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Abstract

How effective are climate policies in reducing emissions? Although this issue is becoming more

pressing, standard models largely ignore the role of heterogeneity in ĄrmsŠ responses. Using

administrative German Ąrm data, I show that two determinants of carbon leakage, the emission

intensity of production and the import intensity of intermediates, vary signiĄcantly across Ąrms.

I incorporate this heterogeneity into a model of heterogeneous Ąrms to introduce two new

adjustment channels to carbon pricing: the reallocation of production towards Ąrms with a

lower emission intensity or a higher import intensity. I calibrate the model to the German

manufacturing sector and simulate an increase in the domestic carbon price. A model with Ąrm

heterogeneity predicts greater emission reductions, smaller welfare losses, and a higher leakage

rate. Production reallocation towards less emission-intensive Ąrms offsets increased emissions

from offshoring. Combining a domestic carbon price with a carbon tariff would further reduce

leakage and welfare losses. However, it would not yield additional emission reductions since it

limits the reallocation of domestic production towards clean Ąrms. These results suggest that

optimal carbon taxes and tariffs derived from models without Ąrm heterogeneity may be set at

an excessively high level to achieve a speciĄed emission target.
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1 Introduction

Without a globally coordinated effort to harmonize carbon pricing, countries rely on domestic

policies to reduce carbon emissions. However, rising domestic carbon prices can lead to dirty imports

displacing clean domestic production, resulting in leakage. A growing literature proposes to address

this leakage problem by combining a domestic carbon price with a carbon tariff (Campolmi et al.,

2024; Farrokhi and Lashkaripour, 2021; Kortum and Weisbach, 2021).

These papers commonly use industry-level data and assume that Ąrms differ only in their

productivity. This, however, limits within and between Ąrm adjustments to climate policies and

is at odds with empirical evidence, documenting pronounced heterogeneity in two measures of

leakage risk at the Ąrm level: a ĄrmŠs international activity and emission intensity. Firms select

into importing, source from different partner countries, and import different products (Antr‘as et al.,

2017; Bernard et al., 2009). In the context of trade liberalization, this heterogeneity has important

implications for aggregate welfare, productivity, and employment (Blaum et al., 2018; Halpern

et al., 2015; Hummels et al., 2014). Similarly, there is signiĄcant heterogeneity in ĄrmsŠ emission

intensities within and across industries and fuel mix (Barrows and Ollivier, 2018; Lyubich et al.,

2018; von Graevenitz and Rottner, 2020). Despite these Ąndings, the role of Ąrm heterogeneity for

aggregate outcomes of climate policy has received limited attention (Jo and Karydas, 2023; Kim,

2023; Sogalla et al., 2024) and its implications for carbon leakage remain unexplored.

In this paper, I ask how important Ąrm heterogeneity is for the effectiveness and welfare effects

of climate policies. I study this question empirically and theoretically in the context of the German

manufacturing sector. First, I show that German Ąrms vary along two dimensions of heterogeneity

that shape carbon leakage: their sourcing strategy for intermediate inputs and their emission

intensity. Next, I incorporate these two dimensions of heterogeneity into a standard Melitz model

with intermediate inputs. Compared to the standard model, this introduces a new adjustment

channel: the reallocation of production to Ąrms less affected by climate policies, i.e., lower production

cost increases. I Ąnd that ignoring both sources of heterogeneity leads to an underestimation of

the reduction of emissions and an overestimation of the welfare losses associated with an increase

in domestic carbon prices. Adding a carbon tariff does reduce the leakage rate but not the total

emissions in a model with heterogeneity in emission intensity and import intensity. A domestic

carbon price reallocates production towards low emission-intensity Ąrms that are import-intensive,

decreasing domestic emissions but causing leakage through an increase in imports. Combining a

carbon tax and carbon tariff, however, reallocates production towards high emission-intensity Ąrms

compared to the carbon-tax-only scenario. This increases domestic emissions more than it decreases

foreign emissions since the most emission-intensive domestic Ąrms produce dirtier than foreign Ąrms.

The German manufacturing sector provides a signiĄcant setting for this analysis. Germany is

the largest emitter in the European Union, with the manufacturing sector alone emitting 300 million

tons of CO2 in 2018, which is equivalent to one-fourth of GermanyŠs total emissions (Rottner and

von Graevenitz, 2022). Through the EU ETS, the sector is also subject to stringent environmental

regulations aimed at substantially decreasing emissions in the coming decade. At the same time,
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German Ąrms are highly integrated into global supply chains, with more than 70% of Ąrms sourcing

intermediates from foreign countries. Together, these factors create ideal conditions for carbon

leakage to occur.

I combine German administrative Ąrm-level data on emissions, trade and balance sheet in-

formation for the manufacturing sector from 2011 to 2018. I Ąrst provide direct reduced-form

evidence for the carbon leakage mechanism by demonstrating that emissions and foreign inputs are

substitutes. To estimate the effect of offshoring on emission intensity, I use exogenous variation in

foreign prices caused by country-speciĄc trade costs and productivity shocks. Consistent with other

studies (Akerman et al., 2021; Dussaux et al., 2023; Leisner et al., 2022), offshoring, deĄned as the

use of foreign inputs, reduces a ĄrmŠs domestic emission intensity. If offshoring increases by 10 %, a

ĄrmŠs emission intensity goes down by 0.26%. Moreover, the effect varies across Ąrm-size bins, with

larger Ąrms reducing their emission intensity more. Differences in sourcing strategies can explain

this variation, as large Ąrms have access to a broader set of partner countries and, consequently,

more imported varieties.

Next, I use the German data to document that differences in ĄrmsŠ sourcing strategies introduce

signiĄcant variation in the import intensity and the emission intensity of imported intermediate

inputs across Ąrms. Large Ąrms use relatively more and dirtier foreign intermediate inputs. This

Ąnding is explained by an extensive margin effect. Larger Ąrms source foreign intermediate inputs

from more countries, including those with higher emission intensity of production, resulting in a

higher emission intensity of their imports.

However, even though large Ąrms use more and dirtier foreign inputs, they also have a higher

domestic emission intensity than their smaller counterparts. This Ąnding contrasts with the

literature (Barrows and Ollivier, 2018). Still, it can be explained by the composition of the

German manufacturing sector, which has a high share of output from the most emission-intensive

industries, which include steel, aluminum, cement, paper, and glass. Large Ąrms operating in these

industries beneĄt from several policies to gain access to cheap energy, making them relatively more

emission-intensive.

Motivated by this empirical evidence from German Ąrm-level data, I build a heterogeneous Ąrm

model to quantify the general equilibrium effects of climate policy changes. The model extends the

Ąrm-level input trade framework of Blaum et al. (2018) to include emissions as an additional factor

of production. Sourcing intermediate inputs is subject to Ąxed costs, but through love-of-variety

and quality differences, foreign intermediate inputs reduce the production costs of a Ąrm. Large

Ąrms import from more countries and have a higher import intensity. Independently of a ĄrmŠs

sourcing strategy, I assume that Ąrms differ in their relative efficiency in using emissions. I call this

emission-speciĄc productivity the emission bias. This introduces variation in the emission intensity

of Ąrms.

My model differs from the standard environmental Melitz model with input trade in two

dimensions. First, Ąrm heterogeneity in import intensity and emission intensity introduces variation

in Ąrm exposure to climate policies. This gives rise to a reallocation of output. Second, I depart

from the standard assumption of a Cobb-Douglas production function, limiting the elasticity of
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substitution between different production factors to one. Peter and Ruane (2022) show that this

restriction biases aggregate gains from trade liberalization.

To take the model to the data, I Ąrst estimate the elasticity of substitution between intermediate

inputs and emissions. This elasticity is crucial for understanding carbon leakage, as it indirectly

inĆuences the elasticity between domestic and foreign emissions. I follow OberĄeld and Raval (2021)

and estimate the elasticity using information on factor costs and a shift-share instrument based on

international energy price variation. My Ąndings indicate that emissions and inputs are substitutes,

with the estimated elasticity ranging from 1.4 to 1.8 depending on the choice of weights for the

shift-share instrument and the sample period.

Next, I estimate the parameters of the joint distributions of productivity, emissions bias, and

Ąxed costs of imports using a Simulated Method of Moments (SMM) approach. This method

estimates the endogenous parameters of the joint distribution to minimize the distance between

selected empirical and data moments. I use the observed Ąrm-level distributions of value-added,

emissions intensity, and foreign shares as empirical counterparts for the productivity, emission bias,

and Ąxed costs of importing. The estimated model matches all moments of the data. This stands in

contrast with more aggregate versions of the model. Ignoring (i) heterogeneity in sourcing strategy,

(ii) heterogeneity in emission bias, or (iii) heterogeneity in sourcing strategy and emission bias

shows that introducing an emission bias is crucial to not only capture the correlation of Ąrm size

and emission intensity but also necessary to achieve the dispersion in emission intensity. Similarly,

without Ąxed import costs, all Ąrms would have the same foreign share. Hence, none of these

aggregate models can fully capture all the features of the data.

To further evaluate the ability of my model to Ąt the data, I estimate the effect of a 1% increase

in the aggregate emission price by Ąrm decile on emission intensity, output, offshoring, and the

emission intensity of imports using (i) the German Ąrm-level data and (ii) my calibrated baseline

model. The predicted treatment effects of my baseline model match the estimated treatment effects

of the data, even though my calibration did not target this result. Furthermore, this result sheds

light on the heterogeneity in ĄrmsŠ responses to climate policy. Large Ąrms decrease their emission

intensity and increase their output, their imports, and their emission intensity of imports relative to

smaller Ąrms.

To quantify the emission and welfare effects of future increases in the domestic carbon price, I

use the estimated model to simulate a counterfactual increase in domestic carbon prices for Germany,

both with and without a carbon tariff. SpeciĄcally, I simulate an increase in the domestic carbon

price from 10 to 100 e/tCO2. My baseline model predicts an 11% decrease in emissions and welfare

declines by 56 billion e. The leakage rate is 25 %: for every ton of domestic CO2 saved, foreign

emissions increase by 0.25 tons CO2. More aggregate versions of the model predict a smaller decrease

in emissions and a higher decrease in welfare. For emissions, their bias is between 2 and 20%,

and for welfare, their bias is between 40 and 44 %. The sign of the bias depends on whether the

reallocation towards less emission-intensive Ąrms or the offshoring of emissions is more prominent.

This depends on the parametrization of the elasticities of substitution, the demand elasticity, and

the joint distribution of parameters. In the calibrated version of my model, the reallocation channel
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dominates. Hence, the heterogeneous emission bias model has the smallest bias.

To better understand how a domestic carbon price increase affects leakage, I decompose leakage

into four channels: changes in emission intensity, production, offshoring, and the emission intensity

of imports. I Ąnd that global emission reductions are primarily driven by a decrease in the domestic

emission intensity and output of Ąrms and reallocation towards clean Ąrms. This is partially offset

by an increase in importing and, hence, an increase in foreign emissions.

Next, I study the effectiveness of carbon tariffs in limiting carbon leakage. Carbon tariffs are one

solution to mitigate carbon leakage without a globally coordinated policy (Farrokhi and Lashkaripour,

2021; Kortum and Weisbach, 2021). These tariffs impose a carbon price on the emissions embodied in

imports, helping to offset domestic cost disadvantages. The tariff corresponding to pricing emissions

embodied in imports at the domestic carbon price is 8.5%. In the aggregate models, carbon tariffs

reduce emissions by an additional 23 - 30 %. In my baseline model, however, emissions increase

because a carbon tariff reallocates production towards emission-intensive domestic Ąrms with a low

import intensity. In all models, welfare substantially increases compared to the scenario without

a carbon tariff. This additional reduction is highest in the baseline model, where the welfare loss

more than doubles.

Literature Review This paper is related to several strands of the literature. First, it relates

to the literature studying carbon leakage and carbon tariffs in the absence of a global carbon tax.

To mitigate leakage associated with the introduction of a domestic carbon price, governments can

employ capacity-based subsidies (Meunier et al., 2014), output-based subsidies (Fowlie and Reguant,

2022), industry exemptions (Gerster and Lamp, 2020), or carbon border tariffs (Fischer and Fox,

2012; Fowlie et al., 2021). Even though most world trade is in intermediate goods, almost all studies

focus on leakage in Ąnal goods. The exception is Artuc and Sommer (2024), who introduce trade

in intermediates in a multi-country model with perfectly competitive Ąrms. I follow a different

approach and focus on one country to highlight the role of Ąrms in carbon leakage and welfare.

Second, the paper relates to the literature quantifying the environmental effects of offshoring,

which can be split into empirical and theoretical contributions. Recent empirical studies using

Ąrm-level data have demonstrated that offshoring can lead to a reduction in the domestic emission

intensity of Ąrms (Akerman et al., 2021; Cole et al., 2021; Dussaux et al., 2023; Leisner et al., 2022; Li

and Zhou, 2017).1 Yet, the reason why emission intensity decreases is unclear, with evidence pointing

to imports becoming more emission-intensive and productivity-enhancing effects. Complementing

theoretical papers that study offshoring in the presence of environmental policy are Cherniwchan

et al. (2017); LaPlue and Erickson (2020); Schenker et al. (2018). Closest to my research is Lim

(2021), who studies the effect of offshoring on US air pollution and calibrates her model using

sectoral data. However, evidence on the role of Ąrm heterogeneity is sparse, with several theoretical

papers focusing only on heterogeneity in productivity (Chang et al., 2022; Kreickemeier and Richter,

2014; Shapiro and Walker, 2018; Sogalla, 2023; Sogalla et al., 2024; Von Graevenitz et al., 2024). I

contribute to this literature by quantifying the general equilibrium effect of Ąrm heterogeneity on

1Imbruno and Ketterer (2018) Ąnd the same holds for energy intensity in Indonesia
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carbon leakage and welfare. By using Ąrm-level data, I can document the importance of reallocation

across Ąrms.

Third, an emerging literature focuses on the dispersion of heterogeneity in environmental

performance across Ąrms (Barrows and Ollivier, 2018; Leisner et al., 2022; Lyubich et al., 2018).

While existing papers focus on the role of product and within- and across-sector dispersion in

emission intensity, I focus on the role of Ąrm size and emission intensity. In contrast to the literature,

I document a positive correlation between Ąrm size and emission intensity when using value-added

as a measure for size. This is driven partially by the composition of the manufacturing sector in

Germany and energy subsidies for large Ąrms.

Methodologically, this paper relates to the literature modeling the importing behavior of het-

erogeneous Ąrms (Blaum et al., 2018; Blaum, 2022; Gopinath and Neiman, 2014; Halpern et al.,

2015; Ramanarayanan, 2020) and the role of Ąrm heterogeneity for aggregate outcomes (Arkolakis

et al., 2012; Blaum et al., 2018; Blaum, 2022; Brinatti and Morales, 2021). I extend Blaum et al.

(2018) to incorporate Ąrm heterogeneity in two input factors of production: intermediate inputs

and emissions. Introducing Ąrm heterogeneity, besides productivity, leads to the reallocation of

production across Ąrms. I contribute to this literature, by documenting the importance of Ąrm

heterogeneity for aggregate emissions, carbon leakage and welfare when studying climate policies.

The rest of the paper is structured as follows. Section 2 contains a description of the data and

empirical evidence, while Section 3 presents the theoretical model. Sections 4 and 5 contain the

quantitative exercise and the counterfactual analysis. Section 6 concludes.

2 Descriptive Evidence

In this section, I establish empirical evidence on (i) the effect of trade in intermediate inputs on

domestic CO2 emission intensity, (ii) Ąrm heterogeneity in emission intensity, and (iii) differences in

sourcing strategies across Ąrms. I start with a description of the data and the construction of the

variables before presenting my results.

2.1 Data

German administrative data I use rich administrative data (ŞAmtliche Firmendaten für

DeutschlandŤ) provided by the Federal Statistical Office of Germany from 2011 to 2019. For my

analysis, I combine several data sources. The Ąrst dataset is the German manufacturing census

at the Ąrm level. Participation is mandatory for all establishments with more than 20 employees.

The data include information on sales, employment, investment, and sectoral affiliation. Additional

information on value-added and expenditure on labor, energy, capital, and intermediate inputs

is available for a sample of Ąrms. I combine this information with plant-level data on energy

consumption. Again, all plants with more than 20 employees must provide information on their

energy consumption by energy type, electricity procurement, and electricity from self-generation.
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After aggregating the data to the Ąrm level, I can construct CO2 emissions at the Ąrm level. Lastly,

I use customs data, which provide information on quantity, value, and partner country for each

ĄrmŠs six-digit product-level imports and exports.

Emission Intensity The dataset on energy consumption contains information on consumption

for 14 different fuel types and electricity in kWh. Each fuel type and electricity can be matched

to an annual emission factor provided by the German Environmental Agency (see Appendix A.2

for a list of energy types and emission factors). I calculate total CO2 emissions for each Ąrm by

multiplying energy consumption by fuel type with its emission factor and summing up all energy

types. Unless otherwise noted, I deĄne emission intensity as emissions divided by the value added

to measure the dirtiness of a ĄrmŠs production. I use value added instead of sales to account for the

emission-offshoring effect of intermediate inputs.

