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Abstract

We study the competitive effects of dual pricing, a vertical restraint that involves charg-

ing a distributor a different price for units intended to be resold online than for units

intended to be resold offline. We develop a model in which a manufacturer contracts

with hybrid retailers, which sell the manufacturer’s product both in their brick-and-

mortar stores and through an online channel. We find that dual pricing allows the

manufacturer to induce the industry monopoly outcome whereas uniform pricing does

not. Yet, dual pricing does not necessarily harm consumers or society at large, as the

market outcome is distorted by market power regardless of whether dual or uniform

pricing is used. Indeed, we find that consumer surplus and aggregate surplus tend to

be higher under dual pricing if the online market is small, if the search costs faced by

offline consumers are high, and if the pass-through rate of cost increases is high.
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1 Introduction

Internet sales are becoming increasingly important in retailing. Many retailers have adopted

a so-called hybrid business model, which involves both owning and operating brick-and-

mortar stores, and selling online—such online sales can take place on the retailer’s online

store or on a platform. This shift towards online sales has been a cause for concern for some

manufacturers. To the extent that searching and comparing prices is easier online than offline,

the thinking goes, a greater prevalence of online sales may end up intensifying intra-brand

competition; ultimately, manufacturer profits may suffer.1 This has led manufacturers to seek

greater control over their distribution network, which is often achieved by means of vertical

restraints that make it harder or more costly for retailers to sell online. Consider for instance

the landmark Pierre Fabre case, in which cosmetic and body-hygiene products manufacturer

Pierre Fabre required from its retailers that a pharmacist be present to assist customers. The

European Court of Justice viewed that practice as an explicit ban on online sales, and thus

as an infringement of Article 101 of the Treaty on the Functioning of the European Union.

More generally, the fact that retailers face numerous contractual restrictions when selling

online is well documented in the European Commission’s 2017 e-commerce sector inquiry.2

In this paper, we study dual pricing, a vertical restraint that involves charging a distribu-

tor a different price for units intended to be resold online than for units intended to be resold

offline. In the European Union, dual pricing was a hardcore restriction under the Vertical

Block Exemption Regulation (VBER) until June 2022. It remains a harcore restriction under

that regulation “if its goal is to prevent online sales.” In Germany, in recent years a number of

manufacturers have been led to discontinue their use of dual pricing after the Bundeskartel-

lamt initiated proceedings. For example, in the market for household appliances in 2013,

Bosch-Siemens was found to have offered price discounts to retailers based on their share of

online vs. offline sales. Similar concerns were raised in 2013 and 2016, respectively, about

Gardena and LEGO’s trade discounts, whereby retailers could obtain the highest number of

discount points only through sales in brick-and-mortar stores.

We explore the optimality of dual pricing and its welfare implications in online and brick-

and-mortar markets. We do so in a clearinghouse model with vertical relations, based on

Varian (1980), Stahl (1989), and Janssen and Shelegia (2015). A manufacturerM distributes

its product through two hybrid retailers, operating on- and offline. Downstream demand is

downward sloping and there are two types of consumers: some consumers search and shop

online for free; others use the offline channel, where search is costly. We consider a multistage

1Another concern, which we will not address in this paper, is that manufacturers may find it harder to
maintain high-quality sales and post-sales services online. See Section II in Miklós-Thal and Shaffer (2022)
for a discussion of such service theories of dual pricing.

2Such restrictions include limitations to sell on marketplaces, limitations to sell on own website, limitations
to use price comparison tools, and limitations to advertise online.
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game in which the manufacturer first offers contracts to both retailers, retailers then compete

in prices, and consumers make search and purchase decisions. Throughout the paper, we

maintain the assumption that retailers do not discriminate between the online and the offline

channel—we discuss this assumption in great detail below. We compare two regimes: under

uniform pricing, the manufacturer offers a standard two-part tariff; under dual pricing, we

again have a two-part tariff, but with potentially distinct variable parts for online and offline

sales.

We find that dual pricing is strictly optimal for the manufacturer. Specifically, we show

that the manufacturer is unable to induce the industry profit-maximizing outcome with a

uniform pricing contract. The reason is that, regardless of what uniform-pricing contract is

used, retailers face conflicting incentives. On the one hand, retailers want to undercut each

other to capture the online market; on the other, they also have an incentive to set high

prices to exploit their offline customer base. This tension gives rise to a mixed-strategy Nash

equilibrium. The resulting price dispersion prevents the retail market from being supplied at

the industry monopoly price.

By contrast, a well-chosen dual pricing contract can induce the industry monopoly out-

come. The idea is for the manufacturer to discriminate against the online market by setting

a high variable part on online sales. In doing so, the manufacturer eliminates the retailers’

incentives to undercut each other to corner the online market. We also show that these results

are robust to allowing for uniform-pricing contracts that go well beyond two-part tariffs, as

well as upstream contracts being private rather than public.

Even though the industry monopoly outcome arises under dual pricing, the welfare effects

of banning this practice are a priori unclear. The reason is that, as we show, under uni-

form pricing retailers set prices above and below the industry monopoly level with positive

probability. Hence, a ban on dual pricing does not systematically give rise to lower prices

and the question is whether such a ban raises consumer surplus and/or aggregate surplus

in expectation. Using approximation techniques, we show that the answer is no for a wide

range of situations. Specifically, we find that if the online market is relatively small, or if the

offline consumers’ search costs are small and the monopoly pass-through is high, then a ban

on dual pricing reduces consumer surplus and aggregate surplus. Such a ban also has adverse

welfare consequences when offline consumers face high search costs and consumer demand is

ρ-linear (Bulow and Pfleiderer, 1983; Anderson and Renault, 2003).3

The results described in the previous paragraph have implications beyond the welfare

effects of dual pricing. In the Stahl (1989) model without vertical relations, it is well known

that an increase in the share of shoppers or a decrease in the non-shoppers’ search cost result

3The demand function D is said to be ρ-linear if D(p)ρ is linear. This is equivalent to the inverse demand
function having constant curvature, and thus to monopoly pass-through being constant.
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in a first-order stochastic dominance shift toward lower prices, thus increasing consumer and

aggregate surplus. Our analysis implies that these intuitive results can be easily overturned

once the manufacturer’s optimal response to these changes, which typically involves raising

the wholesale price to soften retail competition, is taken into account. For instance, our

Proposition 9 implies that, under uniform pricing, starting with no shoppers, a small increase

in the share of shoppers lowers consumer and aggregate surplus for any well-behaved demand

function. In the special case in which demand is ρ-linear and non-shoppers’ search costs are

high, our Proposition 7 implies that consumer and aggregate surplus are in fact highest in the

absence of shoppers. This highlights the importance of taking vertical relations into account

when assessing the welfare effects of policies aimed at reducing search frictions.

On the assumption that retailers do not discriminate. One of the paper’s central

assumptions is that retailers charge the same prices on- and offline. This assumption is

broadly in line with the evidence reported in Cavallo (2017). Cavallo collected data on

the online and offline prices charged by 56 large hybrid retailers in 10 countries and found

that on- and offline prices are identical 72% of the time. Moreover, there is substantial

variation in that key statistic both across countries (from 42% in Brazil to 91% in Canada)

and across sectors (from 25% for office products to 83% and 92% for electronics and clothing,

respectively). In light of this, it seems fair to say that the assumption of no discrimination

has some empirical relevance, at least for some countries and sectors.4

There are many good reasons why a retailer might choose not to price discriminate. First,

the firm may be afraid of losing customer goodwill, as its offline consumers would feel duped

if they were to find out that the product they just purchased was offered online at a lower

price by the same retailer. Second, an individual (or collective) commitment not to price

discriminate may provide a strategic advantage. Third, if the online channel is a marketplace,

the platform may impose a price parity clause, which would make discrimination infeasible.

From this, we conclude that both the discrimination case and the no-discrimination case are

relevant and worth studying. This paper focuses on the no-discrimination case. We refer the

reader to Miklós-Thal and Shaffer (2021) for a thorough study of dual pricing in a setting in

which retailers do discriminate across markets.

Related literature. The literature on clearinghouse models was pioneered by Varian

(1980), Rosenthal (1980), and Stahl (1989, 1996). More recent contributions include Baye

and Morgan (2001), Montez and Schutz (2021), Shelegia and Wilson (2021), and Armstrong

and Vickers (2022). Janssen and Shelegia (2015) embed Stahl (1989)’s clearinghouse setup

4For another well-known real-world instance in which retailers do not discriminate as much as one would
expect them to, see the paper by DellaVigna and Gentzkow (2019), which shows that most U.S. food,
drugstore, and mass-merchandise chains set nearly uniform prices across their stores.
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into a vertical-relations model with an upstream monopolist and study the consequences of

consumers not observing vertical contracts. Garcia and Janssen (2018) study the upstream

manufacturer’s incentives to price-discriminate between (symmetric) retailers in Janssen and

Shelegia (2015)’s framework; Janssen and Reshidi (2022, 2023) address a similar question but

in a search model without shoppers. We contribute to this literature by studying the effects

on industry performance of non-linear upstream contracts that can condition on the sales

channel. We also perform novel comparative statics in the vertical-relations version of the

Stahl (1989) model, showing that parameters such as search costs or the share of informed

consumers have radically different welfare effects once upstream contracts are endogenized.

Our work is also related to the literature on vertical restraints in e-commerce, where

consumer search plays a central role.5 Retail-price recommendations (RPRs) are among the

most widely used vertical restraints in e-commerce and were shown empirically to influence

prices and consumer search (De los Santos et al., 2018). Lubensky (2017) shows that a

manufacturer can use RPRs as a cheap-talk signal about its marginal cost to influence the

search behavior of consumers. In Buehler and Gärtner (2013), a manufacturer uses RPRs to

convey information on cost or demand conditions to retailers. Janssen and Reshidi (2022)

find that regulations requiring that at least some sales be made at RPRs can harm retailers

and consumers. Asker and Bar-Isaac (2020) study the effects of minimum-advertised-price

policies on search frictions, retail competition, and upstream profits. In a model in which

consumers have context-dependent preferences, Helfrich and Herweg (2020) show that a

manufacturer can benefit from banning online sales, as low online prices can negatively affect

the perceived quality of the manufacturer’s product.

The closest paper to ours is Miklós-Thal and Shaffer (2021), who also study input price

discrimination across resale markets. Our paper differs from theirs in several dimensions.

First, as discussed above Miklós-Thal and Shaffer (2021) allow retailers to price discriminate

whereas we do not. Second, they consider an exogenously given system of market demand

functions, whereas we explicitly model the underlying asymmetry in search frictions online

and offline, which generates different demand functions across the retail markets. Miklós-

Thal and Shaffer (2021) show that, everything else equal, the manufacturer has an incentive

to discriminate against resale markets in which competition is more intense. In the context

of online vs. offline sales, this means setting a higher wholesale price for online units so as

to bring online and offline retail prices closer together. This mechanism is absent in our

model, as retailers are required to price uniformly across markets. Instead, the reason why

discriminating against online sales is profitable for the manufacturer is that it eliminates the

price dispersion that is inherent to clearinghouse models.

5For classic references on vertical restraints, see Mathewson and Winter (1984), Rey and Tirole (1986),
Hart and Tirole (1990), and Winter (1993).
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The rest of the paper is organized as follows. In Section 2, we present the model. In

Section 3, we characterize equilibria under uniform and dual pricing. In our baseline result

in Section 3.1, we show that the manufacturer strictly benefits from using dual pricing. In

Section 3.2, we discuss several extensions of the model, including a richer class of uniform-

pricing contracts, the possibility of discriminating between retailers, and secret contracts. In

Section 4, we examine the welfare effects of banning dual pricing. We conclude in Section 5.

2 The Model

A manufacturer,M , sells its product through two identical retailers, R1 and R2, who compete

in prices. The manufacturer has a constant unit cost of production, c > 0. Retailing costs

are linear and normalized to zero. The retailers have a hybrid business model, in that they

operate both in an online market (O) and in a brick-and-mortar market (B). We assume

throughout that each retailer Ri sets the same price pi on- and offline.

The online market is populated by a mass λ ∈ (0, 1) of buyers. These consumers, some-

times referred to as shoppers, purchase from the retailer offering the lowest price (and flip a

coin in case of indifference). The remaining mass of consumers, 1− λ, is composed of offline

buyers, sometimes referred to as captive consumers. These consumers search sequentially

with costless recall, as in Stahl (1989). Specifically, each offline consumer initially observes

the price of one of the retailers, drawn at random with probability of 50/50. Then, the

consumer can either purchase from this retailer, or pay a search cost of s, discover the price

charged by the other retailer, and purchase from the retailer charging the lowest price. We

assume throughout that retailers play an advertising role in the following sense: if the prod-

uct is not available at retailer Ri (because that retailer has not signed a contract with the

manufacturer), then the consumers that are captive to Ri are not aware of the product’s

existence and will therefore not attempt to purchase it from Rj. This assumption rules out

the trivial outcome in which the manufacturer can induce the industry’s monopoly outcome

by only dealing with one retailer.

Per-consumer demand is given by the continuous function D(·), assumed to be strictly

decreasing and smooth up to its (potentially infinite) choke price p̌. Moreover, D satisfies

Marshall’s second law of demand (i.e., the absolute value of the price elasticity of demand

is non-decreasing in price), and limp→∞ r(p) = 0, where r(p) ≡ (p − c)D(p) is industry

profit at price p. These assumptions imply that, for every unit cost w < p̌, the function

p ∈ (w, p̌) 7→ π(p, w) = (p − w)D(p) is strictly quasi-concave and has a unique maximizer,

which we denote pm(w). For what follows, it is useful to define p0 ≡ pm(c), the price that

maximizes industry profit, and r0 ≡ r(p0), the industry monopoly profit.

The manufacturer offers public, non-discriminatory contracts to the retailers. A contract
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is a triple (wo, wb, T ), where T denotes the lump-sum transfer made to the manufacturer,

wo > 0 the per-unit wholesale price for units sold online, and wb > 0 the per-unit wholesale

price for units sold offline. We shall distinguish two cases. Under uniform pricing, on- and

offline wholesale prices must coincide, wo = wb = w, and the contract thus boils down to a

standard two-part tariff, (w, T ). Under dual pricing, there is no such restriction.

The game unfolds as follows. In stage 1, the manufacturer publicly announces its contract.

In stage 2, retailers simultaneously decide whether to accept the contract. In stage 3, each

retailer that has accepted the contract observes the other retailer’s acceptance decision and

chooses its retail price. In stage 4, consumers observe the manufacturer’s contract and the

retailers’ acceptance decisions, and make search and purchase decisions as described above.6

The equilibrium concept is perfect Bayesian equilibrium.7 Moreover, we confine attention

to equilibria in which the manufacturer does not mix,8 retailers do not randomize their

acceptance decisions,9 and retailers behave symmetrically in stage 3, both on and off the

equilibrium path.

Some of the results in Section 4 require stronger assumptions on the shape of demand.

We say that the demand function D is ρ-linear if it takes the form10

D(p) =M

[

1 +
1− α

α
(a− bp)

] α

1−α

(1)

for some parameters α > 0, a, b > 0, and M > 0.11 Note that linear demand and iso-elastic

demand are nested as special cases. This family of demand functions was first introduced by

Bulow and Pfleiderer (1983), who showed by integrating a differential equation that the ρ-

linearity of demand is equivalent to the monopoly cost pass-through being constant. Routine

6The assumption that consumers observe upstream contracts simplifies the analysis. See Janssen and
Shelegia (2015) for a thorough study of the case where upstream contracts are unobservable to consumers.

7The reason for not using subgame-perfect equilibrium is that non-shoppers’ information sets at the
beginning of stage 4 are not singletons. Note that, since consumers observe the manufacturer’s contract and
by virtue of the no-signaling-what-you-don’t-know condition (Fudenberg and Tirole, 1991), a non-shopper
that observes Ri’s price must hold passive beliefs about Rj ’s price.

8Given our assumption that consumers observe the upstream contract, this assumption is generically
without loss of generality, as the manufacturer’s maximization problem will typically have a unique solution.

9It is clear that, for any contract, the acceptance subgame has at least one pure-strategy equilibrium. If
T is so high that retailers would make losses if they both accepted the contract, but sufficiently low so that
a retailer that accepts the contract makes positive profits conditional on the other retailer rejecting, then
the acceptance subgame has the same structure as Chicken. That subgame therefore has two pure-strategy
equilibria and one non-degenerate mixed-strategy equilibrium. We select one of the pure-strategy equilibria.

10The case of α = 1 arises from taking the limit in equation (1), which gives D(p) = M ea−bp.
11This parametrization of ρ-linear demand is due to Anderson and Renault (2003). Genesove and Mullin

(1998) use a variant of this specification in their empirical investigation of oligopoly conduct in a homogeneous-
products industry.

7



calculations show that, under this demand specification,

pm(w) =
α + (1− α)a

b
+ αw,

so that monopoly pass-through, dpm/dw, is indeed constant and equal to α.

3 Uniform vs. Dual Pricing

In this section, we show that dual pricing allows the manufacturer to fully exploit its

monopoly power and induce the monopoly outcome, whereas uniform pricing does not. The

main result is in Section 3.1. In Section 3.2, we explore the robustness of this result to a

richer class of uniform-pricing contracts and to contracts being secret rather than public.

3.1 Baseline Result

Uniform pricing. We proceed by backward induction. Consider a subgame in which the

manufacturer has offered uniform-pricing contract (w, T ), which both retailers have accepted.

Equilibrium behavior in the retail pricing game was studied in Varian (1980) and Stahl (1989).

It is well known that, in equilibrium, retailers draw their prices from a continuous cumulative

distribution function (CDF), F , with support [p, p], and captive consumers never search on

the equilibrium path. The indifference condition

[

λ(1− F (p)) +
1− λ

2

]

π(p, w) =
1− λ

2
π(p, w)

pins down the CDF as

F (p, p, w) = 1−
1− λ

2λ

(
π(p, w)

π(p, w)
− 1

)

(2)

for every p ∈ [p, p]. The lower bound of the support, p(p, w), is the unique solution to

F (p, p, w) = 0, which can be rewritten as:

(1− λ)π(p, w) = (1 + λ)π(p, w). (3)

To determine the upper bound of the support, let

H(p, w) ≡

∫ p

p(p,w)

D(p)F (p, p, w)dp (4)

denote the expected gains from searching (gross of the search cost) when receiving price
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quote p, and expecting the other firm to draw its price from F (·, p, w). To ensure that

captive consumers do not search on path and deter retailers from pricing above p, it must

be that either (i) p = pm(w) and H(p, w) ≤ s, or (ii) p < pm(w) and H(p, w) = s. It is

easily checked that limp↓wH(p, w) = 0 and H(·, w) is continuous on (w, p]. Moreover, by

Lemma A.1.1 in Appendix A.1, Marshall’s second law of demand implies that H(·, w) is

strictly increasing on the interval (w, pm(w)). It follows that there exists a unique p such

condition (i) or (ii) holds. Hence, the retail equilibrium is unique; we denote the CDF of

prices by F (·, w) and its support by [p(w), p(w)].

