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Abstract

In a standard one-to-one agent-object matching model, I consider a central

matching authority that publicly announces a strategy-proof mechanism and

then initiates a matching. Following Akbarpour and Li (2020), the authority’s

commitment to the announced mechanism is limited to mechanisms render-

ing participants’ observations indistinguishable from it. I call an announced

mechanism transparent if any deviation from it would be detected.

The main findings identify trade-offs regarding transparency and other

desirable properties: Under stability or efficiency, strategy-proof mechanisms

are transparent if and only if they are dictatorial. At the same time, the agent-

proposing Deferred Acceptance (DA) mechanism is tantamount to committing

to stability, while efficient mechanisms often fail to commit to efficiency. This

transparency trade-off between stability and efficiency persists when strategy-

proofness is guaranteed.
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1 Introduction

This paper examines to what extent participants can be confident that a central

matching authority follows its announced assignment rules. Several real-world exam-

ples reveal that the authority’s conduct may deviate from the rules it has promised.

In 2020, Boston Public Schools (BPS) incorrectly rejected dozens of students from

the city’s most prestigious exam schools, attributing the instance to internal miscom-

munication. Despite an external audit, a similar error reappeared in 2023.1 Another

prominent example is the bribery scandal at U.S. colleges, which surfaced in 2019,

where university officials used fabricated athletic credentials and other tactics to

influence admissions in favor of particular applicants.2 Likewise, misconduct occurred

at the National Resident Matching Program (NRMP) and Chicago Public Schools,

uncovered only after thorough third-party investigations or explicit audits.3 In con-

trast, the 2020 BPS admission flaw was detected by a student’s tutor who noticed a

discrepancy between the student’s grades and the official admissions scores. These

incidents raise a central question: Under which admission mechanisms can deviations

remain undetected by participants?

Motivated by these concerns, I employ a canonical one-to-one object-allocation

framework with privately known preferences and no monetary transfers. In this setting,

an authority publicly announces a strategy-proof direct mechanism but then may

implement a different mechanism behind the scenes, producing a publicly observed

matching. Following Akbarpour and Li (2020), the authority’s commitment is limited

to safe deviations—those for which each agent’s individual observation can still

be explained by some recombination of other agents’ reports under the announced

mechanism. However, unlike Akbarpour and Li (2020), I do not impose assumptions

on the authority’s objectives; its deviations may be intentional or purely erroneous. I

call a mechanism transparent if it permits no safe deviations.

The main analysis investigates how transparency interacts with three fundamen-

tal properties widely regarded as desirable in practical settings: strategy-proofness,

1The Boston Globe, August 31, 2020 and The Boston Globe, April 12, 2023 .
2Press release of the U.S. Attorney’s Office, District of Massachusetts, March 12, 2019 .
3In 1995, the NRMP faced claims that it had broken its promise to use a mechanism not

manipulable by residents (Williams, 1995)—a claim later independently verified by Roth and
Peranson (1997). In Chicago, an independent audit of the 2016–2017 admission process uncovered
privileged treatment, documentation errors, and additional screening of applicants (Grigoryan and
Möller, 2024; Schuler, 2018).
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stability, and efficiency. All three have been extensively examined in the literature

and were central to policy decisions influenced by transparency concerns. In 2005,

for instance, BPS considered two candidates, the stable DA and the efficient TTC.

The committee ultimately chose DA, stating that “the behind-the-scenes mechanized

trading [in TTC] makes the student assignment process less transparent” (Leshno and

Lo, 2021). Yet while both DA and TTC are strategy-proof, stability and efficiency

themselves are mutually incompatible (Balinski and Sönmez, 1999).

To identify potential trade-offs in terms of transparency, the analysis adopts an

informational benchmark motivated by incomplete privacy. The idea is that while

privacy protection typically ensures that students’ reports remain confidential, their

outcomes and certain priority criteria (e.g., walk-zones, special abilities) can be difficult

to hide. Students thus may gauge their relative standing in school’s priority score

ranking; and indeed, as the 2020 BPS case shows, such partial information sometimes

suffices for participants to detect deviations.

Specifically, I assume that agents’ preferences remain private, but other features—

such as the set of agents, objects, and scores—are public knowledge. However, the key

insights of the paper also extend to the school-choice framework of Abdulkadiroğlu

and Sönmez (2003) under alternative informational benchmarks. With the exception

of Proposition 3, all priority-based allocation results carry over, including settings

where participants only learn their own priority scores and objects’ capacities and

eventually observe only their own assignment and objects’ cutoffs (i.e., for each object

the score of the lowest-scoring agent assigned to it).4

Main Results The first set of results indicates a trade-off between strategy-proofness

and transparency. Specifically, I show that any strategy-proof mechanism that is

stable or efficient is transparent if and only if it is dictatorial. In particular, DA

is transparent exactly when it collapses to a serial dictatorship (Proposition 1).

Likewise, any strategy-proof and efficient mechanism is transparent if and only if it is

equivalent to a sequential dictatorship (Theorem 1). In light of these findings, the

remaining insights focus on the trade-off between stability and efficiency under weaker

transparency considerations.

4Naturally, many interesting scenarios lie outside this framework. One such scenario involves
bribery that influences agents’ private information or instances where agents are bribed directly to
cover a deviation.
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Concretely, I ask whether the authority’s announcements can genuinely uphold

its claims of stability and efficiency. A central result of this paper establishes that

announcing DA is equivalent to a commitment to stability: a deviation from DA

is safe precisely when the deviation is itself a stable mechanism for the market’s

underlying priorities (Theorem 3). By contrast, for efficient mechanisms, the authority

can often remain undetected even when it induces inefficient outcomes (Theorem 2).

The transparency advantage of stability over efficiency persists when the authority

can guarantee that all its deviations are strategy-proof. Indeed, while every deviation

from DA is detected in this alternative setup, TTC is not transparent if the priority

structure contains cycles (Proposition 2). The absence of these cycles is directly linked

to a condition making TTC transparent (Proposition 3) and that is weaker than some

other well-known acyclicity condition characterizing TTCs with regard to various

desirable properties.

Before turning to the main analysis, I briefly review the related literature and

outline the organization of the paper.

Related Work This paper is among the first in matching markets to relax the

authority’s assumption of full commitment. However, there are recent studies that

offer complementary perspectives on this topic in allocation problems.

Independently of this work, Grigoryan and Möller (2024) explore how much

information is needed to detect deviations. They introduce an index defined by the

minimum-sized group of individuals whose information is sufficient to detect any

deviation. Under the Immediate Acceptance (IA) mechanism, two agents suffice to

detect any deviation; by contrast, under DA and TTC or sequential dictatorships,

detecting a deviation often requires access to all agents’ information. Relatedly,

Pycia and Ünver (2024) show that for group-strategy-proof and efficient mechanisms,

deviations from Arrovian efficiency can be verified by comparing a single agent’s

relative outcome ranking plus an unknown challenger alternative.