Offshoring Measure I use several measures to measure a ĄrmŠs offshoring activity. I follow

Hummels et al. (2018) and deĄne offshoring as imports that belong to the same industry as the

Ąrm. I distinguish between narrow offshoring (measure 1) and wide offshoring (measure 2). Narrow

offshoring is offshoring within the ĄrmŠs four-digit industry, while wide offshoring is offshoring

within the ĄrmŠs two-digit industry. As a third measure, I characterize all non-raw material imports

(measure 3) as offshoring. Unless otherwise noted, the third measure of offshoring is used.

Firms will use more foreign intermediate inputs solely because they are larger. However, to determine

the leakage and welfare effect of policy, the key measure is a ĄrmŠs relative import intensity. I deĄne

a ĄrmŠs import intensity as the foreign share, which is the value of foreign intermediates divided by

the sum of the value of domestic and foreign intermediates. Foreign intermediate inputs are the

value of all non-raw material imports (measure 3).

Instrument for Offshoring Since my measures of international sourcing activity are not exoge-

nous (e.g., there could be unobserved productivity shocks that reduce a ĄrmŠs emissions intensity

and increase its international sourcing), I follow the literature and construct a shift-share instrument

following Hummels et al. (2014) using aggregate trade Ćows at the HS6 level from Comtrade. The

instrument is constructed as follows:

WESit =
∑︁
ck

Xckts
pre

ick
(1)

Xckt denotes aggregate exports of product k from country c in year t to all countries except Germany.

sick is the import share of product k from country c for Ąrm i in a pre-sample period. Intuitively, the

instrument uses exogenous supply-side variation uncorrelated with Ąrm-speciĄc productivity shocks.

The pre-sample year for all Ąrms is 2011. Thus, for the instrument to be deĄned, a Ąrm must

continue to import a speciĄc product from at least one country during the sample period. Borusyak

et al. (2022)Šs condition for consistency of the 2SLS estimator allows the variation in shares to be

endogenous as long as the variation in shocks is exogenous. This requires shocks to be as good as
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randomly assigned and that Ąrms are exposed to many small independent shocks. Exposure shares

in this setting can be viewed as endogenous, as (unobserved) differences in Ąrm characteristics affect

which products Ąrms source from different countries. Variation in world exports of product k from

country c may, for example, arise from country-speciĄc productivity or trade cost shocks, which can

be viewed as a quasi-experimental variation. Since Ąrms, on average, import from nearly twelve

different import partners, the exposure to each shock should be small enough and independent of

each other.

Emission Intensity of Imports To measure the emissions embodied in a ĄrmŠs imports, I need

the emission intensities of foreign production. This information is available through environmentally

extended multi-regional input-output (EE MRIO) tables. Following the literature, I use EXIOBASE

(Stadler et al., 2018).2 EXIOBASE combines data from national accounts, energy accounts, and

input-output tables, among other sources, to cover about 90% of global GDP. Data for 200 products

across all sectors are available for 44 countries plus Ąve aggregate regions. The original dataset

covers 1995-2011 but has been extended to 2022. EXIOBASE reports emissions from combustion

and non-combustion activities. I convert emission intensity measures to 2015 Euros and merge them

with HS6 trade Ćows. In cases where an exact match between EXIOBASE products and HS6 codes

and products is impossible, I use an unweighted average over all matched products.

For my analysis, I keep all Ąrms that report information on their cost structure and positive sales.

This reduces my sample to 134,123 observations. Although I drop more than 50% of the observations,

more than 80% of emissions, production, and trade are covered, as summarized in Table 2. Due to

the wave structure of the cost survey, which rotates smaller Ąrms in and out of the survey every

four years, the sample is not balanced. Table 1 presents summary statistics for the sample. There is

considerable heterogeneity across Ąrms in value-added, emission intensity, and offshoring activity.

Table 1: Summary Statistics

Mean SD p25 p50 p75 p90 p99

CO2 emissions 19,106.43 315,016.78 207.42 721.50 3,123.52 12,176.97 205,980.66
Emission intensity 0.25 0.94 0.04 0.09 0.20 0.47 2.76
Employees 306.69 2206.76 47.00 94.00 223.00 548.00 2661.00
Export status 0.71 0.45 0.00 1.00 1.00 1.00 1.00
Foreign share 0.22 0.30 0.00 0.08 0.34 0.71 1.00
Implicit emission price 410.49 475.01 256.24 318.60 411.45 609.66 2285.68
Import status 0.78 0.41 1.00 1.00 1.00 1.00 1.00
Number import partners 10.16 11.83 1.00 7.00 15.00 26.00 51.00
Offshoring (millions) 19.93 290.74 0.00 0.52 4.56 20.88 230.80
Sales (millions) 107.34 1,319.10 5.85 15.27 49.02 148.81 1,113.98
Sales per worker 242,077.59 548,654.56 104,213.17 160,160.77 255,715.56 426,078.19 144,0636.12
Value added (millions) 45.50 446.96 3.25 7.72 22.44 64.92 465.72

Notes: The table shows summary statistics for Ąrms in the manufacturing sector from 2011-2018. The sample consists of
134,123 observations with 31,529 distinct Ąrms. All nominal variables are expressed in Euros. CO2 emissions are measured in
tons. Emission intensity is measured in kg CO2 per € value added. The implicit emission price is measured in €/tCO2. For
about 2% of the observations, no information on emissions is available. A Ąrm is deĄned as an importer if it has a positive
offshoring value. The number of import partners includes trade in raw material imports.

2See Shapiro (2021) for a comparison of different EE MRIOs.
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Table 2: Representativeness of data sample

Full data Sample

CO2 Emissions (thousand t) 324,816.58 298,930.19
Offshoring (millions) 292.99 266.76
Sales (millions) 1,798.23 1,537.54
Energy use (GWh) 1,071.11 997.33
Emission intensity (kg/€) 0.18 0.19
Number Ąrms 36,187 15,031

Notes: The table compares selected outcomes in 2014 for the full data
consisting of all Ąrms with more than 20 employees and a subsample of
these data used in the analysis. CO2 emissions, offshoring, sales, and
energy use are the sum of all Ąrms. Emission intensity is the average
Ąrm-emission intensity weighted by Ąrm sales.

2.2 Stylized Facts

Fact 1 Offshoring decreases domestic emission intensity and increases emissions of a Ąrm.

A canonical trade-environment model assumes that as a ĄrmŠs offshoring activity increases, its

emission intensity decreases. The assumption is that emission offshoring, speciĄcally the offshoring

of dirty production stages and positive productivity effects of intermediates, leads to a decrease

in emission intensity. To conĄrm that this relationship holds for Germany, I regress the emission

intensity EI of a Ąrm i in year t, deĄned as emissions from direct fuel and electricity consumption

embodied in production divided by the value added or sales, on a variable measuring Ąrm iŠs

offshoring activity in year t and a set of Ąrm 𝛿i and year 𝛾t Ąxed effects. Offshoring is deĄned here

as all non-raw material imports and is instrumented using World Export Supply.

log(EIit) = 𝛽0 + 𝛽1 log(Offshoringit) + 𝛿i + 𝛾t + 𝜖it (2)

I Ąnd that a 10% increase in offshoring reduces emissions intensity by 0.264 %, all else being equal

(see Table 3, column (2)), using value-added as the denominator. The effect is slightly larger than

the OLS estimate in column (1). I use the foreign share, deĄned as offshoring divided by total

intermediate use, as an alternative measure. Here, the estimate of -0.0758 is statistically signiĄcant.

To explore the role of Ąrm heterogeneity, I add an interaction of the offshoring measure with

Ąrm size, measured by the number of employees (column (4)). Once I have added the interaction

term, the effect of offshoring becomes much smaller and insigniĄcant. However, the effect of the

interaction is statistically signiĄcant, negative, and economically relevant. The larger the Ąrm, the

more negative the effect of offshoring on emission intensity. Repeating the regression with emissions

as the dependent variable shows that offshoring reduces Ąrm emissions only for small Ąrms (see

column (5)). Large Ąrms increase their emissions. These Ąndings indicate that offshoring reduces

ĄrmsŠ emission intensity. This reduction may occur directly through offshoring previously in-house,
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Table 3: Offshoring, emission intensity, and emissions

Log Emission Intensity Log Emissions

VA VA VA VA
(1) (2) (3) (4) (5)

log Offshoring -0.0211∗∗∗ -0.0264∗∗ -0.0145 -0.1044∗∗∗

(0.0021) (0.0129) (0.0173) (0.0145)

log Offshoring X Log Size -0.0027∗ 0.0243∗∗∗

(0.0015) (0.0013)

Foreign share -0.0758∗∗∗

(0.0128)

First Stage
log WES 0.1057∗∗∗ 0.0047 0.0047

(0.0069) (0.0142) (0.0142)
log WES X Log Size 0.0181∗∗∗ 0.0181∗∗∗

(0.0023) (0.0023)
F-Stat 236.8736 87.2161 87.2161

Firm FE ✓ ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓ ✓

N 57,604 57,604 57,604 51,079 51,079

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors are in parentheses. This table presents the results
of regressing a ĄrmŠs emission intensity on its offshoring activity, controlling for Ąrm and year-Ąxed effects. For the
regression, the years 2012-2018 are used.

emission-intensive production stages or indirectly through productivity gains from substituting

foreign intermediates for domestic ones. The idea is that offshoring can replace domestic intermediate

inputs or domestic emissions. If imported intermediates replace mostly domestic intermediates, the

effect on emission intensity will be smaller. The replacement of domestic with foreign intermediate

is most likely happening during the sample period.3

In Appendix B, I show that the result is invariant to the choice of offshoring measure. For both

narrow and wide offshoring, the estimates are more negative. Looking at the effect heterogeneity

across Ąrm deciles, the largest Ąrms experience a larger decrease in their emission intensity, but

these results are not statistically signiĄcant.

Fact 2 The relationship between Ąrm size and emission intensity is nonlinear.

To assess the general equilibrium effect of trade in intermediate inputs, it is crucial to know how

3Compared to the literature (Akerman et al., 2021; Dussaux et al., 2023; Leisner et al., 2022), which Ąnds an
elasticity around 0.5, my elasticity is very small. Other studies include ChinaŠs accession to the WTO and the EUŠs
Eastern enlargement. A signiĄcant increase in trade in intermediate inputs with partner countries with high emission
intensities characterizes both events.
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Ąrm size and emission intensity are correlated. It is commonly assumed that large, more productive

Ąrms use a cleaner production technology than small Ąrms (Shapiro and Walker, 2018).

Figure 1 reveals a non-linear relationship between Ąrm size and emission intensity. At Ąrst, emission

intensity decreases with size, but the sign reverses after reaching a threshold size. This Ąnding also

holds when using sales as a measure of Ąrm size.

The composition of the German manufacturing sector drives the non-linear relationship between

Ąrm size and emissions. Heterogeneity in emission intensity varies across two-digit industries: the

most emission-intensive industries display a positive correlation between Ąrm size and emission

intensity. In contrast, in less emission-intensive industries, large Ąrms are also less emission-intensive

(Figure 16). Since many large German Ąrms produce in emission-intensive industries, such as

chemicals, the correlation between Ąrm size and emission intensity is, on average, positive.

Several possible explanations exist for why large Ąrms have a higher emission intensity. First, large

Ąrms are more likely to pay lower taxes on their energy consumption and emissions Gerster and

Lamp (2020). Second, in Germany, large electricity consumers can buy electricity at a lower rate.

Both conditions can result in large Ąrms in emission-intensive industries facing a relatively lower

emission price, making their production relatively dirty to small Ąrms.

Figure 1: Emission intensity and Ąrm size

Notes: This Ągure shows a binscatter plot of log(emission intensity) as the dependent variable and log(VA) as the independent

variable, controlling for four-digit industry and year Ąxed effects. Observations are divided into ten equally sized bins using the

independent variable. For each bin, the mean of the independent variable and the mean of the dependent variable are calculated.

Data for the dependent variable are residualized. Emission intensity is deĄned as emissions produced by the Ąrm divided by VA.

The plot uses the years 2011-2018.

Fact 3 Large Ąrms use relatively more and dirtier foreign intermediates.

The amount of carbon leaked per Ąrm depends on the amount of foreign intermediate inputs and their

emission intensity. Both vary with Ąrm size. Focusing on the importance of imported intermediates

for Ąrms of different sizes, Figure 2 shows that large Ąrms use relatively more imports in their
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production. The foreign share, deĄned as offshoring expenditures divided by total intermediate

expenditure, measures the relative importance of foreign intermediates. The foreign share increases

with Ąrm size. Heterogeneity across Ąrms is pronounced. The largest Ąrms spend almost four times

as much on foreign intermediates as the smallest Ąrms.

Figure 2: Foreign share and Ąrm size

Notes: This Ągure shows a binscatter plot of foreign share as the dependent variable and log (VA) as the independent variable,

controlling for four-digit industry and year Ąxed effects. Observations are divided into ten equally sized bins using the independent

variable. For each bin, the mean of the independent variable and the mean of the dependent variable are computed. Data for

the dependent variable are residualized. The foreign share is deĄned as imports excluding raw materials divided by expenditures

on intermediate inputs. The plot uses the years 2011-2018.

Variation in the foreign share can be driven by an extensive or an intensive margin effect. Firms can

increase their foreign share by starting to import from additional countries. Then, different foreign

shares can be explained by the extensive margin. Alternatively, all Ąrms import from the same

set of partner countries, but some Ąrms import more from each country. Then, different foreign

shares can be explained by the intensive margin effect. Table 4 shows the foreign share, the share of

importers, and the number of partner countries for different Ąrm size deciles. The foreign share is

increasing with the share of importers and the number of partner countries. Small Ąrms, with a

lower foreign share, are less likely to be importers and import from relatively few partner countries

compared to large Ąrms. This evidence is consistent with an extensive margin effect and, hence, a

Ąxed cost to import from each additional country. If the intensive margin were the driver, then the

share of importers and the number of partner countries would be more similar across deciles.

Table 4: Extensive and intensive margin of importing

VA decile 1 2 3 4 5 6 7 8 9 10

Foreign share 0.11 0.13 0.18 0.22 0.24 0.28 0.30 0.28 0.31 0.42
Share importers 0.38 0.54 0.66 0.75 0.81 0.88 0.91 0.94 0.97 0.99
# Partner countries 1.48 2.59 3.72 5.12 6.60 8.83 11.37 14.04 19.11 30.12
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Because sourcing locations differ across countries, the emission intensity of imports varies with Ąrm

size, as the emission intensity is dispersed at the country level. Large Ąrms source from a different

set of partner countries. In general, they have more trading partners and source from farther away

countries. These faraway countries are usually dirtier (see Figure 8).

Figure 3 shows how the emission intensity of imports and Ąrm size correlate. Large Ąrms not only

produce more emission-intensive products; they also import more emission-intensive products. The

effect seems to be at least partly driven by their sourcing strategy. Compared to domestic emission

intensity, the emission intensity of imports is less dispersed across Ąrms. Lower implicit emission

costs do not deter Ąrms from importing emission-intensive intermediates. One possible explanation

could be that the cost share of emissions is relatively low, while differences in labor or capital

costs are the main determinants of a ĄrmŠs sourcing strategy. Appendix B provides complementary

regressions of the emission intensity of imports on Ąrm size and further evidence of the role of

products.

Figure 3: Emission intensity of imports and Ąrm size

Notes: This Ągure shows a binscatter plot of log import emission intensity (EII) as the dependent variable and log (VA) as the

independent variable, controlling for four-digit industry and year. Observations are divided into ten equally sized bins using the

independent variable. For each bin, the mean of the independent variable and the mean of the dependent variable are computed.

Data for the dependent variable are residualized. The emission intensity of imports is deĄned as direct and indirect emissions

using Exiobase data divided by value added. The years 2011-2018 are used for the plot.

Summary This section presented facts highlighting the heterogeneity in emission intensity and

sourcing strategy across Ąrms. In Section 3, I build a model incorporating Ąrm heterogeneity in

sourcing strategy and emission intensity of production to quantify the effect of a change in domestic

carbon prices and a carbon tariff on carbon emissions and welfare.

3 Model

In this section, I introduce a quantitative model to study the role of Ąrm heterogeneity on emission

intensity in a globalized world. To achieve this, I extend the sourcing model by Blaum et al.
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(2018) to include emissions. The model features multiple sectors linked by input-output linkages, a

Ąrm-speciĄc sourcing strategy that generates differences in the share of foreign inputs across Ąrms,

and Ąrm differences in emission prices driven by technological choices.

3.1 Environment

Firms live in a small, open economy and produce differentiated varieties. The set of Ąrms is Ąxed.

A representative consumer is endowed with L units of labor. The supply of emissions is perfectly

elastic, and one unit of emissions can be purchased at a price of pE. Consumers allocate their income

between a tradable manufacturing good and a non-tradable outside good.

Consumer preferences I model the preferences of a representative agent as a two-tier utility

function. The upper level is a Cobb-Douglas aggregator over sector aggregates. Let Cs denote the

industry aggregate of sector s, consisting of domestic varieties produced within the sector. There

is one outside sector that is non-tradable. Expenditure shares 𝛼s ∈ (0, 1), with
∑max

s=1 𝛼s = 1, are

constant and depend only on their price and income.

