity but does not assume it. We

view it as a flexible approximation to an arbitrary underlying production function

in the spirit of a nonparametric series estimator.

The bottom two equations in (1) relate to exercise and cognitive stimulations,

respectively. Both investment factors are assumed to depend on their own lagged

values along with the lagged values of physical and cognitive capacity.

Measurement system. We assume the measurement equations to be linear with

an additively separable and normally distributed error term. All of them thus have

the following form:

yℓ,t = αℓ,t +

4∑

i=1

hℓ,t,ixt,i + εℓ,t (2)
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where yℓ,t denotes the ℓth measurement in period t, α is the intercept of the

measurement equation and h are factor loadings. In the empirical application we

only have measurements that load on just one factor, so that for all measurements,

three out of the potentially four loadings hℓ,t are zero by construction. Subject to

identification requirements outlined in Cunha, Heckman, and Schennach (2010),

this could easily be relaxed.

In typical applications of the Technology of Skill Formation, the number and

type of available measurement variables varies strongly across periods. This is

because any test score that is applicable to very young children would not work

for older children. In our case, the measurements stay the same across periods

and most of them can be assumed to be time-invariant, i.e. to have the same

loading, intercept, and standard deviation of measurement error in each period.

3.2 Identiőcation and Interpretation of Parameters

The econometric model implied by the Technology of Skill Formation is a Struc-

tural Equation Model or dynamic latent factor model. Linear Structural equation

models are widely used since the 1970ies to study relationships between latent

and observable variables. However, standard identification results and software

for Structural Equation Models are not applicable to our setting because they usu-

ally require linearity assumptions or put restrictions on the connectedness of the

underlying causal graph, which go beyond those encoded in our system (1).

Cunha, Heckman, and Schennach (2010) provide general nonparametric iden-

tification results for nonlinear dynamic latent factor models. The exact conditions

for identification depend on the assumptions one is willing to put on the nature of

measurement error. Typically, having at least two dedicated continuous measure-

ments for each latent factor in each period is sufficient to identify an arbitrary

production function under mild conditions. Doing so requires normalizations of

location and scale in each period because latent factors do not have a natural unit

of measurement.

A subsequent literature (Agostinelli and Wiswall, 2016; Freyberger, 2024) has

shown that much fewer normalizations are required when empirical applications

assume the popular constant-elasticity-of-substitution (CES) form, which implies

restrictions on the location and scale of its outputs (see Appendix C.1 for de-

tails). Our specification of the production function (1) does not impose any such

restrictions. However, as discussed previously, we have at least one age invariant

measurement for each latent factor. We always use such measurements for nor-

malizations, which pin down the location and scale of each corresponding factor

in all periods.

The lack of natural units for the latent factors and the requirement for normal-

izations also poses challenges for the interpretation of the results. In short: any

outcome that depends on transformations of measurements outside of the model,
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the choice of the measurement being normalized, or the values of the normalized

parameters cannot be interpreted without further information. For details and a

more formal definition see Freyberger (2024).

In practical applications, different ways of dealing with this have emerged.

Cunha and Heckman (2008) and Cunha, Heckman, and Schennach (2010) pro-

pose to anchor the latent factors in terms of observable cardinal variables. For

example, they anchor cognitive and non-cognitive skills in terms of years of school-

ing, wages or the probability to commit a criminal offense. For each anchoring

outcome, they re-estimate the model to obtain estimated production function pa-

rameters in terms of anchored factors. Attanasio, Meghir, and Nix (2020) do not

have access to adult outcomes. Instead they communicate the variables that were

normalized and state that results have to be interpreted with respect to the nor-

malizations. Del Bono, Kinsler, and Pavan (2022) propose to simply standardize

the variance of the latent factors in logs. This allows for statements such as in-

creasing investment by 1 % increases skills by x %. While this is invariant to any

normalization of location and scale in the measurement system, the approach is

only valid if one defines that skills are measured in logs not levels. Due to the

ordinality of skills, this is a valid but arbitrary definition and thus the approach

falls short of its goal to be completely objective. Freyberger (2024) proposes to

translate inputs and outputs of the production functions into ranks. This is invari-

ant to any normalization of location and scale, assumptions on whether latent

factors are measured in levels or logs and transformations of the measurements

outside of the model.

We acknowledge that there is no single natural scale for latent factors and thus

see value in all of the above approaches. For example, translating everything to

ranks is a natural way of solving a problem that is caused by ordinality. Moreover,

it makes the results completely invariant to many decisions made by the econo-

metrician. However, it might not be as interpretable as anchoring approaches. For

example, it destroys any time trend that was present in the measurements. To

address the shortcomings of any single method, we thus use a combination of all

of them.

We standardize age invariant measures with respect to their mean and stan-

dard deviation at age 68. We estimate the parameters of the production function,

normalizing one age-invariant measure for each factor in period zero. The nor-

malized measures are the reversed Frailty Index, Serial 7 Subtraction, Moderate

Activity, and Reading. This preserves the time trend in the measurement variables

and means that our estimated parameters and the time trend can roughly be in-

terpreted in terms of standard deviations at age 68. For reference, we also show

the marginal distributions of each latent factor and the joint distributions of each

factor pair at multiple ages (see D.3).
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3.3 Estimation

Multiple estimators for nonlinear dynamic latent factor models are available.

Agostinelli and Wiswall (forthcoming) estimate the fist period factor loadings from

ratios of covariances between measurements. To estimate production function pa-

rameters, they subsequently employ an iterative IV approach. Their method is

very tractable; it comes at the cost of statistical efficiency. Our own experiments

on simulated data suggest that it works well for models with few periods but be-

comes imprecise if there are ten or more periods, especially when the correlation

between latent factors is high.

Attanasio, Cunha, and Jervis (2019) use linear regression on Bartlett factor

scores with a correction approach. This estimator is computationally very attrac-

tive. However, it does not deal well with missing observations. Several of our

variables are not contained in the core HRS questionnair; they are available for

subsets of individuals at different points in time. Because of this, the estimator of

Attanasio, Cunha, and Jervis (2019) is unsuitable for our application.

Attanasio, Meghir, and Nix (2020) first estimate the distribution of the latent

factors as a mixture of normal distributions and then estimate the parameters

of the production functions on a simulated sample from that distribution. This

approach is computationally harder than the two previous ones but simpler than

the maximum likelihood estimator by Cunha, Heckman, and Schennach (2010).

The required assumptions are the same as for the likelihood estimator.

Cunha, Heckman, and Schennach (2010) use a maximum likelihood estima-

tor. For computational tractability, they use nonlinear Kalman Filters to factorize

the likelihood function into a product of conditional likelihoods. This estimator is

computationally more difficult than the others. In its original formulation, numer-

ical stability is often compromised. However, the estimator is statistically efficient

and it can deal well with observations that are missing at random.

We derive a mathematically equivalent but numerically stable version of the

likelihood estimator used by Cunha, Heckman, and Schennach (2010). Our ver-

sions replaces standard filters by square-root Kalman filters (Prvan and Osborne,

1988; van der Merwe and Wan, 2001), which are numerically more robust. The

computational cost is similar to the original approach. The details of the origi-

nal and the reformulated estimator as well as the exact assumptions required for

estimation are described in Appendix B.

To account for mortality, we add a dummy variable for being alive as an

additional measurement of physical capacity. This is analogous to a linear proba-

bility model of survival. Thus, the estimated health state of survivors is adjusted

upwards, while the health state of everyone who has passed away is adjusted

downwards compared to a state estimation that ignores mortality.

A flexible implementation of the new estimator can be found in the Python

package skillmodels (Gabler, 2025). It uses JAX (Bradbury, Frostig, Hawkins, John-
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son, Leary, et al., 2025) for just in time compilation and automatic differentia-

tion. This reduces the computational cost drastically. We use optimagic/estimagic

(Gabler, 2024) for numerical optimization and the calculation of standard errors.

To generate good start values for the optimization, we first decompose the model

into four single factor model with much fewer free parameters. In a second step we

estimate a linear model. In the third step we estimate the full nonlinear model. We

use pytask (Raabe, 2024) and the Templates for Reproducible Research Projects in

Economics (Gaudecker, 2019) to automate our research project and to parallelize

many tasks. The full estimation takes approximately four hours on a laptop.

4 Results

We present our results in three stages. First, we describe the measurement sys-

tem. Next, we describe broad patterns for the transition equations. Finally, we dig

deeper into the dynamic effects of changing factors along their distribution.

4.1 Measurement system

Table 1 shows the loadings and standard deviations of measurement errors of the

measurement system.o The first panel shows the parameters that we constrain

to be time-invariant. The three panels below display time-varying parameters of

the system at ages 70, 80, and 90. We show loadings and standard deviations

for women and men, respectively. Remember from Section 2 that we scale all

measures—except for dummy measuring vital status, which retains its natural

form—to have mean zero and unit variance in the initial period.

For the measurements loading on physical capacity, we normalize the reversed

frailty index to have intercept zero and unit loading. We also restrict the param-

eters relating to mobility, the large muscle index, and self-reported health to be

time-invariant – all of these have fairly similar time trends as seen in Figure 1

(note that mobility has a steeper trend than the others, but making the measure-

ment system time-varying did not change results). All four measurement have

similar factor loadings in the 1–1.5 range and the standard deviation in their

measurement errors is very similar, too (0.7–0.8). The correlations between these

four measurements are high throughout in the 0.6-0.85 range (see the correlation

matrices in Section D.2 of the Appendix).