In Hakimov and Raghavan (2023) transparency arises from designing information

structures implementable via sequential public disclosure of interim cutoffs and private

feedback. They show that there exist transparent information structures for DA and

TTC in which each agent reports only one object at a time. However, more generally,

neither private feedback nor cutoffs alone suffice to achieve a transparent protocol.

Unlike in these concurrent works, the notion studied here is a feature of the
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mechanism, since communication is entirely private, mechanisms are direct and agents’

strategic behavior is taken into account. The present paper also finds necessary and

sufficient conditions for entire classes of strategy-proof mechanisms and examines

commitment to desirable properties.

Akbarpour and Li (2020) analyze a framework with sequential private commu-

nication between an authority and agents, that focuses on credible Bayes–Nash

implementation under imperfect information. Both Akbarpour and Li (2020) and

Woodward (2020) study partial commitment in auctions where every deviation is

authority-initiated. The authority’s objectives are publicly known, which is a suitable

assumption in contexts where auctioneers aim primarily to maximize revenue—giving

bidders a clearer view of the auctioneer’s incentives. By contrast, transparency does

not require deviations to be incentive compatible for the authority, nor does it assume

any specific or known objective on the authority’s part. In line with the motivating

applications, it thus remains agnostic about possible motives or mistakes behind

deviations.

More broadly, this paper contributes to our understanding of the structure and

verifiability of matching mechanisms (Gonczarowski and Thomas, 2024; Gangam et al.,

2023), and it connects to the literature modeling limited commitment via agents’

observable outcomes (Dequiedt and Martimort, 2015; Baliga et al., 1997; Bester and

Strausz, 2000, 2001).

The paper proceeds as follows. Section 2 presents the formal model and the

definition of transparency. Sections 3 and 4 analyze efficient and stable mechanisms,

respectively. Section 5 extends the analysis to the case in which strategy-proofness is

guaranteed. The Appendix contains all proofs omitted from the main text.

2 The Basic Framework

2.1 Preliminaries

There are finite sets of agents I and indivisible objects X ∪ {∅}, where ∅ denotes

the outside option and |I| ≥ 2 and |X| ≥ 2.

Each agent i ∈ I has a strict preference relation Pi over X ∪ {∅}, where Ri is the

corresponding weak preference relation.5 Object x ∈ X is acceptable if xPi∅ for i,

5That is, Ri is a complete, transitive and antisymmetric binary relation. For each pair of objects

5



and unacceptable otherwise. Let Pi be i’s preference ranking and let P ≡ (Pi)i∈I be a

(preference) profile with the corresponding domain P . Also, for any J ⊆ I, denote by

PJ = (Pj)j∈J the profile restricted to J . We denote by −i the set of all agents except

i.

For each object x ∈ X and for each agent i ∈ I, assign a score sxi ∈ R
++ ensuring

sxi ̸= sxj for any j ̸= i. For each pair of agents i, j ∈ I, we say i has higher priority or

score at x ∈ X than j if and only if sxi > sxj . Thus, for each x ∈ X, the collected scores

sx = (sxi )i∈I induce a strict (priority) score ranking over the agents. Let s = (sx)x∈X

be a score structure.

A matching µ : I → X ∪ {∅} assigns each agent exactly one object, with no two

agents receiving the same object from X. Any agent receiving the outside option ∅,

and any object in X not assigned to an agent, is called unassigned. Let M collect the

set of all possible matchings.

We now recall several standard definitions used throughout the analysis. A

matching µ is non-wasteful if no unassigned object x ∈ X is strictly preferred by

an agent i over µ(i). It is individually rational if, for every i, object µ(i)Ri∅. A

matching µ is blocked by i at x ∈ X, if there exists j such that xPi µ(i), µ(j) = x,

and sxi > sxj . A matching µ is stable for s if it is not blocked, individually rational,

and non-wasteful. A matching µ is (Pareto) efficient if there is no other matching ν

such that ν(i)Ri µ(i) for all i ∈ I, and ν(j)Pj µ(j) for some j ∈ I.

A mechanism g : P → M maps each profile to a matching. Denote gi(P ) as i’s

match under g(P ). A mechanism g is individually rational if it yields only individually

rational matchings, and non-wasteful if it generates only non-wasteful ones. Stable and

efficient mechanisms are defined analogously, and they are also individually rational

and non-wasteful by definition.

A mechanism g is strategy-proof if, for all P , there is no i ∈ I and P ′
i such that

gi(P
′
i , P−i) Pi gi(P ). In words, a mechanism is strategy-proof if no single agent can

do better by misrepresenting her preferences. A mechanism g is group strategy-proof

if, for all P , there is no J ⊆ I and P ′
J such that gi(P

′
J , P−J)Ri gi(P ) for each i ∈ J ,

and gj(P
′
J , P−J)Pj gj(P ) for at least one j ∈ J . In words, group-strategy-proofness

requires that no group of agents can jointly misrepresent their preferences to weakly

improve everyone’s assignment while strictly benefiting at least one member. We

say a mechanism g is non-bossy if for all P , there is no i ∈ I, and P ′
i , such that

x, y ∈ X ∪ {∅}, we write xRiy if either xPiy or x = y.
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gi(P ) = gi(P
′
i , P−i), but g(P ) ̸= g(P ′

i , P−i). In other words, there is no agent that

is bossy in the sense that changing this agent’s preferences affects other agents’

assignments but not her own.

2.2 A Transparency Framework

Consider a central matching authority that makes an announcement g public to all

agents. Once agents report their preferences P , the authority uses a mechanism g̃

to induce a publicly observable outcome g̃(P ). Yet the mechanism g̃ itself and the

profile P remain confidential. Hence, from the perspective of individual agents, the

outcomes under g̃ may be indistinguishable from those following from announcement

g. We now formalize when agents can detect that the authority did not use g.

Assume that each agent i knows the elements I,X, s and how g operates. Also,

let i’s observation oi (P, g̃(P )) be the ordered pair
(

Pi, g̃(P )
)

. A mechanism g̃ is a

deviation if there is a profile P for which g̃(P ) ̸= g(P ). Following Akbarpour and Li

(2020), an observation oi (P, g̃(P )) under g̃ has an innocent explanation for agent i

if there exists P ′
−i such that oi (P, g̃(P )) = oi

(

(Pi, P
′
−i), g(Pi, P

′
−i)

)

. In other words,

an observation has an innocent explanation if the observation could follow from a

configuration of other agents’ preferences under g. When i does not have an innocent

explanation for her observation oi (P, g̃(P )), then we say that i detects the deviation

g̃ from g. A deviation is safe if for every agent i and every profile P , observation

oi (P, g̃(P )) has an innocent explanation.

We define the following transparency notion, which requires that any deviation

can be detected by at least one agent.

Definition 1. A mechanism g is transparent if it has no safe deviations.

In the remainder of the paper, we apply this notion to the two canonical classes of

stable and efficient mechanisms. Before doing so, consider the following observation

that we rely on repeatedly in the analysis.

Lemma 1. If g is non-wasteful and individually rational, then any safe deviation g̃

from g is non-wasteful and individually rational.