Moving backward, it is clear that in any equilibrium in which both retailers are active,

the fixed part of the tariff must fully extract retailers’ profits, i.e., T = T (w) ≡ 1−λ
2
π(p, w).

The manufacturer then earns an expected profit of

Π(w) =

∫ p(w)

p(w)

r(p)dG(p, w), (5)

where

G(p, w) ≡ (1− λ)F (p, w) + λ
[
1− (1− F (p, w))2

]

is the CDF of prices paid by consumers. To understand the formula for G, note that a share

1−λ of consumers receive one draw from F , whereas the remaining share receives two draws

and picks the lowest.

Let us now show that the maximization problem

max
w>0

Π(w) (6)

has a solution. Standard arguments imply that the objective function is continuous. We show

in the appendix that Π(·) is strictly increasing on (0, c]. Next, we claim that the manufacturer

is strictly better off setting w equal to p0 than setting any w ≥ w ≡ pm(p0). To see this, note

that, for any w ≥ w,

Π(w) < r(p(w)) < r(w) < Π(p0),

where the inequalities follow, as r is strictly decreasing on (p0, p̌), and p(w) > w ≥ w ≥

p(p0) > p(p0) > p0. It follows that maximization problem (6) is equivalent to maximizing

the continuous function Π(·) over the compact set [c, w]. Hence, a solution exists.

Alternatively, the manufacturer could choose to exclude one of the retailers and thus give

up on selling to that retailer’s captive consumers. In that case, the manufacturer has no

incentives to introduce double marginalization: it sets its variable part equal to c, and the

active retailer prices at p0 and supplies the online consumers as well as its offline consumers.

The manufacturer can then adjust its fixed fee to extract retail profits, which results in the
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optimal tariff
(
c, 1+λ

2
r0
)
and a profit of 1+λ

2
r0 for the manufacturer.

Taking stock, we have that, if maxw Π(w) >
1+λ
2
r0, then in equilibrium the manufacturer

offers (w∗, T (w∗)), where w∗ is any solution to maximization problem (6), both retailers ac-

cept, and retailers mix according to F (·, w∗). If the inequality is reversed, then in equilibrium

the manufacturer offers
(
c, 1+λ

2
r0
)
, and only one retailer accepts and prices at p0. Finally,

in the knife-edged case where maxw Π(w) = 1+λ
2
r0, there exist equilibria with one active

retailer and equilibria with two active retailers, as characterized above. This concludes the

equilibrium characterization.

Observe that, in any equilibrium, either both retailers accept and retail prices end up being

drawn from a continuous distribution, or only one retailer accepts and a share (1 − λ)/2 of

consumers end up not being served. This means that the industry monopoly outcome, in

which all consumers purchase at p0 with probability one, never arises, regardless of which

equilibrium is selected.

Summing up:

Proposition 1. An equilibrium exists under uniform pricing. Moreover, there exists no

equilibrium in which the industry monopoly outcome arises.

In standard models of vertical relations with smooth product differentiation and no in-

formation frictions on the consumer side, the retail equilibrium is always pure, and so a

simple two-part tariff is always sufficient to soften downstream competition and induce the

industry monopoly outcome (see, e.g., Mathewson and Winter, 1984). By contrast, in our

model two-part tariff contracts always induce wasteful mixing (unless one of the retailers is

excluded), and so the monopoly outcome cannot be achieved.

Dual pricing. Consider now the dual-pricing contract (wo, wb, T ) =
(
p0, c,

1−λ
2
r0
)
. Let us

argue that there exists an equilibrium in the continuation subgame in which both retailers

accept this contract and price at p0. Retailer Ri does not have an incentive to deviate upward,

as that firm would then lose the online consumers and charge a sub-optimal price on its offline

consumers. Similarly, a downward deviation would involve charging a sub-optimal price on

offline consumers and receiving a negative margin on online consumers. Hence, conditional

on both retailers having accepted the contract, pricing at p0 is indeed a Nash equilibrium.

As the fixed fee was set to fully extract retail profits, it follows that this dual pricing contract

generates the industry monopoly outcome and allows the manufacturer to obtain industry

monopoly profits. We go one step further and show that the industry monopoly outcome

with full surplus extraction arises in any equilibrium under dual pricing:

Proposition 2. There is an equilibrium under dual pricing. In any equilibrium, the manu-

facturer sets wo = p0 and wb ≤ c, both retailers are active and price at p0 with probability 1,

10



and the manufacturer makes a profit of r0. This outcome can be induced by the dual-pricing

contract
(
p0, c,

1−λ
2
r0
)
.12

Proof. See Appendix B.

To establish uniqueness, we show that the dual-pricing contract
(
p0, c,

1−λ
2
r0
)
induces a

unique continuation equilibrium, and construct a continuation equilibrium in every other

subgame. Interestingly, we find subgames in which firms mix in equilibrium and offline

consumers occasionally search on the equilibrium path, which cannot arise in the standard

Stahl (1989) model.

Combining Propositions 1 and 2, we see that dual pricing is an essential tool, as it allows

the manufacturer to fully exploit its monopoly power and induce the monopoly outcome.

The manufacturer does so by discriminating against online sales, which eliminates retail-

ers’ incentives to undercut to corner the online market, thus giving rise to a pure-strategy

equilibrium.

It is straightforward to show that these results are robust to various alterations of the

retail oligopoly and search model, such as having N retailers instead of 2, endogenizing the

share of online consumers (as in Varian, 1980; Baye and Morgan, 2001), or allowing offline

consumers to have heterogeneous search costs (as in Stahl, 1996). In all those alterations,

the monopoly outcome remains out of reach under uniform pricing, as retailers continue to

mix (or the manufacturer excludes some of them). By contrast, a well-chosen dual-pricing

contract, with wo = p0 and wb = c, still gives rise to the monopoly outcome.

3.2 Extensions

In this subsection, we undertake two more-involved robustness checks. First, we explore

whether a richer class of uniform-pricing contracts could allow the manufacturer to induce

the industry monopoly outcome. Second, we solve the model under the assumption that

retailers do not observe each other’s contracts.

Richer class of uniform-pricing contracts. According to Proposition 1, no uniform two-

part tariff contract can induce the industry monopoly outcome. This raises the question of

whether the industry monopoly outcome could be induced by a more flexible uniform-pricing

contract, i.e., by some arbitrary mapping T (·), which, to any quantity q ordered by the

retailer, associates the payment T (q) to be made to the manufacturer. In the simple model

12In Appendix B, we show that a dual pricing contract (wo, wb, T ) induces this outcome if and only if

wo = p0, wb ∈
[
(1+λ)c−2λp0

1−λ
, c
]

, and T = 1−λ
2 π(p0, wb).
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of Section 2, it is easy to see that the answer is yes. Consider indeed the quantity-forcing

contract

T (q) =







1
2
p0D(p0) if q = 1

2
D(p0),

T otherwise,

where T is a sufficiently large number. It is clear that, following such a contract, there exists

an equilibrium in which both retailers accept and price at p0, so that the monopoly outcome

arises.

One may contend that this contract is somewhat special, as it is neither monotonic nor

continuous. Yet, consider the following continuous and monotonic contract:

T (q) =







1
2
p0D(p0) if q ≤ 1

2
D(p0),

p0q if q > 1
2
D(p0).

Starting from a situation in which both retailers accept the contract and price at p0, a retailer

deviating upward would lower its revenue without affecting the payment to be made to the

manufacturer, whereas a retailer deviating downward would end up pricing below its average

cost. Hence, this continuous and monotonic contract also induces the monopoly outcome.

Thus, the ability to discriminate against the online market brought about by dual pricing

no longer seems that essential if the manufacturer can use sufficiently rich uniform-pricing

contracts. Let us now show that dual pricing becomes essential again in a slightly richer

version of the model of Section 2 with stochastic demand. Specifically, let us assume that

demand per consumer at price p is given by MD(p), where M is a non-contractible random

variable, which is drawn and becomes common knowledge at the beginning of stage 3, before

retailers set their price. We assume thatM is supported on the interval [m,m] with 0 ≤ m <

m ≤ ∞. The rest of the model is as in Section 2, except that we allow the manufacturer to

offer any continuous uniform-pricing contract.

We have:

Proposition 3. Consider the model with demand uncertainty, and suppose that the support

of M satisfies

m ≥
1 + λ

1− λ
m.

Then, there exists no continuous uniform-pricing contract that induces the industry monopoly

outcome in almost every state.

By contrast, regardless of the support of M , the dual-pricing contract
(
p0, c,

1−λ
2
E(M)r0

)

induces the monopoly outcome in every state and allows the manufacturer to earn the expected

industry monopoly profit.

Proof. See Appendix A.4.
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Wholesale discrimination and secret contracts. We assumed in our baseline model

that the manufacturer does not discriminate between retailers, which automatically implies

that each retailer knows the terms at which the other retailer is purchasing. One justification

for this assumption is that, in many jurisdictions, there are laws (such as the Robinson-

Patman Act in the U.S. and Article 102 of the Treaty on the Functioning of the European

Union) restricting a manufacturer’s ability to price discriminate. Nevertheless, it seems

important to study whether our results continue to hold if the manufacturer can discriminate.

Under the assumption of publicly observable contracts, it is clear that the manufacturer

will remain unable to induce the monopoly outcome using discriminatory uniform-pricing

two-part tariffs, as such contracts will induce either mixing by both retailers or pricing

above p0 by at least one retailer. By contrast, the non-discriminatory dual-pricing contract
(
p0, c,

1−λ
2
r0
)
continues to induce the monopoly outcome.

Note however that, if the manufacturer is able to discriminate between its retailers, then

there is no longer a compelling reason to assume that contracts are observable to rivals.

Bilateral vertical contracts are typically private information to the contracting parties; and

even though the manufacturer could in principle show its contract with retailer R1 to retailer

R2, nothing would prevent it from secretly renegotiating that contract thereafter. In the

following, we therefore solve a version of the model with secret contracts. That is, we

now assume that retailer Ri never observes retailer Rj’s contract; nor does it observe Rj’s

acceptance decision in stage 3. For simplicity (and to avoid taking a stance on whether

consumers observe wholesale contracts), we assume that the search cost parameter s is so

high that offline consumers would never consider searching in stage 4.

As perfect Bayesian equilibria are notoriously hard to solve for when downstream com-

petition is in price (Rey and Verge, 2004), we use contract equilibrium in passive beliefs as

our solution concept (Crémer and Riordan, 1987; Horn and Wolinsky, 1988; O’Brien and

Shaffer, 1992; Rey and Verge, 2020). A pair of contracts (C1, C2) and a strategy profile for

the two retailers form a contract equilibrium in passive beliefs if: (i) contract Ci maximizes

the manufacturer’s profit holding fixed Cj (i ̸= j in {1, 2}); (ii) retailer Ri believes that Rj’s

contract is Cj, regardless of what contract M offers to Ri; (iii) the retailers’ strategies are

sequentially rational given their beliefs.13 To ease exposition, we focus on equilibria in which

the manufacturer offers the same contract to both retailers, C1 = C2.

Let us first solve the model under uniform pricing. Consider an equilibrium candidate

in which the manufacturer offers the two-part tariff (w, T ) to both retailers, with w > c.

By sequential rationality, on the candidate equilibrium path both retailers mix according

13Any perfect Bayesian equilibrium in passive beliefs must be a contract equilibrium in passive beliefs, but
the converse is not necessarily true, as condition (i) in the definition does not consider deviations in which the
manufacturer changes both contracts. Note that, to fix ideas, we are using the version of contract equilibrium
in which the manufacturer has all the bargaining power.
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to the CDF F (·) of equation (2) (where we have dropped argument w to ease notation).

As the manufacturer’s profits must be maximized, it must be that T = 1−λ
2
π(p, w). The

manufacturer earns an expected profit of

Π = 2T + (1− λ)(w − c)

∫ p

p

D(p)dF (p) + λ(w − c)

∫ p

p

D(p)dFmin(p), (7)

where Fmin denotes the CDF of the minimum of (p1, p2).

Suppose now that the manufacturer deviates by offering (w − ε, T ) to retailer R1, for

some small ε > 0. Then, R1 accepts this new contract and (correctly) believes that R2 will

continue to draw its price from F . Before the deviation, firm R1 was indifferent between all

the prices in [p, p]. After the deviation, R1’s marginal cost is strictly lower, and R1’s profit

is therefore strictly decreasing on [p, p].14 It follows that, after the deviation, R1 prices at p

with probability 1. Taking ε to zero, the manufacturer’s expected deviation profits can be

made arbitrarily close to:

2T +
1− λ

2
(w − c)D(p) + λ(w − c)D(p)

︸ ︷︷ ︸

variable profits on R1

+
1− λ

2
(w − c)

∫ p

p

D(p)dF (p)

︸ ︷︷ ︸

variable profits on R2

,

which is strictly greater than Π since D is strictly decreasing. Hence, there is no equilibrium

in which the variable part of the tariff is strictly above cost.

Next, consider an equilibrium candidate in which the manufacturer offers the two-part

tariff (c, T ) to the retailers. Again, we must have that T = 1−λ
2
π(p, c) = 1−λ

2
r0. On the

candidate equilibrium path, the manufacturer makes an expected profit of Π = 2T . Suppose

the manufacturer deviates and offers (w′, T ′) to retailer Ri. If w
′ < c, then the argument used

in the previous paragraph implies that Ri responds by pricing at p̃ = min(p, pm(w′)) with

probability 1. The retailer therefore supplies the online market and makes an operating profit

of 1+λ
2
π(p̃, w′), which the manufacturer extracts with its fixed fee. Hence, the manufacturer’s

expected deviation profit is

T +
1 + λ

2
r(p̃) ≤ T +

1 + λ

2
r(p) = T +

1− λ

2
r0 = 2T,

14To see this, let D̃(p) be the expected demand that R1 faces when R2 is mixing according to F :

D̃(p) =

(
1− λ

2
+ λ(1− F (p))

)

D(p).

By definition of F , the function p 7→ (p−w)D̃(p) is strictly increasing up to p, constant on [p, p], and strictly

decreasing on [p, p̌). This implies that (p− w + ε)D̃(p) = (p− w)D̃(p) + εD̃(p) is strictly increasing up to p
(for ε small enough) and strictly decreasing on [p, p̌).

14



where we have used equation (3). The deviation is therefore not profitable. If instead w′ > c,

then Ri optimally sets p̃ = pm(w′) > p0 and makes an operating profit of 1−λ
2
π(p̃, w′), which

the manufacturer extracts. The manufacturer earns

T +
1− λ

2
r(p̃) < T +

1− λ

2
r0 = 2T,

and so the deviation is not profitable.

Summing up:

Proposition 4. Consider the model with secret contracts. Under uniform pricing, the equi-

librium is unique. The manufacturer offers the contract
(
c, 1−λ

2
r0
)
to both retailers. Both

retailers accept and draw their prices from F (·, c).

Proof. See Appendix A.4.

Thus, under secret contracts and uniform pricing, the manufacturer loses its ability to

soften downstream competition by choosing a high variable part. As the proposition shows,

the only variable part that can be sustained in equilibrium is w = c. Hence, as far as

the retail competition outcome is concerned, it is as if the upstream market were perfectly

competitive. The intuition is the same as in Hart and Tirole (1990) and the literature that

followed: starting from a contract (w, T ) with w > c, manufacturer M and retailer Ri have

a joint incentive to free-ride on retailer Rj’s margin by setting a lower pi.

Next, we turn our attention to dual pricing. Consider an equilibrium candidate in which

the manufacturer offers the dual-pricing contract
(
p0, c,

1−λ
2
r0
)
, i.e., the same contract as in

Proposition 2. On the equilibrium path, it is sequentially rational for both retailers to accept

this contract and price at p0, as argued in Section 3.1. The manufacturer then earns r0.

Now, suppose that the manufacturer deviates and offers some alternative contract C ′ =

(w′
o, w

′
b, T

′) to retailer Ri. As Rj does not observe this deviation, it continues to price at

p0 with probability 1. This implies that Rj makes zero profit regardless of the deviation

contract C ′ and regardless of how Ri behaves after having been offered that contract. Hence,

for any sequentially rational decision made by Ri, industry profit must be equal to the sum

of the manufacturer’s and R1’s profits. Since R1’s profit must be non-negative by sequential

rationality, it follows that the manufacturer’s deviation profit is weakly less than industry

profit, which is bounded above by r0. The deviation is therefore unprofitable.

We thus have:

Proposition 5. Consider the model with secret contracts. Under dual pricing, there exists an

equilibrium in which the manufacturer offers contract
(
p0, c,

1−λ
2
r0
)
and both retailers accept

and price at p0.
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As mentioned above, the reason why a uniform-pricing equilibrium with a positive variable

part can not be sustained is that the manufacturer and one of the retailers would have an

incentive to agree on more favorable terms so as to free-ride on the other retailer’s margin.

Under the dual-pricing contract of Proposition 5, such incentives are absent since there is no

margin that can be free-ridden on in the competitive (online) segment.

Comparing Propositions 1–2 and Propositions 4–5, there is a sense in which being able to

use dual pricing becomes even more crucial for the manufacturer when contracts are secret.

That is, in addition to eliminating wasteful mixing as in the case of public contracts, under

secret contracts dual pricing also solves the supplier opportunism problem.

4 The Welfare Effects of Dual Pricing

In this section, we study how a ban on dual pricing affects expected consumer surplus and

expected aggregate surplus. We are thus interested in

∆CS = CSUP − CSDP and ∆AS = ASUP − ASDP ,

where the superscript UP (resp. DP) stands for uniform pricing (resp. dual pricing).

We begin by putting on record some key properties of the equilibrium under uniform

pricing:

Proposition 6. In any equilibrium under uniform pricing, the manufacturer deals with both

retailers if (at least) one of the following conditions holds:

(i) λ ≤ 1/3;

(ii) λ is sufficiently close to 1;

(iii) s is sufficiently close to 0;

(iv) s is sufficiently high and demand is ρ-linear.

Moreover, whenever an equilibrium under uniform pricing involves dealing with both retailers,

the wholesale price w∗ satisfies w∗ ∈ (c, p0) and the support of the equilibrium distribution of

retail prices, [p, p], satisfies p < p0 < p.

Proof. For the first part of the proposition, see Lemmas A.3.1 and A.3.2 in Appendix A.3,

Lemma C.2.1 in Appendix C.2.1, and Lemma C.5.12 in Appendix C.5.6. For the second part,

see Lemma C.1.2 in Appendix C.1.
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That conditions (i) and (iii) are sufficient for the manufacturer to prefer dealing with

both retailers is quite intuitive. If λ is small, excluding one of the retailers means giving up

on a large chunk of the retail market, which cannot be optimal. If s is small, then the retail

equilibrium is close to the Bertrand outcome, implying that the manufacturer can make a

profit close to r0 by setting w equal to p0.