We leave the measurement systems for vital status and grip strength unre-

stricted across age groups. The standard deviation of measurement error in grip

strength decreases over time; the loadings decrease for females and stay roughly

2. Tables D.1–D.8 in Appendix D.1 show the complete set of parameter estimates, including

the intercepts.
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Table 1. Loadings and Measurement Standard Deviations

Female Male

Loading Meas. Std. Loading Meas. Std.
Age Factor Measurement

All Physical
Capacity

Frailty Index (Reversed) 1.000 0.745∗∗∗ 1.000 0.804∗∗∗

(0.002) (0.002)
Mobility 1.337∗∗∗ 0.713∗∗∗ 1.500∗∗∗ 0.721∗∗∗

(0.007) (0.003) (0.009) (0.003)
Large Muscle Index 1.001∗∗∗ 0.729∗∗∗ 1.134∗∗∗ 0.763∗∗∗

(0.006) (0.003) (0.009) (0.003)
Self-Reported Health 1.015∗∗∗ 0.753∗∗∗ 1.040∗∗∗ 0.790∗∗∗

(0.006) (0.002) (0.008) (0.003)

Cognitive
Capacity

Serial 7 Subtraction 1.000 0.903∗∗∗ 1.000 0.906∗∗∗

(0.004) (0.004)
Vocabulary 0.861∗∗∗ 0.929∗∗∗ 0.971∗∗∗ 0.868∗∗∗

(0.022) (0.007) (0.026) (0.008)
Immediate Word Recall 1.816∗∗∗ 0.585∗∗∗ 1.750∗∗∗ 0.595∗∗∗

(0.018) (0.003) (0.021) (0.004)
Delayed Word Recall 1.836∗∗∗ 0.579∗∗∗ 1.718∗∗∗ 0.586∗∗∗

(0.018) (0.003) (0.020) (0.003)

Exercise Vigorous Activity 0.695∗∗∗ 0.802∗∗∗ 0.736∗∗∗ 0.813∗∗∗

(0.010) (0.004) (0.012) (0.005)
Moderate Activity 1.000 0.796∗∗∗ 1.000 0.811∗∗∗

(0.004) (0.004)
Light Activity 1.068∗∗∗ 0.934∗∗∗ 0.923∗∗∗ 0.860∗∗∗

(0.012) (0.004) (0.012) (0.004)

Cognitive
Stimulation

Reading 1.000 0.826∗∗∗ 1.000 0.667∗∗∗

(0.006) (0.008)
Listening to Music 0.548∗∗∗ 0.939∗∗∗ 0.208∗∗∗ 1.050∗∗∗

(0.011) (0.006) (0.011) (0.008)
Stimulating Hobbies 0.637∗∗∗ 0.895∗∗∗ 0.347∗∗∗ 0.999∗∗∗

(0.013) (0.005) (0.012) (0.006)
Communication 0.582∗∗∗ 0.968∗∗∗ 0.306∗∗∗ 0.990∗∗∗

(0.011) (0.006) (0.011) (0.007)

70 Physical
Capacity

Alive 0.068∗∗∗ 0.179∗∗∗ 0.091∗∗∗ 0.202∗∗∗

(0.006) (0.006) (0.008) (0.007)
Grip Strength 0.482∗∗∗ 0.886∗∗∗ 0.641∗∗∗ 0.958∗∗∗

(0.040) (0.015) (0.056) (0.018)

Cognitive
Capacity

Self-Rated Memory 0.633∗∗∗ 0.950∗∗∗ 0.675∗∗∗ 0.943∗∗∗

(0.038) (0.011) (0.045) (0.013)

80 Physical
Capacity

Alive 0.109∗∗∗ 0.262∗∗∗ 0.138∗∗∗ 0.301∗∗∗

(0.013) (0.013) (0.021) (0.022)
Grip Strength 0.375∗∗∗ 0.847∗∗∗ 0.650∗∗∗ 0.880∗∗∗

(0.050) (0.019) (0.065) (0.022)

Cognitive
Capacity

Self-Rated Memory 0.428∗∗∗ 1.006∗∗∗ 0.557∗∗∗ 0.983∗∗∗

(0.046) (0.015) (0.058) (0.017)

90 Physical
Capacity

Alive 0.233∗∗∗ 0.400∗∗∗ 0.271∗ 0.424∗∗∗

(0.066) (0.056) (0.142) (0.102)
Grip Strength 0.349∗∗∗ 0.717∗∗∗ 0.397∗∗∗ 0.753∗∗∗

(0.084) (0.028) (0.113) (0.052)

Cognitive
Capacity

Self-Rated Memory 0.377∗∗∗ 1.054∗∗∗ 0.484∗∗∗ 1.081∗∗∗

(0.104) (0.029) (0.144) (0.046)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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constant for males. In sum, this means that the correlation between grip strength

and the latent factor representing physical capacity stays roughty constant with

age in the 0.3–0.4 range. The loading on vital status increases for both genders.

Due to the fact that the dummy for being alive has its natural scale, the coefficient

has a meaningful interpretation in terms of survival probabilities. At age 70, the

interquartile range of physical capacity is 0.95 for women and 0.78 for men (see

Appendix Section D.3). Changing physical capacity from its first to its third quar-

tile thus increases the probability of survival by 0.95× 6.8%= 6.5% for women

and 0.78× 9.1%= 7.1% for men. At age 80, the interquartile ranges are just be-

low 1 and the loadings of 0.11 and 0.14, respectively, directly measure changes in

survival chances as one moves across the outer quartiles. The same is true at age

90 for men (∆survival = 0.27), for women the distribution is less dispersed at that

age and an interquartile range of 0.8 implies a increase in survival probabilities of

0.19%. This is in line with the intuition that physical capacity is more predictive

of death at older ages, as deterioration of overall health becomes a more impor-

tant cause of death than fairly sudden shocks such as cancer or heart attacks (Gill,

Gahbauer, Han, and Allore, 2010).

For measures pertaining to cognitive capacity, we normalize the results from

the serial 7 subtraction task to have intercept zero and unit loading. Each measure

is restricted to have the same factor loading and measurement error variance,

regardless of age. Serial 7 subtraction and the vocabulary score look very similar

in terms of loading and measurement error. For the word recall tasks, loadings

are substantially higher and measurement errors are lower than this. Consequently,

all correlations between these measures and the cognitive capacity factor are high

throughout – around 0.5 for serial 7 subtraction and vocabulary; exceeding 0.8 for

the word recall tasks. The measurement system of self-rated memory is allowed to

vary with age. For both genders, its loading is estimated to be about 0.6 initially

and decreases over time. The standard deviation of measurement error is around

unity, with a slightly increasing trend. Consequently, the correlation of self-rated

memory with cognitive capacity is declining with age which is consistent with

Huang and Maurer (2019).

Given the similarity of our measurements for exercise, it is unsurprising that

all three of them load substantially on the underlying factor. Moderate activity—

the normalized measurement—has the largest correlation with the exercise factor

at all ages. The correlation of vigorous activity and exercise declines over time

whereas light activity goes the other direction. Both of these trends are more

pronounced among women than among men.

Among the measurements loading on cognitive stimulation, we normalize the

parameters on the time spent reading. This is also the dominant one among the

four measurements with a standard deviation of its error around 0.8 (women)

and 0.67 (men) and correlations with the factor exceeding 0.7 throughout. The

errors on the other three measurements are between 0.9 and 1.05; their loadings

23



are estimated to be around 0.6 for women and 0.2 for men. These coefficients

translates into correlations with the cognitive stimulation factor of around 0.4 for

women and 0.25 for men, which are roughly stable over time.

In sum, the measurements show a high correlation with the factors they are

supposed to identify. For many measurements, it is sensible to restrict the model

parameters to be time invariant and we do so. Measurements that are allowed to

be changing with age vary in a way that makes sense in the light of prior literature.

Differences between genders are not dramatic, but large enough to treating them

separately in the estimation. Having established these direct relations to the data,

we now turn to the core contribution of our paper: The joint evolution of physical

and cognitive capacity and the impact of exercise and cognitive stimulation.

4.2 Transition equations

The translog production functions for physical and cognitive capacity have many

parameters. In total, we have 15 coefficients per factor, which needs to be mul-

tiplied with four age groups (or“stages” in the terminology of Cunha, Heckman,

and Schennach, 2010) and two genders. Furthermore, the parameters do not

have intuitive interpretations without referring to precise values of the four fac-

tors in our model. We thus refrain from listing the parameters in the main text

and relegate them to Tables D.9–D.16 in Appendix D.4. We note that the vast

majority of parameters is very precisely estimated. The set of model parameters

is completed with the initial distribution of states and the standard deviation of

period-by-period innovations, which we relegate to Appendix D.5.

As a first pass, Figure 4 shows transition equations for physical capacity (first

row of each subfigure referring to women and men, respectively) and cognitive

capacity as a function of the input factors. Each of the sixteen panels contains

four lines, one for each age group or stage. Input factors are kept at their median

except for the one on the x-axis, which is varied from the 1st to the 99th percentile

of its distribution in the respective age group.