It is easy to see that the statement follows from each agent observing her preference

ranking and the entire matching.
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3 Efficient Mechanisms

This section studies the transparency features of efficient mechanisms. First, we

demonstrate that efficient mechanisms may admit safe deviations that lead to ineffi-

cient outcomes. To motivate such a deviation, consider a public school assignment

setting where the authority seeks to enforce hidden distributional constraints (e.g.,

balanced representation across regions, genders, or socioeconomic groups).6 If these

constraints are incompatible with efficiency, the authority may still announce an

efficient mechanism to encourage participation, but then deviates in order to comply

with its hidden distributional objectives.

Example 1. Let I = {i, j} and X = {x, y} and consider s such that sxi > sxj and

syj > syi . The authority announces TTCs, which is known to be efficient, strategy-proof

(Roth, 1982; Abdulkadiroğlu and Sönmez, 2003) and induced via the TTC algorithm

operating on s. We now construct a safe deviation g̃ from TTCs, for which the

preference profile in the table below will be central:

Pi Pj P ′
i P ′

j

y x x y

x y y x

∅ ∅ ∅ ∅

Specifically, consider a deviation g̃ that differs from TTCs only with respect to

the outcome obtained for profile P , where

g̃(P ) = {(i, x), (j, y)} ≠ {(i, y), (j, x)} = TTCs(P ).

Since i and j prefer to exchange x and y under g̃(P ), deviation g̃ is not efficient.

To see that g̃ is safe, note that if agent j reports P ′
j , we have oi (P, g̃(P )) =

oi
(

(Pi, P
′
j), TTC

s(Pi, P
′
j)
)

. Similarly, from j’s perspective, if agent i reports P ′
i , then

oj (P, g̃(P )) = oj ((P
′
i , Pj), TTC

s(P ′
i , Pj)). Since for any other scenario, g̃ coincides

6See, for instance, the work on matching under regional constraints (Kamada and Kojima, 2015),
affirmative action (Abdulkadiroğlu and Sönmez, 2003); (Abdulkadiroğlu et al., 2005); (Kojima, 2012);
Hafalir et al. (2013), matching under complex constraints (Westkamp, 2013), or diversity constraints
(Ehlers et al., 2014).
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with TTCs, all remaining observations trivially have innocent explanations. Thus,

deviation g̃ is safe and inefficient.

Recall that the TTC algorithm requires that at each step t any unassigned object

points to its highest-scored unassigned agent. A common interpretation of this pointing

is that the agent becomes the object’s owner, enabling her either to obtain it via a self

cycle (a cycle of length 1) or to trade it in a trading cycle. If an agent observes that

another agent’s score for the assigned object is high enough to envision her securing it

via a self cycle, then this self cycle scenario provides a straightforward explanation for

why the observer herself did not get that object. For instance, at profile P in Example

1, x and y are acceptable to their respective owners i and j. Rather than inducing

the trading cycle in which i trades x with j for y, the authority can safely assign

them via two self cycles (i.e., i points to x, j points to y, and vice versa). The same

reasoning applies if the trading cycle involves more agents and objects. Conversely, if

a deviation results in an observation from which an agent deduces that she should

have been the owner of a more-preferred object, then the deviation is not safe.

Next, we introduce sequential dictatorship mechanisms Pápai (2000, 2001) which

do not rely on trading cycles and are therefore inherently resistant to the kind of safe

deviations just discussed. For each X̃ ⊆ X and Pi, let top(Pi, X̃) be the highest-ranked

object on Pi among the outside option and all objects not in X̃. Moreover, for each

P , let πP : {1, . . . , |I|} → I be a bijection representing a dictatorial ordering of the

agents such that for each n ∈ {1, . . . , |I|}, πP,n denotes the n-th dictator at P .

Definition 2. A mechanism g is a sequential dictatorship, if there are dictatorial

orderings {πP}P∈P such that for any pair P, P̃ and for each n ∈ {1, . . . , |I|}, the

following two conditions are satisfied:

(i) gπP,n
(P ) = top

(

PπP,n
,∪n−1

l=1 gπP,l
(P )

)

, and

(ii) if gπP,m
(P ) = gπ

P̃ ,m
(P̃ ) for each m < n, then πP,n = πP̃ ,n.

According to condition (i), a sequential dictatorship recursively defines matchings

such that, for each profile, the respective dictator is assigned her most preferred object

still available after all previous dictators have been assigned. Condition (ii) implies

that the first dictator is always the same, while the next dictator’s identity depends

only on previous dictators’ assignments and not on their detailed preferences.
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The first main result of this section fully characterizes efficient and transparent

announcements as sequential dictatorships.

Theorem 1. Take any efficient announcement g. Then, g is transparent if and only

if it is a sequential dictatorship.

To see why sequential dictatorships are not transparent, note that at each step

exactly one agent is guaranteed to pick her favorite object from the remaining ones.

Observing the first dictator’s assignment reveals the identity of the second dictator,

whose assignment then reveals the third dictator, and so forth. Consequently, given

her observation, each agent can trace the correct ordering of dictators and the objects

that each dictator should have been able to choose from. Therefore, if the authority

deviates from some profile, the first agent who realizes she must have been the dictator

at a given stage, yet did not receive the supposed best available object, has no innocent

explanation for her observation. Accordingly, the deviation is not safe.

The proof of the converse statement is divided into two parts. First, we consider

efficient announcements that are not group-strategy-proof. By Pápai (2000), group-

strategy-proofness is characterized by strategy-proofness and non-bossiness. Now, if an

efficient strategy-proof mechanism is not group-strategy-proof, then strategy-proofness

implies that there is a bossy agent at a profile in which this agent receives her top

choice. The safe deviation we construct in this part of the proof, reproduces this

agent’s bossiness at that very profile: it preserves her assignment while altering other

agents’ assignments as if the agent were bossy. Such a deviation can be safe because

efficiency of the announcement implies that the bossy agent can innocently explain

her observation with a scenario in which every other agent has also received her top

choice. At the same time, other agents can just attribute their observations to the

bossy agent’s possible preference shift.

The second part examines efficient and group-strategy-proof announcements. Each

such mechanism coincides with a Top-Cycle (TC) mechanism (Pycia and Ünver,

2017), whose corresponding TC algorithm operates similarly to TTC but allows for

more complex pointing rules.7 If the mechanism is not a sequential dictatorship, one

can find a profile and step of the TC algorithm where a trading cycle forms (i.e.,

7For a brief discussion of the TC algorithm, see Appendix A. The characterization of group-
strategy-proof and efficient mechanisms of Pycia and Ünver (2017) extends to the setting with outside
options as described in (Pycia and Ünver, 2017, Supplement, p.6) and Pycia and Ünver (2014). The
same holds for the characterization of Pápai (2000) as shown in (Pycia and Ünver, 2014).
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it contains at least two agents). We then construct a safe and inefficient deviation

centered around this trading cycle by extending the key ideas as discussed for TTCs

in the context of Example 1.