The sufficiency of condition (ii) is far less obvious: as λ approaches 1, double marginaliza-

tion and price dispersion vanish, and so the cost associated with dealing with both retailers

disappears; at the same time, the benefit from using both retailers also becomes negligible,

as offline consumers cease to exist. We prove the result by obtaining a Taylor approximation

of equilibrium behavior under the optimal w in the neighborhood of λ = 1. The sufficiency

of condition (iv) is also non-trivial. We establish it by exploiting the mean-value theorem to

obtain a lower bound on the profit from dealing with both retailers under ρ-linear demand

and high search costs, and showing that that lower bound is greater than (1 + λ)/2r0, the

profit from excluding one retailer.

To see the intuition for the second part of the proposition, suppose to the contrary that p ≥

p0 in equilibrium. Then, the retailers are systematically pricing above the industry monopoly

level. The manufacturer can then gain by lowering its variable part to induce a first-order

stochastic dominance towards lower prices, thus mitigating double marginalization. If instead

p ≥ p0, then the retailers are systematically pricing below the industry monopoly level, and

the manufacturer should increase w to induce a first-order stochastic dominance towards

higher prices, thus softening downstream competition. The optimal w solves the trade-

off between double marginalization and excessive downstream competition, which results in

c < w∗ < p0 and p < p0 < p.

An implication of the second part of Proposition 6 is that the welfare effects of a ban

on dual pricing are generally ambiguous whenever the manufacturer chooses to deal with

both retailers under uniform pricing. Under dual pricing, we know from Proposition 2 that

the monopoly outcome arises in equilibrium. Thus, under dual pricing retailers price at

p0 with probability 1, whereas under uniform pricing retailers randomize between pricing

above and below p0. Hence, a ban on dual pricing, despite preventing the manufacturer from

implementing the industry monopoly outcome, may or may not raise consumer surplus and

aggregate surplus.

In the following, we show how the welfare effects of a ban on dual pricing depend on the

shape of demand, the relative size of the online segment, and the search cost faced by offline

consumers. Some of our results rely on approximating equilibrium behavior under uniform

pricing in the neighborhood of s = 0, λ = 0, or λ = 1. As we shall see below, monopoly

pass-through and its behavior will play a key role in these approximations. We thus introduce
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the following notation:

α =
dpm(w)

dw

∣
∣
∣
∣
w=c

and β =
d2pm(w)

dw2

∣
∣
∣
∣
w=c

.

That is, α is the monopoly pass-through (of a cost increase, evaluated at the industry marginal

cost) and β is the derivative of pass-through with respect to cost. Recall from our discussion

at the end of Section 2 that pass-through is constant under ρ-linear demand, i.e., β = 0.

The case of high search costs. This first set of results does not rely on approxi-

mations but requires assuming that demand is ρ-linear. Suppose that the search cost

is sufficiently high, so that the offline consumers’ threat of searching does not constrain

the retailers’ pricing behavior, i.e., p(w) = pm(w) for every w. That is, suppose that

s ≥ s ≡ maxw∈[c,w]H(pm(w), w), where w was defined in Section 3.1.

We now argue that a ban on dual pricing strictly lowers consumer surplus and aggregate

surplus. Under dual pricing, the monopoly outcome arises. It is well known that, in the

monopoly outcome under ρ-linear demand, the ratio of consumer surplus to producer surplus

is equal to α, the monopoly pass-through (see, e.g., Anderson and Renault, 2003). That is,

CSDP = αΠDP , where ΠDP is industry profit under dual pricing. Recall from Proposition 6

that the manufacturer deals with both retailers under uniform pricing. In the appendix, we

show that at the optimal variable part under uniform pricing, the ratio of consumer surplus

to producer surplus is also equal to α: CSUP = αΠUP . It follows that

CSUP = αΠUP < αΠDP = CSDP ,

where the inequality follows by Propositions 1 and 2. Hence, ∆CS and ∆AS are both strictly

negative.

Summing up:

Proposition 7. Assume that demand is ρ-linear and s ≥ s. Then, a ban on dual pricing

strictly reduces consumer surplus, industry profit, and aggregate surplus.

Proof. All that is left to do is show that CSUP = αΠUP at any optimal uniform-pricing

variable part. We do so in Appendix A.2.

The case of low search costs. When the search cost s is equal to zero, the retail pricing

game reduces to a simple homogeneous-goods Bertrand model. Hence, for any uniform tariff

(w, 0), both retailers price at w with probability 1, i.e., p = p = w. The manufacturer

therefore finds it optimal to set w = p0, thereby inducing the industry monopoly outcome.

Suppose now that s is strictly positive, but small. By Proposition 6, the manufacturer finds it
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profitable to deal with both retailers under uniform pricing. For every such small s, let w(s)

be an equilibrium variable part; denote also by p(s) and p(s) the lower and upper bounds

of the support of the retailers’ equilibrium mixed strategy given s and w(s). We show in

the appendix that, as s tends to zero, w(s), p(s), and p(s) all tend to p0, i.e., equilibrium

behavior does converge to the equilibrium of the limiting game without search costs.

The following proposition approximates the welfare effects of a ban on dual pricing in the

neighborhood of s = 0:

Proposition 8. In the neighborhood of s = 0, we have:15

∆CS(s) = K [α(2− α)− β(p0 − c)] s2 + o(s2),

∆AS(s) = K [α(1− α)− β(p0 − c)] s2 + o(s2),

where

K =
(1− λ)(λ− ψ)

2α2r0ψ2
> 0 and ψ = 1−

1− λ

2λ
log

1 + λ

1− λ
.

Therefore, when the search cost is small, a ban on dual pricing raises consumer surplus (resp.

aggregate surplus) if α(2− α)− β(p0 − c) > 0 (resp. α(1− α)− β(p0 − c) > 0) and reduces

it if the inequality is reversed.

Proof. The proof is lengthy and non-trivial. We provide here a brief sketch and refer the

reader to Appendices C.1 and C.2 for details.

Integrating by parts in the definition of ∆CS and ∆AS, we obtain

∆CS =

∫ p

p

D(p)G(p, p, w)dp−

∫ p

p0

D(p)dp (8)

and ∆AS = ∆CS + r(p)− r(p0)−

∫ p

p

r′(p)G(p, p, w)dp, (9)

which we wish to approximate. Recall that G is the CDF of prices paid by consumers, i.e.,

G(p, p, w) = (1− λ)F (p, p, w) + λ
[
1− (1− F (p, p, w))2

]
,

where F is given by

F (p, p, w) = 1−
1− λ

2λ

(
π(p, w)

π(p, w)
− 1

)

.

The variables p, p, and w are jointly pinned down by the fact that a retailer should be

indifferent between pricing at p and pricing at p, the fact that a non-shopper should be

indifferent between searching and not searching when receiving a price quote of p, and the

15o(·) is Landau’s little-o notation: f(x) = o(g(x)) in the neighborhood of x = x0 if f(x)/g(x) −→
x→x0

0.
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manufacturer’s first-order condition:

(1− λ)π(p, w) = (1 + λ)π(p, w), (10)
∫ p

p

D(p)F (p, p, w)dp = s, (11)

and

∫ p

p

r′(p)

[
∂G(p, p, w)

∂w
+
∂p

∂w

∂G(p, p, w)

∂p

]

dp = 0, (12)

where, on the last line, ∂p/∂w corresponds to the partial derivative of the function p implicitly

defined by equations (10)–(11).16

We begin by exploiting equation (10) to show that p − w ∼ 1−λ
1+λ

(p − w) when s is close

to zero. Next, we apply the implicit function theorem to condition (11) and take limits to

obtain that ∂p/∂w −→
s→0

1. Combining this with a first-order Taylor approximation around p0

of the integrand in condition (12), we then show that p0−w ∼ (1−λ)(p−w) when s is close

to zero. It follows that p−w, p−w, and p0−w are all of the same order in the neighborhood

of s = 0. This allows us to further apply the Taylor theorem to conditions (10), (11), and

(12) to obtain approximations of p− w and p0 − w at the second order in p− w:

p− w =
1− λ

1 + λ

[

p− w −
2λ

1 + λ

1

p0 − c
(p− w)2

]

+ o((p− w)2)

p0 − w = (1− λ)

[

p− w −

(

(λ− ψ)

(
β

2α2
+

2α− 1

α(p0 − c)

)

+
λ

p0 − c

)

(p− w)2
]

+ o((p− w)2).

Further exploiting condition (11), we also show that s and p−w are of the same order when

s is close to zero and derive the approximation

p− w =
1

ψD0

s+ o(s). (13)

The final step involves approximating the integrands in equations (8) and (9) in the

neighborhood of p = p0 and inserting the approximations of p − w and p0 − w to obtain

approximations of ∆CS and ∆AS at the second order in p−w. We can then use equation (13)

to obtain approximations of these welfare measures with s as the right-hand side variable.

According to the proposition, when offline consumers have sufficiently low search costs,

the consumer surplus effect of a ban on dual pricing has the same sign as α(2−α)−β(p0−c).

Thus, a sufficient condition for the ban to benefit consumers is that monopoly pass-through

is less than 2 and non-increasing in cost. The condition under which such a ban lowers

aggregate surplus is naturally more stringent, as we know from Propositions 1 and 2 that

16More precisely, equations (10)–(11) jointly define two functions, p(w, s) and p(w, s).
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industry profit is unambiguously higher under dual pricing. Specifically, a ban on dual pricing

raises aggregate surplus provided monopoly pass-through is less than 1 and non-increasing

in costs.

In the special case of ρ-linear demand, monopoly pass-through is constant and we thus

have β = 0. It follows that, if search costs are small and demand is ρ-linear, then a ban on

dual pricing raises consumer surplus if monopoly pass-through is less than 2 and lowers it if

monopoly pass-through is greater than 2. The pass-through cutoff for aggregate surplus is 1.

The case of a small online market. When the share of online consumers, λ, is equal to

zero, retailers are no longer in competition with each other. The manufacturer therefore finds

it optimal to set w = c to eliminate double marginalization. The retailers respond by pricing

at p0, i.e., p = p = p0. Suppose now that λ is strictly positive but small. By Proposition 6,

the manufacturer optimally chooses to deal with both retailers in equilibrium. For every such

small λ, let w(λ) be an equilibrium variable part; denote also by p(λ) and p(λ) the upper and

lower bounds of the support of the retailers’ equilibrium mixed strategy given λ and w(λ).

We show in the appendix that, as λ tends to zero, w(λ) tends to c, whereas p(λ) and p(λ)

tend to p0, i.e., equilibrium behavior converges to the equilibrium of the limiting game in

which the online market does not exist.

The following proposition approximates the welfare effects of a ban on dual pricing in the

neighborhood of λ = 0:

Proposition 9. In the neighborhood of λ = 0, we have:

∆CS(λ) = −
1

9
r0αλ+ o(λ).

Thus, when the share of online consumers is small, a ban on dual pricing lowers consumer

surplus and aggregate surplus.

Proof. We follow similar steps as in the proof of Proposition 8. See Appendices C.1 and C.3

for details.

In contrast to Proposition 8, the sign of the welfare effect of a ban on dual pricing when

the online market is small does not depend on how high or low the monopoly pass-through

is. Such a ban lowers consumer surplus (and thus aggregate surplus) for any well-behaved

demand function when λ is small.

The case of a large online market. When the share of online consumers, λ, is equal

to 1, retailers compete à la Bertrand for consumers. As there is no double marginalization,

the manufacturer optimally sets w = p0 and the retailers respond by pricing at p0. By
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Proposition 6, when λ is close to but strictly less than 1, the manufacturer finds it optimal

to deal with both retailers. The equilibrium variable part, w(λ), and lower bound of the

support, p(λ), both tend to p0 as λ goes to 1, while the equilibrium CDF of prices converges

weakly to a unit mass on p0. The upper bound of the support, p(λ) can be shown to converge

to p̃(s) ≡ min(pm(p0), p̂(s)), where p̂(s) is the solution of equation
∫ p̂

p0
D(p)dp = s.

Define ŝ ≡
∫ pm(p0)

p0
D(p)dp and

µ̃(s) ≡
(D′(p̃(s))(p̃(s)− p0) +D(p̃(s)))D(p0)

D(p̃(s))π(p̃(s), p0)
−

1

p̃(s)− p0
.

The following proposition approximates the welfare effects of a ban on dual pricing in the

neighborhood of λ = 1:

Proposition 10. In the neighborhood of λ = 1, if s ̸= ŝ, we have:17

∆CS(λ) =
π2(p̃(s), p0)

4r0α2

[
α(2− α)− β(p0 − c) + 2(p0 − c)α2µ̃(s)

]
(1− λ)2 |log(1− λ)|

+ o
(
(1− λ)2 log(1− λ)

)
,

∆AS(λ) =
π2(p̃(s), p0)

4r0α2

[
α(1− α)− β(p0 − c) + 2(p0 − c)α2µ̃(s)

]
(1− λ)2 |log(1− λ)|

+ o((1− λ)2 log(1− λ)).

Therefore, when the share of online consumers is large, a ban on dual pricing raises consumer

surplus (resp. aggregate surplus) if α(2−α)−β(p0− c)+2(p0− c)α2µ̃ > 0 (resp. α(1−α)−

β(p0 − c) + 2(p0 − c)α2µ̃ > 0) and lowers it if the inequality is reversed.

The function µ̃ is continuous and strictly negative. If pass-through is non-increasing in

cost (i.e., pm′′(·) ≤ 0), then µ̃ is strictly decreasing on (0, ŝ) and constant thereafter.

Proof. We follow similar steps as in the proof of Proposition 8. See Appendices C.1, C.4

and C.5 for details.

According to the proposition, when λ is large the consumer-surplus effect of a ban on dual

pricing has the same sign as α(2−α)−β(p0− c)+2(p0− c)α
2µ̃(s); and the aggregate-surplus

effect of a ban has the same sign as α(1 − α) − β(p0 − c) + 2(p0 − c)α2µ̃(s). If s is close

to zero, then p̃(s) ≃ p0, implying that µ̃(s) ≃ 0. The sign of ∆CS is then determined by

α(2 − α) − β(p0 − c) while the sign of ∆AS is determined by α(1 − α) − β(p0 − c), as in

Proposition 8.

17The reason why we exclude the case s = ŝ is that, when s = ŝ and λ is close to 1, it is unclear whether
the manufacturer chooses a w such that p < pm(w) or p = pm(w). This gives rise to major complications
when approximating p in the neighborhood of λ = 1. Note that µ̃(·) is continuous on the strictly positive
domain, so we have every reason to expect our approximations to remain valid when s = ŝ.
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Under the (perhaps natural) assumption that pass-through is non-increasing in cost, µ̃

is strictly decreasing on (0, ŝ) and constant thereafter. This implies that if a ban on dual

pricing raises (resp. lowers) consumer surplus for some s1, then such a ban raises (resp.

lowers) consumer surplus for any s2 < s1 (resp. s2 > s1).
18 Likewise, if a ban on dual pricing

raises (resp. lowers) aggregate surplus for some s1, then such a ban raises (resp. lowers)

aggregate surplus for any s2 < s1 (resp. s2 > s1). In this sense, if λ is close to 1, then a ban

on dual pricing is “more likely” to be detrimental to consumer surplus and aggregate surplus

if s is large.

In the special case where demand is ρ-linear, we have that β = 0, so that the expression

to be signed for the consumer-surplus effect reduces to α(2−α)+2(p0− c)α
2µ̃(s). Moreover,

as pm′(w) is constant, µ̃(s) is decreasing in s. If s is high, then µ̃(s) = − 1
pm(p0)−p0

= − 1
(p0−c)α

,

so that ∆CS(λ) < 0, consistent with Proposition 7. This implies that if λ is large and the

pass-through rate is sufficiently high, i.e. α ≥ 2, then a ban on dual pricing lowers consumer

surplus for any s > 0. Otherwise, if α < 2, then there exists a cutoff š such that a ban on dual

pricing raises consumer surplus if s < š, and lowers it if the inequality is reversed. Similar

results obtain for aggregate surplus, with the pass-through cutoff being 1 instead of 2.

Numerical simulations. Taking stock, Propositions 7–10 give us the welfare effects of

banning dual pricing when s is large (assuming demand is ρ-linear), when s is low, when λ is

low, and when λ is large. To explore those welfare effects when both s and λ are intermediate,

we run numerical simulations under ρ-linear demand (with a = 0, b = 1, and c = 0). The

results are reported in Figure 1. We experiment with low (0.5), intermediate (1.5), and

high (2.5) values of the pass-through parameter α, as well as low (0.2), intermediate (0.5),

and high (0.8) values of the share of online consumers λ; the search-cost parameter s varies

continuously from 0 to 0.1.

When the pass-through parameter is high, we know from Propositions 7 and 10 that a

ban on dual pricing negatively affects consumer and aggregate surplus both when s is high

and when s is low. Our simulations suggest that the welfare effects remain negative for

intermediate s, regardless of λ. When the pass-through parameter is low, Propositions 7

and 10 imply that a ban on dual pricing has a positive effect on consumer and aggregate

surplus when s is low, but a negative one when s is high. Our simulations suggest the

existence of cutoffs σCS(λ) and σAS(λ) such that banning dual pricing raises consumer surplus

(resp. aggregate surplus) if and only if s < σCS(λ) (resp. s < σAS(λ)). Moreover, these

cutoffs appear to be increasing in λ. Finally, the case where the pass-through parameter is

intermediate is similar to the low pass-through case for consumer surplus, and to the high

pass-through case for aggregate surplus.

18Excluding the knife-edged case where the search cost is equal to ŝ.
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Figure 1: Consumer Surplus (left panel) and Aggregate Surplus (right panel) for ρ-linear
demand (a = 0, b = 1) and various values of λ: λ = 0.2 (solid), λ = 0.5 (dashed) and λ = 0.8
(dotted).
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The general picture that emerges from our propositions and simulations is that a ban on

dual pricing is “more likely” to have positive welfare effects if the monopoly cost pass-through

is low, the non-shoppers’ search cost is low, and the online market is large. Interestingly,

the European Commission has adopted a friendlier approach towards dual pricing in recent

years, with the 2022 revision of the Vertical Block Exemption Regulation labeling it as a

hardcore restriction only if its goal is to prevent online sales. As the share of consumers

shopping online has, in recent years, increased, not decreased, our analysis does not endorse

this less-aggressive stance.

An alternative interpretation of Propositions 7–10. Propositions 7–10 can also be

interpreted as providing comparative statics in the vertical-relations version of the Stahl

(1989) model. Without vertical relations (i.e., when w is exogenously given), it is well known

that an increase in λ or a decrease in s gives rise to a first-order stochastic dominance shift

towards lower prices, thus resulting in higher consumer surplus and aggregate surplus.

Consider now the version of the model with vertical relations, i.e., suppose w is optimally

chosen by an upstream monopolist to maximize industry profit. According to Proposition 8,

if the monopoly pass-through is sufficiently low (α < 1) and does not vary too much with cost

(β ≃ 0), then, starting from 0 search cost, a small increase in s raises both consumer surplus

and aggregate surplus. The intuition is that the manufacturer responds to the increase in

s by decreasing w to mitigate double marginalization. This effect counteracts the upward

pressure on retail prices that arises from the increase in search costs.