U =
S∏

s=1

C 𝛼s
s (3)

The lower-tier utility function is a CES composite of domestic varieties produced by Ąrms within

sector s, which are imperfect substitutes. The parameter 𝜎s > 1 represents the sector-speciĄc

elasticity of substitution.

Cs =

[∫
𝜔s∈Ωs

qs(𝜔)
𝜎sŰ1
𝜎s d𝜔

] 𝜎s
𝜎sŰ1

(4)

Production Each sector of the economy is populated by a set of heterogeneous Ąrms denoted as

Ωs. Each Ąrm produces a different variety indexed by 𝜔s. In the following, I will replace 𝜔 with the

index i. I treat the number of Ąrms Ns within each sector as Ąxed. Competition is monopolistic.

Firms employ four factors of production: capital Ki , labor Li , emissions Ei , and intermediate inputs

Xi . I restrict the production technology to a nested Cobb-Douglas-CES production function with

nests driven by the allocation to primary and secondary production factors. Nest one contains a

labor-capital aggregate combined according to technology F(.), which I assume to be Cobb-Douglas.

Nest two consists of the intermediate input bundle and emissions. Elasticities of substitution are

allowed to vary across sectors. 𝜙i represents productivity.

qi = 𝜙i

(
(1 Ű 𝛽i)X

𝜃Ű1
𝜃s

i + 𝛽iE
𝜃sŰ1
𝜃s

i

) 𝜃s
𝜃sŰ1 𝛾s

F(K , L)1Ű𝛾s (5)

Firms can use domestic and foreign intermediate inputs, which are imperfect substitutes. qDi and

zDi are the quantity and quality of the domestic input. The foreign input bundle is XFi . 𝛽i is the
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emission bias of a given Ąrm.

Xi =

[
qDiz

𝜖XsŰ1
𝜖Xs

Di
+ X

𝜖XsŰ1
𝜖Xs

Fi

] 𝜖Xs
𝜖XsŰ1

(6)

Sectoral linkages are modeled using a roundabout production structure (Caliendo and Parro, 2015),

with each sector consuming a distinct input bundle composed of the output from all other sectors

Yj . The parameters 𝜈js ∈ [0, 1] and
∑S

j=1 𝜈js = 1 specify the sector-speciĄc input-output linkages.

zDs =
S∏

j=1

Y
𝜈js

js (7)

Yjs =

(∫ Nj

0
y

𝜎jŰ1

𝜎j

vjs dv

) 𝜎j
𝜎jŰ1

(8)

Sourcing Strategy The foreign input bundle is a function of quality-adjusted qc quantities zc

sourced from a Ąrm-speciĄc set of partner countries Σi , which is referred to as the sourcing strategy.

c indicates the country from which inputs are imported. I assume that the foreign bundle is speciĄed

by a CES function with an elasticity of substitution 𝜅.

XFi =

(∫
c∈Σi

(qczc)
𝜅Ű1
𝜅 dG(q)

) 𝜅
𝜅Ű1

(9)

I further assume that Ąrms face a Ąrm-speciĄc Ąxed cost fi of importing inputs that are constant

across countries. I also assume that the price of the input bundle is the same for all Ąrms. Thus,

the sourcing strategy is a function of quality. Then, the import price index is given by:

PF (Σi) =

(∫
q∈Σi

p(q)/q1Ű𝜅dG(q)

) 1
1Ű𝜅

=

(∫
q∈Σi

q𝜅Ű1dG(q)

) 1
1Ű𝜅

(10)

I assume the country quality parameter follows a Pareto distribution characterized by shape

parameter 𝜃 > 0 and scale parameter qm .

PF (Σi) = 𝜃q 𝜃
min

(∫
q∈Σi

q𝜅Ű1𝜃Ű𝜃Ű1dG(q)

) 1
1Ű𝜅

(11)

Because of the assumption of constant Ąxed costs across countries, Ąrms will source from countries

whose quality lies above a cut-off q̄i . Hence, the price index simpliĄes to:

PFi(n) = qŰ1
i,min

(
𝜃s

𝜃s Ű (𝜅 Ű 1)

) 1
1Ű𝜅

n
Ű1
𝜅Ű1 = znŰ𝜂 (12)
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where n is the mass of countries Ąrm i is sourcing. z and n are functions of (𝜅, 𝜃, qmin). Restricting

𝜃 > min[1, 𝜅 Ű 1], the price index PF decreases in the number of partner countries.

Unit cost Using the CES properties of the production function, the unit cost of a given Ąrm can

be expressed as a function of parameters and prices. w is the price of the capital-labor bundle, pE is

the price of emissions consisting of the price of energy and a carbon tax t, pM is the price index of

materials, consisting of intermediate inputs and emissions, Q(Σi) is the price index of intermediate

inputs, pD is the price of the domestic input bundle, and PF(Σi) is the price index of the foreign

input bundle.

ui =
1

𝜙i

(
w

1 Ű 𝛾s

)1Ű𝛾s
(
pMi

𝛾s

)𝛾s

(13)

where

pMi =
(
(1 Ű 𝛽i)

𝜃sQ(Σi)
1Ű𝜃s + 𝛽

𝜃s

i p1Ű𝜃s

E

) 1
1Ű𝜃s

(14)

and

Q(Σ) =
(
(pD/qD)1Ű𝜖Xs + PF (Σ)1Ű𝜖Xs

) 1
1Ű𝜖Xs (15)

Standard calculations imply that the domestic share, deĄned as expenditure on domestic intermediate

inputs divided by total intermediate input spending, is given by

sDi =
(pD/qD)1Ű𝜖Xs

(pD/qD)1Ű𝜖Xs + PF (Σ)1Ű𝜖Xs

= (pD/qD)1Ű𝜖Xs Q(Σi)
𝜖XsŰ1 (16)

The foreign share is deĄned as

sFi = 1 Ű sDi (17)

Plugging in Equation 12, the domestic share can be expressed as a function of partner countries.

sDi(n) =

(
1 +

(
(pD/qD)

1

z
n𝜂

)1Ű𝜖Xs

)Ű1

(18)

It follows that the unit cost can then be expressed as a function of the number of partner countries

and the emission bias.

ui(n) =
1

𝜙i

(
w

1 Ű 𝛾s

)1Ű𝛾s
(

1

𝛾s

)𝛾s (
(1 Ű 𝛽i)

𝜃ssDi(n)
1Ű𝜃s
𝜖XsŰ1 (pD/qD)1Ű𝜃s + 𝛽

𝜃s

i p1Ű𝜃s

E

) 𝛾s
1Ű𝜃s

(19)

Pricing Decision and ProĄt Maximization Given their sourcing strategy and emission bias,

Ąrms choose their price to maximize their proĄts. Since consumer preferences are CES, the price

equals a ĄrmŠs unit cost ui multiplied by a constant markup.

pi =
𝜎s

𝜎s Ű 1
ui (20)
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The consumer price index is then given by:

Ps =

(∫
p1Ű𝜎s

i di

) 1
1Ű𝜎

(21)

The proĄt maximization problem of a Ąrm is given by

𝜋i = max
n

{
ui(n)(1Ű𝜎s)B Ű w(nf + fI I (n > 0))

}
(22)

where f denotes the country-speciĄc Ąxed cost, and fI is the Ąxed cost of importing. B =
1
𝜎s

𝜎s

𝜎sŰ1
1Ű𝜎sP𝜎sŰ1

s S is deĄned as a function of the general equilibrium object P and S where S

is aggregate spending. ui(n) is deĄned as above.

3.2 Changes in trade and environmental policy

The following section presents theoretical results on how changes in the domestic emission price and

carbon tariffs, speciĄcally an increase in the price of the foreign intermediate good, affect emission

intensity at the Ąrm level in partial equilibrium. For tractability, I study Ąrm responses in an

economy with one sector and set w as the numéraire.

I show that an increase in the domestic emission price decreases the emission intensity of a Ąrm,

while a carbon tariff increases the emission intensity of a Ąrm. Hence, if both instruments are

combined, it is ex-ante unclear whether the emission intensity of a Ąrm and the aggregate emission

intensity will increase or decrease. In the aggregate model without reallocation across Ąrms, the

aggregate and Ąrm emission intensity coincide. Hence, the result can also be applied to the aggregate

emission intensity. In models with additional Ąrm heterogeneity, this conjecture does not hold.

Differences in emission intensity and sourcing strategy introduce reallocation of production across

Ąrms, which will affect the aggregate emission intensity. Depending on the underlying distribution

of these variables, the change in aggregate emission intensity is either upward or downward-biased.

Firm emission intensity Emission intensity is deĄned as Ąrm emissions divided by value added.

Using standard CES calculations, I get:

zi =

(
𝜎s Ű 1

𝜎s

) (
𝛾s

1 Ű 𝛾s

)
𝛽
𝜃s

i pŰ𝜃s

E

(
(1 Ű 𝛽i)

𝜃sQ(Σi)
1Ű𝜃s + 𝛽

𝜃s

i p1Ű𝜃s

E

)Ű1
(23)

Emission intensity, measured in terms of output value, does not directly depend on productivity.

Productivity inĆuences emission intensity indirectly through a ĄrmŠs domestic share and emission

bias, both of which are correlated with productivity.

Proposition 1: An increase in the domestic emission price decreases emission intensity conditional

on emissions and intermediate inputs being substitutes (1 Ű 𝜃) < 0.
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Proof.

𝜕zi

𝜕pE
=

(
𝜎s Ű 1

𝜎s

) (
𝛾s

1 Ű 𝛾s

) Ű𝜃s𝛽
𝜃s

i (1 Ű 𝛽i)
𝜃sQ(Σi)

1Ű𝜃spŰ𝜃sŰ1
E

Ű 𝛽
2𝜃s

i

(
𝜃sp

Ű𝜃s

E
+ (1 Ű 𝜃s)p

Ű2𝜃s

E

)
(
(1 Ű 𝛽i)𝜃sQ(Σi)1Ű𝜃s + 𝛽

𝜃s

i p1Ű𝜃s

E

)2
< 0 (24)

If the government increases the emission price through a carbon tax increase, Ąrms substitute other

factors of production for emissions, leading to a cleaning up of domestic Ąrms. This can be either

labor or intermediate inputs. In the case of foreign intermediate inputs, this, however, will come at

the cost of relocating domestic emissions abroad.

In general, the response of a ĄrmŠs emission intensity to an increase in the emission price depends

on two componentsŮthe change in emissions and the change in value-added. Suppose value-added

is more sensitive to a change in the emission price, e.g., a high demand elasticity 𝜎. In that case,

the value added will decrease more, and the reduction in emission intensity will be stronger. This

affects all Ąrms the same. On the other hand, the change in emissions depends on the elasticity of

substitution between emissions and intermediate inputs in addition to the distribution of emission

bias and Ąxed costs. Intuitively, large Ąrms are hit harder by an increase in the emission price but

can compensate for this effect by having easier access to foreign intermediate inputs. Ex-ante, it is

unclear whether large, emission-intense Ąrms reduce their emission intensity more than small Ąrms.

Proposition 2: A carbon tariff increases domestic emission intensity conditional on emissions

and intermediate inputs being substitutes (1 Ű 𝜃) < 0.

Proof.

dzi

dPFi
= Ű

(
𝜎s Ű 1

𝜎s

) (
𝛾s

1 Ű 𝛾s

)
𝛽
𝜃s

i pŰ𝜃s

E
·

(1 Ű 𝛽i)
𝜃s(1 Ű 𝜃s)Q(Σi)

1
1Ű𝜖Xs

Ű1Ű𝜃sPŰ𝜖Xs

F(
(1 Ű 𝛽i)𝜃sQ(Σi)1Ű𝜃s + 𝛽

𝜃s

i p1Ű𝜃s

E

)2
> 0 (25)

Hence, under the fairly general assumption that all production factors are substitutes, a carbon tariff

increases the emission intensity of domestic Ąrms as Ąrms substitute away from foreign intermediates

towards domestic inputs, including emissions. Conversely, trade liberalization, which corresponds to

a decrease in the foreign price, reduces Ąrm emission intensity through emission offshoring. This,

however, will come at the cost of relocating domestic emissions abroad.

Similar to the reaction of the emission intensity to the emission price, the magnitude of the change

in emission intensity is not obvious. It depends on the relative change in value-added and emissions.

Additionally, the elasticity between foreign and domestic emissions becomes more important and

determines how much emissions will change. Large Ąrms using (relatively) more foreign intermediates

are hit harder by a carbon tariff.

3.3 Carbon Leakage

Emission Intensity of Imports To compute carbon leakage, I need to take a stance on how the

emission intensity of imports is correlated with Ąrm size. Larger Ąrms source from more countries
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than smaller Ąrms. Adding a country to a ĄrmŠs sourcing strategy can either increase or decrease

the emission intensity of imports. To express emission intensity as a function of the number of

partner countries, I assume that the emission intensity of countries follows a Pareto distribution.

Similar to the expression for the foreign price index, I derive the following expression:

EEI (n) = rŰ1
min

(
𝜈

𝜈 Ű (𝜅 Ű 1)

) 1
1Ű𝜅

n
Ű1
𝜅Ű1 = vnŰ 𝜄 (26)

n is the mass of countries from which the Ąrm is sourcing. v and 𝜄 are functions of elasticity of

substitution between foreign varieties 𝜅 and the shape 𝜈 and scale parameter rmin of the Pareto

distribution.

Leakage Rate I use the leakage rate to measure carbon leakage, which is the amount of emissions

offset by an increase in emissions abroad. The leakage rate is deĄned by dividing the change in

foreign emissions by the change in domestic emissions.

L = Ű
ΔForeign Emissions

ΔDomestic Emissions
(27)

A leakage rate smaller than one implies that overall emissions decrease, while a leakage rate larger

than one implies that overall emissions increase. The literature reports leakage rates between 10 to

40 % for Ąnal goods (Fowlie and Reguant, 2022; Sogalla, 2023) and 75 % for intermediate goods

(Leisner et al., 2022).

Decomposition of Change in Global Emissions Building upon the leakage rate, I want to

dissect the channels contributing to the change in domestic and foreign emissions and, hence, the

leakage rate. I decompose the change in global emissions, the sum of domestic and foreign emission

changes, into four parts: i) the change in domestic emissions due to emission substitution, ii) the

change in domestic output, the change in foreign emissions due to iii) offshoring, and iv) the emission

intensity of imports.

ΔEGlobal =

∫ Ns

i

(z ′i Ű zi) vai di︸                    ︷︷                    ︸
Emission substitution

+

∫ Ns

i

(va′

i Ű vai) zi di︸                      ︷︷                      ︸
Output︸                                                     ︷︷                                                     ︸

ΔDomestic emissions

+

∫ Ns

i

(
X ′

Fi Ű XFi

)
zi(XFi) di︸                                ︷︷                                ︸

Offshoring

+

∫ Ns

i

(zi(XFi)
′ Ű zi(XFi)) XFi) di︸                                       ︷︷                                       ︸

Emission Intensity Imports︸                                                                                   ︷︷                                                                                   ︸
ΔForeign emissions

(28)

Domestic emissions can decrease either if Ąrms become cleaner and reduce their emission intensity

or through changes in Ąrm output. Changes in output include the effect of output reduction and
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output reallocation towards cleaner/dirtier Ąrms. InĆuenced by the changes in the input mix and

output, ĄrmsŠ offshoring will also change. This happens through an extensive margin effect. Firms

add or drop countries from their sourcing set, which either increases or decreases their importing

activity. As a by-product of this extensive margin effect, the average emission intensity of imports

will change as well if we assume that foreign countries differ in their emission intensity.

The contribution of the different channels depends on the underlying joint distribution of productivity,

Ąxed costs of importing, and the emission bias, together with the parameters governing the elasticity

of substitution between inputs and the demand elasticity.

3.4 Welfare

To account for the disutility of emissions for consumers, I follow Shapiro (2021) by modifying the

utility function of the consumer as follows:

U =
S∏

s=1

C 𝛼s
s f (EGlobal) =

S∏
s=1

C 𝛼s
s

[
1 + 𝛿

(
EGlobal Ű EGlobal

0

)]
(29)

Damages from global emissions, denoted as EGlobal , enter utility in a multiplicative way through

the function f (), whose speciĄcation is chosen so that an increase in one ton of global emissions

compared to a baseline emission level, causes damages equal to the social cost of carbon. However,

consumers ignore the effect of emissions on their utility, treating emissions as an externality.

After modifying the utility function to include environmental damages, the change in welfare can be

decomposed into two components: real income and the disutility of emissions. Real income depends

on the price index and nominal income, while nominal income is determined by labor income and the

aggregate resource loss due to Ąxed costs. I assume income from emission prices and carbon taxes is

lost to rent-seeking activities Shapiro and Walker (2018). The disutility of emissions increases with

global emissions and the social cost of carbon.

d log W = d log
Y

P︸   ︷︷   ︸
Real Income

Ű d log f (EGlobal)︸              ︷︷              ︸
Disutility Emissions

(30)

3.5 Equilibrium

I assume that Ąrms maximize proĄts and consumers maximize their utility, subject to their budget

constraints. Moreover, the goods and labor markets clear, and trade is balanced. Additionally, I

assume that the rest of the world (RoW) has the same CES demand structure as domestic consumers

and Ąrms. The supply of foreign intermediates and emissions is perfectly elastic. For more details,

see the Appendix.
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4 Estimation of the Model

As shown in the previous sections, Ąrm heterogeneity has implications for both domestic and global

emissions. I calibrate a one-sector version of my model using German microdata to quantify the

impact of emission subsidies and the increase in global trade of intermediate inputs. In Section 4.1,

I estimate the key parameters of the model, followed by an outline of the calibration procedure in

Section 4.2. In Section 4.3, I present the calibration results and evaluate the model Ąt.