Together, these arguments lead directly to the following three-way equivalence for

efficient and group-strategy-proof mechanisms.

Theorem 2. If g is efficient and group-strategy-proof, then the following three state-

ments are equivalent:

1. g is transparent.

2. g is a sequential dictatorship.

3. g admits only efficient safe deviations.

With very similar arguments, a characterization akin to Theorem 1 and Theorem

2 holds for the entire class of TC mechanisms in the many-to-one framework.8 Also,

by the same reasoning as described for the one-to-one setting, any efficient mechanism

that is not group-strategy-proof is not transparent. However, the example below

illustrates that group strategy-proofness cannot be relaxed to strategy-proofness in

the statement of Theorem 2.

Example 2. Let I = {i, j, k} and X = {x, y}. Denote P̂ = {P̂ ∈ P | P̂i = Pi}, where

Pi : x, y,∅ and consider g such that given any P /∈ P̂, agents select their favorite

objects among the remaining ones according to ordering i,j,k, while for any P ∈ P̂ ,

the ordering changes to i,k,j.

Clearly, g is strategy-proof and efficient. To see that g is not group-strategy-proof,

consider profiles P = (Pi, P−i) and P ′ = (P ′
i , P−i) with Pi : x, y,∅ and Pi = Pj = Pk,

while P ′
i = x,∅, y. Announcement g leads to gi(P ) = gi(P

′) while gk(P ) = y and

gk(P
′) = ∅, revealing that g is bossy. Consequently, g is not group-strategy-proof.

Next, take any deviation g̃ from g. First, under any safe g̃, it is clear that

gi(P
∗) = g̃i(P

∗) for any P ∗. Now, consider a profile P̄ , where x is not ranked highest

on P̄i. Hence, oj
(

P̄ , g̃(P̄ )
)

reveals to j that P̄ /∈ P̂. This means j detects g̃ unless

g̃j(P̄ ) = gj(P̄ ) and therefore, we obtain g̃(P̄ ) = g(P̄ ).

8TC mechanisms remain efficient and group-strategy-proof in the many-to-one environment (Pycia
and Ünver, 2011; Abdulkadiroğlu and Sönmez, 2003).
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By Lemma 1, we know that if g is efficient and g̃ is safe, then g̃ is individually

rational and non-wasteful. We show that this implies that g̃ is efficient. Concretely,

consider a problem P̄ , where x is i’s top-choice on P̄i. First, since gi(P̄ ) = g̃i(P̄ ) = x,

if only one of P̄j and P̄k ranks y acceptable, then individual rationality would be

violated whenever g̃(P̄ ) ̸= g(P̄ ). Thus, g(P̄ ) = g̃(P̄ ) and therefore g̃(P̄ ) is efficient.

Second, if P̄j and P̄k both rank y over ∅, then by non-wastefulness of g either j or k

must receive y implying efficiency of g̃(P̄ ).

When |X| < |I|, then similar arguments apply to markets of any size and to

mechanisms that are not dictatorial. By contrast, when |X| ≥ |I|, any non-group-

strategy-proof mechanism induced by a TC algorithm admits an inefficient safe

deviation. Such a deviation can be constructed by applying the key ideas from

Theorems 1 and 2.

4 Stable Mechanisms

This section analyzes the transparency properties of stable mechanisms. Since an-

nouncements are strategy-proof, we focus on the agent-proposing DA, the unique

strategy-proof stable mechanism (Roth, 1984; Dubins and Freedman, 1981). Denote

the DA operating on s with DAs.

We begin with an elementary observation. Denote Σs(P ) as the set of stable

matchings for P for s and let Σs(Pi) =
⋃

P̃−i
Σs(Pi, P̃−i) be the set of matchings that,

given s and Pi, satisfy the stability conditions from the perspective of i. Combining

these definitions directly leads to

Lemma 2. Σs(P ) =
⋂

i Σ
s(Pi).

Note that Lemma 2 implies that stability can be verified agent-by-agent. This

observation is central to prove the following core result of this paper.

Theorem 3. A deviation g̃ from DAs is safe if and only if g̃ is stable for s.

Proof. Consider a deviation g̃ that is not stable for s. Thus, there exists P such

that g̃(P ) /∈ Σs(P ). By Lemma 2, there exists i such that g̃(P ) /∈ Σs(Pi). Since

DAs is stable for s, we have DAs(Pi, P
′
−i) ∈ Σs(Pi) for any P ′

−i. Consequently, since

g̃(P ) /∈ Σs(P ), observation oi (P, g̃(P )) has no innocent explanation. Thus, g̃ is not

safe.
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Conversely, take any deviation g̃ that is stable for s. To establish that g̃ is safe,

we derive an innocent explanation for any i and P and for any of her observations

oi (P, g̃(P )). Consider any P ′
−i, such that for each j ≠ i, the object g̃j(P ) is j’s

top choice on preferences P ′
j . In this case, the fact g̃(P ) ∈ Σs(P ) also implies that

g̃(P ) ∈ Σs(Pi, P
′
−i). However, given profile (Pi, P

′
−i) all agents but i receive their top

choice under g̃(P ). Therefore, no other matching in Σs(Pi, P
′
−i) Pareto dominates

g̃(P ) (i.e., no stable matching makes all agents weakly better off, and at least one

agent strictly better off). Since DAs produces this agent-optimal stable matching, we

have g̃(P ) = DAs(Pi, P
′
−i). Thus, oi (P, g̃(P )) has an innocent explanation. Since i

and P were arbitrary, g̃ is a safe deviation.

While Theorem 3 severely restricts the scope for deviations from DAs, it also

implies that DAs is transparent if and only if there is a unique stable matching

for each profile. As shown next, under these conditions, DAs reduces to a serial

dictatorship (Satterthwaite and Sonnenschein, 1981; Svensson, 1994).

Proposition 1. DAs is transparent if and only if it is a serial dictatorship.

To prove the result, one first shows that for DAs to be a serial dictatorship,

all objects must induce the same priority ranking. Because a serial dictatorship is

simply a special case of a sequential dictatorship with a fixed dictatorial ordering, its

transparency follows immediately. The need for such a strong restriction on s becomes

clear from Example 1: in that example, DAs coincides with TTCs, the constructed g̃

remains stable under s, and agent i holds the highest score on x while agent j holds

the highest score on y. As detailed in Appendix B, the straightforward priority and

preference structures in Example 1 already hint at how the same logic extends to

larger markets under DAs.

However, although the logic behind DAs transparency shares many features with

that of efficient announcements, it is crucial to note that the constraints imposed

on safe deviations by Lemma 2 have no counterpart under efficient mechanisms. In

particular, unlike instability, inefficiency typically cannot be verified agent by agent,

because it stems from mutual gains from trade that cannot be inferred from a single

agent’s report and outcome alone. Consequently, the scope for an authority to deviate

safely from an efficient mechanism may be much broader.