Similarly, Proposition 9 shows that with vertical relations, starting from λ = 0, a small

increase in λ always reduces consumer surplus and aggregate surplus. The intuition is again

that the manufacturer responds to the increase in λ by raising w, which ends up outweighing

the downward pressure on prices brought about by the intensification of retail competition.19

In fact, assuming that demand is ρ-linear and s is high, Proposition 7 implies that consumer

surplus and aggregate surplus are highest when λ = 0, i.e., when the retailers have no overlap

in their customer bases. These results highlight the importance of accounting for vertical

relations when evaluating the welfare effects of, e.g., policy changes that make markets more

transparent for consumers.

5 Conclusion

We examine dual pricing, a vertical restraint that enables manufacturers to condition contract

terms offered to hybrid retailers based on whether a product is sold online or offline. The new

19Similarly, suppose that the terms inside square brackets in Proposition 10 are strictly positive, and that
λ is initially high. Then, increasing λ to 1, i.e., making everybody a shopper, also reduces consumer surplus
and aggregate surplus.
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EU Vertical Guidelines, adopted in June 2022, have taken a less aggressive stance towards

this practice, suggesting that online sales no longer require protection relative to offline sales.

Under this new approach, dual pricing benefits from the exemption provided by Article 2(1)

if it encourages retailer investments, but it continues to be considered a hardcore restriction if

it is primarily used to limit online sales. In the latter case, the question is why a manufacturer

would benefit from discriminating against online sales.

We propose a new rationale for using dual pricing that is based on search cost heterogene-

ity across online and offline markets. Our first key finding is that dual pricing is essential for

eliminating the inefficiencies arising from price dispersion in the retail market. By offering

more favorable terms for offline sales, the manufacturer weakens the retailers’ incentives to

cut prices to corner the online market, thereby mitigating price dispersion. This restores

the manufacturer’s control over retail prices—in our model, this allows the manufacturer to

implement the industry monopoly outcome.

This insight applies to a broad class of non-linear uniform-pricing contracts. Moreover, if

upstream contracts are secret, dual pricing solves the classic supplier opportunism problem in

addition to eliminating wasteful price dispersion. Our results also extends to a more general

search model, in which more than two retailers compete in the downstream market, and both

online and offline consumers are heterogeneous in their search costs, as long as searching

online is, on average, less costly than searching offline. If retailers’ undercutting behavior

stems solely from the incentives to serve online consumers, dual pricing can fully eliminate

price dispersion and give rise to the first-best outcome for the manufacturer. However, if the

retailers also have incentives to undercut due to search cost heterogeneity within the offline

market, then dual pricing does not completely eliminate price dispersion, but still leads to

strictly higher profits for the manufacturer. Therefore, dual pricing is key to reducing price

dispersion caused by search cost heterogeneity across markets, rather than within a single

market.

Our second set of results suggests that dual pricing is not necessarily detrimental to

consumer surplus or aggregate surplus. Under dual pricing, the retail market is always

supplied at the industry monopoly price, whereas under uniform pricing retailers price above

and below the industry monopoly level with positive probability. We find that a ban on

dual pricing tends to benefit consumers and society at large when the online market is large,

search costs in the offline market are low, and the monopoly cost pass-through is low.

Our paper identifies price dispersion in the retail market as a fundamental source of

inefficiency in vertical chains—one that the conventional vertical restraints fail to address.

Price dispersion is a persistent phenomenon in retail markets and largely depends on inter-

brand competition between manufacturers, consumer heterogeneity in search costs and their

willingness to pay, the transparency of vertical contracts, and other factors. Therefore,
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extending the model to incorporate these determinants of price dispersion would improve

our understanding of the welfare effects of a ban on dual pricing. We also believe that a more

general model, accounting for the manufacturers’ concerns for greater retail price control, as

well as for the quality of sales and post-sales services, would be very useful for analyzing the

welfare implications of vertical restraints that discriminate against online sales.
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Appendix

A Further Technical Results

A.1 Uniqueness of Retail Equilibrium under Uniform Pricing

Lemma A.1.1. Given Marshall’s second law of demand, H(·, w) has strictly positive deriva-

tive on (w, pm(w)).

Proof. We show that Marshall’s second law of demand implies Assumption C in Stahl (1989).

Once this is established, the lemma follows from Lemma 3 in Stahl (1989). In our framework,

Stahl’s Assumption C can be written as: For every w, the function

χ : p ∈ (w, pm(w)) 7→
(p− w)∂π(p,w)

∂p

π(p, w)2
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is strictly decreasing. Observe that

χ(p) =
(p− w)D′(p) +D(p)

(p− w)D2(p)
=

1

π(p, w)

[

1−
p− w

p
|ε(p)|

]

,

where ε is the price elasticity of demand. By Marshall’s second law of demand, the term

inside square brackets is strictly positive and non-increasing on (w, pm(w)). Moreover, π(·, w)

is strictly increasing on that interval. The result follows.

A.2 Proof of Proposition 7

The goal of this subsection is to show that, at any optimal w, the ratio of consumer surplus

to industry profit is equal to α. We begin by deriving expressions for consumer surplus and

industry profit:

Lemma A.2.1. Under rho-linear demand, expected consumer surplus and expected industry

profit are given by

CS(w) =
1− λ

b
πm(w)

∫ pm(w)

p(w)

α + (1− α)(a− bp)

p− w
dF (p, w) (14)

and Π(w) = (1− λ)πm(w)

∫ pm(w)

p(w)

p− c

p− w
dF (p, w) (15)

= r(pm(w))−

∫ pm(w)

p(w)

r′(p)G(p, w)dp. (16)

Proof. Observe first that

dG(p, w) = d
[
(1− λ)F (p, w) + λ

(
1− (1− F (p, w))2

)]

= [1− λ+ 2λ(1− F (p, w))] dF (p, w)

= (1− λ)
πm(w)

π(p, w)
dF (p, w).

Hence,

CS(w) =

∫ pm(w)

p(w)

∫ ∞

p

D(x)dx dG(p, w)

= (1− λ)πm(w)

∫ pm(w)

p(w)

∫ ∞

p

D(x)dx
dF (p, w)

π(p, w)
.

Using the ρ-linear demand functional form to compute the integral
∫∞

p
D(x)dx and simpli-

fying, we obtain equation (14).
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Equation (15) follows immediately from combining

Π(w) =

∫ pm(w)

p(w)

r(p)dG(p, w)

with the above expression for dG. Equation (16) follows by integrating the equation for Π(w)

by parts and using the fact that G(pm(w), w) = 1 and G(p(w), w) = 0.

Next, we obtain an optimality condition for the wholesale price w:

Lemma A.2.2. Under ρ-linear demand, for any optimal wholesale price w, we have

∫ pm(w)

p(w)

α(1 + bc) + (1− α)a− bp

p− w
dF (p, w) = 0. (17)

Proof. Suppose that w maximizes Π(·). Then, Π′(w) = 0. Differentiating equation (16),

this means that

0 = r′(pm(w))pm′(w)− r′(pm(w))pm′(w)G(pm(w), w) + r′(p(w))p′(w)G(p(w), w)

−

∫ pm(w)

p(w)

r′(p)
∂G

∂w
dp

= −

∫ pm(w)

p(w)

r′(p) [1− λ+ 2λ(1− F (p, w))]
∂F

∂w
dp

=

∫ pm(w)

p(w)

r′(p)(1− λ)
πm(w)

π(p, w)

1− λ

2λ

∂

∂w

πm(w)

π(p, w)
dp

=
(1− λ)2

2λ
πm(w)D(pm(w))

∫ pm(w)

p(w)

r′(p)

π3(p, w)
[pm(w)− p]D(p)dp,

which yields
∫ pm(w)

p(w)

r′(p)

π2(p, w)

pm(w)− p

p− w
dp = 0. (18)

Under ρ-linear demand, we have

∂π(p, w)

∂p
=

D(p)

1 + 1−α
α

(a− bp)

(

1 +
1− α

α
a+ bw −

b

α
p

)

, (19)

and so the monopoly price is equal to

pm(w) =
α + (1− α)a

b
+ αw. (20)
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Plugging equations (19) and (20) into condition (18) yields:

0 =

∫ pm(w)

p(w)

D(p)
1 + 1−α

α
a+ bc− b

α
p

1 + 1−α
α

(a− bp)

[
α + (1− α)a

b
+ αw − p

]
1

p− w

dp

π2(p, w)

=

∫ pm(w)

p(w)

α(1 + bc) + (1− α)a− bp

b
D(p)

1 + 1−α
α
a+ bw − b

α
p

1 + 1−α
α

(a− bp)

1

p− w

dp

π2(p, w)

=

∫ pm(w)

p(w)

α(1 + bc) + (1− α)a− bp

b

∂π(p, w)

∂p

1

p− w

dp

π2(p, w)

=
2λ

1− λ

1

πm(w)

1

b

∫ pm(w)

p(w)

α(1 + bc) + (1− α)a− bp

p− w
dF (p, w),

which yields condition (17).

We thus obtain:

Lemma A.2.3. Under ρ-linear demand, for any optimal wholesale price w, the ratio of

consumer surplus to industry profit is equal to α.

Proof. Combining Lemmas A.2.1 and A.2.2, we have that for any optimal wholesale price

Π(w) = (1− λ)πm(w)

∫ pm(w)

p(w)

p− c

p− w
dF (p, w) using equation (15)

= (1− λ)πm(w)
1

αb

∫ pm(w)

p(w)

α + (1− α)(a− bp)

p− w
dF (p, w) using equation (17)

=
1

α
CS(w) using equation (14).

A.3 On the Optimality of Dealing with Both Retailers

Lemma A.3.1. Suppose that D(p) is ρ-linear and s ≥ s = maxw∈[c,w]H(pm(w), w). Then,

in any equilibrium under uniform pricing, the manufacturer deals with both retailers.

Proof. Under ρ-linear demand, the industry monopoly price is p0 = (α(1+bc)+(1−α)a)/b.

As s > s, we have that for any w ∈ [c, w], the upper bound of the retail price distribution is

given by the monopoly price pm(w) = p0 + α(w − c).

By Lemma A.2.1, the profit of the manufacturer can be represented as

Π(w) = (1− λ)πm(w)

∫ pm(w)

p(w)

p− c

p− w
dF (p, w)

= (1− λ)πm(w)

(

1 + (w − c)

∫ pm(w)

p(w)

dF (p, w)

p− w

)

.
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Suppose that w maximizes Π(·). By Lemma A.2.2, the first-order condition Π′(w) = 0

implies that

0 =

∫ pm(w)

p(w)

(α(1 + bc) + (1− α)a)/b− p

p− w
dF (p, w) =

∫ pm(w)

p(w)

p0 − p

p− w
dF (p, w)

= (p0 − w)

∫ pm(w)

p(w)

dF (p, w)

p− w
− 1.

Inserting this into the equation for Π(w), we obtain that, at any optimal w,

Π(w) = (1− λ)πm(w)
p0 − c

p0 − w
= 2

1− λ

1 + λ

πm(w)

π(p0, w)
×

1 + λ

2
r0

= 2
π(p(w), w)

π(p0, w)
×

1 + λ

2
r0,

where the second line follows by equation (3).

Next, we show that (p0−w)/(p(w)−w) < 2 for any w that maximizes Π(·). The demand

function can be rewritten as

D(p) =M

(
b

α

) α

1−α

(p0 − αc− (1− α)p)
α

1−α .

The first derivative of the demand is given by

D′(p) = −
αD(p)

p0 − αc− (1− α)p
,

implying that

r′(p) =
D(p)(p0 − p)

p0 − αc− (1− α)p
.

In the proof of Lemma A.2.2, we showed that optimal w must satisfy equation (18). Plugging

the above expression for r′(p) into equation (18), we obtain:

0 =

∫ pm(w)

p(w)

r′(p)

D2(p)

pm(w)− p

(p− w)3
dp =

∫ pm(w)

p(w)

1

D(p)

p0 − p

p0 − αc− (1− α)p

pm(w)− p

(p− w)3
dp

=

∫ pm(w)

p(w)

ψ(p)
p0 − p

(p− w)3
dp,

where

ψ(p) ≡
1

D(p)

pm(w)− p

p0 − αc− (1− α)p
.
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The derivative of ψ(p) is given by

ψ′(p) = −
D′(p)

D2(p)

pm(w)− p

p0 − αc− (1− α)p
+

1

D(p)

−(p0 − αc− (1− α)p) + (1− α)(pm(w)− p)

(p0 − αc− (1− α)p)2

=
1

D(p)

α(pm(w)− p) + (1− α)pm(w)− (p0 − αc)

(p0 − αc− (1− α)p)2
= −

α

D(p)

p− w

(p0 − αc− (1− α)p)2
,

where we have used the above expression for D′ to obtain the second equality and the fact

that pm(w) = p0 + α(w − c) to obtain the third. Note that ψ′(·) < 0 for any p > w.

By the mean-value theorem, for every p ∈ [p(w), pm(w)] there exists ξ = ξ(p) between p

and p0 such that

ψ(p) = ψ(p0)− ψ′(ξ(p))(p0 − p).

Therefore, the first-order condition can be rewritten as

ψ(p0)

∫ pm(w)

p(w)

p0 − p

(p− w)3
dp =

∫ pm(w)

p(w)

ψ′(ξ(p))
(p0 − p)2

(p− w)3
dp.

As ψ(p0) > 0 and ψ′(p) < 0 for every p > w, we have that the integral on the left-side is

strictly negative for any optimal w. Thus,

∫ pm(w)

p(w)

p0 − p

(p− w)3
dp =

∫ pm(w)

p(w)

(
p0 − w

(p− w)3
−

1

(p− w)2

)

dp

=
p0 − w

2

(
1

(p(w)− w)2
−

1

(pm(w)− w)2

)

−

(
1

p(w)− w
−

1

pm(w)− w

)

< 0.

Multiplying this inequality by p(w)− w, we obtain

1

2

p0 − w

p(w)− w

(

1−

(
p(w)− w

pm(w)− w

)2
)

<

(

1−
p(w)− w

pm(w)− w

)

.

This implies that
p0 − w

p(w)− w
<

2

1 +
p(w)−w

pm(w)−w

< 2.

Hence, p(w) > 1
2
w + 1

2
p0. Moreover, as π(·, w) is strictly concave and strictly increasing on

(w, pm(w)) by Marshall’s second law of demand, we have that

π(p(w), w) > π

(
1

2
w +

1

2
p0, w

)

>
1

2
π(w,w) +

1

2
π(p0, w) =

1

2
π(p0, w).

This establishes the final result that Π(w) > 1+λ
2
r0.
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Lemma A.3.2. Regardless of D(·), the manufacturer deals with both retailers in any equi-

librium under uniform pricing provided λ ≤ 1
3
.

Proof. We begin by showing that the manufacturer can secure a profit strictly greater than

(1 − λ)r0 by dealing with both retailers. Suppose first that s ≥ H(p0, c), where H(·, ·) was

defined in equation (4). If the manufacturer offers the tariff
(
c, 1−λ

2
r0
)
, then both retailers

accept and draw their prices from the CDF F defined in equation (2), with support [p(c), p0].

This results in a profit of (1− λ)r0 for the manufacturer. By Lemma C.1.2, w = c is not an

optimal wholesale price for the manufacturer. Hence, for some w, Π(w) > (1− λ)r0.

Next, suppose instead that s < H(p0, c). It is easily checked that limw↑p0 H(p0, w) = 0

and H(p0, ·) is continuous on [c, p0). The intermediate value theorem implies the existence of

a w′ ∈ (c, p0) such that H(p0, w
′) = s. If the manufacturer offers the tariff

(
w′, 1−λ

2
π(p0, w

′)
)
,

then both retailers accept and the support of the equilibrium CDF of retail prices is [p(w′), p0].

The resulting manufacturer’s profit is given by

Π(w′) = (1− λ)(p0 − w′)D(p0) + (w′ − c)

∫ p0

p(w′)

D(p)dG(p, w′)

= (1− λ)r0 − (1− λ)(w′ − c)D(p0) + (w′ − c)

∫ p0

p(w′)

D(p)dG(p, w′)

> (1− λ)r0.

Hence, the manufacturer can secure a profit strictly greater than (1 − λ)r0 by dealing

with both retailers. This exceeds (1 + λ)/2r0, the maximum profit from dealing with one

retailer, provided λ ≤ 1/3.

A.4 Proofs for Section 3.2

Proof of Proposition 3. The second part of the proposition is obvious given the analysis

in Section 3.1. To prove the first part, assume for a contradiction that the continuous

uniform-pricing tariff T implements the monopoly outcome in almost every demand state.

We begin by showing that, for every x ∈
[

mD(p0)
2
,mD(p0)

2

]

and y ∈ (0, (1− λ)x),

p0x− T (x) > p0y − T (y). (21)

To see this, recall that, in almost every state m and for every price p > p0, retailers should

have no incentive to deviate from p0 to p:

m

2
p0D(p0)− T

(m

2
D(p0)

)

≥
1− λ

2
mpD(p)− T

(
1− λ

2
mD(p)

)

.
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In fact, by continuity of D and T , the above inequality must hold for every m ∈ [m,m] and

p > p0. It follows that, for every m ∈ [m,m] and p ∈ (p0, p̌),

m

2
p0D(p0)− T

(m

2
D(p0)

)

>
1− λ

2
mp0D(p)− T

(
1− λ

2
mD(p)

)

.

Letting x ≡ m/2 and noting that, as p varies between p0 and p̌, y ≡ 1−λ
2
mD(p) takes all the

values in the interval (0, (1− λ)x), establishes inequality (21).

Next, let m0 = m + ε, where ε > 0 is small, and for every n, mn+1 = (1 + λ)mn. Let N

be the highest n such that mn ≤ m. For every n, let xn = mnD(p0)/2. In state mn, retailers

should not have an incentive to price “just below” p0:
20

p0
mn

2
D(p0)− T

(mn

2
D(p0)

)

≥ p0
1 + λ

2
mnD(p0)− T

(
1 + λ

2
mnD(p0)

)

.

Rewriting, this means that

p0xn − T (xn) ≥ p0xn+1 − T (xn+1).

Hence,

p0x0 − T (x0) ≥ p0xn − T (xn) (22)

for every n ≤ N .

Now, suppose that we can find an n such that xn > x0
1−λ

and n ≤ N . Then, since

xn ∈ [mD(p0)
2
,mD(p0)

2
] and x0 < (1− λ)xn, inequality (21) must hold for x = xn and y = x0,

i.e.,

p0xn − T (xn) > p0x0 − T (x0).

This contradicts inequality (22).

We are thus looking for an n such that

1

1− λ
(m+ ε) < (1 + λ)n(m+ ε) ≤ m,

where ε can be made arbitrarily small. Clearly, such an n can always be found (by adjusting

ε) when m = 0, so let us assume that m > 0. Then, the condition reduces to

1

1− λ
m < (1 + λ)nm ≤ m.