4.1 Estimation of Parameters

Elasticity of Demand I use German microdata to compute the elasticity of substitution 𝜎. I

follow OberĄeld and Raval (2014) and infer 𝜎 from ĄrmsŠ markups. Markups are deĄned as the

ratio of total revenue to costs. Following my model, I compute costs as the sum of wages, capital

costs, and material expenditures.
revenue

costs
=

𝜎

𝜎 Ű 1
(31)

I obtain an average markup of 1.36, corresponding to an elasticity of substitution of 3.8. This value

is on the higher end of the estimates featured in the literature.

Elasticity of Substitution for Intermediates and Emissions Minimizing costs implies that,

for a Ąrm i, factor prices equal their marginal products. Using the Ąrst-order condition, it is possible

to express the factor-cost ratio as a function of the elasticity of substitution and factor prices. See

Raval (2019) for a more detailed derivation. Equation 32 identiĄes the elasticity of substitution

between the intermediate input bundle and emissions using variation in the two-digit industry

emission price p̄E , s. I construct p̄E , s by taking a weighted average of the Ąrm-speciĄc emission

prices. Gi includes controls for the four-digit industry, year, and a multi-plant dummy. Xi,s is the

quantity of intermediate inputs, while Eis is the quantity of emissions. The coefficient of interest is

𝛽1 = 𝜂 Ű 1.

log

(
pXXis

pEEis

)
= 𝛽0 + 𝛽1log (p̄E , s) + 𝜁sGis + eis (32)

Instruments I use differences in factor prices across two-digit industries to identify the elasticity

of substitution. If these prices are correlated with unobserved industry characteristics, such as

market power or productivity, the OLS estimator of 𝛽 will be biased. To address this endogeneity

issue, I propose a version of the shift-share instrument by Hummels et al. (2014), which utilizes

differences in the energy-input composition combined with foreign prices for energy. Variation in

energy prices captures supply-side shocks independent of German ĄrmsŠ demand. Since Germany is

a small, open economy, it does not have the power to inĆuence market outcomes. I use pre-sample

shares of energy inputs from 2011 to measure a ĄrmŠs exposure to energy-supply shocks. I construct

Ąrm-level instruments for input prices and then take a weighted average to obtain industry-level

instruments.

Hence, the instrument for the energy input price EIPE
it at the Ąrm level is deĄned by:
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EIPE
it = Σjsikt0PW

jt (33)

j denotes the set of different energy inputs a given Ąrm can use. sijt0 represents Ąrm iŠs share of

energy input j in year t0 = 2011, while PW
jt is an unweighted average of the price of energy input j,

calculated using data from all countries except Germany in year t. I obtain data on energy input

prices from the International Energy Agency (IEA).

Table 5: Elasticity of substitution between emissions and intermediates

Log input cost ratio

(1) (2) (3) (4)

Log Average Emission Price 0.460∗∗∗ 0.486∗∗∗ 0.760∗∗∗ 0.815∗∗∗

(0.0327) (0.0199) (0.0377) (0.0235)

Multi-plant dummy 0.0652∗∗∗ 0.0407∗∗∗ 0.0691∗∗∗ 0.0560∗∗∗

(0.0192) (0.0121) (0.0184) (0.0118)

First Stage
log EIP 0.111∗∗∗ 0.107∗∗∗ 0.113∗∗∗ 0.108∗∗∗

(0.0059) (0.0058) (0.0034) (0.0035)
F-Stat 198.2 596.6 406.3 1203.0

Industry FE ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓

N 42,116 90,887 42,124 90,898

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors are in parentheses. This table
presents the results of regressing a ĄrmŠs intermediate input-energy factor-cost-ratio on its emission
price controlling for Ąrm and year Ąxed effects. Columns (1) and (2) construct shares based on
energy consumption, while columns (3) and (4) use emissions to construct shares. Columns (1) and
(3) use the period 2012-2015, while columns (2) and (4) use the period 2012-2019.

Table 5 shows the estimated elasticity of substitution between emissions and intermediate inputs.

The estimates for this elasticity are between 1.5 and 1.8. Thus, both inputs can be classiĄed as

substitutes. For my calibration, I set the elasticity to 1.46.

Elasticity of Substitution for EII and Sourcing Strategy I need an estimate for the elasticity

𝜄 to calculate the emission intensity of imports and leaked emissions. Using Equation 26, the theory

predicts a log-linear relationship between the number of sourcing locations n and the emission

intensity of imports EEI , which can be estimated using German microdata and information on

foreign emission intensities from Exiobase. I estimate the following regression:

log(EIIi) = 𝛿s + 𝛿t + 𝜙 log(nist) + uist (34)

n denotes the ĄrmŠs average number of countries per product sourced. 𝛿s and 𝛿t are sector and year

Ąxed effects. I measure products at the 6-digit level.

The results of the regression are displayed in Table 6. The emission intensity of imports increases with
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Table 6: Elasticity of substitution between imported emission intensity and imported Varieties

Log emission intensity imports

(1) (2) (3) (4) (5)

Log Number Varieties 0.146∗∗∗ 0.188∗∗∗ 0.189∗∗∗ 0.177∗∗∗ 0.0894∗∗∗

(0.00136) (0.00268) (0.00270) (0.00398) (0.00435)

Export Status -0.0195∗∗∗ -0.000686 0.00619
(0.00502) (0.00784) (0.00823)

Log Capital/Worker -0.00879∗∗∗ -0.00763∗∗∗

(0.00182) (0.00178)

Year FE ✓ ✓ ✓ ✓ ✓

Number Products ✓ ✓ ✓ ✓

Industry FE ✓ ✓ ✓ ✓ ✓

N 219,903 219,816 219,816 102,706 91,958

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors are in parentheses. The calculation of
emission intensity of imports is based on Exiobase. Column (5) considers only Ąrms that import more than one
variety.

the number of imported varieties, measured as the number of foreign partner countries. Controlling

for export status, the number of products, or the log capital-to-worker ratio changes the coefficient

only slightly. However, restricting the sample to Ąrms with more than one partner country nearly

halves the coefficient. In my calibration, I use the smallest estimate of 0.0894.

Other Parameters Table 7 provides an overview of the parameter estimates I use to calibrate

my model. To identify 𝛾, I divided material spending by the ĄrmŠs total costs. As for the carbon

tax, I take the EU ETS price from 2014. 𝜖X and 𝜂 are taken from Blaum et al. (2018).

Table 7: Calibrated model parameters

Description Parameter Estimate Source

Demand elasticity 𝜎 4.10 German data
Output elasticity materials 𝛾 0.48 German data
EoS between emissions and intermediates 𝜃 1.46 German data
EoS between dom. and foreign intermediates 𝜖X 2.38 Blaum et al. (2018)
Sensitivity PF to mass sourcing countries 𝜂 0.38 Blaum et al. (2018)
Sensitivity EII to mass sourcing countries 𝜄 0.09 German data
Price for one unit of emissions t 10 EU ETS Price

Notes: This table reports the value of the calibrated parameters. The calibrated parameters are estimates using German
Ąrm-level data, aggregate data, or data taken from the literature.
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4.2 Estimation Procedure

I allow for three dimensions of heterogeneity in my model: productivity 𝜙i , average Ąxed costs fi ,

and emission bias 𝛽i . I parameterize the distribution of the three parameters (𝜙i , fi , 𝛽i) as a joint

log-normal with means 𝜇𝜙, 𝜇f and 𝜇𝛽, variances 𝜎2
𝜙
, 𝜎2

f
and 𝜎2

𝛽
and correlations 𝜌f ,𝜙, 𝜌𝜙,𝛽 and 𝜌f ,𝛽.4

I normalize average productivity to one. To solve the model, I use the simulated method of moments

(SMM). The objective of the SMM is to minimize the distance between data and model moments by

picking values for the endogenous model parameters. Intuitively, the distribution of value-added,

the emission intensity, and the domestic share are the data equivalent of the distribution of 𝜙i , 𝛽i ,

and fi . Hence, the SMM estimates all parameters of (𝜙i , fi , 𝛽i), the Ąxed costs of importing, and

the minimum emission intensity of imports. To estimate the parameters, I must match each model

moment with a moment from the data. The model with full heterogeneity targets nine data and

model moments. I use the dispersion in value added to identify the dispersion in productivity 𝜎𝜙.

The aggregate emission intensity and the dispersion in Ąrm emission intensity identify the mean

and the dispersion of the emission bias 𝛽i . The aggregate foreign share and the dispersion of the

foreign share identify the mean and the dispersion of the Ąrm-speciĄc Ąxed to import from a country.

The share of importing Ąrms identiĄes the Ąxed costs of importing all Ąrms have to pay to start

importing. The correlation between value-added, emission intensity, and foreign share identiĄes the

correlation between productivity, emission bias, and Ąxed costs. Lastly, I use the minimum emission

intensity of imports to identify the average emission intensity of imports in the model.

Table 8: Overview heterogeneity models

Aggregate Het. Bias Het. Sourcing Baseline

Productivity ✓ ✓ ✓ ✓

Emission bias ✗ ✓ ✗ ✓

Fixed costs ✗ ✗ ✓ ✓

Notes: This table introduces the naming convention for different versions of the model.

4.3 Model Fit

I calibrate four different versions of the model, differing in the degree of Ąrm heterogeneity (see

Table 8). First, the aggregate model features only heterogeneity in productivity, with all Ąrms

having the same foreign share and emission bias. Next, I allow Ąrms to differ either in terms of

their emission bias in the heterogeneous bias model or in terms of their sourcing strategy in the

heterogeneous sourcing model. Finally, in my baseline model, I incorporate both heterogeneous

emission bias and heterogeneous sourcing strategy, in addition to heterogeneous productivity.

Table 9 shows the Ąt of the four different models. Overall, my baseline model can Ąt the sign of all

targeted moments of the data. As expected, the heterogeneous bias model matches the distribution

4For consistency across the different models, I calibrate all models to feature variation along the intensive instead
of the extensive margin. To do so, I introduce a home bias into the model to replace heterogeneity in Ąxed costs. See
C.2 for details. As shown in Blaum et al. (2018), both approaches are nearly equivalent.
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of emission intensity better than the distribution of the foreign share. The heterogeneous sourcing

model cannot Ąt the dispersion of emission intensity, which can only be generated through variation

in sourcing strategy, and predicts a positive correlation between the domestic share and emission

intensity. The aggregate model neither matches the distribution of emission intensity nor that of

the foreign share. Table 10 displays the parameter estimates for the baseline model.

Table 9: Moments of different models

Aggregate Het. Bias Het. Sourcing Baseline

Moments Data Simulated

Dispersion in ln va 1.42 1.42 1.42 1.41 1.42
Agg. domestic share 0.65 0.65 0.65 0.64 0.64
Share of importers 0.78 1.00 1.00 0.78 0.78
Dispersion in ln sD 0.51 0.00 0.00 0.51 0.50
Corr ln va - ln sD -0.26 0.00 0.00 -0.25 -0.25
Agg. log z -8.55 -8.55 -8.55 -8.54 -8.55
Dispersion in ln z 1.27 0.00 1.27 0.01 1.27
Corr ln va - ln z 0.12 0.00 0.12 -0.25 0.11
Corr ln sD - ln z -0.03 -1.00 0.00 0.98 -0.03
Agg. log EII -7.07 -7.07 -7.07 -7.08 -7.07
Domestic/Foreign Emissions 1.32 1.32 1.32 1.32 1.32

Notes: The table reports the data and model moments for the calibrated models using the SMM approach.

Table 10: Parameter estimates of baseline model

Parameter Description Parameter Estimate

Average home bias 𝜇h 3.4773
Average emission bias 𝜇𝛽 5.9347
Dispersion emission bias 𝜎𝛽 1.0616
Correlation emission bias and efficiency 𝜌𝜙,𝛽 -0.1061
Fixed costs of importing fI 0.0001
Dispersion Ąxed costs 𝜎f 1.6772
Correlation Ąxed costs and efficiency 𝜌f ,𝜙 0.2560
Correlation emission bias and Ąxed costs 𝜌𝛽,f 0.1134
Minimum Emission Intensity Imports - -9.3835
Emission price pE 1.3240

Notes: The table reports the parameter estimates for the baseline model using the SMM
for calibration.

In Figure 4, I plot the distributions of the emission intensity and the foreign share for the data and

all four versions of the model to verify that the model matches not only the moments but also the

distribution of the variables.

Figure 4a shows the distribution of the emission intensity for the four models and the data. Not

surprisingly, the aggregate model does not feature any dispersion in emission intensity and cannot
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match the data. In the heterogeneous sourcing model, large Ąrms have a lower emission intensity

caused by the variation in the foreign share. Both models overpredict the emission intensity of small

Ąrms and underpredict the emission intensity of large Ąrms. The baseline and heterogeneous bias

models match the distribution of log emission intensity fairly well. Similar to the other models, they

overpredict the emission intensity of small Ąrms and underpredict the emission intensity of large

Ąrms, but to a lesser extent.

Figure 4b shows the distribution of the foreign share for the four models and the data. The aggregate

and heterogeneous sourcing models do not feature any dispersion in the foreign share and overpredict

the foreign share for all but the largest Ąrms. The baseline and heterogeneous sourcing models

match the positive correlation between foreign share and Ąrm size. However, they underpredict the

foreign share for all but the largest Ąrms and feature a jump in the foreign share for the largest

Ąrms.

Figure 4: Distribution of emission intensity and foreign share: data vs model

(a) Emission intensity (b) Foreign share

4.4 Model Validation

To study the heterogeneity in ĄrmsŠ responses to climate policy and to validate the model, I compare

the predicted treatment effects of my baseline model with the estimated treatment effects. In both

cases, I study a 1% increase in the aggregate emission price. Building on the decomposition of

global emissions change in Section 3.3, the focus is on output, emission intensity, offshoring, and

the emission intensity of imports. Both my model and the data predict that large Ąrms are more

responsive to a carbon price shock. Large Ąrms decrease their emission intensity and increase their

output, their imports, and their emission intensity of imports relative to smaller Ąrms.

4.4.1 Empirical SpeciĄcation

For my model validation, I closely follow Brinatti and Morales (2021). Using the German Ąrm-level

data, I estimate the following regression:
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log(yi,t) = 𝛽0 + 𝛽1 log(pEAgg
s,t ) + 𝛽2 log(pEAgg

s,t ) log(Li,t) + 𝛿i + 𝛿s + 𝛿t + 𝜖i,t (35)

yi,t is the output, emission intensity, offshoring, or emission intensity of imports for Ąrm i in year t.

pEAgg
s,t is the average implicit price of emissions Ąrms pay in the two-digit industry s in year t. L is

the size of Ąrm i measured by employment. 𝛿i , 𝛿s, and 𝛿t are Ąrm, industry and year Ąxed effects.

I construct an industry-level instrument for the emissions price, using variation in the energy-input

composition combined with foreign energy prices to capture exogenous energy-supply shocks. To

measure the exposure of an industry to energy supply shocks, I use pre-sample shares of energy

inputs from 2011 for each industry. The instrument is deĄned as:

Zs,t = Σjsj,s,t0PW
jt (36)

sj,s,t0 is the share of energy input j in industry s in the pre-sample year t0. PW
jt is the average price

of energy input j in all OECD countries excluding Germany. The validity of the instrument relies

on the industries being exposed to small, independent, and random shocks. For example, variations

in world market prices may arise from technology shocks or production shocks.

Results Table 11 presents the average change in a ĄrmŠs output (column 1), emission intensity

(column 2), offshoring (column 3), and the emission intensity of imports (column 4) in response to

an emission price shock. Panel A shows the OLS estimates, and Panel B the 2SLS estimates. The

OLS and 2SLS estimates have the same signs, but the OLS estimates are downward biased. The

2SLS estimates in column (1) suggest that, on average, Ąrms increase their output measured by

value added. The estimates in column(2) and column (3) show that Ąrms simultaneously decrease

their emission intensity and increase their use of imported intermediates. Column (4) suggests that

Ąrms use more imported intermediates and dirtier imported intermediates. These estimates can

be taken as evidence for emission offshoring, which, as a by-product, increases Ąrm productivity.

However, only the estimates for emission intensity and offshoring are statistically signiĄcant. My

Ąndings are similar to Fontagné and Schubert (2023), who study energy shocks of French Ąrms.

They Ąnd Ąrms decrease their emission intensity and increase their import of intermediate inputs.

However, the effect on output is insigniĄcant and close to zero during 2012-2019.5

These average effects mask Ąrm heterogeneity. In Table 12, I present the estimates where I allow the

effect to vary with Ąrm size. Again, the OLS estimates in Panel A have the same sign as the 2SLS

estimates in Panel B but are downward biased. Starting with the estimate for output in column

(1), I Ąnd a negative and statistically signiĄcant effect of the industry emission price on output.