In the remainder of this section, we briefly discuss how this section’s findings

extend to the public school assignment and college admission contexts (Abdulkadiroğlu
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and Sönmez, 2003; Balinski and Sönmez, 1999). Concretely, assume each object has a

publicly known capacity and that each agent’s observation only comprises her own

preferences, scores, assignment and a single-number statistic per object. Suppose

the authority announces DAs and additionally promises that the disclosed statistics

correspond to the objects’ cutoffs: specifically, if an object’s capacity is filled, its

cutoff is the lowest object-specific score among the agents assigned to it; otherwise, it

is set to zero.

As argued in the following, even in this coarser environment, any deviation from

stability for s will be detected. First, an agent’s observation under the deviation can

have an innocent explanation only if the disclosed statistic for her assignment does

not exceed her own score on that object. Consequently, the disclosed statistics must

be weakly lower than the genuine cutoffs of the induced matching. Second, because

DAs is stable for s, there must exist a configuration of other agents’ assignments,

preferences, and scores such that the resulting matching meets the stability constraints

dictated by the agent’s own assignment, preferences, scores, and the disclosed statistics.

However, that matching is then stable under its genuine (higher) cutoffs, and thus

remains stable for s. Hence, by similar reasoning as in Theorem 3 any deviation not

stable for s is detected. It is also clear that the converse part of the proof of Theorem

3 applies, so the remaining results of this section follow immediately.

5 Strategic Agents

In this section, the authority commits ex ante to using a strategy-proof mechanism.

This choice is motivated by the idea that in case all deviations are intentionally chosen

by the authority, sophisticated agents could anticipate them. So the authority may

decide to voluntarily guarantee strategy-proofness. Hence, we assume that any safe

deviation must be strategy-proof itself. In this setup, we revisit DAs and TTCs.

Starting with DAs, we can directly apply Theorem 3 to get the following corollary:

Corollary 1. DAs is transparent.

If s satisfies the acyclicity condition from Kesten (2006), then TTCs is equivalent

to DAs and thus transparent by Corollary 1. These insights extend to the many-to-one

framework of Abdulkadiroğlu and Sönmez (2003).9 However, it later turns out that

9The weaker condition in Ergin (2002) coincides with the condition in Kesten (2006) only in the
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Kesten’s condition is not necessary. Instead, we now introduce a new cycle condition

that captures the transparency of TTCs more directly.

Definition 3. A replacement cycle in s consists of four agents i, j, k, l ∈ I and two

objects x, y ∈ X, all distinct, such that one of the following holds:

(1) sxi > sxk > {sxj , s
x
l } and syj > syl > {syi , s

y

k}, or

(2) sxi > {sxk, s
x
l } > sxj and syj > {syk, s

y

l } > syi .

In other words, there are two ways a replacement cycle can arise: Condition (1)

requires that there are two pairs of agents who mutually outrank each other on two

objects. To satisfy condition (2), there must be one pair that completely encloses

another pair on two objects, with the top and bottom agents of the enclosing pair

swapping positions across the objects.

Proposition 2. If s has a replacement cycle, then TTCs is not transparent.

To build intuition for the statement, imagine a setting with four agents i, j, l, k

and two objects x, y, where s contains a replacement cycle as in Definition 3 (1).

Consider a problem where all objects are acceptable, i and j trade x and y, and the

deviation g̃ swaps their assignments. The replacement cycle in s now ensures that

agents k and l have sufficiently high scores at x and y to “replace” i at x and j at y if

i and j respectively misreport x and y as unacceptable. In short, this replacement is

necessary to prevent g̃ from producing waste or making violations of the score-based

pointing rules of TTCs apparent to i or j. By contrast, without it, g̃ must violate

strategy-proofness to remain safe, since i and j could strategically forgo x and y to

restore their TTC outcomes.

To see this more explicitly, assume we modify s so that i and j have the highest

scores on x and y leaving anything else unchanged. Now suppose i misreports x

as unacceptable. By individual rationality of TTCs, strategy-proofness of g̃ would

require that i receives the outside option. Then, for g̃ to be safe, j’s top choice x

cannot be wasted. Moreover, since j has a higher score at x than k and l, assigning

one of them to x would mean j detects the deviation. So, j must receive x. But i

still ranks y as her top choice and since i owns x, j can only acquire x by trading

one-to-one framework (Haeringer and Klijn, 2009; Kesten, 2006).
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y in exchange for x with i. Hence, any safe g̃ must assign y to i which violates

strategy-proofness g̃.

Given these arguments, consider the following condition that ensures s contains

no replacement cycles.

Definition 4. A score structure s satisfies the imperfect replacement property if, for

any four agents i, j, k, l ∈ I, there exist no two distinct objects x, y ∈ X such that:

(1) sxi > {sxk, s
x
l } > sxj , and

(2) syl > {syi , s
y
j , s

y

k} or {syi , s
y
j , s

y

k} > syl .

This property is weaker than the acyclicity condition of Kesten (2006), yet still

sufficient for transparency of TTCs.

Proposition 3. If s satisfies the imperfect replacement property, then TTCs is

transparent.

By definition, the imperfect replacement property holds in any market with at

most three agents. Hence, by Proposition 3 the acyclicity conditions from Kesten

(2006) and Mandal and Roy (2022) are not necessary for transparency of TTCs,

because they restrict top trading cycles in TTC to at most two agents.10 Finally,

the condition of Mandal and Roy (2022) is satisfied whenever there are at most two

objects. Thus, by Proposition 2, it is not sufficient for transparency of TTCs.

Appendix A Proofs of Section 3 and 5

This section contains the proofs of Section 3 and Section 5. In particular, subsection

A.1 contains the proofs of Theorems 1 and 2 from Section 3, and subsection A.2

contains the proofs of Propositions 2 and 3 from Section 5.

We briefly describe some basic concepts and notation needed in this section. Since

TTCs is a special case of a TC mechanism, we only introduce these concepts once

and use them in both subsections. Given any J ⊆ I, a submatching restricted to

J is a mapping σ : J → X ∪ {∅}. Let Îσ ≡ I \ {J} and let X̂σ ⊆ X be the set of

10The acyclicity condition of Mandal and Roy (2022) characterizes priority structures for which
TTCs is obviously strategy-proof (Li, 2017; Mandal and Roy, 2022). See also Troyan (2019) for a
similar condition.

16



unassigned agents and objects under σ. Note that the outside option ∅ is not in X̂σ

because it is always available. Nonetheless, recall that if an agent is mapped to ∅, we

treat her as assigned, so she does not appear in Îσ.

For any input P and any sequence of steps t = 1, 2, . . . denote by σt−1(P ) the

submatching of agents and objects matched at the beginning of step t. We say a

submatching σ is on-path (on TC or TTC) if there exists a profile P and a step t

such that σ = σt−1(P ).

A.1 Proofs of Theorem 1 and Theorem 2

In the following, we prove Theorem 1 and Theorem 2. Lemma 3 presented first,

implies the sufficiency parts of both statements. The converse direction for Theorem

2 follows from Lemma 4, while Theorem 1 needs Lemma 5 in addition. Thus, we first

establish transparency of sequential dictatorships.