The top left panel in Figure 4a thus shows the result of the following thought

experiment: Conditional on current age, what is a woman’s expected value of

physical capacity in two years as a function of her current physical capacity while

fixing cognitive capacity, exercise, and cognitive stimulation at their median val-

ues. The results show that there is a high degree of persistence in all age groups.

For the upper part of the distribution of physical capacity, the lines are below the

45°-line (the distributions at ages 70, 80, and 90 are shown in in Appendix D.3,

Figures D.7–D.9; as a rough guide to interpret the first panel of Figure 4a, the first

quartile at age 90 has a value of −1.2). The transition function is below 45°-line

everywhere in the youngest age group, which has the steepest slope throughout.

This means that at median levels of cognitive capacity, exercise, and cognitive stim-

ulation, physical capacity will unambiguously decline in expectation regardless of
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(a) Transitions, females

(b) Transitions, males

Figure 4. Next period states as a function of current states, other factors evaluated at the
median

the initial level. In contrast, for very low values of physical capacity at older ages,

there would be some mean reversion – if all other factors were at their median.

Of course, there might be substantial costs to reaching median levels of exercise

or cognitive stimulation if physical capacity is very low, for example.

Increased cognitive capacity is associated with a slightly more favorable evo-

lution of physical capacity. For example, changing cognitive capacity from its first

quartile (−0.63) to its third quartile (−0.17) at age 80 is associated with an in-

crease of age-82 physical capacity of 0.02 units or just under 2 percentiles. The

corresponding effects of increased exercise are positive as well and tend to be
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larger. The same interquartile move for exercise at age 80 (from −0.81 to −0.06)

leads to an increase of physical capacity by 0.16 units, which corresponds to al-

most 5 percentiles. The effects of cognitive stimulation on the dynamics of physical

capacity are often slightly negative at median levels of physical capacity, cognitive

capacity, and exercise.

The second row of Figure 4a shows the corresponding effects for the evolution

of cognitive capacity. We start with the second panel, which contains the own-

effects. They are much less persistent than the own-effects for physical capacity

as evident by the flatter slopes at all ages. The four lines are also further apart

except at the very bottom of the distribution of cognitive capacity. This means that

at almost any level of cognitive capacity, the dynamics are worse for higher ages,

provided all other factors are at their median.

The first panel in the second row of Figure 4a displays modestly positive

effects of physical capacity in the lower age groups; these become zero for higher

ages and, in the highest age group, turn out to be negative at very low levels of

physical capacity. Exercise has mostly positive effects on the evolution of cognitive

capacity at median values of other states with an exception being in the lower

half of the exercise distribution during women’s upper seventies. Finally, cognitive

stimulation has positive effects almost everywhere.

Figure 4b shows the same set of transition functions for men. Again, the broad

patterns are fairly similar to women, but there are some important differences. For

example, physical capacity is deteriorating more quickly for ages 74 and beyond

across the entire distribution of current physical capacity; only at the very bottom

of the distribution there is some sign of mean reversion. For the own-effects of

physical capacity, there is a similar pattern to what we noted for the own effects

of cognitive capacity among women: At almost any level of physical capacity, the

dynamics are worse for higher ages, provided all other factors are at their median.

In contrast, for cognitive capacity, the same effect is somewhat less pronounced

then for women; the lower two age group and the upper two age groups look

much more similar to each other there. The signs and magnitudes we noted for

the off-diagonal elements generally hold up.

5 Conclusions and Outlook

We adapt a nonlinear dynamic latent factor framework that was developed for

skill formation of children to study the physical and cognitive decline between

ages 68 and 93. To this end, we incorporate mortality into the model. The model

is estimated with a rich set of measures from the Health and Retirement Study.

We document a large amount of measurement error in all observed variables.

While most measurements have a high correlation with the latent factor they

measure, no single measurement is a good enough proxy to use in isolation. A
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dynamic latent factor model is therefore a good fit for this setting. Having a rich

set of time invariant measurements for each latent factor, lets us overcome some of

the challenges related to the interpretability of latent factors. To make our results

even more interpretable we also present them in terms of population ranks and

use survival probabilities to anchor physical capacity.

We find that, despite a strong decline in means for physical and cognitive

capacity, the rank order of these latent factors is remarkably stable over periods.

Nevertheless, physical and cognitive capacity can be influenced by investments

until very high ages. Cognitive stimulation is a specific investment into cognitive

capacity. Physical exercise has a larger effect on physical capacity and a small

effect on cognitive capacity.
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Appendix A Additional Background on the Data and Measure-
ments
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(a) Physical capacity, females (b) Physical capacity, males

(c) Cognitive capacity, females (d) Cognitive capacity, males

(e) Exercise, females (f) Exercise, males

(g) Cognitive Stimulation, females (h) Cognitive Stimulation, males

Figure A.1. Standard deviation of measurements by age
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Appendix B The Maximum Likelihood Estimator

B.1 State Estimation

B.1.1 Preliminaries. To discuss the econometric approach used in this paper and

potential alternatives it is convenient to express the model in state space notation.

To do so, let xt ∈ RN denote the vector of latent factors (i.e. physical capacity,

cognitive capacity, physical exercise and cognitive stimulation) in period t.

Similarly, let yt ∈ RLt denote the vector of all observable measurements in

period t.

Then the transition function of the latent factors can be written as:

xt+1 = Ft(xt) + ηt (B.1)

where ηt is a vector of error terms with η
j
t on the jth position. Let Qt denote

the covariance matrix of ηt

The linear measurement system can be written as:

yt = Htxt + εt (B.2)

where Ht is a matrix of coefficients known as factor loadings and εt is a vector

of measurement errors with εt,l on the lth position. Let Rt denote the covariance

matrix of εt.

Equations B.1 and B.2 define a state space model. Equation B.1 is called

transition equation. Equation B.2 is called measurement equation. The vector xt

is called the state of the system. The matrices Qt and Rt are called process noise

and measurement noise, respectively.

To see why it was handy to rewrite the technology of skill formation in state

form, assume for a moment that the transition function Ft (including parameters)

as well as the matrices Ht, Qt and Rt are known for all t ∈ T but the state vectors

xt are unknown and have to be estimated from measurements yt. This problem

is known as optimal state estimation, which is a well researched topic in physics

and engineering.

To efficiently estimate the state vector in period t, an estimator should not

only use measurements from this period, but also take the information from all

previous measurements into account. For linear systems, Kalman filters are the

method of choice for state estimation (Kalman, 1960). For nonlinear systems,

several nonlinear variants of the Kalman filter have been developed. Kalman filters

treat the state of a system itself as random vector. Therefore, they are sometimes

classified as Bayesian filters.

Kalman filters consist of a predict and an update step. They are initialised with

an initial estimate for the mean Åx0 and covariance matrix P0 of the distribution

of the state vector. Then, in each period, the new measurements are incorporated
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to update the mean and covariance matrix of the state vector. After that, the

transition equation is used to predict the mean and covariance matrix of the state

vector in the next period. This predicted state vector can then again be updated

with measurements.

For the application of Kalman filters, the following assumptions must hold:

(1) ηt ∼N (0N,Qt) where 0N denotes a vector of zeros of length N, Qt is a diag-

onal matrix.

(2) The η
j
t are serially independent over all t.

(3) εt ∼N (0Lt
,Rt) where Rt is a diagonal matrix.

(4) The εt,l are serially independent over all t.

(5) εt,l and η
j
t are independent of xt for all t = 1, . . . , T, l= 1, . . . , L and each factor

j.

(6) The distribution of the state vector p(xt) can be approximated by a mixture of

normal distributions for all t = 1, . . . , T

Due to the assumption of a linear measurement system, the state vector can be

estimated by combining the update step of a linear Kalman filter with the predict

step of a nonlinear Kalman filter. For computational reasons, it will be convenient

not to incorporate all measurements at once but to perform a separate update

step for each measurement.

B.1.2 The Update Step of the Kalman Filter. The aim of the Kalman update is

to efficiently combine information from measurements in the current period with

previous measurements. To do so, the measurement function is used to convert

the pre-update state vector into predicted measurements for the current period

(equation B.3). The difference between the predicted and actual measurements is

called residual (equation B.4). This residual, scaled by the so called Kalman gain,

is then added to the pre-update state vector (equation B.8). The Kalman gain is

smaller if the variance of the measurement (calculated by equation B.6) is large.

This has the intuitive consequence that noisy measurements receive a low weight.

The Kalman gain becomes larger if the pre-update covariance matrix has large

diagonal entries (equation B.5 and B.7). Thus, measurements receive more weight

if the pre-update state is known imprecisely due to bad initial values or a high

process noise, for example. After the incorporation of the measurements, the state

is always known with the same or more precision than before. This is reflected by

subtracting a positive semi-definite matrix from the pre-update covariance matrix

(equation B.9).

Let Åxt|y−
t,l
denote the mean of the conditional distribution of the state vector

given all measurements up to but not including the lth measurement in period t.