20Strictly speaking, a priori this inequality must hold for almost every state m. The continuity of T and
D implies that it holds for every m ∈ [m,m].
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The first inequality is equivalent to

n ≥ 1 +

[
− log(1− λ)

log(1 + λ)

]

,

where [·] is the integer-part function. We thus obtain the sufficient condition

m ≥ m(1 + λ)1+[
− log(1−λ)
log(1+λ) ].

Since [X] ≤ x, a sufficient condition for this is that

m ≥ m(1 + λ)1−
log(1−λ)
log(1+λ) ,

which simplifies to the condition in the statement of the proposition.

Proof of Proposition 4. All that is left to do is check that there is no equilibrium in

which the variable part w is strictly below cost. Assume for a contradiction that such an

equilibrium exists. As usual, the fixed part is given by T = 1−λ
2
π(p, w). The manufacturer’s

equilibrium expected profit is still given by equation (7). Suppose that the manufacturer

deviates by offering (c, T ′) to retailer R1. If R1 accepts this new contract, it reacts by pricing

at pm(c) = p0 with probability 1, thus never supplying the online market. The manufacturer

extracts its profit by setting T ′ = 1−λ
2
r0 and thus makes a deviation profit of

Π′ = T +
1 + λ

2
(w − c)

∫ p

p

D(p)dF (p) +
1− λ

2
(p0 − c)D(p0)

> T +
1− λ

2
(w − c)

∫ p

p

D(p)dF (p) + λ(w − c)

∫ p

p

D(p)dFmin(p) +
1− λ

2
(p− c)D(p)

= T +
1− λ

2
(w − c)

∫ p

p

D(p)dF (p) + λ(w − c)

∫ p

p

D(p)dFmin(p)

+
1− λ

2
(π(p, w) + (w − c)D(p))

> 2T +
1− λ

2
(w − c)

∫ p

p

D(p)dF (p) + λ(w − c)

∫ p

p

D(p)dFmin(p)

+
1− λ

2
(w − c)

∫ p

p

D(p)dF (p)

= Π.

The deviation is therefore profitable.
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B Equilibrium Analysis under Dual Pricing

Fix a profile of wholesale prices (wo, wb), where wo > 0 and wb > 0. In Sections B.1–B.3

below, we establish the existence of a symmetric equilibrium in each retail pricing subgame;

we also fully characterize the set of symmetric pure-strategy equilibria. Building on this, we

prove Proposition 2 in Section B.4.

A symmetric equilibrium is a common CDF of prices F (which may be degenerate) and

a search rule for the non-shoppers such that: i) for every firm i, drawing prices from F is

optimal, conditional on the non-shoppers’ search rule and on the other firm mixing according

to F and ii) the non-shoppers’ search rule is sequentially rational.

Let p and p be the maximum and minimum of the support. It is easy to show that

any sequentially rational search rule must involve a cutoff strategy. That is, there exists

ρ ∈ [p,∞] such that a non-shopper that samples a price of p always searches if p > ρ, and

never searches if p < ρ. A non-shopper that samples p = ρ is indifferent between searching

and not searching; the search rule should specify the non-shopper’s behavior in that case.

We let ν ∈ [0, 1] denote the probability that a non-shopper searches when it samples p = ρ.

Note that ρ > p, as the gains from search (gross of the search cost) vanish as the sampled

price approaches p.

To sum up, a symmetric equilibrium is fully described by a CDF F (with p and p as the

maximum and minimum of the support) and a search rule (ρ, ν) ∈ (p,∞]× [0, 1].

We show the existence of equilibrium in the retail competition subgame separately for

the following cases: 1. wo < pm(wb); 2. wo > pm(wb); and 3. wo = pm(wb). We do so in

Sections B.1, B.2, and B.3, respectively. Define πb(p) ≡ π(p, wb), πo(p) ≡ π(p, wo), and

πmb ≡ π(pmb (wb), wb).

B.1 Case 1: Dual Pricing Subgames when wo < pm(wb)

We begin by ruling out pure-strategy equilibria:

Lemma B.1.1. For any (wo, wb) such that wo < pm(wb), there is no symmetric pure-strategy

equilibrium in retail competition subgame.

Proof. Assume for a contradiction that there exists a symmetric pure-strategy equilibrium,

in which retailers price at p. If p > wo, then retailer i can profitably deviate to pricing just

below p, a contradiction. Suppose instead that p ≤ wo. If equilibrium profits are strictly

negative, then firm i can deviate to pm(wb) and make non-negative profits, a contradiction.

Suppose instead that equilibrium profits are non-negative, which implies that wo ≥ p > wb.

Then, retailer i can deviate to p + ε. This deviation is profitable, as firm i no longer serves
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the shoppers (on which it was making losses), continues to serve its captives, and makes more

profits on its captives (as p+ε < pm(wb)). Hence, there is no pure-strategy equilibrium.

We construct an equilibrium in which retailers mix symmetrically and continuously and

the non-shoppers never search on path. Consider the function

k(p, x;wo, wb) = 1−
1− λ

2λ

πb(x)− πb(p)

πo(p)
, (23)

defined for every x ∈ (wo, p
m(wb)] and p ∈ (wo, x]. Define also p as the unique solution to

k(p, x;wo, wb) = 0, which can be rewritten as

2λπo(p) + (1− λ)πb(p) = (1− λ)πb(x). (24)

We establish the existence and uniqueness of p in the proof of the proposition below.

The following proposition establishes the existence of a symmetric equilibrium for the

case when wo < pm(wb).

Lemma B.1.2. Suppose that wo < pm(wb). Then, there exists a p ∈ (wo, p
m(wb)] such that

the continuous CDF F (·, p) ≡ k(·, p;wo, wb) with support [p, p] and the search rule (ρ, ν) =

(p, 1) form a symmetric equilibrium in retail competition subgame.

Proof. We begin by showing that, for any x ∈ (wo, p
m(wb)], the function k(·, x) (where we

have dropped the arguments (wo, wb) to ease notation) is strictly increasing on (wo, x). We

have:
∂k(p, x)

∂p
=

1− λ

2λ

1

π2
o(p)

[π′
b(p)πo(p) + (πb(x)− πb(p))π

′
o(p)] . (25)

If wo > wb, then p
m(wo) > pm(wb), and we immediately obtain that ∂k/∂p > 0, as the two

terms inside the square brackets in equation (25) are strictly positive. Suppose instead that

wo ≤ wb. Rearranging equation (25), we have that

∂k(p, x)

∂p
=

1− λ

2λ

1

π2
o(p)

((p− wb)D
′(p) +D(p)) (p− wo)D(p)

+
1− λ

2λ

1

π2
o(p)

(πb(x)− (p− wb)D(p)) ((p− wo)D
′(p) +D(p))

=
1− λ

2λ

1

π2
o(p)

[
(wb − wo)D

2(p) + πb(x) ((p− wo)D
′(p) +D(p))

]

=
1− λ

2λ

D(p)

π2
o(p)

[

(wb − wo)D(p) + πb(x)

(

1−
p− wo
p

|ε(p)|

)]

. (26)

As x ≤ pm(wb), we see from equation (25) that ∂k(x,x)
∂p

= 1−λ
2λ

π′

b
(x)

πo(x)
≥ 0. Moreover, given

Marshall’s second law of demand and the fact that wo ≤ wb, the term inside the square
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brackets on the right-hand side of equation (26) is strictly decreasing in p. It follows that

∂k/∂p > 0 for every p ∈ (wo, x).

Note that k(p, x) < 1, for every p < x and k(x, x) = 1. Moreover, k is continuous on

the set of pairs (p, x) such that x ∈ (wo, p
m(wb)] and p ∈ (wo, x]. As x > wo, we have

that limp↓wo
k(p, x) = −∞. The continuity and monotonicity of k uniquely pin down a

p = p(x) ∈ (wo, x) such that k(p(x), x) = 0. The properties of k imply that F is continuous

in (p, x) and non-decreasing in p. Therefore, for every x ∈ (wo, p
m(b)], the function F (·, x) is

the CDF of a probability measure with support [p(x), x].

Next, we show that, for some x, there exists an equilibrium in which retailers mix sym-

metrically according to the CDF F (·, x) with support [p(x), x], and non-shoppers do not

search on the equilibrium path. Define H(x) as the expected gain from searching (gross of

the search cost) when receiving a price of x and expecting the new price to be drawn from

F (·, x):

H(x) =

∫ x

p

(∫ ∞

p

D(t)dt−

∫ ∞

x

D(t)dt

)

dF (p, x) =

∫ x

p

D(p)F (p, x)dp,

where the second equality was obtained by integrating by parts.

Suppose first that s ≥ H(pm(wb)), and let us show that there is an equilibrium in which

firms mix according to F (·, x) with x = pm(wb) and non-shoppers do not search on path.

The latter property follows as the net gains from searching when receiving price pm(wb) are

non-negative, and the gains from searching when receiving a lower price are even lower. Next,

we show that the retailers have no incentives to deviate. The expected profit of a retailer

setting price p ∈ [p(x), x] is given by

1− λ

2
πb(p) + λ(1− F (p, x))πo(p) =

1− λ

2
πb(x),

implying that the firm is indifferent between any prices in [p(x), x]. Deviating to a price

above pm(wb) is not profitable, as the deviating firm does not serve the shoppers and makes

suboptimal profits on the non-shoppers. Deviating to any price p ∈ [wo, p) is not profitable,

as the expected profit from the deviation would satisfy

1− λ

2
πb(p) + λπo(p) <

1− λ

2
πb(p) + λ(1− k(p, x))πo(p) =

1− λ

2
πb(x).

Therefore, the proposed strategy profile is a symmetric equilibrium.

Next, suppose that s < H(pm(wb)). Let us show that,H(x) = s for some x ∈ (wo, p
m(wb)).

Note that limx↓wo
H(x) = 0, as H(x) ≤ (x−wo)D(wo) −→

x↓wo

0. Moreover, H is continuous, as

the integrand is continuous in (p, x) and bounded above by the integrable function D(p). By
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the intermediate value theorem, there therefore exists a x ∈ (wo, p
m(wb)) such that H(x) = s.

Then, we can again construct a symmetric equilibrium in which firms mix according to F (·, x)

and non-shoppers do not search on path. As above, firms are indifferent between all the prices

in [p(x), x] and have no incentives to price below p(x). Moreover, deviating to a price above

x would result in zero profit, as the firm’s non-shoppers would search and find a lower price

with probability 1.

B.2 Case 2: Dual Pricing Subgames when wo > pm(wb)

We begin by characterizing the set of symmetric pure-strategy equilibria. For every θ ∈ [0, 1],

define

w̃(θ) ≡
1−λ
2
(1 + θ)wb + λwo

1−λ
2
(1 + θ) + λ

(27)

and π̃m(θ) ≡ π(pm(w̃(θ)), w(θ)).

Lemma B.2.1. Suppose that wo > pm(wb). If wo ≤ pm(w̃(0)), then the retail competition

subgame has a unique symmetric pure-strategy equilibrium, in which both firms price at wo.

If instead wo > pm(w̃(0)), then no pure-strategy equilibrium exists.

Proof. Suppose that there exists a symmetric pure-strategy equilibrium, in which retailers

price at p. Assume for a contradiction that p < wo. If equilibrium profits are strictly

negative, then firm i can obtain non-negative profits by deviating to wo, a contradiction.

Suppose instead that equilibrium profits are non-negative, which implies that p > wb. Then,

firm i can raise its profits by deviating to p + ε to stop serving the shoppers (on which it

was making losses) without inducing non-shoppers to search. Hence, p ≥ wo. Assume for a

contradiction that p > wo; then, firm i can profitably deviate to p − ε, a contradiction. It

follows that p = wo.

We show that p = wo is a pure-strategy equilibrium if and only if wo ≤ pm(w̃(0)), where

the function w̃(·) is given in equation (27). Clearly, starting from this equilibrium candidate,

deviating upwards is not profitable, as wo ≥ pm(wb). If firm i deviates downward, it obtains

1− λ

2
(pi − wb)D(pi) + λ(pi − wo)D(pi) =

1 + λ

2
(pi − w̃(0))D(pi),

which tends to 1−λ
2
(wo − wb)D(wo) (the candidate equilibrium profits) as pi tends to wo.

If wo ≤ pm(w̃(0)), then pi 7→ (pi − w̃(0))D(pi) is strictly increasing on (wb, wo), and the

downward deviation is not profitable. If instead wo > pm(w̃(0)), then that function is locally

strictly decreasing around pi = wo, and there is a profitable downward deviation.

For the case where wo > pm(w̃(0)), we construct a symmetric mixed-strategy equilibrium.
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Consider the function

k(p, θ;wo, wb) =

[
1− λ

2λ
(1 + θ) + 1

]
π̃m(θ)− π(p, w̃(θ))

−πo(p)
, (28)

defined for every p ∈ [pm(w̃(θ)), wo) and θ ∈ [0, 1]. We have:

Lemma B.2.2. Suppose that wo > pm(w̃(0)). There exist θ ∈ [0, 1], ν ∈ [0, 1) and p ∈

(pm(w̃), wo) such that the following strategy profile is a symmetric equilibrium of the retail

competition subgame: firms draw their prices from the CDF

F (p) =







k(p, θ;wo, wb) if p ∈ [pm(w̃(θ)), p)

1 otherwise

and the search rule is (p, ν).

Proof. For every θ ∈ [0, 1], we have that k(pm(w̃(θ)), θ) = 0, and k is continuous and strictly

positive on (pm(w̃(θ)), wo), where we have dropped the arguments (wo, wb) to ease notation.

Moreover, limp↑wo
k(p, θ) = ∞, and k is strictly increasing on (pm(w̃(θ)), wo), as

∂k(p, θ)

∂p
=

[
1− λ

2λ
(1 + θ) + λ

] [
∂π(p, w̃(θ))

∂p
πo(p) + (π̃m(θ)− π(p, w̃(θ))) π′

o(p)

]

> 0.

Therefore, there exists a unique p̂(θ) ∈ (pm(w̃(θ)), wo) such that k(p̂(θ), θ) = 1.

For every x ∈ (pm(w̃(θ)), p̂(θ)], define

F (p, x, θ) =







k(p, θ) if p ∈ [pm(w̃(θ)), x)

1 otherwise.

It follows that F (·, x, θ) is a probability measure. Define also H(x, θ) as the expected gain

from searching (gross of the search cost) when receiving a price of x and expecting the new

price to be drawn from F (·, x, θ):

H(x, θ) ≡

∫ x

pm(w̃(θ))

(∫ ∞

p

D(t)dt−

∫ ∞

x

D(t)dt

)

dF (p, x, θ) =

∫ x

pm(w̃(θ))

D(p)F (p, x, θ)dp,

where we have integrated by parts to obtain the second equality.

Suppose first that H(p̂(0), 0) ≤ s. We show that there is an equilibrium in which firms

mix according to F (·, p̂(0), 0) and non-shoppers never search on path. Clearly, this search

behavior is sequentially rational for the non-shoppers. The expected profit of a firm pricing

at any p ∈ [pm(w̃(0)), p̂(0)] is
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1− λ

2
πb(p) + λ(1− F (p, p̂(0), 0))πo(p)

=

(
1− λ

2
+ λ

)

π(p, w̃(0))− λk(p, 0)πo(p) =
1 + λ

2
π̃m(0),

implying that firms are indifferent between all the prices in the support of F (·, p̂(0), 0). In

particular, a firm pricing at p̂(0) receives a profit of 1−λ
2
πb(p̂) = 1+λ

2
π̃m. A deviation to a

price p > p̂(0) results in a profit of at most 1−λ
2
πb(p), which is lower than 1−λ

2
πb(p̂(0)), as

p̂(0) > pm(w̃(0)) > pm(wb). Similarly, a deviation to a price p < pm(w̃(0)) results in a profit

of 1+λ
2
π(p, w̃(0)) < 1+λ

2
π̃m(0).

Next, suppose that H(p̂(0), 0) > s. Consider the following equation:

Ψ(x, θ) ≡ [1− k(x, θ)]2
λ

1− λ

wo − x

x− wb
− θ = 0. (29)

Let us show that there exists a θ̄ > 0, such that for every θ ∈ [0, θ̄], equation (29) has a

unique solution in x on the interval [pm(w̃(θ)), p̂(θ)], which we define as p̃(θ). Note that

∂Ψ/∂x < 0, implying that, Ψ(·, θ) is maximized at x = pm(w̃(θ)). Thus, define

Φ(θ) ≡ Ψ(pm(w̃(θ)), θ) =
λ

1− λ

wo − pm(w̃(θ))

pm(w̃(θ))− wb
− θ.

As wo > pm(w̃(0)), we have that Φ(0) > 0. Moreover, as pm(w̃(1)) > w̃(1) = (1−λ)wb+λwo,

we have that λ(wo − pm(w̃(1))) < (1 − λ)(pm(w̃(1)) − wb), implying that Φ(1) < 0. By

the intermediate value theorem, there exists a solution to the equation Φ(θ) = 0. Let θ̄ be

the smallest θ that solves Φ(θ) = 0 (which exists by continuity of Φ). Note that θ̄ > 0, as

Φ(0) > 0. Thus, by the monotonicity of Ψ(·, θ), we have that for every θ ∈ [0, θ̄], there exists

a unique p̃(θ) ∈ [pm(w̃(θ)), p̂(θ)] that solves equation (29). The properties of Ψ imply that

p̃(·) is continuous and satisfies p̃(0) = p̂(0), and p̃(θ̄) = pm(w̃(θ̄)).

Next, let

H̃(θ) ≡ H(p̃(θ), θ) =

∫ p̃(θ)

pm(w̃(θ))

D(p)F (p, p̃(θ), θ)dp

for every θ ∈ [0, θ̄]. Let us show that equation H̃(θ) = s has a solution. When θ = 0,

we have that H̃(0) > s by assumption. Note that limθ↑θ̄ H̃(θ) = 0, as H̃(θ) ≤ (p̃(θ) −

pm(w̃(θ)))D(w̃(1)) −→
θ↑θ̄

0. Moreover, H̃(·) is continuous in θ, as the integrand is continuous

in (p, θ) and bounded above by the integrable function D(p). Hence, by the intermediate

value theorem, there exists a θ∗ ∈ [0, θ̄] such that H̃(θ∗) = s.