Lemma 3. If g is a sequential dictatorship, then g is transparent.

Proof. Consider an arbitrary sequential dictatorship g. Let g̃ be an arbitrary deviation

from g and select P such that g̃(P ) ̸= g(P ). Given πP , for each i ∈ I, denote

ni = π−1
P (i). Also, let I ′ = {i′ ∈ I| gi′(P ) ̸= g̃i′(P )} and select i ∈ I ′ such that, for all

i′ ∈ I ′ \ {i}, it holds ni ≤ ni′ . We show that oi (P, g̃(P )) has no innocent explanation.

First, note that for each P̃−i such that gk(P ) = gk(Pi, P̃−i) for all k with nk < ni,

Definition 2 (ii) implies that ni = π−1

(Pi,P̃ )
(i). However, then Definition 2 (i) means that

gi(P ) = gi(Pi, P̃−i). This implies that given gi(P ) ̸= gi(Pi, P̃−i), i has no innocent

explanation for oi (P, g̃(P )). Therefore, g̃ is not safe and thus g̃ is transparent.

Next, we proceed with the sufficiency parts of Theorem 1 and Theorem 2.

Lemma 4. If g is efficient, group-strategy-proof and not a sequential dictatorship,

then there exists a safe and inefficient deviation g̃ from g.

In the proof, we rely on the TC algorithm and the characterization by Pycia

and Ünver (2017). We briefly recapture the basics needed to describe the pointing

specification under the TC algorithm.

First, for each on-path submatching σ, each unassigned object x ∈ X̂σ points to

an unassigned agent i ∈ Îσ, thereby making i either the owner or the broker of x. If i

owns x at σt−1(P ), then from step t onward, i can obtain x by forming a self cycle
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(where i points to x and x points back to i) or by trading x via a trading cycle with

another agent. By contrast, if i is the broker of x, then i can only trade x in a trading

cycle; i cannot form a self cycle with x unless i’s status changes to become the owner

of x. No agent is ever the owner or broker of the outside option ∅.

Second, we use the TC algorithm for outside options as described in Pycia and

Ünver (2014) and (Pycia and Ünver, 2017, Supplement, p.5). Because we have a

common outside option ∅, we apply a slightly modified version in which ∅ does not

point to anyone, and any owner who assigns herself to ∅ is immediately assigned to it.

Third, to ensure that the TC algorithm induces a group-strategy-proof and

efficient g, the pointing must be consistent (Pycia and Ünver, 2017) across on-path

submatchings. The interested reader is kindly referred to an excellent description

of the TC algorithm along with a rigorous discussion and interpretation of these

consistency conditions in Pycia and Ünver (2017) and Pycia and Ünver (2014). We

use some of the implications of consistency in the proof below. Especially, we use that

once an agent has become an owner of an object, this ownership persists as long as

the agent is still unassigned.

Proof. Consider any efficient and group-strategy-proof g that is not a sequential

dictatorship. Our goal is to construct a deviation g̃ from g that is safe but inefficient.

Since g is equivalent to a TC mechanism, it can be induced via the TC algorithm

with consistent pointing rules.

We first make two preliminary observations. First, according to Pycia and Ünver

(2017) (Theorem 6) and Pycia and Ünver (2014) (Proposition 3), given any on-path

submatching σ, if there is a single agent who owns all objects in X̂σ, then there is

no broker at σ. Second, if there is no on-path submatching with strictly more than

one owner, then it is easy to see that g is equivalent to a sequential dictatorship as

defined by Definition 2.

These observations thus imply that since g is not a sequential dictatorship, there

exists an on-path submatching σ∗ with two agents i, j ∈ Îσ∗ and two objects x, y ∈ X̂σ∗

such that i owns x and j owns y at σ∗. Let K be the set of agents assigned under σ∗.

Consider preferences PK such that for each k ∈ K, the top choice under Pk is σ∗(k).

Because g is non-bossy, for any profile (PK , P̃Îσ∗
) where P̃Îσ∗

is chosen arbitrarily, the

TC algorithm reaches σt∗−1(PK , P̃Îσ∗
) = σ∗ at some step t∗.

For the construction of a deviation g̃, the following preferences of agent i and j

are central. For i consider Pi, P
′
i such that
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• yPix and for all x′ ∈ X ∪ {∅} \ {x, y}: xPix
′,

• xP ′
iy and for all x′ ∈ X ∪ {∅} \ {x, y}: yP ′

ix
′.

For agent j, let the preferences Pj, P
′
j be

• xPjy and for all x′ ∈ X ∪ {∅} \ {x, y}: yPjx
′,

• yP ′
jx and for all x′ ∈ X ∪ {∅} \ {x, y}: xP ′

jx
′.

Also, denote L = I \ {K ∪ {i, j}} and let PL be specified arbitrarily. Given P−ij =

(PK , PL), let P
′ = (P ′

i , P
′
j , P−ij).

Next, consider g̃ such that g̃(P ) = g(P ′), and for all P̃ ≠ P , be g̃(P̃ ) = g(P̃ ). We

first establish that g̃ is a deviation from g. Given agents in K report PK , we reach σ∗

in step t∗ and thus for all k ∈ K,

g̃k(P ) = gk(P
′) = gk(P ).

Moreover, given P at step t∗, there is a trading cycle

x → i → y → j → x,

which implies gi(P ) = y and gj(P ) = x. By contrast, if agents report P ′, then there

are two self cycles

x → i → x and y → j → y,

at step t∗, thus gi(P
′) = x and gj(P

′) = y and consequently

g̃(P ) = g(P ′) ̸= g(P ).

We conclude that g̃ is a deviation. In addition, it directly follows that g̃ is not efficient,

since agents i and j prefer to trade x and y given P under g̃(P ).

The final step is to show that g̃ is safe. For each i′ ∈ I, we need to find innocent

explanations for observation oi′ (P, g̃(P )). Since g̃(P ) = g(P ′) it is clear that for each

i′ ̸= i, j, one obtains

oi′ (P, g̃(P )) = oi′ (P
′, g(P ′)) .

To find innocent explanations for the remaining agents i and j, consider profiles

(P ′
i , P−i) and (P ′

j , P−j). Since for each k ∈ K the assignment is identical under the
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deviation, we must have σt∗−1(P ′
i , P−i) = σt∗−1(P ′

j , P−j) = σ∗. Given σt∗−1(P ′
j , P−j)

at step t∗, there is a self cycle y → j → y that assigns y to j. This implies that i is

assigned x, since i owns x at σ∗, i is unassigned at σt∗(P ′
j , P−j), and x is her favorite

among the remaining objects at step t∗ + 1. A symmetric argument applies to profile

(P ′
i , P−i), where i forms a self cycle with x at step t∗. Hence, for both i∗ ∈ {i, j} it

holds

gi∗(P
′) = gi∗(P

′

i , P−i) = gi∗(P
′

j , P−j).

Finally, by non-bossiness of g, for all l ∈ L, it is clear that

gl(P
′) = gl(P

′

i , P−i) = gl(P
′

j , P−j).