Still, the estimate for the interaction of the industry emission price with Ąrm size is positive and

statistically signiĄcant. The overall effect is positive for all Ąrms with more than 16 employees. An

increase in the industry emission price increases the output of all Ąrms but more so for large Ąrms.

5Colmer et al. (2024) study ĄrmsŠ responses to the EU ETS and Ąnd that regulated Ąrms decrease their emission
intensity but Ąnd no signiĄcant effect on output and offshoring.
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Table 11: Effects of an emission price increase

Output Emission Intensity Offshoring EII

(1) (2) (3) (4)

Panel A: OLS Estimates
Log(Industry Emission Price) 0.0614 -0.1313 0.1657 0.0642

(0.0530) (0.0785) (0.1459) (0.0827)

Panel B: 2SLS Estimates
log(Industry Emission Price) 0.1692 -0.2484∗ 0.2880∗ 0.2550

(0.1182) (0.1330) (0.1644) (0.2363)
F-Stat 28.9 28.9 31.4 31.4

Firm FE ✓ ✓ ✓ ✓

Industry FE ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓

N 69,616 69,616 54,935 54,935

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. This table presents the results of
regressing a ĄrmŠs output, emission intensity, offshoring, and emission intensity of imports on the industry emission
price; the industry emission price interacted with employment and year, industry, and Ąrm Ąxed effects. Standard
errors are clustered at the industry level.

Columns (2) to (4) show the estimates for emission intensity, offshoring, and emission intensity

of imports. While the estimates for the interaction term are highly statistically signiĄcant, the

estimate for the industry emission price is not. Overall, the estimates suggest that Ąrms decrease

their emission intensity and increase their intermediate imports and their emission intensity of

imports. The response of large Ąrms is more pronounced for all three dependent variables.

Table 13 shows the average Ąrm response for different Ąrm size deciles. To compute the effect, I

multiply the estimates by the average emission price and the average number of employees for each

Ąrm decile. Overall, the effects are relatively large. A 1% increase in the aggregate emission price

decreases emission intensity by around -1.3% for the median Ąrm. The change in importing of

intermediates and output depends strongly on Ąrm size. The largest Ąrms increase their imports

and output approximately four times more relative to the smallest Ąrms. Overall, the effect for

the median Ąrm is smaller when accounting for Ąrm heterogeneity. Without heterogeneity, Ąrms

would increase their output by 1.02%, while with heterogeneity, the median Ąrm would increase

their output by approximately 0.8%. Hence, aggregate estimates overestimate the median response.

4.4.2 Firm Response: Model and Data

Next, I want to compare the Ąrm response predicted by the data and the model. I re-estimate

Equation 35 using the calibrated model and simulate a 1% increase in the aggregate emission price,

which equals a carbon tax increase from 10 to 14 e. I compute the average response for each Ąrm

decile by multiplying the estimates with the aggregate emission price and the average employment

for each Ąrm decile.

Figure 5 compares the model response with the data. The model matches the predicted effects
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Table 12: Heterogeneous effects of an emission price increase

Output Emission Intensity Offshoring EII

(1) (2) (3) (4)

Panel A: OLS Estimates
Log(Industry Emission Price) -0.2942∗∗∗ -0.0665 -0.3860∗∗ 0.0315

(0.0523) (0.0835) (0.1553) (0.0816)

log(Industry Emission Price) × log(L) 0.0732∗∗∗ -0.0133∗∗∗ 0.1106∗∗∗ 0.0066∗∗

(0.0042) (0.0042) (0.0135) (0.0028)

Panel B: 2SLS Estimates
log(Industry Emission Price) -0.2272∗ -0.1517 -0.2758 0.2009

(0.1303) (0.1277) (0.1742) (0.2365)

log(Industry Emission Price) × log(L) 0.0834∗∗∗ -0.0204∗∗∗ 0.1157∗∗∗ 0.0111∗∗

(0.0073) (0.0062) (0.0184) (0.0047)
F-Stat 28.9 28.9 31.4 31.4

Firm FE ✓ ✓ ✓ ✓

Industry FE ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓

N 69,616 69,616 54,935 54,935

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses. This table presents the results of regressing a ĄrmŠs
output, emission intensity, offshoring, and emission intensity of imports on the industry emission price; the industry emission
price interacted with employment and year, industry, and Ąrm Ąxed effects. Standard errors are clustered at the industry level.

of the data well. Similar to the data, it predicts emission intensity to decrease and output and

offshoring to increase. In the model, only the largest Ąrms increase the emission intensity of imports.

The model correctly predicts that large Ąrms react more strongly to an increase in the emission

price for all four outcome variables and matches the slope of the data response fairly well. Still,

the effect size between the data and the model differs. However, this discrepancy in levels between

the model and data estimates is expected since the effects estimated using the German Ąrm data

cannot consider the general equilibrium effect on prices.

5 Policy Experiment

Using the calibrated model, I want to study the effects of a change in the domestic carbon tax, both

with and without a carbon tariff, on domestic and foreign emissions and welfare. The increase in the

domestic emission price is calibrated to match a price increase from 10 of 100 e/tCO2, simulating

the rising prices of the EU ETS. The increase in the foreign price is calibrated to match a carbon

tariff applying the domestic carbon tax to emissions embodied in imports. I Ąnd that an increase in

the domestic carbon price decreases emissions and welfare in all models. In general, a carbon tariff

reduces emissions further unless the most import-intensive Ąrms are more emission-intensive than

foreign producers.
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Table 13: Firm response to a 1% emission price increase by Ąrm decile

VA decile 1 2 3 4 5 6 7 8 9 10

Output 0.33 0.43 0.54 0.64 0.75 0.85 0.99 1.15 1.39 1.84
Emission Intensity -1.21 -1.23 -1.26 -1.28 -1.30 -1.32 -1.35 -1.39 -1.44 -1.54
Offshoring 0.67 0.81 0.96 1.10 1.25 1.39 1.58 1.80 2.13 2.77
EII 1.31 1.32 1.33 1.34 1.35 1.35 1.37 1.39 1.41 1.47

Notes: The table reports the mean % change for output, emission intensity, offshoring, and the emission intensity of
imports in response to a 1% change in the aggregate emission price for different Ąrm deciles. Firms are ranked based on
their value-added, with decile 1 being the Ąrms with the lowest value added. The effects are computed using the estimates
reported in Table 12.

5.1 Counterfactual 1: Increase in the Domestic Carbon Price

Context The European Union Emission Trading System (EU ETS) came into force in 2005 to

reduce greenhouse gas emissions in the EU. While the social cost of carbon (SCC) is estimated to

be at least 40 e, with estimates reaching over 400 e, the carbon price in the EU ETS remained

below 35 e until 2020.

To slow climate warming, the carbon price in the EU ETS will have to increase signiĄcantly in the

future. The absence of a carbon tariff may have a detrimental effect on the domestic manufacturing

sector due to the relocation of production. It may also lead to signiĄcant carbon leakage. To examine

a moderate increase in carbon prices, I simulate a change in the carbon price to 100 e/tCO2. Such

a price increase has already been observed temporarily in 2023 and is also in line with projected

carbon prices needed to meet EU emissions targets.

Results As shown in Table 14, all four models predict a decrease in emissions and feature

carbon leakage. However, there are signiĄcant differences between the models. Aggregate models

underestimate the emission reduction and either under- or overestimate leakage.

In the baseline model, domestic emissions would fall by 10.7% in response to the increase in the

carbon price from 10 to 100 e/tCO2. Consistent with the concept of emissions offshoring, foreign

emissions increase by 8.1 %. Global emissions, deĄned as the sum of domestic and foreign emissions,

decrease by approximately 10.7% overall, which is signiĄcantly less than the reduction in domestic

emissions. The leakage rate is 25% and similar to estimates for Ąnal good leakage rates from the

literature, which range between 10 and 50 %. However, it is smaller than the leakage rate for

intermediate inputs of 75% found by Leisner et al. (2022) using reduced-form evidence.

In the three other, more aggregate models, global emissions decrease by between 8.5 - 10.5%. Hence,

the bias of the aggregate models ranges between 2-20%, with the heterogeneous emission bias

model being the closest. The bias is driven by different components. Models without heterogeneity

in emission intensity underestimate the domestic emission reduction because they do not feature

reallocation towards cleaner Ąrms or, to a much smaller extent, in the heterogeneous sourcing model.

Models without heterogeneity in sourcing strategy display lower emission offshoring because large

Ąrms increase their offshoring relative to smaller Ąrms as they face lower costs to do so. Since these
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Figure 5: Firm responses: model vs data

(a) Emission intensity (b) Output

(c) Offshoring (d) Emission Intensity of Imports

Notes: The Ągure shows the mean % change in emission intensity (a), output (b), offshoring (c), and the emission intensity of

imports (d) in response to a 1% change in the aggregate emission price for different Ąrm deciles, comparing the data and the

model. Firms are ranked based on their value-added, with decile 1 being the Ąrms with the lowest value added.

two effects bias the aggregate emission change in different directions, it is not clear whether the

aggregate model would overestimate leakage relative to the baseline model, as the magnitude and

direction of the bias depend closely on the parametrization of the model. Moreover, the bias for the

global emission change and the leakage rate are not perfectly correlated. The baseline model has a

higher leakage rate than the aggregate models without heterogeneity in sourcing strategy but a

lower leakage rate than the heterogeneous sourcing model. Again, the absence of heterogeneity in

Ąxed costs biases the leakage rate downwards, whereas the heterogeneity in emission bias introduces

reallocation in the baseline model, mitigating leakage.

Table 15, decomposes the absolute change in emissions in million tons into the four different

channels of (i) emission intensity, (ii) output, (iii) offshoring, and (iv) the emission intensity of

imports. In all models, the domestic emission reduction is driven by a change in the emission

intensity of the Ąrm. All Ąrms produce less emission-intensive after the domestic carbon price

increases. The reduction is stronger in the absence of emission intensity heterogeneity. This can

be explained by the relatively stronger price increase in the domestic intermediate inputs bundle,
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Table 14: Counterfactual percentage change in domestic, foreign, and global emissions of a domestic
carbon price increase

Model Domestic (%) Foreign (%) Global (%) Leakage Rate Bias (%)

Baseline -24.88 8.13 -10.68 0.25 0.00
Aggregate -21.62 6.89 -9.35 0.24 -12.45
Het. sourcing -22.16 9.55 -8.51 0.33 -20.29
Het. emission bias -23.99 7.42 -10.48 0.23 -1.91

Notes: The table reports the change in domestic emissions (column 1), the change in foreign emissions (column 2), the
change in global emissions (column 3), and the leakage rate (column 4) for a carbon price increase from 10 to 100 10 to
100 e/tCO2. Column 5 reports the bias of the model in terms of change in global emissions relative to the baseline
model.

limiting substitution towards intermediates. However, these two models feature a reduction in

domestic emissions due to the output channel. The most mission-intensive Ąrms shrink in absolute

and relative terms. This effect is stronger than the increases in output of the clean Ąrms and those

with a low cost of sourcing. The increase in foreign emissions is driven by an increase in offshoring,

with the composition of imports only marginally affecting total emissions. Overall, emissions go

down by 56.06 million tons of CO2 in my baseline model.

Table 15: Decomposing the change in emissions (million t CO2)

Model Emission Intensity Output Offshoring EI Imports Total

Baseline -63.59 -13.60 18.31 0.05 -56.06
Aggregate -67.47 3.64 15.57 0.00 -49.08
Het. sourcing -66.49 0.39 21.52 0.05 -44.69
Het. emission bias -64.09 -9.69 16.76 0.00 -55.00

Notes: The table reports the decomposition of the change in global emissions into the change in emission intensity
(column 1), the change in output (column 2), the change in offshoring (column 3) and the change in the emission
intensity of imports (column 4) for a carbon price increase from 10 to 100 e/tCO2. All values are in million t
CO2.

In addition to leakage, I want to explore the welfare effects of an increase in the carbon price. The

welfare effect can be decomposed into two components: the change in consumersŠ real income and

the change in emissions. On one hand, the higher carbon price increases prices, resulting in a decline

in real income. On the other hand, emissions decrease, which reduces the disutility associated

with emissions as measured by the social cost of carbon. Ex-ante, it is not clear which of these

effects is stronger. I perform a back-of-the-envelope calculation to quantify the change in welfare

in e, as shown in Table 18. For this calculation, I take values for the domestic emissions from

the manufacturing sector, the emissions embodied in imports, the average wages in Germany, and

the number of employees from the data. Additionally, I value each tonne of emissions at its social

cost of carbon (SCC), which I assume to be equal to 150 e(Rennert et al., 2022). The changes in

emissions are taken from Table 17.

In the baseline model, an increase in the domestic carbon price to 100 e/tCO2 results in an increase

of the price by 2.63%, which is equivalent to a decrease of real income by 65.0 billion e. Compared
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Table 16: Comparing welfare effects of the baseline and aggregate models without a carbon tariff
(billion e)

Model Real Income (€) Emissions (€) Change Welfare (€) Bias (%)

Baseline -65.00 9.06 -55.94 0.00
Aggregate -87.50 7.93 -79.57 42.25
Het. sourcing -87.65 7.22 -80.42 43.78
Het. emission bias -87.18 8.89 -78.29 39.97

Notes: The table reports the change in real income (column 1), the change in the disutility of emissions (column 2),
and the change in welfare (column 3) for a carbon price increase from 10 to 100 10 to 100 e/tCO2. Column 4 reports
the bias of the model in terms of welfare relative to the baseline model.

to the real income effect, consumers beneĄt moderately from the emissions reduction, amounting to

about 9.06 billion e. However, this beneĄt is insufficient to offset the loss in real income, resulting in

a total welfare decline of 56 billion e. This Ąnding is consistent with the literature, which typically

identiĄes the real income effect as being more signiĄcant than the emissions reduction effect (Shapiro,

2016, 2021). The other models overestimate the welfare losses by around 40% because they feature

a larger increase in the price index, around 3.5 %. In the baseline model, small Ąrms cannot escape

the carbon price shock. In the other models, they experienced cost reduction through cheaper

domestic or foreign intermediates. In the baseline model, however, domestic intermediates become

more expensive, and offshoring is too costly.

5.2 Counterfactual 2: Increase in the Domestic Carbon Price with Carbon Tariff

Context The second counterfactual examines how combining a domestic carbon price and a

carbon tariff can prevent carbon leakage in the baseline model. Unlike domestic emissions subsidies,

carbon tariffs or a global carbon tax aim to create a level playing Ąeld for all countries in terms of

carbon prices without an equivalent carbon pricing mechanism abroad.

I compare two different carbon tariffs in terms of leakage and welfare. First, I examine an aggregate

carbon tariff that uses industry-level information, which is typically proposed in theoretical papers.

I assume that all Ąrms have the same emission intensity of imports. Second, I implement the Carbon

Border Adjustment Mechanism (CBAM) proposed by the EU. The CBAM exactly prices a ĄrmŠs

imported emissions. The information requirements for this proposal are higher, as it is necessary to

know the emission intensity of imports for each Ąrm.

Results Table 17 shows that an industry-level carbon tariff of 8.5% can limit carbon leakage and

reduce global emissions compared to the scenario with only a domestic carbon price for all but the

baseline model. Compared to the carbon price-only scenario, emissions increase by 7% in the baseline

model and decrease by an additional 23-30% in the other models. These differences are driven by

the different reactions to a carbon tariff. A carbon tariff, even on its own, increases emissions in the

baseline model, whereas it decreases emissions in all other models. These reactions are shaped by the

existence or non-existence of emission-intensive Ąrms with a low import intensity: emission-intensive

32



Ąrms with a low import intensity are growing as a response to a carbon tariff. Intuitively, the

carbon tariff hurts Ąrms with a high import intensity or a low emission intensity most. Either of

these Ąrms wants to substitute away from foreign intermediates towards emissions. This causes

an increase in the domestic emission intensity. In the baseline model, high-emission intensity and

low-import-intensity Ąrms exist. Conversely, they are the least affected, and production is reallocated

towards them, and they increase offshoring by relatively less than other Ąrms. Domestic emissions

increase by more than in the aggregate models, and the offshoring response is less pronounced. In

the baseline model, this effect can be strengthened by the fact that some of these emission-intensive

and low import-intensity Ąrms produce dirtier than foreign producers.

The ranking of models in terms of emission reduction is changed. Now, the baseline model performs

worst in terms of leakage rate and global emission reduction, whereas the heterogeneous bias models

feature the largest emission reduction.

Even though emissions in three out of four models decrease, welfare drops further. In the aggregate

model, welfare decreases by an additional 36%. In the baseline model, welfare losses are more than

double. Additionally, welfare losses are the largest in models with heterogeneity in sourcing strategy.

Large Ąrms with a high foreign share and low price are hit relatively more, causing higher welfare

losses in those models.

Lastly, I want to compare the results for a carbon tariff based on an industry measure of the emission

intensity of imports and a carbon tariff based on the ĄrmŠs emission intensity of imports (CBAM).

For the aggregate and heterogeneous bias models, both carbon tariffs are identical. The baseline

and heterogeneous sourcing model now feature additional heterogeneity in carbon tariffs. CBAM

reduces emissions by more than the industry carbon tariff but by less than 1%. In the case of the

heterogeneous sourcing model, CBAM is slightly improving welfare compared to the industry carbon

tariff.