Consider the strategy profile in which firms draw their prices according from the CDF

F (·, p̃(θ∗), θ∗) with support [pm(w̃(θ∗)), p̃(θ∗)] and non-shoppers never search if they receive
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a price strictly below p̃(θ∗) and search with probability

ν =
θ∗

1− k(p̃(θ∗), θ∗)
(30)

if they sample a price of p̃(θ∗). Let us verify that this strategy profile constitutes a sym-

metric equilibrium. Note first that the non-shoppers’ search rule is sequentially ratio-

nal by construction. Following the same steps as above, it is easily shown that firms

are indifferent between all the prices in [pm(w̃(θ∗)), p̃(θ∗)), which all result in a profit of
(
1−λ
2
(1 + θ∗) + λ

)
π̃m(θ∗). Deviating to p < pm(w̃(θ∗)) is unprofitable, as the resulting

profit would be
(
1−λ
2
(1 + θ∗) + λ

)
π(p, w̃(θ∗)). Deviating to p > p̃(θ∗) would result in zero

profit. All that is left to do is show that the profit from pricing at p̃(θ∗) is equal to
(
1−λ
2
(1 + θ∗) + λ

)
π̃m(θ∗). This holds, as the expected profit at p̃(θ∗) is

1− λ

2
(1− ν)πb(p̃(θ

∗)) + (1− k(p̃(θ∗), θ∗))

(
λ

2
πo(p̃(θ

∗)) +
1− λ

2
νπb(p̃(θ

∗))

)

=

(
1− λ

2
(1 + θ∗) + λ

)

π̃m(θ∗)−
1− λ

2

θ∗

1− k(p̃(θ∗), θ∗)
πb(p̃(θ

∗))−
λ

2
(1− k(p̃(θ∗), θ∗)) πo(p̃(θ

∗))

=

(
1− λ

2
(1 + θ∗) + λ

)

π̃m(θ∗)−
1− λ

2

πb(p̃(θ
∗))

1− k(p̃(θ∗), θ∗)
Ψ(p̃(θ∗), θ∗)

=

(
1− λ

2
(1 + θ∗) + λ

)

π̃m(θ∗).

B.3 Case 3: Dual Pricing Subgames when wo = pm(wb)

Lemma B.3.1. Suppose that wo = pm(wb), then the retail competition subgame has a unique

equilibrium, in which both firms price at wo.

Proof. Consider a symmetric equilibrium characterized by a CDF F , where p and p are the

maximum and minimum of the support, and a search rule (ρ, ν). Assume for a contradiction

that p < wo. Then, given that firm j draws its price from F , firm i’s equilibrium expected

profit is locally strictly increasing in pi at p. The reason is that a small increase in pi (i)

does not induce the non-shoppers to start searching, (ii) raises profit per non-shopper, (iii)

reduces the probability of selling to the shoppers (on which firm i makes losses), and (iv)

raises profit per shopper. This contradicts the fact that p is the minimum of the support of

F . It follows that p ≥ wo, and that expected equilibrium profits are strictly positive.

Next, assume for a contradiction that F is non-degenerate, i.e., p > p. Suppose first that

F puts strictly positive mass on p. Then, firm i would be strictly better off pricing at p− ε

than pricing at p, a contradiction. Suppose instead that F puts no mass on p. Then, as pi

approaches p from below, firm i sells with vanishingly small probability to the shoppers, and

the price at which it sells to its captives is strictly sub-optimal. Firm i would therefore be
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strictly better off pricing at pm(wb) instead, a contradiction. It follows that F is degenerate,

i.e., puts full weight on some p ≥ wo.

If p > wo, then firm i is strictly better off undercutting p, a contradiction. It follows that

p = wo. This is clearly an equilibrium.

B.4 Proof of Proposition 2

Proof. Consider the dual pricing contract (wo, wb, T ) =
(
p0, c,

1−λ
2
r0 − ε

)
for some small ε >

0. By Lemma B.3.1, if both retailers accept this contract, there exists a unique equilibrium

of the continuation subgame, in which both retailers price at p0 and earn ε. Hence, both

retailers accept, and the manufacturer makes a profit of r0− 2ε. Thus, the manufacturer can

guarantee itself a profit that can be made arbitrarily close to r0.

Assume for a contradiction that there is a subgame-perfect equilibrium in which wo ̸= p0,

or wo = p0 and wb /∈
[
(1+λ)c−2λp0

1−λ
, c
]

. If only one retailer (resp., no retailer) accepts, then the

manufacturer earns at most 1+λ
2
r0 (resp., 0), which is less than r0.

Suppose instead that both retailers accept. If wo < pm(wb) or wo > pm(w̃(0)) (using

the notation of Section B.2), then by Lemmas B.1.1 and B.2.1, the retail pricing game does

not have a pure-strategy equilibrium. In any mixed-strategy equilibrium (which exists by

Lemmas B.1.2 and B.2.2), the retailers do not price at p0 with probability 1, implying that

industry profit, and thus the manufacturer’s profit, is strictly less than r0.

Next, suppose that wo ∈ [pm(wb), p
m(w̃(0))]. Assume for a contradiction that wo = p0.

Then, p0 ≥ pm(wb) implies that wb ≤ c, while p0 ≤ pm(w̃(0)) implies that w̃(0) ≥ c, and thus

wb ≥
(1+λ)c−2λp0

1−λ
. This contradicts our original assumption that wb /∈

[
(1+λ)c−2λp0

1−λ
, c
]

.

It follows that wo ̸= p0. Then, by Lemmas B.2.1 and B.3.1, there exists a unique pure-

strategy equilibrium, in which both firms price at wo ̸= p0, implying that industry profit, and

thus the manufacturer’s profit, is strictly than r0. If instead a non-degenerate mixed-strategy

equilibrium is selected, then the manufacturer again earns strictly less than r0.

Thus, in this subgame-perfect equilibrium candidate, the manufacturer earns strictly

less than r0. It follows that the manufacturer can profitably deviate to (wo, wb, T ) =
(
p0, c,

1−λ
2
r0 − ε

)
for ε > 0 sufficiently small, a contradiction.

Thus, in any subgame-perfect equilibrium, wo = p0 and wb ∈
[
(1+λ)c−2λp0

1−λ
, c
]

. Moreover,

the above reasoning implies that in any such equilibrium, T = 1−λ
2
π(p0, wb) and both retailers

accept the contract and price at p0 with probability 1 (for otherwise the manufacturer would

earn strictly less than r0 and could profitably deviate to (wo, wb, T ) =
(
p0, c,

1−λ
2
r0 − ε

)

for ε > 0 sufficiently small). The fact that this strategy profile forms a subgame-perfect

equilibrium follows by Lemmas B.2.1 and B.3.1.
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C Proofs of Approximation Results

In this appendix, we provide the proofs of our approximation results (Propositions 8–10).

The structure of this appendix is as follows. In Section C.1, we present some preliminaries,

including the key equations governing equilibrium behavior, and a description of some of the

key properties of the equilibrium. In Section C.2, we study the welfare effects of dual pricing

for small s and prove Proposition 8. In Section C.3, we turn to the approximation results for

small λ and prove Proposition 9. Finally, Sections C.4 and C.5 contain the welfare results

for the case of high λ and the proof of Proposition 10.

C.1 Preliminaries for the Proofs of Propositions 8–10

C.1.1 Notation and Summary of the Key Equations

We are interested in the welfare effects of banning dual pricing in the neighborhood of s = 0,

λ = 0, and λ = 1, respectively. For every λ ∈ (0, 1) and s > 0, let w(λ, s) be a solution to the

manufacturer’s profit maximization problem (equation (6)). Define also p(λ, s) and p(λ, s) as

the associated upper and lower bounds of the support of the retail price distribution. Finally,

under this equilibrium selection, define ∆CS(λ, s) and ∆AS(λ, s) as the change in consumer

surplus and aggregate surplus, respectively, from a ban on dual pricing.

We show below that, as s → 0, λ → 0 or λ → 1, the equilibrium of the model under

uniform pricing converges to that under dual pricing. Thus, to determine the sign of ∆CS

and ∆AS, it is sufficient to investigate whether consumer surplus and aggregate surplus under

uniform pricing increases or decreases in the neighborhood of s = 0, λ = 0 and λ = 1. We

separately analyze the case of small s in Appendix C.2, the case of small λ in Appendix C.3,

and the case of high λ in appendices C.4 and C.5.

It will be shown that the results crucially depend on the two following characteristics of

the demand function:

α =
dpm

dw

∣
∣
∣
∣
w=c

and β =
d2pm

dw2

∣
∣
∣
∣
w=c

.

Using the implicit function theorem, we obtain

α =
D′

0

r′′0
(31)

and β = α2

(
2D′′

0

D′
0

−
r′′′0
r′′0

)

, (32)

where D
(k)
0 and r

(k)
0 are the k-th derivative of D(p) and r(p) at p = p0, respectively.

Next, we summarize the key equations characterizing the equilibrium under uniform pric-

ing.
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Retailers. For a given w, in the unique equilibrium of the retail competition subgame, the

retailers draw their prices from the CDF

F (p, p, w) = 1−
1− λ

2λ

(
π(p, w)

π(p, w)
− 1

)

(33)

with support [p, p], where p and p are determined below. For a given p, p uniquely solves

(1− λ)π(p, w) = (1 + λ)π(p, w). (34)

Denote the solution by p(p, w). Let

H(p, w) =

∫ p

p(p,w)

D(p)F (p, p, w)dp, (35)

be expected gains from searching when receiving price quote p, and expecting the other firm to

draw its price from F (p, p, w). As discussed in the main text, the upper bound of the support,

p(w), is uniquely defined: It is equal to the monopoly price, pm(w), if H(pm(w), w) ≤ s, and

otherwise to the unique solution of equation H(p, w) = s. Let p(w) ≡ p(p(w), w) and

F (·, w) ≡ F (·, p(w), w).

For what follows, it is useful to study the differentiability properties of p(·):

Lemma C.1.1. At every w, p(w) has strictly positive left and right derivatives. If H(pm(w), w) ̸=

s, then p(w) is differentiable. If H(pm(w), w) > s, then the derivative is equal to

p′(w) =

1−λ
2λ

(

−1 + p−w

p−w
− log

(
p−w

p−w

))

1− 1−λ
2λ

(
D′(p)
D(p)

(p− w) + 1
)

log
(
p−w

p−w

) , (36)

where p = p(w) and p = p(w). If instead H(pm(w), w) < s, then p′(w) = pm′(w).

Proof. Let Hm(w) ≡ H(pm(w), w). Suppose first that Hm(w) > s. Then, for every w′ close

enough to w, p(w′) is strictly less than pm(w′) and given by the unique solution of equation

H(p, w′) = s. From the implicit function theorem applied to H(p, w′) = s at w′ = w and

p = p(w), we find that

p′(w) = −
∂H/∂w

∂H/∂p
= −

∫ p(w)

p(w)
D(p)∂F (p,p(w),w)

∂w
dp

D(p(w)) +
∫ p(w)

p(w)
D(p)∂F (p,p(w),w)

∂p
dp
.
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The partial derivatives of F (p, p, w) are given by

∂F

∂p
= −

(1− λ)

2λ

π′
1(p, w)

π(p, w)
, (37)

∂F

∂w
= −

(1− λ)

2λ

−D(p)π(p, w) +D(p)π(p, w)

π2(p, w)
= −

(1− λ)

2λ

D(p)

π(p, w)

p− p

p− w
. (38)

Plugging equations (37) and (38) into the expressions for ∂H
∂p

and ∂H
∂w

, we obtain

∂H

∂p
= D(p)−

1− λ

2λ
π′
1(p, w)

∫ p

p

dp

p− w

= D(p)−
1− λ

2λ
(D′(p)(p− w) +D(p)) log

(
p− w

p− w

)

(39)

and

∂H

∂w
= −

1− λ

2λ
D(p)

∫ p

p

p− p

(p− w)2
dp

= −
1− λ

2λ
D(p)

(
∫ p

p

p− w

(p− w)2
dp−

∫ p

p

dp

p− w

)

= −
1− λ

2λ
D(p)

(

−(p− w)

(
1

p− w
−

1

p− w

)

− log

(
p− w

p− w

))

= −
1− λ

2λ
D(p)

(

−1 +
p− w

p− w
− log

(
p− w

p− w

))

. (40)

Finally, we insert these expressions into the formula for p(w) and obtain equation (36). Note

that this derivative is indeed strictly positive by Lemma A.1.1 and since log(1 + x) < x for

every x > 0.

Next, suppose that Hm(w) < s, so that, for every w′ close enough to w, p(w′) is equal to

pm(w′). Then, p′(w) = pm′(w), as stated.

Finally, suppose that Hm(w) = s. Observe that

∂H

∂p

∣
∣
∣
∣
(pm(w),w)

= D(pm(w)),

which is strictly positive. It follows that, for some sufficiently small η > 0, H(pm(w)+η, w) >

s. By continuity ofH, this implies that H(pm(w)+η, w′) > s for w′ close enough to w. Hence,

for every such w′, the equation H(p, w′) = s has a solution by the intermediate value theorem,

and we let ρ(w′) denote the smallest such solution (which exists by continuity of H). Below,

w′ should always be understood as being part of the neighborhood of w such that ρ(w′) is
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well defined. Since ∂H/∂p and ∂H/∂w at (pm(w), w) are respectively strictly positive and

strictly negative (see above), the implicit function theorem implies that ρ is continuously

differentiable in a neighborhood of w and ρ′(w) is strictly positive.

We distinguish three cases. Assume first that Hm′(w) > 0. Then, p(w′) is equal to ρ(w′)

if w′ ≥ w, and to pm(w′) otherwise. It follows that the right derivative of p at w is equal

to ρ′(w), while the left derivative is equal to pm′(w). If instead Hm′(w) < 0, then the right

derivative of p at w is equal to pm′(w), while the left derivative is equal to ρ′(w).

Finally suppose that Hm′(w) = 0, which implies that

∂H

∂w
+
∂H

∂p
pm′(w) = 0,

i.e.,

pm′(w) = −
∂H/∂w

∂H/∂p
= ρ′(w).

For w′ in the neighborhood of w, we have that p(w′) = min (ρ(w′), pm(w′)). It follows that

∣
∣
∣
∣

p(w′)− p(w)

w′ − w
− ρ′(w)

∣
∣
∣
∣
≤ max

(∣
∣
∣
∣

pm(w′)− pm(w)

w′ − w
− ρ′(w)

∣
∣
∣
∣
,

∣
∣
∣
∣

ρ(w′)− ρ(w)

w′ − w
− ρ′(w)

∣
∣
∣
∣

)

= max

(∣
∣
∣
∣

pm(w′)− pm(w)

w′ − w
− pm′(w)

∣
∣
∣
∣
,

∣
∣
∣
∣

ρ(w′)− ρ(w)

w′ − w
− ρ′(w)

∣
∣
∣
∣

)

−→
w′→w

0.

Hence, p is differentiable at w with strictly positive derivative.

Next, we define the CDF of prices paid by consumers:

G(·, w) = (1− λ)F (·, w) + λFmin(·, w) = (1− λ)F (·, w) + λ
(
1− (1− F (·, w))2

)
.

Using equation (33), G can be written as:

G(p, w) = F (p, w) [1 + λ(1− F (p, w))]

=

[

1−
1− λ

2λ

(
π(p(w), w)

π(p, w)
− 1

)][

1 +
1− λ

2

(
π(p(w), w)

π(p, w)
− 1

)]

=
1

4λ

[

1 + λ− (1− λ)
π(p(w), w)

π(p, w)

] [

1 + λ+ (1− λ)
π(p(w), w)

π(p, w)

]

=
1

4λ

[

(1 + λ)2 − (1− λ)2
(
π(p(w), w)

π(p, w)

)2
]

. (41)
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Manufacturer. The manufacturer’s profit is given by

Π(w) =

∫ p(w)

p(w)

r(p)dG(p, w) = r(p(w))−

∫ p(w)

p(w)

r′(p)G(p, w)dp.

Differentiating with respect to w yields (if p is kinked at w (see Lemma C.1.1), the derivatives

below are one-sided derivatives):

Π′(w) = −

∫ p

p

r′(p)
dG(p, w)

dw
dp

=
(1− λ)2

2λ

∫ p

p

r′(p)
π(p, w)

π(p, w)

d

dw

π(p, w)

π(p, w)
dp

=
(1− λ)2

2λ
π(p, w)

∫ p

p

r′(p)

π(p, w)

(
π′
1(p, w)p

′(w)−D(p)

π(p, w)
+
π(p, w)D(p)

π2(p, w)

)

dp

=
(1− λ)2

2λ
π(p, w)

∫ p

p

r′(p)

D2(p)

(
π′
1(p, w)p

′(w)−D(p)

(p− w)2
+

π(p, w)

(p− w)3

)

dp,

where π′
1(p, w) denotes the partial derivative of π(p, w) with respect to its first argument.

Simplifying, we obtain the following first-order condition, which is necessary for optimality

whenever p(w) is differentiable:

∫ p

p

r′(p)

D2(p)

(
π′
1(p, w)p

′(w)−D(p)

(p− w)2
+

π(p, w)

(p− w)3

)

dp = 0. (42)

In the following lemma, we establish some basic properties of the manufacturer’s maxi-

mization problem and the resulting retail price distribution:

Lemma C.1.2. For every λ ∈ (0, 1) and s > 0, the manufacturer’s maximization problem

has a solution. Moreover, any solution w must satisfy w ∈ (c, p0) and p < p0 < p, where p

and p are the associated upper and lower bounds of the support of the retail distribution.

Proof. Let us first show that the maximization problem has a solution. As the main argu-

ment was already provided in Section 3.1, all that is left to do is show that Π(·) is strictly

increasing on (0, c]. We begin by showing that Π(·) has a strictly positive right-hand deriva-

tive at every w ≤ c. That right-hand derivative is given by:

Π′+(w) =
(1− λ)2

2λ
π(p, w)

∫ p

p

r′(p)

D2(p)

(
π′
1(p, w)p

′+(w)−D(p)

(p− w)2
+

π(p, w)

(p− w)3

)

dp, (43)

where p = p(w), p = p(w), and p′+(w) is the right-hand derivative of the upper bound with

respect to the wholesale price, which, by Lemma C.1.1, exists and is strictly positive.
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The expression inside parentheses in the integrand in equation (43),

π′
1(p, w)p

′+(w)−D(p)

(p− w)2
+

π(p, w)

(p− w)3
=
π′
1(p, w)p

′+(w)

(p− w)2
+
D(p)(p− p)

(p− w)3
, (44)

is strictly positive for every p ∈ [p, p) since p(w) ≤ pm(w) and p′+(w) > 0. Moreover, since

p ≤ pm(w) ≤ pm(c) = p0, we have that r′(p) > 0 for p < p. It follows that the integrand

in equation (43) is strictly positive on p ∈ [p, p), implying that Π′+(w) > 0. Hence, Π(w) is

strictly increasing on (0, c]. With that property established, the fact that the manufacturer’s

profit maximization problem has a solution follows from the argument given in Section 3.1.

Next, let w be a solution to the maximization problem, with associated upper and lower

bounds of the support, p and p, respectively. Then, w ≥ c. Moreover, as Π′+(c) > 0, we

have that w > c. Let us prove that p > p0. Assume for a contradiction that p ≤ p0. The

right-hand derivative of the manufacturer’s profit function at the optimal wholesale price is

given by equation (44). Since p ≤ p0, we have that r′(p) > 0 for every p ∈ [p, p), implying

again that the integrand in equation (44) is strictly positive. This means that Π′+(w) > 0 at

the optimal wholesale price, which is a contradiction. Hence, p > p0.