Let Pt|y−
t,l
denote the covariance matrix of this distribution. Let ht,l denote the lth
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row of Ht. Let rt,l,l be the lth diagonal element of Rt. The update step that incorpo-

rates the lth measurement into the estimate is given by the following equations:

Åyt,l|y−
t,l
= ht,lÅxt|y−

t,l
Åyt,l|y−

t,l
= E(yt,l|y−t,l) (B.3)

δt,l = yt,l − Åyt,l|y−
t,l

δt,l can be interpreted as residual (B.4)

f t,l = Pt|y−
t,l
hT

t,l
f t,l is an intermediate result (B.5)

σt,l = ht,lf t,l + rt,l,l σt,l is the variance of yt,l (B.6)

kt,l =
1

σt,l

f t,l kt,l is the (scaled) Kalman gain (B.7)

Åxt|yt,l
= Åxt|y−

t,l
+ kt,lδt,l Åxt|yt,l

is the updated mean (B.8)

Pt|yt,l
= Pt|y−

t,l
− 1

σt,l

f t,lf
T
t,l

Pt|yt,l
is the updated covariance matrix (B.9)

B.1.3 The Predict Step of the Kalman Filter. In linear systems, the mean and

covariance matrix of the system can be propagated to the next period by sim-

ply applying the linear transition equation. With a nonlinear transition function,

however, this is not possible, as E(f(X) ̸= f(E(X) in general. For the nonlinear pre-

dict step, two basic options exist: The extended Kalman filter and the unscented

Kalman filter. Cunha, Heckman and Schennach choose the unscented Kalman fil-

ter because it has been shown to be more reliable in a wide range of settings (Van

Der Merwe, 2004).

The intuition of the predict step of the unscented Kalman filter is relatively

simple: firstly, a deterministic sample of points in the state space, called sigma

points (equation B.10), and accompanying weights are chosen (equation B.11).

Usually these are 2N + 1 points and weights, where N is the length of the state

vector. Secondly, these sigma points are transformed using the true nonlinear tran-

sition equation. Thirdly, the weighted sample mean is used as estimate for the

next period mean of the state vector (equation B.12). Fourthly, the sum of the

covariance matrix of the process noise and the weighted sample covariance of the

transformed sigma points is used as estimate of the covariance matrix of the state

vector (equation B.13). Intuitively, the addition of the process noise accounts for

the fact that the prediction always adds some uncertainty about the state of the

system.

For the choice of sigma points and sigma weights, many different algorithms

exist. All have in common that some form of matrix square root of the covariance

matrix of the state vector is taken. Two definitions of matrix square root exist:

1) A is a matrix square root of P if P= AA. 2) A is a matrix square root of P

if P= AAT . The matrix square root is not unique in general and some matrices

do not have a square root. However, all symmetric positive semi-definite matrices,
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i.e. all valid covariance matrices, can be decomposed into P= LLT where L is

lower triangular (Zhang, 1999). For the unscented Kalman filter, both definitions

of matrix square root work. Below, the sigma point algorithm proposed by Julier

and Uhlmann (1997), is presented without reference to a particular type of matrix

square root:

Let κ ∈ R be a scaling parameter. Usually, κ is set to 2 if the distribution of

the state vector is assumed to be normal. Let Pt|t denote the covariance matrix

of the state vector, conditional on all measurements up to and including period

t. Define St|t ≡
p

Pt|t as the matrix square root of Pt|t and let st,n denote its nth

column.

Sigma points are calculated according to the following equations:

χt,n = Åxt|t for n = 0

χt,n = Åxt|t +
p

N + κ st,n for n = 1, . . .N (B.10)

χt,n = Åxt|t −
p

N + κ st,n for n = N + 1, . . . 2N

where χt,n is the nth sigma point at period t that is calculated after incor-

porating all measurements of that period. The corresponding sigma weights are

calculated as follows:

wt,n =
κ

N + κ
for n = 0 (B.11)

wt,n =
1

2(N + κ)
for n = 1, . . . , 2N

where wt,n is the nth sigma weight. Define eχt,n ≡ Ft(χt,n) where Ft(·) is defined

as in equation B.1. Then the predict step of the unscented Kalman filter is given

by:

Åxt+1|t =
2N∑

n=0

wt,n eχt,n (B.12)

Pt+1|t =

� 2N∑

n=0

wt,n(eχt,n − Åxt+1|t)(eχt,n − Åxt+1|t)
T

�
+ Qt (B.13)

B.2 The Likelihood Interpretation of the Kalman Filter

Of course, the parameters of the function Ft and the matrices Ht, Qt and Rt are

unknown in reality. However, they can be estimated by maximum likelihood. The

direct maximization of the likelihood function would involve the evaluation of high

dimensional integrals which is computationally very expensive (Cunha, Heckman,
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and Schennach, 2010). Instead, Kalman filters can be used to reduce the sumber

of computations required for each evaluation of the likelihood function dramati-

cally.

To see how, define θ as the vector with all estimated parameters of the model.

Then, the likelihood contribution of individual i is given by:

L (θ |y1, . . . ,yT) ≡ pθ (y1, . . . ,yT) =

T∏

t=1

Lt∏

l=1

pθ (yt,l|y−t,l) (B.14)

where pθ (y1, . . . ,yT) denotes the joint density of all measurements for individ-

ual i, conditional on the parameter vector θ and pθ (yt,l|y−t,l) is the density of the

lth measurement in period t, given all measurements up to but not including this

measurement. The subscript i is again omitted for readability.

To see how this relates to the Kalman filter, recall that for each t = 1, . . . , T

and each l= 1, . . . , Lt, equation B.3 calculates Åyt,l|y−
t,l
, i.e the expected value of

the lth measurement in period t, conditional on all previous measurements. In

addition, due to the normality and independence assumptions on the error terms

and the factor distribution, yt,l is normally distributed around Åyt,l|y−
t,l
. Equation B.6

can be used to calculate the variance σt,l of this distribution. Thus, pθ (yt,l|y−t,l)=
φÅyt,l|y−

t,l
,σt,l

(yt,l) where φµ,σ(·) is the density of a normal random variable with mean

µ and variance σ.

A nice feature of the estimator based on this factorization of the likelihood

function is that it can deal very well with missing observations. If measurement

yt,l is missing for inidividual i, the corresponding update of the state vector is just

skipped. More formally, this means that the missing measurement is integrated

out from the likelihood function.

B.3 Numerical stability

B.3.1 Numerical challenges. While the Kalman filter based maximum likelihood

estimator is statistically and computationally efficient, it is numerically unsta-

ble. The numerical instability caused by floating point imprecision is inherent to

Kalman filters and has been discovered soon after Kalman published his original

article. Since then, the precision of computers has increased enormously such that

nowadays numerical problems are not a big issue for well specified Kalman filters.

However, during the maximization of the likelihood function the optimizer might

pick parameter combinations that are far from leading to a well specified filter.

The numerical problems manifest themselves in two places:

(1) In the update step, the subtraction in equation B.9 can lead to negative diag-

onal elements in the updated covariance matrix of the state vector. While this

is mathematically impossible in a well specified Kalman filter, numerical im-

precisions and badly specified Kalman filters during the maximization process

make it possible.
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(2) Even if the covariance matrix of the state vector has nonnegative diagonal

entries, numerical imprecisions might render it not positive semi-definite. With

this the existence of a matrix square root is not guaranteed, which can make

the calculation of sigma points impossible.

Cunha, Heckman and Schennach mention the numerical problems in their

supplementary material. To solve the first problem, they recommend to find good

initial values for the maximization by first constraining some parameters and let-

ting the code find good initial values for the others. For the second problem, they

propose to set all off-diagonal elements of P to zero before taking the square root,

which then corresponds to taking the element wise square root of the diagonal

elements. While this prevents the estimator from crashing, it is not standard prac-

tice in Kalman filtering and it is not guaranteed that an estimator based on this

type of matrix square root produces reliable results.

B.3.2 Outline of the Solution. A better approach is to use a square root im-

plementation of the Kalman filter. Many different square root Kalman filters exist.

They are mathematically equivalent to normal Kalman filters but numerically more

stable.

Instead of propagating the full covariance matrix of the state vector, square

root Kalman filters propagate the square root of this matrix. This has three advan-

tages:

(1) It avoids overflow errors due to numbers with very small or large absolute

values, as taking the square root makes large numbers smaller and small num-

bers larger.

(2) By using a matrix square root A of the type P= AAT , the problematic covari-

ance matrix is guaranteed to be positive semi-definite (Zhang, 1999), i.e. a

valid covariance matrix. In particular, its diagonal entries are sums of squared

terms and, consequently, guaranteed to be nonnegative. This solves the first

problem.

(3) By choosing an appropriate pair of square root update and predict algorithms,

taking matrix square roots can be completely avoided. This eliminates the

second problem.

The computational requirements of square root filters are comparable to those

of normal Kalman filters. In the nonlinear case, they are even lower. For a maxi-

mally robust estimator, we use a pair of square root update and predict algorithms

that completely avoid taking matrix square roots. The algorithm for the update

was developed by Prvan and Osborne (Prvan and Osborne, 1988). The unscented

square root predict step was proposed by Van Der Merwe and Wan (van der Merwe

and Wan, 2001). Both propagate the transpose of a lower triangular matrix square

root of the state covariance matrix.
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B.3.3 The QR Decomposition of a Matrix. Both square root algorithms rely on a

matrix factorization called QR decomposition. Note that in this subsection, Q and

R do not denote the covariance matrices of the process and measurement noise

but factors into which a matrix is decomposed.