Table 17: Counterfactual percentage change in domestic, foreign, and global emissions of a domestic
carbon price increase combined with an industry carbon tariff

Model Domestic (%) Foreign (%) Global (%) Leakage Rate Add. reduction (%)

Baseline -20.96 4.65 -9.94 0.17 -6.88
Aggregate -20.85 -0.17 -11.96 -0.01 27.87
Het. sourcing -20.86 1.84 -11.09 0.07 30.24
Het. emission bias -22.75 0.22 -12.87 0.01 22.83

Notes: The table reports the change in domestic emissions (column 1), the change in foreign emissions (column 2), the change in
global emissions (column 3), and the leakage rate (column 4) for a carbon price increase from 10 to 100 e/tCO2 and a carbon tariff
based on the emission intensity of imports. The carbon tariff prices emissions at the domestic carbon price. Column 5 reports the
additional reduction in emissions compared to the scenario without a carbon tariff.

Taxing emissions embodied in imports for each Ąrm is equivalent to an average tariff of 6.75% (see

Table 26), with Ąrm-level tariffs ranging from 5.9% to 7.9%.

Discussion Carbon tariffs on intermediate inputs are effective in reducing emissions in models

without heterogeneity in sourcing strategy. However, models with heterogeneity cannot eliminate
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Table 18: Comparing welfare effects of the baseline and aggregate models with an industry carbon
tariff (billion e)

Model Real Income (€) Emissions (€) Change Welfare (€) Add. reduction (%)

Baseline -133.83 8.44 -125.39 124.16
Aggregate -118.39 10.14 -108.24 36.04
Het. sourcing -119.11 9.41 -109.70 36.40
Het. emission bias -118.19 10.92 -107.27 37.01

Notes: The table reports the change in real income (column 1), the change in the disutility of emissions (column 2), and the change
in welfare (column 3) for a carbon price increase from 10 to 100 e/tCO2 and a carbon tariff based on the emission intensity of
imports. The carbon tariff prices emissions at the domestic carbon price. Column 5 reports the additional reduction in welfare
compared to the scenario without a carbon tariff.

Table 19: Counterfactual percentage change in domestic, foreign, and global emissions of a domestic
carbon price increase combined with CBAM

Model Domestic (%) Foreign (%) Global (%) Leakage Rate Add. reduction (%)

Baseline -20.92 4.70 -9.90 0.17 -0.47
Aggregate -20.85 -0.17 -11.96 -0.01 0.00
Het. sourcing -20.85 1.84 -11.09 0.07 -0.01
Het. emission bias -22.75 0.22 -12.87 0.01 0.00

Notes: The table reports the change in domestic emissions (column 1), the change in foreign emissions (column 2), the change in
global emissions (column 3), and the leakage rate (column 4) for a carbon price increase from 10 to 100 e/tCO2 and a carbon tariff
based on the emission intensity of imports. The carbon tariff prices emissions at the domestic carbon price. Column 5 reports the
additional reduction in emissions compared to the scenario with an industry carbon tariff.

leakage, and they come at the cost of over-proportional welfare losses. For example, in the aggregate

model, emissions decrease by an additional 28 %, but welfare decreases by 36%. In the baseline

model, average CBAM tariffs are lower than industry-based carbon tariffs of 8.5 % (see Figure 6).

Even though they reduce leakage for all Ąrms, especially large Ąrms that have high leakage rates

above 30%, those Ąrms also have the dirtiest imports and are responsible for a large share of

imported emissions.

To effectively reduce leakage, one has to target those Ąrms and try to bring down their leakage rates.

Campolmi et al. (2024) propose a leakage border adjustment mechanism (LBAM) that sets import

tariffs as high as necessary to eliminate leakage from the domestic carbon price. This approach

could be adapted to target a speciĄc leakage rate for each Ąrm to maximize emission reductions.

However, this approach would come at high additional welfare costs in my model, since large Ąrms

would face considerable higher carbon tariffs.

5.3 Sensitivity of leakage and welfare to carbon prices and SCC

In this section, I show that the change in emissions, the leakage rate, and the change in welfare is

linear in the carbon price. Additionally, I show that even for high SCC estimates, consumer welfare

decreases if the domestic carbon price increases. I simulate increases in the domestic carbon price

34



Table 20: Comparing welfare effects of the baseline and aggregate models with CBAM (billion e)

Model Real Income (€) Emissions (€) Change Welfare (€)

Baseline -134.44 8.40 -126.04
Aggregate -118.39 10.14 -108.24
Het. sourcing -119.09 9.41 -109.68
Het. emission bias -118.19 10.92 -107.27

Notes: The table reports the change in real income (column 1), the change in the disutility of emissions
(column 2), and the change in welfare (column 3) for a carbon price increase from 10 to 100 e/tCO2

and a carbon tariff based on the emission intensity of imports. The carbon tariff prices emissions at
the domestic carbon price.

Figure 6: Firm Heterogeneity in Leakage and Carbon Tariffs

(a) Carbon tariff - CBAM (b) Leakage rate

Notes: The left panel shows the mean carbon tariff based on the ĄrmŠs emission intensity of imports for different Ąrm deciles.

The right panel shows the mean leakage rate for different Ąrm deciles for the three scenarios of (i) an increase in the domestic

carbon price, (ii) an increase in the domestic carbon price with an industry carbon tariff, and (iii) an increase in the domestic

carbon price with CBAM.

for values between 10 and 500 e per ton CO2 for my baseline model.

Figure 7a shows emission reduction of a carbon tax with and without a carbon tariff for my baseline

model. Emissions decrease nearly linearly in the carbon tax with and without a carbon tariff.

However, the gap between the two scenarios widens as the carbon tax and marginal emission

reductions become smaller. Although global emissions decrease with the carbon price, the leakage

rate increases with the carbon price (see Figure 7b). A carbon tariff equivalent to the domestic

carbon price reduces the leakage rate by a constant proportion below the leakage rate of the domestic

carbon tax. However, the leakage rate remains well above zero for all except for a carbon price of

14 et CO2. To further decrease the leakage rate, the emissions embodied in imports would have to

be taxed at a higher price than domestic emissions. Figure 7c and Figure 7d focus on the sensitivity

of welfare losses with respect to the carbon price and the SCC. Similarly to the trend for emissions,

welfare decreases in the carbon price. However, welfare reacts more sensitively to a carbon tariff

than emissions do, and the gap between the two scenarios continues to grow with the carbon price.

Besides the change in consumer income, the gap in welfare losses depends on the SCC. Contrary
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to consumer income, measuring the SCC is less precise. The 95% conĄdence interval for the SCC

is approximately between 40 eand 400 eper ton CO2 (Rennert et al., 2022). Deviating from my

standard assumption that the SCC is equal to 150 eper ton CO2 can hence chance the welfare gap.

For my preferred scenario of a carbon price increase to 100 eper ton CO2, welfare losses can be as

small as 40 billion e, which is approximately 15 billion eless than my benchmark result.

Figure 7: Change in welfare and emissions for different carbon prices

(a) Emissions (b) Leakage

(c) Welfare (d) SCC

Notes: The Ągure compares the change in global emissions (a), the change in the leakage rate (b), and the change in welfare (c)

for different carbon prices with and without a carbon tariff. Panel (d) shows the sensitivity of the change in welfare to the SCC

for an increase of the carbon price from 10 to 100 e/tCO2.

5.4 Model extensions

This section discusses possible extensions to the baseline model. To focus on the role of Ąrm hetero-

geneity, the model focuses on a one-sector economy with input substitution towards intermediates

and labor as the only available abatement mechanism. This abstracts from several other factors

inĆuencing leakage and welfare. In the following, I want to focus on the implementation of a

domestic carbon tax for only selected industries, trade in Ąnal goods, an additional abatement

channel through clean energy/technology, and the role of EU-wide cooperation in carbon taxation.
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Multi-sector In my previous analysis, I assumed that all manufacturing Ąrms must pay a carbon

tax. However, only the most emission-intensive industries in Germany are covered by the EU ETS.6

I plan to extend my model to a two-sector economy with input-output (IO) linkages to address this

limitation. In this version, I classify Ąrms into dirty and clean sectors, where only Ąrms in the dirty

sector are subject to a carbon price. This allows me to study the spillover effects of the carbon price

on untreated Ąrms and compare the emission reductions achieved when all Ąrms are covered.

Figure 16 and Figure 17 in the Appendix show the heterogeneity in emission intensity, foreign share,

and emission intensity for a clean and dirty industry. Hereby, I classify all 4-digit industries with

an above-median emission intensity as dirty. My current model parametrization aligns with the

characteristics of the dirty sector, where large Ąrms are dirtier. Including a clean sector in the

analysis will increase leakage.

Trade in Final Goods Although this paper focuses on the role of Ąrm heterogeneity in the

leakage of intermediate inputs, leakage in Ąnal goods can occur simultaneously. When examining

emissions embodied in imports (see Figure 15 in the Appendix), it becomes evident that more

emissions are imported via intermediate goods; however, the emissions from imported Ąnal goods

are only slightly smaller in magnitude. By extending the model to include trade in Ąnal goods, I

can distinguish between the contributions of different channels, which will help in designing effective

policies.

Intuitively, leakage in Ąnal goods will replace the production of small Ąrms with imported goods.

Since small Ąrms are, on average, cleaner and have a lower leakage rate, allowing for trade in

Ąnal goods will increase leakage under the assumption that imported goods are dirtier than the

production of small domestic Ąrms.

Abatement Clean Energy In my baseline model, the standard environmental trade abatement

mechanism (Antweiler et al., 2001; Shapiro and Walker, 2018) is absent. This absence may lead

to overestimating carbon leakage, as Ąrms cannot abate emissions and can only substitute labor

and intermediates to reduce their emissions. Hence, my estimates should be treated as an upper

bound for leakage. To address this shortcoming, I introduce two types of energy in my model:

dirty and clean, which are imperfect substitutes. All Ąrms have access to dirty energy, which

generates emissions. However, to access clean energy, Ąrms must pay a Ąxed cost. In this context, I

use renewable energy as a proxy for clean energy. Alternatively, one could think about including

investment in clean production technology.

Figure 19 in the Appendix shows how the share of renewable energy varies with Ąrm size.

EU ETS The EU is the most important import partner of German Ąrms. Approximately 60% of

the imported intermediates are from EU member countries. My model treats imports from EU ETS

and non-EU ETS countries equally. However, this does not accurately reĆect that countries covered

by the EU ETS are likely to reduce their emission intensity. Moreover, they are subjected to the

6Industries vary widely in their emission intensity, as shown in Figure 10 in the Appendix.
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CBAM. As a result, this may lead to an overestimation of leakage and Ąrms switching to cleaner

partner countries.

I introduce a further distinction between EU and non-EU imports to overcome this shortcoming

of my model. EU imports are cleaner and not subject to a carbon tariff, but their prices still rise.

In contrast, non-EU imports are subject to a carbon tariff, yet the pass-through is incomplete.

Furthermore, EU imports are assumed to become cleaner, while the emission intensity of non-EU

imports remains the same. Although I do not include a multi-country version of the model in this

analysis, these modiĄcations allow me to obtain more precise estimates of carbon leakage. They

could be extended to analyze carbon clubs or a global carbon tax.

6 Conclusion

This paper documents that German manufacturing Ąrms exhibit varying emission intensities,

even after controlling for input expenditures. Contrary to common assumptions, larger Ąrms are

characterized by higher emission intensity due to lower emission prices. These lower emission prices

result from differences in the underlying energy mix and ĄrmsŠ technologies to generate emissions.

Moreover, Ąrms differ in their shares of foreign intermediates and the emission intensities of imported

intermediates. Building on these empirical facts, I propose a theoretical model of heterogeneous

Ąrms that differ in their import and emission intensities. I demonstrate that the model aligns with

standard empirical results at the Ąrm level.

In my quantitative exercise, I illustrate that models lacking heterogeneity in sourcing strategy and

emission bias fail to capture the characteristics of the German data. In a counterfactual analysis, I

examine the effects of an increase in the domestic carbon price from 10 to 100 e/tCO2, with and

without a carbon tariff. First, an aggregate model without Ąrm heterogeneity would underestimate

emission reduction and welfare losses. In my baseline model, an increase in the domestic carbon

price from 10 to 100 e/tCO2 reduces domestic emissions by about 25%, while foreign emissions

increase by 8.1% without a carbon tariff. In contrast, the aggregate model predicts that domestic

emissions decrease by only 2%, while foreign emissions also increase by 7%. A carbon tariff can

reduce leakage and lower global emissions in all but my baseline model.

Even though emissions fall in response to a carbon price increase, the welfare effects are negative

because real income declines more than consumers beneĄt from the lower disutility associated with

emissions. Moreover, accounting for the non-linearity of carbon leakage in carbon prices is crucial if

policymakers aim to minimize welfare losses.

The results should be viewed as an upper bound for welfare losses and a lower bound for emission

reduction. My model features only input substitution as a way to reduce emissions. In reality, Ąrms

have the option to invest in abatement, switch to cleaner energy sources, or switch to cleaner import

partners. Hence, the analysis can be extended along several dimensions. First, a multi-sector version

could better capture the signiĄcant sectoral heterogeneity present in the data. Carbon leakage may

be more or less pronounced depending on the sector, and consequently, the optimal policy might

vary by industry. Second, this paper focuses solely on carbon leakage in intermediate inputs. An
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extended version of the model could consider carbon leakage in both Ąnal and intermediate inputs:

a unilateral increase in carbon prices incentivizes emissions offshoring and exposes domestic Ąrms to

greater import competition. Third, switching to cleaner import partners or cleaner energy sources

can be incorporated easily. Finally, given the varying importance of domestic and foreign emissions,

carbon tariffs could be complemented by Ąrm-speciĄc domestic emission subsidies to achieve higher

emission reductions.
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A Data

A.1 Data Cleaning

Data on energy use at the plant level is aggregated to the Ąrm level and then combined with other

datasets. While the German Statistical Agency employs several quality checks, resulting in generally

good data quality, some inconsistencies persist, particularly regarding reported energy use and

materials. First, I eliminate all Ąrms that report less than e1,000 in sales or have total energy use

below 1,000 kWh. Second, due to misreporting, there are often signiĄcant Ćuctuations in reported

values within Ąrms over time. To address this, I impute any observations that differ by more than

30% from the values reported in periods t-1 and t+1 with the average of the adjoining periods.

With data available starting in 1995, this adjustment does not affect my sample. Third, I impute

missing observations for Ąrms where data for the years t-1 and t+1 are available, using the average

of the adjoining periods to ensure a balanced panel.

A.2 Emission Factors

Table 21: Emission factors for different fuel types and electricity

2011 2012 2013 2014 2015 2016 2017 2018 2019

Coke 389,20 389,20 389,20 389,20 389,20 389,20 389,20 389,20 389,20
Light fuel oil 266,50 266,50 266,50 266,50 266,50 266,50 266,50 266,50 266,50
Heavy fuel 288,50 288,50 288,50 288,50 288,50 288,50 288,50 288,50 288,50
Other petroleum products 281,50 281,50 281,50 281,50 281,50 281,50 281,50 281,50 281,50
Natural gas 201,30 201,30 201,30 201,30 201,30 201,30 201,30 201,30 201,30
LiquiĄed gas 236,20 236,20 236,20 236,20 236,20 236,20 236,20 236,20 236,20
Other gas products 196,50 196,50 196,50 196,50 196,50 196,50 196,50 196,50 196,50
Industrial waste and other fuels 256,00 256,00 256,00 256,00 256,00 256,00 256,00 256,00 256,00
Renewables 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Raw lignite 381,70 377,90 378,50 373,60 374,20 380,80 382,50 382,90 383,30
Hard coal 339,20 337,20 336,10 336,80 336,60 336,80 336,10 335,10 337,20
Brown coal briquettes 357,40 357,40 356,70 358,40 357,80 358,20 357,50 356,40 356,30
Other coal products 353,20 352,90 352,90 353,10 352,80 352,90 353,10 351,00 350,90
District heat 188,10 187,50 186,80 186,20 185,60 185,00 184,40 183,70 183,10
Electricity 568,00 573,00 572,00 557,00 527,00 523,00 488,00 471,00 408,00

Notes: Emission factors are taken from Umweltbundesamt (2008, 2021, 2022) reported in gCO2/kWh.

A.3 Trade Data Imputation

EU internal trade data for Germany is not collected at the Ąrm level but for tax groups (ŞOr-

gankreiseŤ). A tax group is an amalgamation of independent Ąrms that jointly Ąle taxes. Only the

parent company reports the monthly trade Ćows within a tax group. The German statistical agency

has implemented an algorithm based on information from the VAT information exchange system

and product-level production data to allocate imports and exports to the integrated companies

within a tax group. For details on the implemented methodology and coverage of the data, see

Kruse et al. (2021).
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A.4 Exiobase

Figure 8 depicts the emission intensity of manufacturing for different countries using direct and

indirect emissions. Germany, highlighted in red, is among the cleanest countries.