Hence,

g̃(P ) = g(P ′) = g(P ′

i , P−i) = g(P ′

j , P−j)

which directly leads to

oi
(

(P ′

j , P−j), g(P
′

j , P−j)
)

= oi (P, g̃(P )) and oj ((P
′

i , P−i), g(P
′

i , P−i)) = oj (P, g̃(P )) .

We thus conclude that each i′ ∈ I has an innocent explanation for oi′ (P, g̃(P )).

Since the remaining observations under g̃ coincide with those under g, we obtain

that g̃ is a safe and inefficient deviation from g. This completes the proof.

This concludes the proof for Theorem 2. The final lemma of this section shows

that if g is efficient and not group-strategy-proof, then we can find a safe deviation

and thereby finish the proof for Theorem 1.

Lemma 5. If g is efficient and not group-strategy-proof, then g is not transparent.

Proof. Since g is not group-strategy-proof, but strategy-proof, we know that g is bossy.

Thus, there exists an agent i ∈ I and two profiles P and P ′ = (P ′
i , P−i) such that

g(P ) ̸= g(P ′) and gi(P ) = gi(P
′). Because g is strategy-proof, for any P ∗ = (P ∗

i , P−i)

where gi(P ) is ranked highest on P ∗
i ,

gi(P
∗) = gi(P ) = gi(P

′).

Thus, since g(P ) ̸= g(P ′), it is either true that g(P ∗) ̸= g(P ) or g(P ∗) ̸= g(P ′) or both.

Let g(P ∗) ̸= g(P ). A symmetric argument applies to the case where g(P ∗) ̸= g(P ′).
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Next, consider a deviation g̃ with g̃(P ∗) = g(P ′) ̸= g(P ∗) and g̃(P̃ ) = g(P̃ ) for all

P̃ ≠ P ∗. We show that g̃ is safe. Since all observations under g and g̃ coincide except

for P ∗, we only need to find innocent explanations for oj (P
∗, g̃(P ∗)) for each agent

j ∈ I. Concretely, if j = i, consider P̂−i such that for each agent j ̸= i, P̂j ranks gj(P )

at the top position. Then, since the unique efficient matching under (P ∗
i , P̂−i) is g(P ),

we have g(P ∗
i , P̂−i) = g(P ). Thus, oi

(

(P ∗
i , P̂−i), g(P

∗
i , P̂−i)

)

= oi (P
∗, g̃(P ∗)). Second,

for each j ̸= i, we have oj (P
∗, g̃(P ∗)) = oj (P

′, g(P ′)). Hence, g̃ is a safe deviation

from g. This completes the proof.

A.2 Proofs of Proposition 2 and Proposition 3

In the following, let TTCs = g.

Proof of Proposition 2. By hypothesis, we have agents i, j, k, l and objects x, y that

satisfy the replacement cycle inequalities from Definition 3. We focus on the case in

which Definition 3 (1) is satisfied. Similar arguments apply for Definition 3 (2).

For the construction of the safe and strategy-proof deviation from g, we need the

following preferences. Let P̂ be the set of all profiles P such that, Pi ranks y first,

and x second, Pj ranks x first and y second, Pk and Pl only find x and y acceptable

and for each i′ /∈ {i, j, k, l}, Pi′ ranks ∅ first. The rest of these rankings are specified

arbitrarily. Moreover, given any such Pi for agent i, let P̄i rank y last while keeping

the same relative order of all other objects as under Pi. Similarly, for Pj , define P̄j so

that x is ranked last, while the relative ranking among the remaining objects is the

same as under Pj.

Consider the following deviation g̃. For any profile P ∈ P̂ , let g̃(P ) = g(P̄i, P̄j, P−ij)

and for any profile P ′ /∈ P̂, set g̃(P ′) = g(P ′). Since for every P ∈ P̂, we have

g(P ) ̸= g(P̄i, P̄j, P−ij), it follows that g̃ is indeed a deviation.

To see that g̃ is safe, we can concentrate on profiles P ∈ P̂ . Recall that i has the

highest score for x and j has the highest score for y. Thus, for each i′ ̸= i, j, the

profile (P̄i, P̄j, P−ij) supports an innocent explanation for oi′
(

P, g̃(P )
)

, since in this

case i is assigned to x, j to y and all remaining agents receive the outside option.

Since the same holds for profiles (Pi, P̄j, P−ij) and (P̄i, Pj, P−ij), innocent explanations

for oi
(

P, g̃(P )
)

and oj
(

P, g̃(P )
)

follow directly.

It remains to show that g̃ is strategy-proof. First, for any i′ /∈ {i, j, k, l}, the

deviation g̃ yields exactly the same assignments as g. Since g is strategy-proof, i′
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cannot gain by misreporting under g̃. Now fix any arbitrary profile P ′. Consider the

following arguments for agents in {i, j, k, l}:

For agent l and each P ′, either gl(P
′) = g̃l(P

′) or g̃l(P
′) Pl gl(P

′). First, for each

P ′ such that g(P ′) = g̃(P ′), we have gl(P̂l, P
′

−l) R
′

l g̃l(P̂l, P
′

−l) for all P̂l ∈ Pl. Second,

for each P ′ such that g(P ′) ̸= g̃(P ′), we have g̃l(P
′) R′

l g̃l(P̂l, P
′

−l) for all P̂l. Together,

this implies that l has no incentive to deviate under g̃. Similar arguments apply to k.

For agent i and each P ′, either gi(P
′) = g̃i(P

′) or gi(P
′) Pi g̃i(P

′). First, for each

P ′ such that g(P ′) = g̃(P ′), we have gi(P̂i, P
′
−i) R

′
i g̃i(P̂i, P

′
−i) for all P̂i ∈ Pi. Also, for

each P ′ such that gi(P
′) ̸= g̃i(P

′), we obtain g̃i(P
′) R′

i g̃i(P̂i, P
′
−i) for all P̂i. Similar

arguments apply to j. This completes the proof.

Next, we show that the imperfect replacement property is sufficient for transparency

of TTCs.

Proof of Proposition 3. Suppose that s satisfies the imperfect replacement property.

We show that there is no safe, strategy-proof deviation from g. Let g̃ be an arbitrary

deviation from g and assume that g̃ is strategy-proof. We demonstrate that g̃ cannot

be safe. Recall that by Lemma 1 any safe deviation g̃ from g must be non-wasteful

and individually rational.

The following preferences profile will be central to the arguments: Among all

P ∈ P, choose the P with the smallest t such that the realized submatching at the

end of step t, σt(P ), implies g(P ) ̸= g̃(P ). Denote σt−1(P ) = σmin. For each P ′, we

say we are at σmin under P ′ if we are at the beginning of step t∗ and σt∗−1(P ′) = σmin.

Next, consider the TTC algorithm under P . Let I t be the set of agents who own

an object at step t, and let Î t ⊆ I t be those agents assigned at step t for whom

g̃i′(P ) ̸= gi′(P ). Since we are at σmin, it follows from strategy-proofness and efficiency

of g, that gi′(P )Pi′ g̃i′(P ) for every i′ ∈ Î t.