Following the exact same approach, we also obtain that p < p0. Since p > w, it follows

that w < p0.

Note that, in principle, the manufacturer’s maximization problem may have multiple

solutions. In the following, for every (λ, s), we let w = w(λ, s) be such a solution. We also

define p(λ, s) and p(λ, s) as the associated upper and lower bounds of the support of the

retail price distribution.

Consumer surplus and aggregate surplus. Let CS(p) =
∫∞

p
D(t)dt. We are interested

in the sign of

∆CS(λ, s) =

∫ p(λ,s)

p(λ,s)

CS(p)dG(p, w(λ, s))− CS(p0).

Integrating by parts and dropping the arguments (λ, s) to save notation, we obtain:

∆CS = CS(p) +

∫ p

p

D(p)G(p, w)dp− CS(p0)

= −

∫ p

p0

D(p)dp+

∫ p

p

D(p)G(p, w)dp

= −

∫ p

p0

D(p)dp+
(1 + λ)2

4λ

∫ p

p

D(p)dp−
(1− λ)2

4λ
π2(p, w)

∫ p

p

dp

D(p)(p− w)2
, (45)
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The change in producer surplus is given by

∆Π =

∫ p

p

r(p)dG(p, w)− r0

= r(p)− r0 −

∫ p

p

r′(p)G(p, w)dp

= r(p)− r0 −
(1 + λ)2

4λ
(r(p)− r(p)) +

(1− λ)2

4λ
π2(p, w)

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
. (46)

The change in aggregate surplus is given by

∆AS = ∆CS +∆Π. (47)

We derive the Taylor approximations for ∆CS, ∆Π, ∆AS for small s, small λ and high λ in

Appendices C.2, C.3, and C.4–C.5 respectively.

C.1.2 Taylor Approximation under the Integral Sign

The following lemma will allow us to derive Taylor approximations of expressions involving

integrals:

Lemma C.1.3. Consider the integral

I(x) =

∫ b(x)

a(x)

χ(p)ξ(p, x)dp.

Let p0 such that p0 ∈ [a(x), b(x)] for every x. Assume limx→x0 a(x) = a0 ≤ b0 = limx→x0 b(x)

and χ is CN+1 on an open interval J such that [a0, b0] ⊆ J . Then, in the neighborhood of

x = x0,

I(x) =
N∑

k=0

χ(k)(p0)

k!

∫ b(x)

a(x)

(p− p0)
kξ(p, x)dp+O

(
∫ b(x)

a(x)

|p− p0|
N+1|ξ(p, x)|dp

)

.

Proof. By the Taylor-Lagrange theorem, for every p ∈ J , there exists a number ψ(p) between

p and p0 such that

χ(p) =
N∑

k=0

χ(k)(p0)
(p− p0)

k

k!
+ χ(N+1)(ψ(p))(p− p0)

N+1.
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Let ε > 0 sufficiently small and

κ ≡ sup
p∈[a0−ε,b0+ε]

|χ(N+1)(ψ(p))| ≤ sup
p∈[a0−ε,b0+ε]

|χ(N+1)(p)| <∞.

Then, for x sufficiently close to x0,

I(x) =
N∑

k=0

χ(k)(p0)

k!

∫ b(x)

a(x)

(p− p0)
kξ(p, x)dp+

∫ b(x)

a(x)

χ(N+1)(ψ(p))(p− p0)
N+1ξ(p, x)dp

︸ ︷︷ ︸

≡R(x)

.

Note that

|R(x)| ≤ κ

∫ b(x)

a(x)

|p− p0|
N+1|ξ(p, x)|dp

for x sufficiently close to x0, which implies that

R(x) = O

(
∫ b(x)

a(x)

|p− p0|
N+1|ξ(p, x)|dp

)

in the neighborhood of x = x0.

C.2 Proofs of Welfare Results when s is Small

In this appendix, we study the welfare effects of a ban on dual pricing when s is small and

provide the proof of Proposition 8. Specifically, we derive the second-order Taylor approxi-

mations of ∆CS and ∆AS with respect to s in the neighborhood of s = 0.

We proceed as follows. In Section C.2.1, we discuss the properties of the retail price

distribution for s ≃ 0. Next, in Section C.2.2, we derive auxiliary Taylor approximations for

the wholesale price and the lower bound of the support of the retail price distribution. In

Section C.2.3, we derive the second-order Taylor approximations of ∆CS and ∆AS, which

concludes the proof of Proposition 8 in the main text. In addition, in section C.2.4 we explore

the welfare effects of banning dual pricing when s ≃ 0 in online and offline markets separately.

C.2.1 Basic Properties of the Equilibrium for Low s

By Lemma C.1.2, without loss of generality, we can restrict attention to wholesale prices in

[c, p0]. For every w ∈ [c, p0], the retailers draw their prices from the distribution function

F (·, w) (equation (33)) with support [p(w), p(w)].

Next, we show that in the neighborhood of s = 0, the upper bound p(w) solves H(p, w) =

s, where function H(·, ·) is given by equation (35). Define s̃ ≡ minw∈[c,p0]H(pm(w), w).

(Note that H(pm(w), w) does not depend on s.) Note that the minimum exists since we are
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minimizing a continuous function over a compact set, and must be strictly positives since

retailers play mixed strategies at any minimizing w. Therefore, for all s < s̃ and all w ∈ [c, p0]

we have that H(pm(w), w) ≥ s̃ > s. This implies that for s sufficiently close to zero, the

upper bound p(w) is strictly lower than pm(w) and, therefore, solves H(p, w) = s.

In the following lemma, we show that as s → 0, the equilibrium of the model under

uniform pricing converges to that under dual pricing. In particular, we show that, when s

goes to 0, p, p, and w converge to the industry monopoly price p0; the change in consumer

and aggregate surplus, ∆CS and ∆AS respectively, both converge to 0.

Lemma C.2.1. Under uniform pricing, the limiting equilibrium behavior as s goes to zero

is as follows:

lim
s→0

w(s, λ) = lim
s→0

p(s, λ) = lim
s→0

p(s, λ) = p0.

This implies that

lim
s→0

∆CS(λ, s) = lim
s→0

∆AS(λ, s) = 0.

Proof. Below, we drop arguments (λ, s) to ease notation. First, we show that p−p converges

to 0 as s tends to 0. We begin by putting on record that, for any w, the equilibrium price CDF

is strictly concave. From equation (33), the density function of the retail price distribution

is

f(p, w) =
1− λ

2λ
π(p, w)

∂π(p, w)/∂p

π2(p, w)
.

In Lemma A.1.1, we established that Marschall’s second law of demand implies Assumption C

in Stahl (1989), i.e., (p−w)∂π(p,w)
∂p

/π2(p, w) is strictly decreasing on (w, pm(w)). This implies

that ∂π(p,w)
∂p

/π2(p, w) is also strictly decreasing on (w, pm(w)), implying that F (·, w) is strictly

concave. Since a concave function lies above its secant lines, we have that for every p ∈ [p, p],

F (p, w) ≥ (p− p)/(p− p).

Recall that in the neighborhood of s = 0, the upper bound of the retail price distribution

is equal to the unique solution of H(p, w) = s. It follows that

s =

∫ p

p

D(p)F (p, w)dp ≥

∫ p

p

D(p)
p− p

p− p
dp ≥

D(pm(w))

2
(p− p).

Taking the limit as s tends to zero and applying the squeeze theorem, we obtain that p−p −→
s→0

0. Since p < p0 < p by Lemma C.1.2, this implies that p→ p0 and p→ p0 as s goes to 0.

Next, we study the limit of w as s goes to 0. Solving out for w in equation (34) yields:

w =
(1 + λ)pD(p)− (1− λ)pD(p)

(1 + λ)D(p)− (1− λ)D(p)
,
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which tends to p0 as s goes to 0.

Finally, to show that ∆CS(λ, s) and ∆AS(λ, s) converge to 0 as s goes to 0, it is sufficient

to show that F (·, w) converges weakly to a unit mass at p0. For every p > p0, we have that

for s close to 0, the upper bound p is strictly lower than p, and so F (p, w) = 1. Similarly,

for every p < p0, the lower bound p is strictly greater than p for s close enough to 0, and so

F (p, w) = 0. Thus, F (·, w) weakly converges to the one-point distribution at p0.

C.2.2 Taylor Approximations of the Wholesale Price and the Lower Bound of

the Support

In this section, we derive the second-order Taylor approximations of p(s, λ) − w(s, λ) and

p0 − w(s, λ) with respect to p(s, λ)− w(s, λ) when s ≃ 0. We drop arguments (s, λ) to ease

notation. For what follows, it is useful to define

ψ ≡ 1−
1− λ

2λ
log

1 + λ

1− λ
. (48)

First-order Taylor approximation of p− w.

Lemma C.2.2. In the neighborhood of s = 0, we have

p− w =
1− λ

1 + λ
(p− w) + o(p− w). (49)

Proof. Rearranging equation (34), we have that

p− w =
1− λ

1 + λ

D(p)

D(p)
(p− w).

Since p→ p0 and p→ p0 when s approaches zero, we have that D(p)/D(p) = 1 + o(1). The

lemma follows from plugging this into the expression for p− w.

This lemma implies that o((p− w)k) = o((p− w)k) and o((p− w)k) = o((p− w)k) for all

k ≥ 0. Moreover, Lemma C.2.2 implies that for s ≃ 0 we have

z ≡
p− w

p− w
=

1 + λ

1− λ
+ o(1). (50)

First-order Taylor approximation of p0−w. By Lemma C.1.1, since H(pm(w), w) > s,

we have that the derivative of the upper bound p′(w) exists and is given by equation (36).

Therefore, the first-order condition of the manufacturer’s problem given by equation (42) is
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well defined for small s. That is,

∫ p

p

r′(p)

D2(p)

(
π′
1(p, w)p

′(w)−D(p)

(p− w)2
+

π(p, w)

(p− w)3

)

dp = 0.

We start by stating an auxiliary lemma that establishes the limiting behavior of p′(w)

when s→ 0.

Lemma C.2.3. The derivative of p with respect to w at w = w(λ, s) converges to 1 as s goes

to 0: p′(w) −→
s→0

1.

Proof. By Lemma C.1.1, we have that

p′(w) =
1−λ
2λ

(−1 + z − log z)

1− 1−λ
2λ

(
D′(p)
D(p)

(p− w) + 1
)

log z
,

where z was defined in equation (50). Since p−w tends to 0 and D′(p)/D(p) tends to D′
0/D0

as s→ 0, we have that

lim
s→0

p′(w) =
1−λ
2λ

(
−1 + 1+λ

1−λ
− log 1+λ

1−λ

)

1− 1−λ
2λ

log 1+λ
1−λ

=
ψ

ψ
= 1.

Next, we define the following functions, which we will use throughout the proofs:

ϕ(p) ≡
r′(p)

D2(p)
, (51)

µ(p, w) ≡
π′
1(p, w)p

′(w)−D(p)

D(p)
. (52)

Then, the first-order condition becomes

(p− w)

∫ p

p

ϕ(p)
1

(p− w)3
dp+ µ(p, w)

∫ p

p

ϕ(p)
1

(p− w)2
dp = 0. (53)

In the following lemma, we work with the first-order condition given by equation (53) and

derive the Taylor approximation of p0 − w with respect to p− w for s ≃ 0:

Lemma C.2.4. In the neighborhood of s = 0, we have

p0 − w = (1− λ)(p− w) + o(p− w).

Proof. By Lemma C.1.3, applied to each integral in equation (53), there exist bounded

functions M(s) and N(s) such that

56



0 = (p− w)ϕ′
0

∫ p

p

p− p0
(p− w)3

dp+ µ(p, w)ϕ′
0

∫ p

p

p− p0
(p− w)2

dp

︸ ︷︷ ︸

≡R1(s)

+M(s)(p− w)

∫ p

p

(p− p0)
2

(p− w)3
dp

︸ ︷︷ ︸

≡R2(s)

+N(s)µ(p, w)

∫ p

p

(p− p0)
2

(p− w)2
dp

︸ ︷︷ ︸

≡R3(s)

,

where

ϕ′
0 ≡

dϕ

dp

∣
∣
∣
∣
p=p0

=
r′′0
D2

0

is strictly negative. Simplifying further, we have that

0 = (p− w)ϕ′
0

(
∫ p

p

dp

(p− w)2
− (p0 − w)

∫ p

p

dp

(p− w)3

)

+
3∑

i=1

Ri(s)

︸ ︷︷ ︸

≡R(s)

= ϕ′
0

((
p− w

p− w
− 1

)

−
1

2

p0 − w

p− w

((
p− w

p− w

)2

− 1

))

+R(s).

Next, we obtain upper bounds for the remainder terms Ri:

|R1| ≤ |µ(p, w)||ϕ′
0|

∫ p

p

|p− p0|

(p− w)2
dp ≤ |µ(p, w)||ϕ′

0|(p− w)

∫ p

p

dp

(p− w)2

= |µ(p, w)||ϕ′
0|

(
p− w

p− w
− 1

)

,

|R2| ≤ |M(s)|(p− w)

∫ p

p

(p− p0)
2

(p− w)3
dp ≤ |M(s)|(p− w)3

∫ p

p

1

(p− w)3
dp,

= |M(s)|(p− w)3
1

2

(
1

(p− w)2
−

1

(p− w)2

)

= (p− w)
|M(s)|

2

((
p− w

p− w

)2

− 1

)

|R3| ≤ |N(s)||µ(p, w)|

∫ p

p

(
p− p0
p− w

)2

dp ≤ |N(s)||µ(p, w)|(p− w)2
∫ p

p

dp

(p− w)2

= |N(s)||µ(p, w)|(p− w)

(
p− w

p− w
− 1

)

.

By Lemma C.2.3, p′(w) −→
s→0

1, and so µ(p, w) tends to 0 as s→ 0. Moreover, z = p−w

p−w
is

bounded in the neighborhood of s = 0 by Lemma C.2.2. It follows that lims→0 |Ri(s)| = 0 for

all i = 1, 2, 3. Manipulating the first-order condition of the manufacturer and taking absolute
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values
∣
∣
∣
∣

2

z + 1
−
p0 − w

p− w

∣
∣
∣
∣
=

2

|z2 − 1||ϕ′
0|
|R(s)| ≤

2

|z2 − 1||ϕ′
0|

3∑

i=1

|Ri(s)|.

It follows that

∣
∣
∣
∣
1− λ−

p0 − w

p− w

∣
∣
∣
∣
≤

∣
∣
∣
∣
1− λ−

2

z + 1

∣
∣
∣
∣
+

∣
∣
∣
∣

2

z + 1
−
p0 − w

p− w

∣
∣
∣
∣

≤

∣
∣
∣
∣
1− λ−

2

z + 1

∣
∣
∣
∣
+

2

|z2 − 1||ϕ′
0|

3∑

i=1

|Ri(s)| −→
s→0

0.

Hence,

lim
s→0

p0 − w

p− w
= 1− λ,

which implies that p0 − w = (1− λ)(p− w) + o(p− w).

Lemma C.2.2 and Lemma C.2.4 imply that for all k ≥ 0

o((p− w)k) = o((p− w)k) = o((p0 − w)k) = o((p− p0)
k) = o((p0 − p)k)

and vice versa. Moreover, Lemma C.2.4 implies that for s ≃ 0, we have

τ ≡
p0 − w

p− w
= (1− λ) + o(1). (54)

Second-order Taylor approximation of p− w.

Lemma C.2.5. In the neighborhood of s = 0, we have

p− w =
1− λ

1 + λ
(p− w) +

2λ(1− λ)

(1 + λ)2
D′

0

D0

(p− w)2 + o((p− w)2). (55)

Proof. Rearranging equation (34), we have that

p− w =
1− λ

1 + λ

D(p)

D(p)
(p− w).

Next, we obtain the first-order approximation of D(p) and 1/D(p) in the neighborhood of

s = 0 using the first-order approximations of p − w and p0 − w derived in Lemmas C.2.2

and C.2.4. Since o(p− p0) = o(p0 − p) = o(p− w), we have that

D(p) = D0 +D′
0(p− p0) + o(p− p0) = D0 +D′

0(p− w − (p0 − w)) + o(p− w)

= D0 + λD′
0(p− w) + o(p− w) (56)
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and

1

D(p)
=

1

D0

−
D′

0

D2
0

(p− p0) + o(p− p0) =
1

D0

−
D′

0

D2
0

(p− w − (p0 − w)) + o(p− w)

=
1

D0

−
D′

0

D2
0

(
1− λ

1 + λ
− (1− λ)

)

(p− w) + o(p− w)

=
1

D0

+
λ(1− λ)

(1 + λ)

D′
0

D2
0

(p− w) + o(p− w).

Plugging these two expressions into equation (34), we find that for s ≃ 0,

p− w =
1− λ

1 + λ
(D0 + λD′

0(p− w))

(
1

D0

+
λ(1− λ)

(1 + λ)

D′
0

D2
0

(p− w)

)

(p− w) + o((p− w)2)

=
1− λ

1 + λ

(

1 +
2λ

(1 + λ)2
D′

0

D0

(p− w)

)

(p− w) + o((p− w)2).

Lemma C.2.5 implies:

Lemma C.2.6. In the neighborhood of s = 0, we have

z =
1 + λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w) + o(p− w), (57)

log z = log
1 + λ

1− λ
−

2λ

1 + λ

D′
0

D0

(p− w) + o(p− w),

p− p

p− w
=

2λ

1 + λ

(

1−
1− λ

1 + λ

D′
0

D0

(p− w)

)

+ o(p− w).

Proof. The first and third approximations follow immediately from Lemma C.2.5. To obtain

the second approximation, note that log(1 − x) = −x + o(x) in the neighborhood of x = 0,

so that

log z = log
1 + λ

1− λ
+ log

(

1−

(

1−
1− λ

1 + λ
z

))

= log
1 + λ

1− λ
− 1 +

1− λ

1 + λ
z + o

(

1−
1− λ

1 + λ
z

)

= log
1 + λ

1− λ
−

2λ

1 + λ

D′
0

D0

(p− w) + o(p− w).

Second-order Taylor approximation of p0 − w. We start by deriving the first-order

approximation of p′(w):

Lemma C.2.7. In the neighborhood of s = 0, we have

p′(w) = 1−
D′

0

D0

(p− w) + o(p− w). (58)
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Proof. We derive the first-order approximation of the partial derivatives of H(p, w) in the

neighborhood of s = 0. Combining Lemmas C.2.5 and C.2.6 with equations (39) and (40),

we obtain:

∂H

∂p

1

D(p)
=

[

1−
1− λ

2λ

(
D′

0

D0

(p− w) + 1

)(

log
1 + λ

1− λ
−

2λ

1 + λ

D′
0

D0

(p− w)

)]

+ o(p− w)

=

[

ψ +
D′

0

D0

(

ψ −
2λ

1 + λ

)

(p− w)

]

+ o(p− w),

−
∂H

∂w

1

D(p)
=

1− λ

2λ

[

−1 +
1 + λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w)− log
1 + λ

1− λ
+

2λ

1 + λ

D′
0

D0

(p− w)

]

+ o(p− w)

=

[

ψ −
2λ

1 + λ

D′
0

D0

(p− w)

]

+ o(p− w).