Figure 8: Emission intensity of different countries based on Exiobase

Notes:
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B Empirical Evidence - Additional Results

B.1 Emission Intensity and Offshoring

Table 22 provides additional evidence on the emission offshoring channel using more narrowly deĄned

measures for offshoring. Compared to the baseline measure, the coefficients are larger in magnitude

but still smaller than estimates from the literature. Moreover, no clear raking of wide and narrow

offshoring regarding effect size is possible.

Table 22: Offshoring and emission intensity

Log Emission Intensity

VA
(1) (2)

log Offshoring (wide) -0.0273
(0.0188)

log Offshoring (narrow) -0.0234
(0.0160)

First Stage
log WES 0.0976∗∗∗ 0.1138∗∗∗

((0.0137) (0.0163)
F-Statistics 50.5081 48.9238

Firm FE ✓ ✓

Year FE ✓ ✓

N 38907 38907

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors
are in parentheses. This table presents the results of regressing a
ĄrmŠs emission intensity on its offshoring activity, controlling for
Ąrm and year-Ąxed effects. For the regression, the years 2012-2018
are used.
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B.2 Foreign share and imported varieties

Table 23: Relative domestic share and import partners

Log Relative Domestic Share

(1) (2) (3) (4) (5)

Log No. varieties 1.535∗∗∗ 1.056∗∗∗ 1.055∗∗∗ 1.050∗∗∗ 0.998∗∗∗

(0.00710) (0.0147) (0.0148) (0.0150) (0.0160)

Export status 0.0182 0.0230 0.212∗∗∗

(0.0281) (0.0289) (0.0326)

Log Capital/worker -0.0151∗ -0.00330
(0.00680) (0.00686)

Year FE ✓ ✓ ✓ ✓ ✓

No. Products ✓ ✓ ✓ ✓

Industry FE ✓ ✓ ✓ ✓ ✓

N 97796 97715 97715 94972 84306

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors are in parentheses. This table
presents the results of regressing the relative domestic share of a Ąrm, deĄned as foreign share divided
by domestic share, on its number of imported varieties, export status, and capital per worker controlling
for Ąrm, product, and year Ąxed effects. For the regression, the years 2012-2018 are used.
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B.3 Firm size and emission intensity

Figure 9: Firm size and implicit emission price

Notes: This Ągure depicts a binscatter plot of log implicit emission price as the dependent variable and log value added as the
independent variable controlling for four-digit industry and year Ąxed effects. Observations are divided into ten equal-sized bins
using the independent variable. For each bin, the mean of the independent variable and the mean of the independent variable is
computed. The data for the dependent variable is residualized. Implicit emission price is deĄned as energy expenditure divided
by emissions from fuel use and electricity. For the plot, the years 2011-2018 are used.

Figure 10: Emission intensity and sales per Ąrm for 2-digit industries

Notes: This Ągure plots log emission intensity as the dependent variable and log average Ąrm size as the independent variable
for two-digit industries in the German manufacturing sector. Emission intensity is deĄned as emissions divided by sales. Firm
size is measured as sales. For the plot, the years 2011-2018 are used.
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Figure 11: Emission intensity and implicit emission price for 2-digit industries

Notes: This Ągure plots log emission intensity as the dependent variable and log average implicit emission price as the independent

variable for two-digit industries in the German manufacturing sector. Emission intensity is deĄned as emissions divided by sales.

Implicit emission price is deĄned as energy expenditure divided by emissions from fuel use and electricity. For the plot, the years

2011-2018 are used.
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B.4 Imported Emissions

Figure 12: Firm size and imported emissions

Notes: This Ągure depicts a binscatter plot of log imported emissions as the dependent variable and log value added as the

independent variable controlling for four-digit industry and year Ąxed effects. Observations are divided into ten equal-sized bins

using the independent variable. For each bin, the mean of the independent variable and the mean of the independent variable is

computed. The data for the dependent variable is residualized. Imported emissions are deĄned as direct and indirect emissions

of imports using Exiobase data. For the plot, the years 2011-2018 are used.
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B.5 Emission Intensity of Imports

To gain additional insight into the role of sourcing strategy on imported emission intensity, Figure 13

plots the number of different import partners against the emission intensity of imports. Noticeable

is a jump between the Ąrst and second decile. The Ąrms in the Ąrst bin source from only a handful

of suppliers, which are relatively clean and located in Western Europe. Starting with the second

bin, imports from dirty countries gain importance.

Figure 13: Emission intensity and number import countries

Notes: This Ągure depicts a binscatter plot of log emission intensity of imports (EII) as the dependent variable and the number

of different partner countries as the independent variable controlling for four-digit industry and year Ąxed effects. Observations

are divided into ten equal-sized bins using the independent variable. For each bin, the mean of the independent variable and the

mean of the independent variable is computed. The data for the dependent variable is residualized. The emission intensity of

imports is deĄned as direct and indirect emissions of imports using Exiobase data divided by value-added. For the plot, the

years 2011-2018 are used.

To exclude the possibility of the correlation between emission intensity of imports and Ąrm

size being driven by outliers in the Exiobase data, I use data from the United Nations Sustainable

Development Goals (UNSDG) on emission intensity of VA in the manufacturing sector as a

plausibility check. Compared to Exiobase, the data is more aggregated and does not allow for

the distinction between manufacturing industries. Nevertheless, I Ąnd a positive and statistically

signiĄcant correlation between Ąrm size and emission intensity of imports in both cases (see Table 24

and Table 25).
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Table 24: Correlation Ąrm size and emission intensity imports: Exiobase

Emission intensity imports

(1) (2) (3) (4)

Log Sales 0.0522∗∗∗ 0.0162∗∗∗

(0.000977) (0.00432)

Log VA 0.0378∗∗∗ 0.0263∗∗∗

(0.00129) (0.00633)

Year FE ✓ ✓ ✓ ✓

Firm FE ✓ ✓

Industry FE ✓ ✓

N 218753 105682 214559 101215

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors are in

parentheses. The emission intensity of imports is calculated using Exiobase.

Table 25: Correlation Ąrm size and emission intensity imports: UNSDG

Emission intensity imports

(1) (2) (3) (4)

Log Sales 0.0930∗∗∗ 0.0488∗∗∗

(0.00133) (0.00577)

Log VA 0.0734∗∗∗ 0.0364∗∗∗

(0.00170) (0.00795)

Year FE ✓ ✓ ✓ ✓

Firm FE ✓ ✓

Industry FE ✓ ✓

N 218301 105553 214098 101085

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors are in

parentheses. The emission intensity of imports is calculated using UNSDG data.
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B.6 Trade in Ąnal goods

Figure 14: Emission intensity imports and domestic production

(a) Exiobase (b) Domestic emission intensity

Figure 15: Domestic and imported emissions

(a) Exiobase (b) Domestic emission intensity
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B.7 Clean and dirty industry

Divide 4-digit industries into clean and dirty industries, using the median emission intensity.

Interestingly, to see which sector drives the result and spillover effects, if only the dirty industry has

to pay a carbon price, with no change, foreign share and emission intensity imports increase in Ąrm

size. However, the emission intensity decreases in Ąrm size for clean industries and increases in Ąrm

size for dirty industries.

Figure 16: Emission intensity for clean and dirty industries

(a) Emission intensity clean (b) Emission intensity dirty

Figure 17: Foreign share for clean and dirty industries

(a) Foreign share clean (b) Foreign share dirty
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Figure 18: Emission intensity of imports for clean and dirty industries

(a) Emission intensity imports clean (b) Emission intensity imports dirty
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B.8 Renewable energy

German Ąrm data no information on investments in abatement/clean technology. Therefore, I use

the share of renewable energy as a proxy. Figure 19 plots the share of renewable energy for different

Ąrm sizes. Overall, the share of renewable energy is low, with an average share of 2.5 %. Moreover,

it seems uncorrelated with Ąrm size. Compared to other countries, German Ąrms do not have

access to clean energy (e.g., France has nuclear power). Additionally, Ąrms might directly buy clean

electricity, which cannot be measured in the data.

Figure 19: Firm size and renewable energy share

Notes: This Ągure depicts a binscatter plot of the share of renewable energy as the dependent variable and log value added as

the independent variable controlling for four-digit industry and year Ąxed effects. Observations are divided into ten equal-sized

bins using the independent variable. For each bin, the mean of the independent variable and the mean of the independent

variable is computed. The data for the dependent variable is residualized. The share of renewable energy is deĄned as the share

of total energy and electricity use. For the plot, the years 2011-2018 are used.
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C Model Derivations

In the following, I provide the main derivations for a one-sector economy.

C.1 Firm Problem

Consumer preferences imply that Ąrm revenue is given by

Ri = piyi =
(pi

P

)1Ű𝜎
S (37)

where the price index P is deĄned as P =
(∫

p1Ű𝜎
i di

) 1
1Ű𝜎

and S denotes total spending. Since Ąrms

charge a constant markup over unit costs, their price is equal to pi =
(

𝜎
𝜎Ű1

)
ui Substituting this for

the Ąrm price, the expression can be written as

piyi =
(( 𝜎

𝜎 Ű 1

)
uiP

)𝜎Ű1
S (38)

Firms maximize proĄts by choosing the optimal domestic share sD

𝜋i = max
sDi ∈[0,1]

{
u(sDi)
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The derivative of the proĄt function wrt to sD is given by
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(43)

C.2 Optimal Domestic Share of a Firm

For the calibration exercise, to achieve consistency across models, I assume that all Ąrms are

importers and that Ąxed costs and Ąxed costs of importing are zero. To introduce variation in the
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domestic share, I assume that Ąrms have a home bias 𝛼.

Xi =

[
𝛼iqDz

𝜖X Ű1
𝜖X

D
+ (1 Ű 𝛼)X
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F
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(44)

With the home bias, the price index of intermediates is given by

Q(Σ) =
(
𝛼
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i
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Solving for the domestic share and plugging in the import price index, we get that the domestic

share is given by
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Setting n = 1, I can Ąnd the domestic share of a Ąrm given its home bias 𝛼i .

C.3 Import Status of a Firm

A Ąrm imports if the net gains from importing are larger than zero, with the net gains being deĄned

as the difference between proĄts if the Ąrm is an importer 𝜋I and proĄts if the Ąrm is a non-importer

𝜋D.

𝜋I Ű 𝜋D > 0 (47)

with 𝜋I and 𝜋D given by
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C.4 Emission Intensity

From the ĄrmŠs cost minimization problem, it follows that the emissions of a Ąrm are given by
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where sE is the emission share
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Dividing by value-added va = (1 Ű 𝛾)
( pi
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C.5 General equilibrium variables

Total spending S consists of consumer income SC , ĄrmsŠ expenditure for domestic intermediate

inputs SDOM , and exports SROW .

S = SC + SDOM + SROW (53)

Consumer income is the sum of labor income and proĄts. I assume that revenue from the carbon

pricing scheme and carbon tariffs are lost due to rent-seeking.
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Standard calculations for the Cobb-Douglas production function imply that the labor expenditure

of a Ąrm is
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Domestic intermediate expenditure and total import spending are given by
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Combining these equations, total spending is given by
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The price index, the second general equilibrium variable, can be expressed as
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C.6 Equilibrium

The equilibrium is deĄned as a set of prices [pi ] and allocations such that:

1. Firms maximize proĄts

𝜋i = max
sD

{
u(sD)(1Ű𝜎)B Ű w(n(sD)f + fI I (sD > 0))

}
(60)

2. Consumers maximize their utility given by subject to their budget constraint

∫
picidi = wL +

∫
𝜋idi (61)

3. Good markets clear

yi = ci + yROW
i +

∫
yvdv (62)

4. Labor markets clear

L =

∫ (
li + lF

i

)
di (63)

5. Trade is balanced

yROW
i =

∫
sDimidi (64)
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D Model Extensions

Under construction
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E Calibration

E.1 Simulated Method of Moments Algorithm

As preparation, set the number of Ąrms to 31,529 and draw shocks for productivity, Ąxed costs of

sourcing, and emission bias from a standard normal for each Ąrm.

1. Guess a value for each internal model parameter. Set the weighting matrix equal to the

identity matrix.

2. Draw productivity, Ąxed costs of sourcing, and emission bias for given parameters and shocks.

3. Given parameters, Ąnd the Ąxed point where general equilibrium objects S and P no longer

change. For this, guess initial S and P.

4. Given S and P, solve the model and compute each moment.

5. Compute Euclidean distance between data and model moments.

6. Iterate until the distance between data and model moments is small enough. Otherwise, go

back to step 1.
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F Quantitative Exercise - Additional Results

Table 26: Carbon tariffs in % for different carbon prices and models

Carbon Price 14 50 100 150 200 500

Industry Carbon Tariff
Aggregate, Het. emission bias 1.18 4.23 8.46 12.70 16.93 42.32

Het. Sourcing 1.18 4.23 8.46 12.69 16.92 42.29

Baseline 1.19 4.23 8.47 12.70 16.94 42.34

CBAM
Aggregate, Het. emission bias 1.18 4.23 8.46 12.70 16.93 42.32

Het. Sourcing 0.90 3.21 6.42 9.64 12.85 32.12

Baseline 0.95 3.38 6.75 10.13 13.51 33.77
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F.1 Increase in the Domestic Carbon Price

Table 27: Counterfactual percentage change in domestic, foreign, and global emissions of a domestic
carbon price increase

Domestic (%) Foreign (%) Global (%) Leakage Rate

Panel A: t = 14
Baseline -1.36 0.42 -0.60 0.23
Aggregate -1.18 0.34 -0.53 0.21
Het. sourcing -1.21 0.46 -0.49 0.29
Het. emission bias -1.33 0.36 -0.60 0.21

Panel B: t = 50
Baseline -12.44 3.92 -5.40 0.24
Aggregate -10.77 3.22 -4.75 0.23
Het. sourcing -11.05 4.43 -4.39 0.30
Het. emission bias -12.05 3.47 -5.37 0.22

Panel C: t = 100
Baseline -24.88 8.13 -10.68 0.25
Aggregate -21.62 6.89 -9.35 0.24
Het. sourcing -22.16 9.55 -8.51 0.33
Het. emission bias -23.99 7.42 -10.48 0.23

Panel D: t = 150
Baseline -34.78 11.72 -14.77 0.25
Aggregate -30.32 10.23 -12.87 0.25
Het. sourcing -31.05 14.24 -11.56 0.35
Het. emission bias -33.43 11.01 -14.31 0.25

Panel E: t = 200
Baseline -42.78 14.79 -18.01 0.26
Aggregate -37.44 13.29 -15.61 0.27
Het. sourcing -38.31 18.59 -13.82 0.37
Het. emission bias -41.05 14.29 -17.24 0.26

Panel F: t = 500
Baseline -69.58 26.44 -28.27 0.29
Aggregate -62.36 27.60 -23.65 0.33
Het. sourcing -63.54 39.32 -19.27 0.47
Het. emission bias -66.70 29.53 -25.29 0.33
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Table 28: Comparing welfare effects of the baseline and aggregate models without a carbon tariff

Real Income (€) Emissions (€) Change Welfare (€)

Panel A: t = 14
Baseline -3.49 0.51 -2.98
Aggregate -4.47 0.45 -4.02
Het. sourcing -4.50 0.42 -4.08
Het. emission bias -4.47 0.51 -3.96

Panel B: t = 50
Baseline -32.10 4.58 -27.52
Aggregate -42.04 4.03 -38.01
Het. sourcing -42.23 3.72 -38.50
Het. emission bias -41.96 4.56 -37.41

Panel C: t = 100
Baseline -65.00 9.06 -55.94
Aggregate -87.50 7.93 -79.57
Het. sourcing -87.65 7.22 -80.42
Het. emission bias -87.18 8.89 -78.29

Panel D: t = 150
Baseline -91.89 12.54 -79.35
Aggregate -126.79 10.92 -115.86
Het. sourcing -126.67 9.81 -116.86
Het. emission bias -126.10 12.14 -113.96

Panel E: t = 200
Baseline -114.26 15.29 -98.97
Aggregate -161.19 13.25 -147.94
Het. sourcing -160.65 11.73 -148.92
Het. emission bias -160.06 14.63 -145.44

Panel F: t = 500
Baseline -195.79 23.99 -171.80
Aggregate -304.53 20.07 -284.46
Het. sourcing -300.25 16.35 -283.90
Het. emission bias -300.33 21.46 -278.87

65



Table 29: Decomposing the change in emissions (million t CO2)

Emission Intensity Output Offshoring EI Imports Total

Panel A: t = 14
Baseline -3.46 -0.62 0.94 0.00 -3.14
Aggregate -3.70 0.18 0.76 0.00 -2.77
Het. sourcing -3.64 0.02 1.03 0.00 -2.59
Het. emission bias -3.49 -0.48 0.82 0.00 -3.16

Panel B: t = 50
Baseline -31.65 -6.17 8.82 0.03 -28.35
Aggregate -33.74 1.71 7.28 0.00 -24.95
Het. sourcing -33.21 0.20 10.00 0.02 -23.04
Het. emission bias -31.92 -4.59 7.84 0.00 -28.20

Panel C: t = 100
Baseline -63.59 -13.60 18.31 0.05 -56.06
Aggregate -67.47 3.64 15.57 0.00 -49.08
Het. sourcing -66.49 0.39 21.52 0.05 -44.69
Het. emission bias -64.09 -9.69 16.76 0.00 -55.00