QR is called QR decomposition of an m× n matrix A with m≥ n if:

(1) A= QR

(2) Q is an orthogonal m×m matrix

(3) R is an m× n matrix and the first n rows of R form a upper triangular matrix

and its remaining rows only contain zeros

The QR decomposition of a matrix always exists but is not unique. A useful

property of the QR decomposition is that:

ATA = (QR)TQR = RTQTQR = RTR (B.15)

where the last equality comes from the defining property of orthogonal ma-

trices that QTQ= QQT
= I, where I denotes the identity matrix. Thus, the upper

triangular part of R is the transpose of a lower triangular matrix square root

of ATA. For convenience, let qr(A) denote the QR decomposition of A that only

returns the upper triangular part of the matrix R.

B.3.4 The Update Step of the Square-Root Kalman Filter. Let St|y−
l,t

be a lower

triangular matrix square root of Pt|y−
l,t

and keep the rest of the notation as in

section B.1. Then, the square root update that incorporates the lth measurement

in period t is given by the following equations:

Åyt,l|y−
t,l
and δt,l are calculated as in equation B.3 and B.4 respectively. Then the

following intermediate results are calculated.

f ∗
t,l
= ST

t|y−
t,l

hT
t,l

(B.16)

Mt,l =

�p
rt,l,l 0T

N

f ∗
t,l

ST
t|y−

t,l

�
(B.17)

It can be shown that:

qr(Mt,l) =




p
σt,l

1p
σt,l

f T
t,l

0N ST
t|yt,l



 (B.18)

where ST
t|yt,l

is the transpose of a lower triangular square root of the updated

covariance matrix and 0N denotes a column vector of length N that is filled with

zeros.

The matrix in equation B.18 also contains f t,l and σt,l such that the Kalman

gain can be calculated as in equation B.7 and the mean of the state vector can be

updated as in equation B.8.
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To see why equation B.18 holds, define Ut,l ≡ qr(Mt,l) and partition it as fol-

lows:

Ut,l =

�
U1,1 U1,2

0 U2,2

�
(B.19)

where U1,1 is a scalar, U1,2 a row vector of length N, 0 a column vector of

length N filled with zeros and U2,2 an upper triangular N × N matrix. Recall from

the definition of Ut,l and equation B.15 that UT
t,l

Ut,l = MT
t,l

Mt,l. Multiplying out

both sides of this equality yields:


rt,l,l + f ∗T

t,l
f ∗

t,l
f ∗T

t,l
ST

t|y−
t,l

St|y−
t,l
f ∗

t,l
St|y−

t,l
ST

t|y−
t,l



 =
�

U2
1,1

U1,1U1,2

UT
1,2

U1,1 UT
1,2

U1,2 + UT
2,2

U2,2

�
(B.20)

It is obvious from equation B.6 and B.16 that U1,1 =
p
σt,l. Using this and

noting that f ∗T
t,l

ST
t|y−

t,l

= f T
t,l
, where f t,l is defined as in equation B.5, one obtains

that:

U1,2 =

f T
t,lp
σt,l

(B.21)

It remains to show that U2,2 = ST
t|yt,l

. By noting that the the bottom right

element of the left hand side of equation B.20 is, by definition, equal to the pre-

update covariance matrix Pt|y−
t,l

and plugging in the value for U1,2, one obtains

that:

UT
2,2

U2,2 = Pt|y−
t,l
− 1

σt,l

f t,lf
T
t,l
= Pt|yt,l

(B.22)

where the last equality comes comes from equation B.9. Thus UT
2,2

is a matrix

square root of Pt|yt,l
and by the definition of the QR decomposition it is lower

triangular, which completes the proof. Importantly, no part of the proof requires

the lower triangular square roots of Pt|y−
t,l
or Pt|yt,l

to be unique or makes reference

to a specific type of matrix square root.

B.3.5 The Predict Step of the Square-Root Kalman Filter. For the square root

implementation of the unscented predict step in period t, firstly the sigma points

are calculated as in equation B.10, where this time St|t is required to be a lower

triangular matrix square root of Pt|t. Again, X̃t denotes the (2N + 1)×N matrix of

the transformed sigma points. The calculation of the predicted mean of the state

vector remains the same as before (equation B.12).

Define At as stacked matrix of of weighted deviations of the sigma points from

the predicted mean and the covariance matrix of the transition shocks:
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At ≡





p
wt,0(X̃t,0 − Åxt+1|t)

T

. . .p
wt,2n(X̃t,2n − Åxt+1|t)

T

p
Qt



 (B.23)

Then equation B.13 can be rewritten as:

Pt+1|t = AT
t
At (B.24)

and by the relation of the QR decomposition and and the lower triangular

matrix square root (equation B.15) a lower triangular matrix square root of Pt+1|t
is given by qr(At)

T .

Appendix C Detailed Model Setup

C.1 Background on Identiőcation

Cunha, Heckman, and Schennach (2010) provide very general nonparametric

Identification result for nonlinear dynamic latent factor models. The exact con-

ditions for identification depend on the assumptions one is willing to put on the

measurement error. However, having at least two dedicated measurements for

each latent factor in each period is sufficient to identify an arbitrary production

function under mild conditions. Since latent factors do not have a natural unit

of measurement, the identification requires normalizations of location and scale.

Thus, Cunha, Heckman, and Schennach (2010) normalize one loading of each

factor in each period to 1 and one intercept of each factor in each period to 0.

While the identification result works for arbitrary production functions, they use

a parametric CES function in their empirical application.

Agostinelli and Wiswall (2016) criticize the identification result by Cunha,

Heckman, and Schennach (2010) to be flawed. They point out that the CES pro-

duction function already puts a restriction on the scale and location of its output.

Thus, normalization of scale and location are only required in the first period and

re-normalizations in each period are actually not normalizations but testable as-

sumptions. Moreover, they show that under the implicit restrictions imposed by

the CES production function, identification under a linear measurement system

can be achieved with as little as one measurement per latent factor and period as

long as there are at least two measurements in the first period.

Freyberger (2024) shows that the CES production function also imposes im-

plicit restrictions on the relative scale of the latent factors and thus identification

can be achieved if only the location and scale of a single factor are normalized in

the first period.

While the critique by Agostinelli and Wiswall (2016) that over-normalizations

are detrimental is correct, it mostly applies to the empirical application and not the
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general identification result in Cunha, Heckman, and Schennach (2010) nor the

maximum likelihood estimator used in the paper. The identification result states

that latent factors have no natural scale and location that could be be identified

from data and thus their location and scale has to be fixed by restrictions imposed

by the econometrician. Cunha, Heckman, and Schennach (2010) restrict factor

loadings and intercepts but mention, that instead of factor loadings, the variances

of measurement errors could be restricted. Of course, these restrictions are mutu-

ally exclusive and it would not be valid to restrict factor loadings and variances

of measurement error at the same time. The main contribution of Agostinelli and

Wiswall (2016) is to point out that using restrictive functional forms for the pro-

duction function is yet another way of fixing the location and scale of the latent

factors.

Appendix D Additional Tables and Figures for the Main Speciőca-
tion

D.1 Complete Set of Parameters of the Measurement System

39



Table D.1. Intercepts, Loadings, and Measurement Standard Deviations for Physical Capacity,
Females

Intercept Loading Meas. Std.
Age Measurement

All Frailty Index (Reversed) 0.000 1.000 0.745∗∗∗

(0.002)
Mobility −0.055∗∗∗ 1.337∗∗∗ 0.713∗∗∗

(0.004) (0.007) (0.003)
Large Muscle Index 0.050∗∗∗ 1.001∗∗∗ 0.729∗∗∗

(0.004) (0.006) (0.003)
Self-Reported Health 0.034∗∗∗ 1.015∗∗∗ 0.753∗∗∗

(0.004) (0.006) (0.002)

70 Alive 0.969∗∗∗ 0.068∗∗∗ 0.179∗∗∗

(0.029) (0.006) (0.006)
Grip Strength −0.147∗∗∗ 0.482∗∗∗ 0.886∗∗∗

(0.024) (0.040) (0.015)

72 Alive 0.966∗∗∗ 0.067∗∗∗ 0.194∗∗∗

(0.037) (0.006) (0.008)
Grip Strength −0.251∗∗∗ 0.413∗∗∗ 0.925∗∗∗

(0.028) (0.042) (0.015)

74 Alive 0.969∗∗∗ 0.060∗∗∗ 0.190∗∗∗

(0.041) (0.006) (0.008)
Grip Strength −0.337∗∗∗ 0.533∗∗∗ 0.884∗∗∗

(0.027) (0.044) (0.015)

76 Alive 0.955∗∗∗ 0.093∗∗∗ 0.233∗∗∗

(0.040) (0.009) (0.010)
Grip Strength −0.478∗∗∗ 0.411∗∗∗ 0.911∗∗∗

(0.029) (0.047) (0.012)

78 Alive 0.951∗∗∗ 0.088∗∗∗ 0.246∗∗∗

(0.048) (0.010) (0.013)
Grip Strength −0.574∗∗∗ 0.420∗∗∗ 0.875∗∗∗

(0.030) (0.048) (0.018)

80 Alive 0.949∗∗∗ 0.109∗∗∗ 0.262∗∗∗

(0.046) (0.013) (0.013)
Grip Strength −0.747∗∗∗ 0.375∗∗∗ 0.847∗∗∗

(0.032) (0.050) (0.019)