To establish that g̃ cannot be safe, we distinguish cases according to the cardinality

of I t. To begin with, it is clear from Definition 4 that |I t| ≤ 3 must hold. In the

following, for each i, let P ∗
i be such that for all x ∈ X with x ≠ gi(P ), we have

gi(P )R∗
i∅P ∗

i x.

Case 1 Let |I t| = 1. In this case, there must be a self cycle at step t. Using similar

arguments as in the proof of Lemma 3, we conclude that g̃ cannot be safe. Moreover,
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we can apply the same reasoning in subsequent cases whenever an agent in Î t forms a

self cycle. For any such instance, g̃ is not safe.

Case 2 Let |I t| = 2. Hence, by Case 1, there exist i, j ∈ Î t such that a trading cycle

j → gj(P ) → i → gi(P ) → j forms at step t under P .

We first establish that g̃i(P
∗
i , P−i) ̸= gi(P ) implies g̃j(P

∗
i , P−i) ̸= gj(P ). To start,

strategy-proofness of g̃ implies that g̃i(P ) ̸= gi(P ) leading to g̃i(P
∗
i , P−i) ̸= gi(P ). In

particular, g̃i(P
∗
i , P−i) = ∅ by individual rationality of g. By contradiction, assume

g̃j(P
∗
i , P−i) = gj(P ). Since gj(P ) points to i at σmin and i points to gi(P ), whenever

gj(P
∗
i , P−i) = gj(P ), then by definition of σmin and the pointing rules of TTC,

observation oi ((P
∗
i , P−i), g̃(P

∗
i , P−i)) has no innocent explanation if there is l ∈ Îσmin

such that g̃l(P
∗
i , P−i) = gi(P ). Thus, also gj(P ) ̸= g̃j(P

∗
i , P−i). Using a symmetric

argument, we also know g̃i(P
∗
j , P−j) ̸= gi(P ) since g̃j(P

∗
j , P−j) ̸= gj(P ).

Given these arguments, note that strategy-proofness of g̃ requires g̃i(P
∗
i , P

∗
j , P−ij) =

g̃j(P
∗
i , P

∗
j , P−ij) = ∅. Moreover, by non-wastefulness of g̃ and the definition of σmin,

there must exist l,l′ ∈ Îσmin
\{i, j} with g̃l(P

∗
i , P

∗
j , P−ij) = gi(P ) and g̃l′(P

∗
i , P

∗
j , P−ij) =

gj(P ). However, l, l′ /∈ I t since |I t| ≤ 2. W.l.o.g, let l /∈ I t. Then, since s satisfies

the imperfect replacement property, there is no x ∈ X such that sxl > sxi . Therefore,

i cannot have an innocent explanation for oi
(

(P ∗
i , P

∗
j , P−ij), g̃(P

∗
i , P

∗
j , P−ij)

)

with

g̃l(P
∗
i , P

∗
j , P−ij) = gi(P ), since gi(P ) cannot be assigned to l whenever gi(P ) is i’s top

choice. Hence, if |Î t| = 2, then g̃ is not safe.

Case 3 Let |I t| = 3. Note that whenever there is no cycle with at least three agents

and objects, or Î t < 3, then the arguments in Case 1 and Case 2 can be applied

to conclude that g̃ is not safe. Thus, in the remaining scenario there are exactly

three agents Î t = {i, j, k} that form a trading cycle i → gi(P ) → j → gj(P ) → k →

gk(P ) → i at step t under P .

By strategy-proofness, g̃i(P
∗
i , P−i) ̸= gi(P ). Hence, g̃i(P

∗
i , P−i) = ∅ by individual

rationality of g. However, since |Î| = |I t| = 3 and g̃ is non-wasteful, we can use similar

arguments as in Case 2. Specifically, there must exist l ∈ Îσmin
\ Î t with l /∈ I t, but

g̃l(P
∗
i , P−i) = gi′(P ) for some i′ ∈ Î. This implies that gi′(P )Pi′ g̃i′(P ). Then, because

s satisfies the imperfect replacement property, there is no x ∈ X such that sxl > sxi .

However, l can never be assigned to gi′(P ) under g, as long as i′ prefers gi′(P ) to all

objects in X̂σmin
. Therefore, i′ cannot have an innocent explanation for observation
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oi′ ((P
∗
i , P−i), g̃(P

∗
i , P−i)) with g̃l(P

∗
i , P−i) = gi′(P ).

This completes the case distinction. Hence, whenever g̃ is strategy-proof, then it

is not safe.

Appendix B Proof of Proposition 1

If DAs is a serial dictatorship, then for any given pair of agents i, j ∈ I and objects

x, y ∈ X, it holds sxi > sxj if and only if syi > syj . Given any P , following the ordering

of the induced score ranking for some x ∈ X, for each n ∈ {1, . . . , |I|}, the n-th ranked

agent is guaranteed her top choice among the remaining objects after all previous

agents in line have left. The first ranked agent must receive her top choice under any

stable matching in Σs(P ). Next, the second-ranked agent receives, under any stable

matching in Σs(P ), her top choice among objects once the first agent is left, and so

forth. For each P , it is clear that Σs(P ) is a singleton. Therefore, Theorem 3 implies

that there exists no safe deviation from DAs, and thus DAs is transparent.

If DAs is not a serial dictatorship, then there exist two agents i, j ∈ I and two

objects x, y ∈ X, such that sxi > sxj and syj > syi . We first construct a deviation g̃

from DAs, for which we need the following preferences. For each k ̸= i, j, consider Pk

that ranks ∅ first. Moreover, let Pi, P
′
i be such that

• yPix and for all x′ ∈ X ∪ {∅} \ {x, y}: xPix
′, and

• xP ′
iy, and for all x′ ∈ X ∪ {∅} \ {x, y}: yP ′

ix
′.

Similarly, consider Pj, P
′
j such that

• xPjy and for all x′ ∈ X ∪ {∅} \ {x, y}: yPjx
′, and

• yP ′
jx and for all x′ ∈ X ∪ {∅} \ {x, y}: xP ′

jx
′.

Next, for the profile P = (Pi, Pj, P−ij), let g̃(P ) yield g̃i(P ) = x, g̃j(P ) = y, and

for all k ≠ i, j, g̃k(P ) = ∅. Also, for any P ′ ≠ P , let g̃(P ′) = DAs(P ′). Since for P ,

the DA algorithm yields DAs
i (P ) = y, DAs

j(P ) = x, we know that g̃ is a deviation.

It remains to show that g̃ is safe. Except for profile P , innocent explanations are

immediate. For the remaining case with preferences P , we have

DAs(P ′

i , Pj, P−ij) = DAs(Pi, P
′

j , P−ij) = g̃(P ).
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Hence, for each agent i′ ∈ I, observation oi′ (P, g̃(P )) has an innocent explanation.

Thus, g̃ is a safe deviation and DAs is not transparent.
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