Panel D: t = 150
Baseline -89.29 -20.65 26.38 0.08 -77.56
Aggregate -94.38 5.39 23.11 0.00 -67.58
Het. sourcing -93.08 0.53 32.11 0.07 -60.67
Het. emission bias -89.93 -14.21 24.87 0.00 -75.12

Panel E: t = 200
Baseline -110.38 -27.30 33.30 0.10 -94.57
Aggregate -116.27 6.99 30.03 0.00 -81.97
Het. sourcing -114.75 0.63 41.91 0.08 -72.57
Het. emission bias -111.11 -18.27 32.28 0.00 -90.49

Panel F: t = 500
Baseline -184.52 -59.47 59.52 0.17 -148.42
Aggregate -191.66 14.33 62.35 0.00 -124.16
Het. sourcing -189.78 0.82 88.64 0.16 -101.16
Het. emission bias -185.36 -36.10 66.71 0.00 -132.79
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F.2 Increase in Import Price

Table 30: Counterfactual percentage change in domestic, foreign, and global emissions of a foreign
price increase

Domestic (%) Foreign (%) Global (%) Leakage Rate

Panel A: t = 14
Baseline 0.68 -0.54 0.15 0.60
Aggregate 0.13 -1.00 -0.35 5.60
Het. sourcing 0.23 -1.07 -0.33 3.57
Het. emission bias 0.23 -1.01 -0.31 3.36

Panel B: t = 50
Baseline 2.39 -1.92 0.54 0.61
Aggregate 0.47 -3.49 -1.23 5.62
Het. sourcing 0.79 -3.72 -1.16 3.58
Het. emission bias 0.80 -3.54 -1.07 3.37

Panel C: t = 100
Baseline 4.69 -3.79 1.04 0.61
Aggregate 0.91 -6.78 -2.40 5.64
Het. sourcing 1.52 -7.21 -2.24 3.58
Het. emission bias 1.54 -6.88 -2.08 3.37

Panel D: t = 150
Baseline 6.89 -5.62 1.51 0.62
Aggregate 1.32 -9.88 -3.50 5.66
Het. sourcing 2.21 -10.48 -3.25 3.59
Het. emission bias 2.24 -10.03 -3.04 3.37

Panel E: t = 200
Baseline 9.01 -7.39 1.96 0.62
Aggregate 1.70 -12.82 -4.54 5.68
Het. sourcing 2.85 -13.56 -4.21 3.59
Het. emission bias 2.91 -13.00 -3.94 3.38

Panel F: t = 500
Baseline 20.13 -17.07 4.13 0.64
Aggregate 3.59 -27.51 -9.79 5.79
Het. sourcing 5.97 -28.65 -8.93 3.62
Het. emission bias 6.18 -27.85 -8.46 3.40
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Table 31: Comparing welfare effects of the baseline and aggregate models for a foreign price increase

Real Income (€) Emissions (€) Change Welfare (€)

Panel A: t = 14
Baseline -9.81 -0.13 -9.94
Aggregate -4.52 0.30 -4.22
Het. sourcing -4.52 0.28 -4.24
Het. emission bias -4.52 0.26 -4.26

Panel B: t = 50
Baseline -34.17 -0.45 -34.62
Aggregate -15.69 1.05 -14.64
Het. sourcing -15.68 0.98 -14.69
Het. emission bias -15.69 0.91 -14.78

Panel C: t = 100
Baseline -66.04 -0.88 -66.92
Aggregate -30.22 2.04 -28.19
Het. sourcing -30.17 1.90 -28.27
Het. emission bias -30.21 1.77 -28.44

Panel D: t = 150
Baseline -95.83 -1.28 -97.12
Aggregate -43.72 2.97 -40.75
Het. sourcing -43.61 2.76 -40.85
Het. emission bias -43.69 2.58 -41.11

Panel E: t = 200
Baseline -123.75 -1.66 -125.41
Aggregate -56.29 3.86 -52.43
Het. sourcing -56.10 3.57 -52.52
Het. emission bias -56.23 3.34 -52.89

Panel F: t = 500
Baseline -260.20 -3.50 -263.71
Aggregate -116.43 8.31 -108.13
Het. sourcing -115.68 7.58 -108.11
Het. emission bias -116.21 7.18 -109.03
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Table 32: Decomposing the change in emissions (million t CO2)

Emission Intensity Output Offshoring EI Imports Total

Panel A: t = 14
Baseline 0.43 1.61 -1.21 -0.02 0.81
Aggregate 0.51 -0.11 -2.25 0.00 -1.85
Het. sourcing 0.36 0.32 -2.40 -0.01 -1.74
Het. emission bias 0.38 0.30 -2.29 0.00 -1.61

Panel B: t = 50
Baseline 1.50 5.65 -4.28 -0.06 2.81
Aggregate 1.79 -0.39 -7.88 0.00 -6.48
Het. sourcing 1.25 1.12 -8.37 -0.05 -6.06
Het. emission bias 1.33 1.05 -8.00 0.00 -5.63

Panel C: t = 100
Baseline 2.93 11.05 -8.45 -0.12 5.46
Aggregate 3.47 -0.75 -15.31 0.00 -12.59
Het. sourcing 2.45 2.17 -16.21 -0.09 -11.75
Het. emission bias 2.57 2.03 -15.54 0.00 -10.93

Panel D: t = 150
Baseline 4.29 16.23 -12.52 -0.18 7.94
Aggregate 5.04 -1.08 -22.32 0.00 -18.38
Het. sourcing 3.59 3.16 -23.56 -0.14 -17.09
Het. emission bias 3.73 2.95 -22.66 0.00 -15.94

Panel E: t = 200
Baseline 5.60 21.18 -16.47 -0.23 10.27
Aggregate 6.53 -1.40 -28.95 0.00 -23.86
Het. sourcing 4.69 4.09 -30.47 -0.18 -22.11
Het. emission bias 4.82 3.82 -29.37 0.00 -20.68

Panel F: t = 500
Baseline 12.44 46.99 -38.07 -0.56 21.68
Aggregate 13.83 -2.95 -62.15 0.00 -51.40
Het. sourcing 10.42 8.76 -64.41 -0.44 -46.87
Het. emission bias 10.17 8.11 -62.90 0.00 -44.40
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F.3 Industry Carbon Tariff

Table 33: Counterfactual percentage change in domestic, foreign, and global emissions of a domestic
carbon price increase combined with an industry carbon tariff

Domestic (%) Foreign (%) Global (%) Leakage Rate

Panel A: t = 14
Baseline -0.69 -0.12 -0.45 -0.14
Aggregate -1.05 -0.66 -0.88 -0.48
Het. sourcing -0.99 -0.61 -0.83 -0.47
Het. emission bias -1.10 -0.66 -0.91 -0.45

Panel B: t = 50
Baseline -10.23 2.07 -4.94 0.15
Aggregate -10.34 -0.34 -6.04 -0.02
Het. sourcing -10.32 0.59 -5.63 0.04
Het. emission bias -11.33 -0.15 -6.52 -0.01

Panel C: t = 100
Baseline -20.96 4.65 -9.94 0.17
Aggregate -20.85 -0.17 -11.96 -0.01
Het. sourcing -20.86 1.84 -11.09 0.07
Het. emission bias -22.75 0.22 -12.87 0.01

Panel D: t = 150
Baseline -29.52 6.80 -13.90 0.17
Aggregate -29.30 -0.28 -16.81 -0.01
Het. sourcing -29.30 2.71 -15.53 0.07
Het. emission bias -31.81 0.29 -18.00 0.01

Panel E: t = 200
Baseline -36.48 8.61 -17.08 0.18
Aggregate -36.23 -0.59 -20.89 -0.01
Het. sourcing -36.21 3.26 -19.23 0.07
Het. emission bias -39.14 0.13 -22.25 0.00

Panel F: t = 500
Baseline -60.45 15.26 -27.88 0.19
Aggregate -60.59 -4.77 -36.57 -0.06
Het. sourcing -60.41 2.73 -33.24 0.03
Het. emission bias -64.16 -3.57 -38.09 -0.04
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Table 34: Comparing welfare effects of the baseline and aggregate models with an industry carbon
tariff

Model Real Income (€) Emissions (€) Change in Welfare (€)

Panel A: t = 14
Baseline -13.32 0.38 -12.94
Aggregate -8.99 0.75 -8.24
Het. sourcing -9.02 0.70 -8.32
Het. emission bias -8.99 0.77 -8.22

Panel B: t = 50
Baseline -66.96 4.19 -62.77
Aggregate -57.89 5.12 -52.77
Het. sourcing -58.21 4.77 -53.44
Het. emission bias -57.84 5.53 -52.31

Panel C: t = 100
Baseline -133.83 8.44 -125.39
Aggregate -118.39 10.14 -108.24
Het. sourcing -119.11 9.41 -109.70
Het. emission bias -118.19 10.92 -107.27

Panel D: t = 150
Baseline -193.61 11.79 -181.82
Aggregate -171.93 14.27 -157.66
Het. sourcing -173.04 13.18 -159.87
Het. emission bias -171.50 15.27 -156.23

Panel E: t = 200
Baseline -247.72 14.50 -233.22
Aggregate -219.84 17.73 -202.11
Het. sourcing -221.37 16.31 -205.06
Het. emission bias -219.14 18.88 -200.26

Panel F: t = 500
Baseline -495.66 23.66 -472.00
Aggregate -431.29 31.03 -400.26
Het. sourcing -435.79 28.20 -407.58
Het. emission bias -428.75 32.32 -396.42
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Table 35: Decomposing the change in emissions (million t CO2)

Emission Intensity Output Offshoring EI Imports Total

Panel A: t = 14
Baseline -3.04 0.99 -0.27 -0.01 -2.35
Aggregate -3.20 0.07 -1.50 0.00 -4.63
Het. sourcing -3.29 0.34 -1.37 -0.01 -4.34
Het. emission bias -3.12 -0.18 -1.48 0.00 -4.78

Panel B: t = 50
Baseline -30.28 -0.36 4.70 -0.03 -25.94
Aggregate -32.10 1.32 -0.76 0.00 -31.69
Het. sourcing -32.08 1.35 1.36 -0.02 -29.53
Het. emission bias -30.70 -3.55 -0.34 0.00 -34.23

Panel C: t = 100
Baseline -61.15 -1.90 10.56 -0.06 -52.21
Aggregate -64.63 2.88 -0.39 0.00 -62.77
Het. sourcing -64.50 2.72 4.21 -0.04 -58.20
Het. emission bias -61.92 -7.69 0.50 0.00 -67.55

Panel D: t = 150
Baseline -86.01 -3.10 15.44 -0.09 -72.95
Aggregate -90.62 4.27 -0.63 0.00 -88.27
Het. sourcing -90.45 4.04 6.18 -0.06 -81.52
Het. emission bias -87.04 -11.32 0.66 0.00 -94.48

Panel E: t = 200
Baseline -106.44 -3.99 19.57 -0.11 -89.69
Aggregate -111.82 5.52 -1.33 0.00 -109.69
Het. sourcing -111.63 5.32 7.45 -0.09 -100.93
Het. emission bias -107.66 -14.55 0.28 0.00 -116.79

Panel F: t = 500
Baseline -178.57 -4.84 34.78 -0.30 -146.37
Aggregate -185.44 11.13 -10.78 0.00 -191.99
Het. sourcing -185.33 12.36 6.38 -0.22 -174.49
Het. emission bias -180.30 -28.52 -8.07 0.00 -199.97
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F.4 CBAM

Table 36: Counterfactual percentage change in domestic, foreign, and global emissions of a domestic
carbon price increase combined with CBAM

Domestic (%) Foreign (%) Global (%) Leakage Rate

Panel A: t = 14
Baseline -0.68 -0.12 -0.44 -0.13
Aggregate -1.05 -0.66 -0.88 -0.48
Het. sourcing -0.99 -0.61 -0.83 -0.47
Het. emission bias -1.10 -0.66 -0.91 -0.45

Panel B: t = 50
Baseline -10.21 2.09 -4.92 0.15
Aggregate -10.34 -0.34 -6.04 -0.02
Het. sourcing -10.32 0.59 -5.62 0.04
Het. emission bias -11.33 -0.15 -6.52 -0.01

Panel C: t = 100
Baseline -20.92 4.70 -9.90 0.17
Aggregate -20.85 -0.17 -11.96 -0.01
Het. sourcing -20.85 1.84 -11.09 0.07
Het. emission bias -22.75 0.22 -12.87 0.01

Panel D: t = 150
Baseline -29.46 6.87 -13.83 0.18
Aggregate -29.30 -0.28 -16.81 -0.01
Het. sourcing -29.30 2.70 -15.53 0.07
Het. emission bias -31.81 0.29 -18.00 0.01

Panel E: t = 200
Baseline -36.41 8.71 -17.00 0.18
Aggregate -36.23 -0.59 -20.89 -0.01
Het. sourcing -36.21 3.25 -19.22 0.07
Het. emission bias -39.14 0.13 -22.25 0.00

Panel F: t = 500
Baseline -60.35 15.50 -27.72 0.19
Aggregate -60.59 -4.77 -36.57 -0.06
Het. sourcing -60.40 2.71 -33.24 0.03
Het. emission bias -64.16 -3.57 -38.09 -0.04
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Table 37: Comparing welfare effects of the baseline and aggregate models with CBAM

Model Real Income (€) Emissions (€) Change in Welfare (€)

Panel A: t = 14
Baseline -13.41 0.37 -13.04
Aggregate -8.99 0.75 -8.24
Het. sourcing -9.02 0.70 -8.32
Het. emission bias -8.99 0.77 -8.22

Panel B: t = 50
Baseline -67.27 4.17 -63.10
Aggregate -57.89 5.12 -52.77
Het. sourcing -58.20 4.77 -53.43
Het. emission bias -57.84 5.53 -52.31

Panel C: t = 100
Baseline -134.44 8.40 -126.04
Aggregate -118.39 10.14 -108.24
Het. sourcing -119.09 9.41 -109.68
Het. emission bias -118.19 10.92 -107.27

Panel D: t = 150
Baseline -194.49 11.73 -182.75
Aggregate -171.93 14.27 -157.66
Het. sourcing -173.02 13.17 -159.84
Het. emission bias -171.50 15.27 -156.23

Panel E: t = 200
Baseline -248.84 14.42 -234.42
Aggregate -219.84 17.73 -202.11
Het. sourcing -221.34 16.31 -205.03
Het. emission bias -219.14 18.88 -200.26

Panel F: t = 500
Baseline -497.88 23.52 -474.36
Aggregate -431.29 31.03 -400.26
Het. sourcing -435.74 28.20 -407.54
Het. emission bias -428.75 32.32 -396.42
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Table 38: Decomposing the change in emissions (million t CO2)

Emission Intensity Output Offshoring EI Imports Total

Panel A: t = 14
Baseline -3.04 1.01 -0.25 -0.01 -2.31
Aggregate -3.20 0.07 -1.50 0.00 -4.63
Het. sourcing -3.29 0.35 -1.38 -0.01 -4.34
Het. emission bias -3.12 -0.18 -1.48 0.00 -4.78

Panel B: t = 50
Baseline -30.28 -0.28 4.75 -0.03 -25.81
Aggregate -32.10 1.32 -0.76 0.00 -31.69
Het. sourcing -32.08 1.37 1.36 -0.02 -29.53
Het. emission bias -30.70 -3.55 -0.34 0.00 -34.23

Panel C: t = 100
Baseline -61.15 -1.73 10.66 -0.05 -51.96
Aggregate -64.63 2.88 -0.39 0.00 -62.77
Het. sourcing -64.51 2.74 4.20 -0.04 -58.20
Het. emission bias -61.92 -7.69 0.50 0.00 -67.55

Panel D: t = 150
Baseline -86.01 -2.85 15.60 -0.07 -72.60
Aggregate -90.62 4.27 -0.63 0.00 -88.27
Het. sourcing -90.46 4.07 6.16 -0.06 -81.51
Het. emission bias -87.04 -11.32 0.66 0.00 -94.48

Panel E: t = 200
Baseline -106.43 -3.66 19.78 -0.10 -89.24
Aggregate -111.82 5.52 -1.33 0.00 -109.69
Het. sourcing -111.64 5.37 7.43 -0.08 -100.93
Het. emission bias -107.66 -14.55 0.28 0.00 -116.79

Panel F: t = 500
Baseline -178.56 -4.10 35.30 -0.26 -145.52
Aggregate -185.44 11.13 -10.78 0.00 -191.99
Het. sourcing -185.34 12.45 6.33 -0.20 -174.50
Het. emission bias -180.30 -28.52 -8.07 0.00 -199.97
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F.5 Model Validation

F.5.1 Aggregate Model

Figure 20: Firm responses: model vs data

(a) Emission intensity (b) Output

(c) Offshoring (d) Emission Intensity of Imports
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F.5.2 Heterogeneous Emission Bias Model

(a) Emission intensity (b) Output

(c) Offshoring (d) Emission Intensity of Imports

Figure 21: Firm responses: model vs data
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F.5.3 Heterogeneous Fixed Costs Model

(a) Emission intensity (b) Output

(c) Offshoring (d) Emission Intensity of Imports

Figure 22: Firm responses: model vs data
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