82 Alive 0.940∗∗∗ 0.109∗∗∗ 0.286∗∗∗

(0.057) (0.016) (0.019)
Grip Strength −0.790∗∗∗ 0.363∗∗∗ 0.846∗∗∗

(0.035) (0.057) (0.021)

84 Alive 0.933∗∗∗ 0.153∗∗∗ 0.317∗∗∗

(0.058) (0.022) (0.021)
Grip Strength −0.960∗∗∗ 0.353∗∗∗ 0.826∗∗∗

(0.037) (0.059) (0.023)

86 Alive 0.925∗∗∗ 0.154∗∗∗ 0.337∗∗∗

(0.074) (0.029) (0.029)
Grip Strength −0.994∗∗∗ 0.368∗∗∗ 0.836∗∗∗

(0.042) (0.072) (0.026)

88 Alive 0.905∗∗∗ 0.187∗∗∗ 0.377∗∗∗

(0.091) (0.044) (0.042)
Grip Strength −1.140∗∗∗ 0.511∗∗∗ 0.787∗∗∗

(0.054) (0.083) (0.032)

90 Alive 0.906∗∗∗ 0.233∗∗∗ 0.400∗∗∗

(0.116) (0.066) (0.056)
Grip Strength −1.147∗∗∗ 0.349∗∗∗ 0.717∗∗∗

(0.050) (0.084) (0.028)

92 Alive 0.855∗∗∗ 0.243∗∗ 0.440∗∗∗

(0.167) (0.118) (0.101)
Grip Strength −1.289∗∗∗ 0.393∗∗∗ 0.732∗∗∗

(0.077) (0.128) (0.047)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.2. Intercepts, Loadings, and Measurement Standard Deviations for Physical Capacity,
Males

Intercept Loading Meas. Std.
Age Measurement

All Frailty Index (Reversed) 0.000 1.000 0.804∗∗∗

(0.002)
Mobility 0.074∗∗∗ 1.500∗∗∗ 0.721∗∗∗

(0.006) (0.009) (0.003)
Large Muscle Index 0.107∗∗∗ 1.134∗∗∗ 0.763∗∗∗

(0.005) (0.009) (0.003)
Self-Reported Health 0.121∗∗∗ 1.040∗∗∗ 0.790∗∗∗

(0.005) (0.008) (0.003)

70 Alive 0.966∗∗∗ 0.091∗∗∗ 0.202∗∗∗

(0.033) (0.008) (0.007)
Grip Strength −0.026 0.641∗∗∗ 0.958∗∗∗

(0.032) (0.056) (0.018)

72 Alive 0.959∗∗∗ 0.097∗∗∗ 0.227∗∗∗

(0.043) (0.010) (0.011)
Grip Strength −0.264∗∗∗ 0.645∗∗∗ 0.933∗∗∗

(0.033) (0.055) (0.020)

74 Alive 0.956∗∗∗ 0.091∗∗∗ 0.238∗∗∗

(0.054) (0.011) (0.014)
Grip Strength −0.312∗∗∗ 0.537∗∗∗ 0.888∗∗∗

(0.033) (0.057) (0.019)

76 Alive 0.955∗∗∗ 0.128∗∗∗ 0.259∗∗∗

(0.047) (0.014) (0.013)
Grip Strength −0.458∗∗∗ 0.668∗∗∗ 0.877∗∗∗

(0.034) (0.058) (0.019)

78 Alive 0.953∗∗∗ 0.125∗∗∗ 0.272∗∗∗

(0.053) (0.015) (0.016)
Grip Strength −0.567∗∗∗ 0.565∗∗∗ 0.902∗∗∗

(0.039) (0.062) (0.022)

80 Alive 0.942∗∗∗ 0.138∗∗∗ 0.301∗∗∗

(0.066) (0.021) (0.022)
Grip Strength −0.715∗∗∗ 0.650∗∗∗ 0.880∗∗∗

(0.041) (0.065) (0.022)

82 Alive 0.934∗∗∗ 0.174∗∗∗ 0.332∗∗∗

(0.068) (0.029) (0.026)
Grip Strength −0.910∗∗∗ 0.538∗∗∗ 0.838∗∗∗

(0.043) (0.065) (0.025)

84 Alive 0.922∗∗∗ 0.160∗∗∗ 0.349∗∗∗

(0.092) (0.036) (0.037)
Grip Strength −0.964∗∗∗ 0.573∗∗∗ 0.841∗∗∗

(0.051) (0.072) (0.025)

86 Alive 0.890∗∗∗ 0.186∗∗∗ 0.392∗∗∗

(0.128) (0.060) (0.064)
Grip Strength −1.193∗∗∗ 0.518∗∗∗ 0.839∗∗∗

(0.061) (0.090) (0.034)

88 Alive 0.924∗∗∗ 0.244∗∗∗ 0.394∗∗∗

(0.128) (0.074) (0.058)
Grip Strength −1.160∗∗∗ 0.622∗∗∗ 0.795∗∗∗

(0.068) (0.099) (0.040)

90 Alive 0.891∗∗∗ 0.271∗ 0.424∗∗∗

(0.203) (0.142) (0.102)
Grip Strength −1.434∗∗∗ 0.397∗∗∗ 0.753∗∗∗

(0.085) (0.113) (0.052)

92 Alive 0.828∗∗∗ 0.287 0.445∗∗∗

(0.231) (0.204) (0.150)
Grip Strength −1.441∗∗∗ 0.740∗∗∗ 0.796∗∗∗

(0.123) (0.186) (0.072)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.3. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Capacity,
Females

Intercept Loading Meas. Std.
Age Measurement

All Serial 7 Subtraction 0.000 1.000 0.903∗∗∗

(0.004)
Vocabulary 0.048∗∗∗ 0.861∗∗∗ 0.929∗∗∗

(0.010) (0.022) (0.007)
Immediate Word Recall −0.188∗∗∗ 1.816∗∗∗ 0.585∗∗∗

(0.008) (0.018) (0.003)
Delayed Word Recall −0.202∗∗∗ 1.836∗∗∗ 0.579∗∗∗

(0.008) (0.018) (0.003)

70 Self-Rated Memory −0.028 0.633∗∗∗ 0.950∗∗∗

(0.018) (0.038) (0.011)

72 Self-Rated Memory −0.034∗ 0.602∗∗∗ 0.949∗∗∗

(0.018) (0.038) (0.011)

74 Self-Rated Memory −0.044∗∗ 0.626∗∗∗ 0.964∗∗∗

(0.019) (0.038) (0.012)

76 Self-Rated Memory −0.023 0.573∗∗∗ 0.964∗∗∗

(0.020) (0.040) (0.012)

78 Self-Rated Memory 0.035 0.499∗∗∗ 0.964∗∗∗

(0.023) (0.043) (0.013)

80 Self-Rated Memory 0.053∗∗ 0.428∗∗∗ 1.006∗∗∗

(0.026) (0.046) (0.015)

82 Self-Rated Memory 0.082∗∗∗ 0.508∗∗∗ 0.998∗∗∗

(0.031) (0.053) (0.016)

84 Self-Rated Memory 0.110∗∗∗ 0.443∗∗∗ 1.018∗∗∗

(0.037) (0.061) (0.018)

86 Self-Rated Memory 0.099∗∗ 0.347∗∗∗ 1.028∗∗∗

(0.044) (0.066) (0.021)

88 Self-Rated Memory 0.201∗∗∗ 0.447∗∗∗ 1.029∗∗∗

(0.057) (0.080) (0.024)

90 Self-Rated Memory 0.173∗∗ 0.377∗∗∗ 1.054∗∗∗

(0.073) (0.104) (0.029)

92 Self-Rated Memory 0.107 0.392∗∗∗ 1.151∗∗∗

(0.112) (0.149) (0.042)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.4. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Capacity,
Males

Intercept Loading Meas. Std.
Age Measurement

All Serial 7 Subtraction 0.000 1.000 0.906∗∗∗

(0.004)
Vocabulary 0.024∗∗ 0.971∗∗∗ 0.868∗∗∗

(0.012) (0.026) (0.008)
Immediate Word Recall −0.194∗∗∗ 1.750∗∗∗ 0.595∗∗∗

(0.010) (0.021) (0.004)
Delayed Word Recall −0.185∗∗∗ 1.718∗∗∗ 0.586∗∗∗

(0.010) (0.020) (0.003)

70 Self-Rated Memory −0.067∗∗∗ 0.675∗∗∗ 0.943∗∗∗

(0.021) (0.045) (0.013)

72 Self-Rated Memory −0.071∗∗∗ 0.633∗∗∗ 0.948∗∗∗

(0.022) (0.044) (0.014)

74 Self-Rated Memory −0.075∗∗∗ 0.590∗∗∗ 0.935∗∗∗

(0.022) (0.045) (0.014)

76 Self-Rated Memory −0.047∗∗ 0.542∗∗∗ 0.956∗∗∗

(0.024) (0.049) (0.015)

78 Self-Rated Memory −0.061∗∗ 0.611∗∗∗ 0.975∗∗∗

(0.027) (0.054) (0.016)

80 Self-Rated Memory −0.030 0.557∗∗∗ 0.983∗∗∗

(0.030) (0.058) (0.017)

82 Self-Rated Memory −0.020 0.395∗∗∗ 1.006∗∗∗

(0.037) (0.064) (0.020)

84 Self-Rated Memory −0.011 0.406∗∗∗ 1.003∗∗∗

(0.044) (0.073) (0.023)

86 Self-Rated Memory −0.032 0.524∗∗∗ 1.027∗∗∗

(0.056) (0.090) (0.028)

88 Self-Rated Memory 0.037 0.509∗∗∗ 1.038∗∗∗

(0.074) (0.113) (0.032)

90 Self-Rated Memory 0.038 0.484∗∗∗ 1.081∗∗∗

(0.096) (0.144) (0.046)

92 Self-Rated Memory 0.073 0.425∗∗ 0.983∗∗∗

(0.132) (0.196) (0.055)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.5. Intercepts, Loadings, and Measurement Standard Deviations for Exercise, Females

Intercept Loading Meas. Std.
Age Measurement

All Vigorous Activity −0.005 0.695∗∗∗ 0.802∗∗∗

(0.005) (0.010) (0.004)
Moderate Activity 0.000 1.000 0.796∗∗∗

(0.004)
Light Activity −0.137∗∗∗ 1.068∗∗∗ 0.934∗∗∗

(0.006) (0.012) (0.004)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table D.6. Intercepts, Loadings, and Measurement Standard Deviations for Exercise, Males

Intercept Loading Meas. Std.
Age Measurement

All Vigorous Activity −0.014∗∗ 0.736∗∗∗ 0.813∗∗∗

(0.006) (0.012) (0.005)
Moderate Activity 0.000 1.000 0.811∗∗∗

(0.004)
Light Activity −0.076∗∗∗ 0.923∗∗∗ 0.860∗∗∗

(0.007) (0.012) (0.004)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.7. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Stimula-
tion, Females

Intercept Loading Meas. Std.
Age Measurement

All Reading 0.000 1.000 0.826∗∗∗

(0.006)
Listening to Music −0.142∗∗∗ 0.548∗∗∗ 0.939∗∗∗

(0.006) (0.011) (0.006)
Stimulating Hobbies −0.036∗∗∗ 0.637∗∗∗ 0.895∗∗∗

(0.008) (0.013) (0.005)
Communication −0.064∗∗∗ 0.582∗∗∗ 0.968∗∗∗

(0.007) (0.011) (0.006)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table D.8. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Stimula-
tion, Males

Intercept Loading Meas. Std.
Age Measurement

All Reading 0.000 1.000 0.667∗∗∗

(0.008)
Listening to Music −0.200∗∗∗ 0.208∗∗∗ 1.050∗∗∗

(0.008) (0.011) (0.008)
Stimulating Hobbies 0.018∗ 0.347∗∗∗ 0.999∗∗∗

(0.010) (0.012) (0.006)
Communication −0.105∗∗∗ 0.306∗∗∗ 0.990∗∗∗

(0.007) (0.011) (0.007)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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D.2 Correlations between measurements and factors

Figure D.1. Correlations across implied factors and measurement correlations – females aged
70
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Figure D.2. Correlations across implied factors and measurement correlations – females aged
80
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Figure D.3. Correlations across implied factors and measurement correlations – females aged
90
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Figure D.4. Correlations across implied factors and measurement correlations – males aged
70
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Figure D.5. Correlations across implied factors and measurement correlations – males aged
80
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Figure D.6. Correlations across implied factors and measurement correlations – males aged
90
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D.3 Factor distributions

Figure D.7. Factor distributions – females aged 70
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Figure D.8. Factor distributions – females aged 80
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Figure D.9. Factor distributions – females aged 90
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Figure D.10. Factor distributions – males aged 70
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Figure D.11. Factor distributions – males aged 80
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Figure D.12. Factor distributions – males aged 90
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D.4 Transition Equations

Figure D.13. Transition equations for all factors (other factors evaluated at the median), fe-
males
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Figure D.14. Transition equations for all factors (other factors evaluated at the median), males
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Table D.9. Transition Parameters for Physical Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 1.010∗∗∗ 0.989∗∗∗ 0.960∗∗∗ 0.973∗∗∗

(0.008) (0.010) (0.015) (0.038)
Cognitive Capacity 0.003 0.008 −0.018 −0.110∗

(0.009) (0.012) (0.022) (0.063)
Exercise 0.043∗∗∗ 0.050∗∗∗ 0.063∗∗∗ 0.002

(0.007) (0.009) (0.015) (0.035)
Cognitive Stimulation −0.024∗∗∗ −0.021∗∗ 0.016 0.033

(0.008) (0.009) (0.016) (0.035)
Physical Capacity Squared −0.006 0.044∗∗∗ 0.068∗∗∗ 0.063∗

(0.012) (0.014) (0.019) (0.034)
Cognitive Capacity Squared −0.085∗∗∗ −0.129∗∗∗ −0.220∗∗∗ −0.315∗∗∗

(0.017) (0.020) (0.031) (0.067)
Exercise Squared −0.019 −0.013 0.001 −0.086∗∗

(0.014) (0.015) (0.018) (0.037)
Cognitive Stimulation Squared −0.022 −0.021 −0.073∗∗∗ −0.030

(0.014) (0.014) (0.019) (0.029)
Physical Capacity × Cognitive Capacity 0.062∗∗∗ 0.058∗∗ 0.083∗∗ 0.212∗∗∗

(0.021) (0.023) (0.034) (0.069)
Physical Capacity × Exercise 0.004 0.000 −0.018 0.103∗

(0.020) (0.022) (0.027) (0.052)
Physical Capacity × Cognitive Stimulation −0.051∗∗∗ −0.021 −0.042∗ −0.109∗∗

(0.018) (0.019) (0.025) (0.048)
Cognitive Capacity × Exercise −0.078∗∗∗ −0.134∗∗∗ −0.161∗∗∗ −0.266∗∗∗

(0.023) (0.025) (0.035) (0.066)
Cognitive Capacity × Cognitive Stimulation 0.124∗∗∗ 0.148∗∗∗ 0.249∗∗∗ 0.224∗∗∗

(0.023) (0.027) (0.037) (0.069)
Exercise × Cognitive Stimulation 0.047∗∗ 0.051∗∗ 0.099∗∗∗ 0.118∗∗

(0.023) (0.021) (0.028) (0.049)
Constant −0.055∗∗∗ −0.083∗∗∗ −0.087∗∗∗ −0.112∗∗∗

(0.006) (0.008) (0.011) (0.024)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.10. Transition Parameters for Physical Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 1.020∗∗∗ 1.000∗∗∗ 1.020∗∗∗ 0.996∗∗∗

(0.011) (0.014) (0.026) (0.065)
Cognitive Capacity 0.035∗∗∗ 0.070∗∗∗ 0.059∗ 0.084

(0.011) (0.014) (0.031) (0.087)
Exercise 0.019∗∗ 0.062∗∗∗ 0.054∗∗∗ 0.124∗∗

(0.007) (0.009) (0.018) (0.054)
Cognitive Stimulation −0.028∗∗∗ −0.048∗∗∗ −0.005 −0.028

(0.008) (0.010) (0.020) (0.049)
Physical Capacity Squared −0.054∗∗∗ 0.064∗∗∗ 0.135∗∗∗ 0.147∗∗

(0.015) (0.018) (0.030) (0.060)
Cognitive Capacity Squared −0.012 −0.053∗∗ 0.024 0.049

(0.019) (0.023) (0.038) (0.092)
Exercise Squared −0.005 0.009 0.012 0.066

(0.011) (0.013) (0.021) (0.048)
Cognitive Stimulation Squared 0.008 0.020∗ 0.021 0.036

(0.010) (0.011) (0.017) (0.034)
Physical Capacity × Cognitive Capacity −0.026 −0.008 0.030 0.102

(0.025) (0.029) (0.050) (0.108)
Physical Capacity × Exercise 0.006 −0.068∗∗∗ −0.058 −0.086

(0.019) (0.022) (0.040) (0.077)
Physical Capacity × Cognitive Stimulation 0.015 0.056∗∗∗ −0.010 0.084

(0.018) (0.020) (0.035) (0.065)
Cognitive Capacity × Exercise −0.040∗ −0.037 −0.031 −0.026

(0.021) (0.024) (0.043) (0.093)
Cognitive Capacity × Cognitive Stimulation 0.002 0.019 −0.061 −0.258∗∗∗

(0.022) (0.025) (0.039) (0.089)
Exercise × Cognitive Stimulation 0.025 0.002 0.022 −0.093

(0.016) (0.016) (0.031) (0.062)
Constant −0.066∗∗∗ −0.112∗∗∗ −0.160∗∗∗ −0.231∗∗∗

(0.007) (0.009) (0.015) (0.038)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.11. Transition Parameters for Cognitive Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.040∗∗∗ 0.021∗∗ 0.003 −0.013
(0.010) (0.011) (0.015) (0.027)

Cognitive Capacity 0.646∗∗∗ 0.614∗∗∗ 0.696∗∗∗ 0.599∗∗∗

(0.012) (0.013) (0.020) (0.053)
Exercise 0.018 0.013 0.029∗ 0.056∗

(0.011) (0.011) (0.015) (0.029)
Cognitive Stimulation 0.097∗∗∗ 0.127∗∗∗ 0.094∗∗∗ 0.166∗∗∗

(0.012) (0.011) (0.015) (0.031)
Physical Capacity Squared 0.000 −0.025 0.024 −0.018

(0.018) (0.018) (0.021) (0.029)
Cognitive Capacity Squared −0.283∗∗∗ −0.294∗∗∗ −0.182∗∗∗ −0.253∗∗∗

(0.021) (0.025) (0.030) (0.067)
Exercise Squared 0.048∗∗ 0.007 0.022 0.030

(0.024) (0.021) (0.022) (0.032)
Cognitive Stimulation Squared −0.033 −0.044∗∗ −0.041∗∗ −0.088∗∗∗

(0.023) (0.018) (0.020) (0.028)
Physical Capacity × Cognitive Capacity 0.077∗∗∗ 0.194∗∗∗ 0.074∗ 0.117∗

(0.027) (0.028) (0.038) (0.062)
Physical Capacity × Exercise −0.015 0.022 −0.032 0.024

(0.032) (0.028) (0.034) (0.042)
Physical Capacity × Cognitive Stimulation −0.018 −0.068∗∗∗ −0.024 0.006

(0.029) (0.025) (0.028) (0.043)
Cognitive Capacity × Exercise −0.071∗∗ −0.151∗∗∗ 0.015 −0.128∗

(0.032) (0.031) (0.039) (0.073)
Cognitive Capacity × Cognitive Stimulation 0.245∗∗∗ 0.240∗∗∗ 0.164∗∗∗ 0.305∗∗∗

(0.031) (0.032) (0.039) (0.064)
Exercise × Cognitive Stimulation −0.065∗ 0.037 −0.026 0.021

(0.036) (0.029) (0.034) (0.050)
Constant 0.002 −0.053∗∗∗ −0.127∗∗∗ −0.177∗∗∗

(0.010) (0.010) (0.012) (0.021)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.12. Transition Parameters for Cognitive Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.060∗∗∗ 0.018 0.040∗ −0.009
(0.014) (0.017) (0.021) (0.045)

Cognitive Capacity 0.717∗∗∗ 0.709∗∗∗ 0.781∗∗∗ 0.806∗∗∗

(0.014) (0.015) (0.025) (0.050)
Exercise 0.021∗ 0.016 0.014 0.045

(0.011) (0.011) (0.016) (0.043)
Cognitive Stimulation 0.064∗∗∗ 0.071∗∗∗ 0.066∗∗∗ 0.017

(0.011) (0.011) (0.016) (0.027)
Physical Capacity Squared 0.030 −0.019 0.002 −0.034

(0.024) (0.025) (0.029) (0.051)
Cognitive Capacity Squared −0.136∗∗∗ −0.116∗∗∗ −0.068∗ −0.009

(0.023) (0.030) (0.038) (0.062)
Exercise Squared 0.010 0.030 0.031 −0.029

(0.020) (0.019) (0.021) (0.047)
Cognitive Stimulation Squared −0.003 −0.006 −0.009 −0.005

(0.015) (0.015) (0.018) (0.023)
Physical Capacity × Cognitive Capacity 0.046 0.063 0.126∗∗∗ 0.056

(0.035) (0.039) (0.045) (0.088)
Physical Capacity × Exercise 0.012 −0.007 −0.022 0.057

(0.034) (0.034) (0.037) (0.078)
Physical Capacity × Cognitive Stimulation −0.026 −0.018 0.034 −0.005

(0.029) (0.030) (0.033) (0.055)
Cognitive Capacity × Exercise −0.059∗ −0.079∗∗ −0.093∗∗ −0.029

(0.031) (0.033) (0.040) (0.077)
Cognitive Capacity × Cognitive Stimulation 0.066∗∗ 0.058∗ 0.054 −0.026

(0.030) (0.033) (0.040) (0.061)
Exercise × Cognitive Stimulation −0.002 0.030 0.006 0.011

(0.028) (0.025) (0.028) (0.053)
Constant −0.018 −0.075∗∗∗ −0.138∗∗∗ −0.152∗∗∗

(0.011) (0.012) (0.015) (0.029)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.13. Transition Parameters for Exercise, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.051∗∗∗ 0.053∗∗∗ 0.063∗∗∗ 0.037∗

(0.011) (0.012) (0.015) (0.022)
Cognitive Capacity 0.020∗ 0.046∗∗∗ 0.133∗∗∗ 0.134∗∗∗

(0.011) (0.012) (0.016) (0.026)
Exercise 0.969∗∗∗ 0.917∗∗∗ 0.864∗∗∗ 0.822∗∗∗

(0.014) (0.013) (0.017) (0.025)
Constant −0.067∗∗∗ −0.096∗∗∗ −0.139∗∗∗ −0.233∗∗∗

(0.004) (0.005) (0.008) (0.015)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table D.14. Transition Parameters for Exercise, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.125∗∗∗ 0.080∗∗∗ 0.121∗∗∗ 0.158∗∗∗

(0.014) (0.015) (0.022) (0.038)
Cognitive Capacity 0.057∗∗∗ 0.045∗∗∗ 0.129∗∗∗ 0.090∗∗

(0.014) (0.015) (0.022) (0.041)
Exercise 0.896∗∗∗ 0.934∗∗∗ 0.818∗∗∗ 0.759∗∗∗

(0.015) (0.015) (0.021) (0.041)
Constant −0.062∗∗∗ −0.107∗∗∗ −0.162∗∗∗ −0.241∗∗∗

(0.005) (0.006) (0.011) (0.022)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table D.15. Transition Parameters for Cognitive Stimulation, Females

68-73 74-79 80-85 86-91

Physical Capacity −0.013 0.041∗∗∗ 0.047∗∗ 0.060
(0.015) (0.015) (0.022) (0.048)

Cognitive Capacity 0.034 0.049∗∗ 0.077∗∗ 0.119∗

(0.025) (0.023) (0.037) (0.063)
Cognitive Stimulation 1.030∗∗∗ 0.981∗∗∗ 0.943∗∗∗ 0.949∗∗∗

(0.021) (0.018) (0.027) (0.042)
Constant −0.028∗∗∗ −0.055∗∗∗ −0.062∗∗∗ −0.109∗∗∗

(0.008) (0.009) (0.015) (0.033)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table D.16. Transition Parameters for Cognitive Stimulation, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.036∗ 0.051∗∗ 0.079∗∗ 0.023
(0.021) (0.022) (0.039) (0.096)

Cognitive Capacity 0.100∗∗∗ 0.045 0.049 0.119
(0.030) (0.035) (0.049) (0.134)

Cognitive Stimulation 0.958∗∗∗ 0.975∗∗∗ 0.949∗∗∗ 0.811∗∗∗

(0.019) (0.020) (0.033) (0.070)
Constant −0.023∗∗ −0.049∗∗∗ −0.057∗∗ −0.088

(0.010) (0.012) (0.024) (0.072)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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D.5 Distributions of initial factors and of shocks to factors

Table D.17. Distribution of the initial states, females

Correlation with

Mean
Standard
Deviation

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Factor

Physical Capacity 0.10 0.62 1.00 0.34 0.66 0.40
Cognitive Capacity 0.12 0.45 0.34 1.00 0.30 0.52
Exercis 0.11 0.60 0.66 0.30 1.00 0.50
Cognitive Stimulation 0.07 0.64 0.40 0.52 0.50 1.00

Table D.18. Distribution of the initial states, males

Correlation with

Mean
Standard
Deviation

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Factor

Physical Capacity 0.03 0.55 1.00 0.32 0.60 0.31
Cognitive Capacity 0.11 0.47 0.32 1.00 0.27 0.43
Exercise 0.10 0.65 0.60 0.27 1.00 0.33
Cognitive Stimulation 0.03 0.78 0.31 0.43 0.33 1.00
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Table D.19. Standard deviations of shocks

Female Male
Age Factor

68-73 Physical Capacity 0.061∗∗∗ 0.091∗∗∗

(0.010) (0.008)
Cognitive Capacity 0.308∗∗∗ 0.294∗∗∗

(0.004) (0.005)
Exercise 0.167∗∗∗ 0.251∗∗∗

(0.010) (0.010)
Cognitive Stimulation 0.001 0.162∗∗∗

(2.783) (0.029)

74-79 Physical Capacity 0.155∗∗∗ 0.146∗∗∗

(0.005) (0.007)
Cognitive Capacity 0.299∗∗∗ 0.286∗∗∗

(0.005) (0.006)
Exercise 0.252∗∗∗ 0.267∗∗∗

(0.009) (0.011)
Cognitive Stimulation 0.139∗∗∗ 0.212∗∗∗

(0.021) (0.024)

80-85 Physical Capacity 0.184∗∗∗ 0.218∗∗∗

(0.008) (0.008)
Cognitive Capacity 0.269∗∗∗ 0.242∗∗∗

(0.006) (0.007)
Exercise 0.275∗∗∗ 0.330∗∗∗

(0.012) (0.015)
Cognitive Stimulation 0.222∗∗∗ 0.352∗∗∗

(0.030) (0.034)

86-91 Physical Capacity 0.234∗∗∗ 0.257∗∗∗

(0.012) (0.019)
Cognitive Capacity 0.240∗∗∗ 0.249∗∗∗

(0.011) (0.011)
Exercise 0.303∗∗∗ 0.362∗∗∗

(0.017) (0.025)
Cognitive Stimulation 0.271∗∗∗ 0.546∗∗∗

(0.046) (0.052)

Note: ∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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