Using the implicit function theorem and the fact that 1
a+bx

= 1
a
− b

a2
x+ o(x) in the neighbor-

hood of 0, we obtain

p′(w) =

[

ψ −
2λ

1 + λ

D′
0

D0

(p− w)

] [
1

ψ
−

1

ψ2

D′
0

D0

(

ψ −
2λ

1 + λ

)

(p− w)

]

+ o(p− w)

= 1−
D′

0

D0

(p− w) + o(p− w).

We continue to work with the function ϕ(p) defined in equation (51). The following lemma

relies on ϕ′
0 (computed above) and ϕ′′

0 = 2ϕ′
0γ, where

γ ≡
1

2

r′′′0
r′′0

− 2
D′

0

D0

.

Using the definitions of α and β (equations (31) and (32)), we can rewrite

γ = −
β

2α2
+
D′′

0

D′
0

− 2
D′

0

D0

= −
β

2α2
+

(
1

α(p0 − c)
−

2

p0 − c

)

+
2

p0 − c

=
1

2α2

(
2α

p0 − c
− β

)

,

where we used the fact that D′
0 = − D0

p0−c
and D′′

0 =
D′

0

p0−c
1−2α
α

.

We are ready to derive the second-order Taylor approximation of p0 − w with respect to

p− w in the neighborhood of s = 0:

Lemma C.2.8. In the neighborhood of s = 0, we have

p0 − w = (1− λ)(p− w) + χ(p− w)2 + o((p− w)2) (59)
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and

τ = 1− λ+ χ(p− w) + o(p− w), (60)

where

χ ≡ (1− λ)

(

γ(λ− ψ) + λ
D′

0

D0

)

.

Proof. Applying Lemma C.1.3 to the first-order condition of the manufacturer given by

equation (42), we have that

0 =

∫ p

p

ϕ(p)

(
dπ(p,w)
dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

= ϕ′
0

∫ p

p

(p− p0)

(
dπ(p,w)
dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

︸ ︷︷ ︸

≡B1

+ϕ′
0γ

∫ p

p

(p− p0)
2

(
dπ(p,w)
dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

︸ ︷︷ ︸

≡B2

+O

(
∫ p

p

|p− p0|
3

(
dπ(p,w)
dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

)

︸ ︷︷ ︸

≡B3

.

Next, we approximate B1 and B2 in the neighborhood of s = 0. We will then show that

B3 = o(p− w).

First, applying Lemma C.2.7, we have that

dπ(p, w)

dw
= (D′(p)(p− w) +D(p)) p′(w)−D(p)

= D(p)

((
D′

0

D0

(p− w) + 1

)(

1−
D′

0

D0

(p− w)

)

− 1

)

+ o(p− w) = o(p− w).

Note that B1 can be rewritten as

B1 =

∫ p

p

(p− p0)

(
dπ(p, w)/dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

=
dπ(p, w)

dw

∫ p

p

p− p0
(p− w)2

dp+ π(p, w)

∫ p

p

p− p0
(p− w)3

dp.

Computing the integrals, we obtain

B1 =
dπ(p, w)

dw

(

log
p− w

p− w
−
p0 − w

p− w

p− p

p− w

)

+ π(p, w)

(
p− p

(p− w)(p− w)
+

1

2

p0 − w

(p− w)2
−

1

2

p0 − w

(p− w)2

)
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=
dπ(p, w)

dw
(log z − τ(z − 1)) +D(p)

(

(z − 1)−
1

2
τ(z2 − 1)

)

.

By Lemma C.2.2, log z − τ(z − 1) is bounded in the neighborhood of s = 0, implying that

the first term of B1 belongs to o(p − w). Next, we simplify the second term of B1. From

equation (56) above, we have :

D(p) = D0 +D′
0λ(p− w) + o(p− w).

As (z − 1)− 1
2
τ(z2 − 1) tends to 0 when s goes to 0, we have that

λ

(

(z − 1)−
1

2
τ(z2 − 1)

)

(p− w) = o(p− w)

in the neighborhood of s = 0. Therefore, the first-order Taylor approximation of B1 is given

by

B1 = D0

(

(z − 1)−
1

2
τ(z2 − 1)

)

+ o(p− w)

= D0

(

2λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w)−
1

2
τ

((
1 + λ

1− λ

)2

− 1−
4λ(1 + λ)

(1− λ)2
D′

0

D0

(p− w)

))

+ o(p− w)

= D0

(
2λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w)− τ
2λ

(1− λ)2

(

1− (1 + λ)
D′

0

D0

(p− w)

))

+ o(p− w)

=
2λ

1− λ

(

1−
τ

1− λ

)

D0 +
2λ2

1− λ
D′

0(p− w) + o(p− w),

where in the last equality we used the fact that τ = 1− λ+ o(1).

Next, we rewrite B2 by splitting the integral into two parts:

B2 =
dπ(p, w)

dw

∫ p

p

(p− p0)
2

(p− w)2
dp+ π(p, w)

∫ p

p

(p− p0)
2

(p− w)3
dp.

We start by showing that the approximation of the first part of B2 is a little-o of p−w. Note

that

∫ p

p

(

1− 2
p0 − w

p− w
+

(p0 − w)2

(p− w)2

)

dp

=

[

p− p

p− w
− 2

p0 − w

p− w
log

(
p− w

p− w

)

+

(
p0 − w

p− w

)2(
p− w

p− w
− 1

)]

(p− w).
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By Lemmas C.2.2 and C.2.4, the expression inside the square brackets is bounded for s ≃ 0.

Since dπ(p,w)
dw

= o(p− w), we have that the first part of B2 belongs to o((p− w)2) and, thus,

to o(p− w).

The second part of B2 can be rewritten as

B2 = D(p)(p− w)

[

log

(
p− w

p− w

)

− 2
p0 − w

p− w

(
p− w

p− w
− 1

)

+
1

2

(
p0 − w

p− w

)2
((

p− w

p− w

)2

− 1

)]

.

Therefore, the first-order approximation of B2 is given by

B2 = D0

[

log
1 + λ

1− λ
−

4λ

1− λ
(1− λ) +

1

2
(1− λ)2

4λ

(1− λ)2

]

(p− w) + o(p− w)

= D0

[

−2λ+ log
1 + λ

1− λ

]

(p− w) + o(p− w).

Next, we show that B3 = o(p− w). Note that

∫ p

p

|p− p0|
3

(
dπ(p,w)
dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp ≤
dπ(p, w)

dw

(p− p)4

(p− w)2
+D(p)

(p− w)(p− p)4

(p− w)3

Since dπ(p, w)/dw is bounded in the neighborhood of s = 0, we have that B3 = O((p−w)2) =

o(p− w).

We are ready to approximate the first-order condition of the manufacturer’s problem given

by equation (42) using the expressions for B1, B2 and B3. Dividing the first-order condition

by 2λϕ′
0D0/(1− λ) we obtain

0 = 1−
τ

1− λ
+

[

λ
D′

0

D0

+ γ

(

−(1− λ) +
1− λ

2λ
log

1 + λ

1− λ

)]

(p− w) + o(p− w)

= 1−
τ

1− λ
+

[

λ
D′

0

D0

+ γ(λ− ψ)

]

(p− w) + o(p− w).

Thus, solving out for τ , we find

p0 − w = τ(p− w) = (1− λ)(p− w) + (1− λ)

(

γ(λ− ψ) + λ
D′

0

D0

)

(p− w)2 + o((p− w)2).

First-order Taylor approximation of p− w in s.

Lemma C.2.9. In the neighborhood of s = 0, we have that

p− w =
1

ψD0

s+ o(s). (61)
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Proof. The expected gain from search H(p, w) given by equation (35) can be rewritten as

H(p, w) =
1 + λ

2λ

∫ p

p

D(p)dp−
1− λ

2λ
π(p, w) log

p− w

p− w
.

By Lemma C.1.3, we have that

∫ p

p

D(p)dp =

∫ p

p

D0dp+O

(
∫ p

p

|p− p0|dp

)

= D0

(

1−
p− w

p− w

)

(p− w) +O
(
(p− p)2

)

=
2λ

1 + λ
D0(p− w) + o(p− w).

This yields the approximation

H(p, w) =
1 + λ

2λ

2λ

1 + λ
D0(p− w)−

1− λ

2λ
log

1 + λ

1− λ
D0(p− w) + o(p− w)

= ψD0(p− w) + o(p− w).

Since H(p, w) = s for s ≃ 0, we have that s = ψD0(p− w) + o(p− w), implying that

p− w =
1

ψD0

s+ o(s).

The lemma implies that, in the neighborhood of s = 0, o(sk) = o((p−w)k) and vice versa

for every k ≥ 0.

C.2.3 Proof of Proposition 8

We are ready to derive the second-order Taylor approximations of ∆CS and ∆AS with

respect to s for s ≃ 0. The expressions for ∆CS and ∆AS are given by equations (45)

and (47), respectively.

Approximation of consumer surplus.

Lemma C.2.10. In the neighborhood of s = 0, we have

∆CS = K(α(2− α)− β(p0 − c))s2 + o(s2), (62)

where

K =
(1− λ)2

2α2r0ψ2

(
1

2λ
log

1 + λ

1− λ
− 1

)

> 0. (63)
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Proof. We are ready to explore the second-order Taylor approximation of ∆CS in the neigh-

borhood of s = 0. First, we derive the approximation of ∆CS with respect to p−w and then,

applying Lemma C.2.9 we obtain the approximation of ∆CS with respect to s for s ≃ 0.

Recall that the change in consumer surplus, ∆CS, is given by equation (45). That is,

∆CS = −

∫ p

p0

D(p)dp

︸ ︷︷ ︸

≡A1

+
(1 + λ)2

4λ

∫ p

p

D(p)dp

︸ ︷︷ ︸

≡A2

−
(1− λ)2

4λ
π2(p, w)

∫ p

p

dp

(p− w)2D(p)
︸ ︷︷ ︸

≡A3

.

Next, we derive the second-order approximations of A1, A2 and A3 with respect to p−w. By

Lemma C.1.3, we have

A1 =

∫ p

p0

D(p)dp =

∫ p

p0

(D0 +D′
0(p− p0))dp+O

(∫ p

p0

(p− p0)
2dp

)

=

∫ p

p0

(D0 +D′
0(p− p0))dp+O

(
(p− p0)

3
)

= D0

(

1−
p0 − w

p− w

)

(p− w) +
1

2
D′

0

(

1−
p0 − w

p− w

)2

(p− w)2 + o((p− w)2)

= D0λ(p− w)−

(

χ−
1

2
λ2
D′

0

D0

)

D0(p− w)2 + o((p− w)2),

where we have used Lemma C.2.8 and χ = (1 − λ)(γ(λ − ψ) + λD′
0/D0). We use Lemma

C.2.4 and Lemma C.2.5 to compute the approximation of A2:

A2 =

∫ p

p

D(p)dp =

∫ p

p

(D0 +D′
0(p− p0))dp+O((p− p0)

3)

= D0

(
p− p

p− w

)

(p− w) +
1

2
D′

0

((

1−
p0 − w

p− w

)2

−

(
p0 − w

p− w
−
p− w

p− w

)2
)

(p− w)2

+ o((p− w)2)

=
2λ

1 + λ
D0(p− w)−

(
2λ(1− λ)

(1 + λ)2
D′

0

D0

D0 −
2λ3

(1 + λ)2
D′

0

)

(p− w)2 + o((p− w)2)

=
2λ

1 + λ
D0(p− w) +

2λ(λ2 + λ− 1)

(1 + λ)2
D′

0(p− w)2 + o((p− w)2).

To approximate A3 we start by deriving the first-order approximation of the following integral

I =

∫ p

p

1

D(p)

p− w

(p− w)2
dp.
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Applying lemma C.1.3 (for ϕ(p) = 1/D(p)), we obtain that

I = (p− w)

(

1

D0

∫ p

p

dp

(p− w)2
−
D′

0

D2
0

∫ p

p

(p− p0)

(p− w)2
dp

)

+O

(

(p− w)

∫ p

p

(p− p0)
2

(p− w)2
dp

)

.

Note that

(p− w)

∫ p

p

(p− p0)
2

(p− w)2
dp ≤ (p− w)

(p− p)3

(p− w)2
,

which implies that the remainder can be rewritten as O((p−w)2) = o(p−w). Therefore, by

Lemma C.2.4 and Lemma C.2.5, we have that

I =
1

D0

p− p

p− w
−

(

log
p− w

p− w
−

(p0 − w)(p− p)

(p− w)(p− w)

)
D′

0

D0

(p− w) + o(p− w)

=

(
2λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w)

)
1

D0

−

(

log
1 + λ

1− λ
− 2λ

)
D′

0

D0

(p− w) + o(p− w)

=
2λ

1− λ

1

D0

+
2λ

1− λ
(ψ − (1− λ))

D′
0

D2
0

(p− w) + o(p− w).

By using the fact that D2(p)(p−w) = D2
0(p−w)+ o(p−w), we obtain the first-order Taylor

approximation of A3 in the neighborhood of s = 0,

A3 = (p− w)D2(p)×

∫ p

p

1

D(p)

p− w

(p− w)2
dp

=
2λ

1− λ
D0(p− w) +

2λ

1− λ
(ψ − (1− λ))D′

0(p− w)2 + o((p− w)2).

Finally, we can derive the second-order Taylor approximation of ∆CS

∆CS = − A1 +
(1 + λ)2

4λ
A2 −

(1− λ)2

4λ
A3

=

(

−λ+
1 + λ

2
−

1− λ

2

)

D0(p− w)

+

(

χ−

(
λ2

2
−
λ2 + λ− 1

2
+

1− λ

2
(ψ − (1− λ))

)
D′

0

D0

)

D0(p− w)2 + o((p− w)2)

=

(

χ+
1− λ

2
(ψ + λ)

1

p0 − c

)

D0(p− w)2 + o((p− w)2),

where we used D0 +D′
0(p0 − c) = 0 to obtain the last expression. Plugging the formulas for

χ and γ, we obtain

∆CS = (1− λ)

(

γ(λ− ψ)− λ
1

p0 − c
+

1

2
(ψ + λ)

1

p0 − c

)

D0(p− w)2 + o((p− w)2)
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= (1− λ)(λ− ψ)

(

γ +
1

2(p0 − c)

)

(p− w)2 + o((p− w)2)

=
(1− λ)(λ− ψ)D0

2α2(p0 − c)
(α(2− α)− β(p0 − c))(p− w)2 + o((p− w)2).

It remains to calculate the approximation of ∆CS with respect to s. By Lemma C.2.9, we

have that p− w = ψ

D0
s+ o(s) and, therefore, we obtain the approximation in the statement

of the lemma.

Approximation of aggregate surplus Next, we approximate the change in aggregate

surplus, ∆AS given in equation (47), in the neighborhood of s = 0. First, we approximate

the change in the profit of the manufacturer ∆Π in the neighborhood of s = 0. The change

in the profit is given by equation (46). That is,

∆Π = r(s)− r0 = r(p)− r0
︸ ︷︷ ︸

≡C1

−
(1 + λ)2

4λ
(r(p)− r(p))
︸ ︷︷ ︸

≡C2

+
(1− λ)2

4λ
π2(p, w)

∫ p

p

r′(p)

D2(p)

dp

(p− w)2
︸ ︷︷ ︸

≡C3

.

In the following lemma, we derive the second-order approximation of ∆Π.

Lemma C.2.11. In the neighborhood of s = 0, we have that

∆Π = −αKs2 + o(s2), (64)

where K is given in equation (63).

Proof. We start with the second-order Taylor approximation of C1. By Lemma C.2.4, we

have that

C1 = r(p)− r0 =
1

2
r′′0

(
p− p0
p− w

)2

(p− w)2 + o((p− p0)
2) =

1

2
λ2r′′0(p− w)2 + o((p− w)2).

As for C2, we have that r(p)− r(p) = (r(p)− r0)− (r(p)− r0). The first part of this equation

coincides with C1. The second part can be approximated by

r(p)− r0 =
1

2
r′′0

(
p− p0

p− w

)2

(p− w)2 + o((p− p0)
2) =

1

2

λ2(1− λ)2

(1 + λ)2
r′′0(p− w)2 + o((p− w)2).

Adding up the approximations for r(p)− r0 and −(r(p)− r0), we obtain

C2 = r(p)− r(p) =
2λ3

(1 + λ)2
r′′0(p− w)2 + o((p− w)2).

67



Next, we approximate C3. Applying Lemmas C.1.3, C.2.2, and C.2.4, we obtain

C3 = π2(p, w)

∫ p

p

r′(p)

D2(p)

dp

(p− w)2
=

r′′0
D2

0

D2
0(p− w)2

∫ p

p

p− p0
(p− w)2

dp+ o((p− w)2)

= r′′0

(

log

(
p− w

p− w

)

−
p0 − w

p− w

(
p− w

p− w
− 1

))

(p− w)2 + o((p− w)2)

=

(

log

(
1 + λ

1− λ

)

− 2λ

)

r′′0(p− w)2 + o((p− w)2)

=
2λ

1− λ
(λ− ψ)r′′0(p− w)2 + o((p− w)2).

Finally, we can compute the approximation of ∆Π. By the definition of α given in equa-

tion (31), we have that r′′0 =
D′

0

α
= − D0

α(p0−c)
. Thus,

∆Π = C1 −
(1 + λ)2

4λ
C2 +

(1− λ)2

4λ
C3

=

(
λ2

2
−
λ2

2
+

1− λ

2
(λ− ψ)

)

r′′0(p− w)2 + o((p− w)2)

= −
(1− λ)(λ− ψ)D0

α(p0 − c)
(p− w)2 + o((p− w)2).

Then, by applying the approximation of p−w with respect to s from Lemma C.2.9, we obtain

∆Π = −
(1− λ)(λ− ψ)

2αr0ψ2
s2 + o(s2) = −αKs2 + o(s2),

where K is given in equation (63).

Combining Lemmas C.2.10 and C.2.11, we obtain the approximation of aggregate surplus:

Lemma C.2.12. In the neighborhood of s = 0, we have

∆AS = K(α(1− α)− β(p0 − c))s2 + o(s2). (65)

C.2.4 Distributional Effects

We now separately derive the approximation of consumer surplus for the online and offline

markets.

The change in consumer surplus in the offline and the online markets after the introduction

of the ban on dual pricing can be written respectively as:

∆CSB = (1− λ)

[
∫ ∞

p

D(p)dp+

∫ p

p

D(p)F (p, w)dp

]

− (1− λ)CS(p0)
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= (1− λ)

[

−

∫ p

p0

D(p)dp+

∫ p

p

D(p)F (p, w)dp

]

= (1− λ)

[

−

∫ p

p0

D(p)dp+
1 + λ

2λ

∫ p

p

D(p)dp−
1− λ

2λ
π(p, w) log

p− w

p− w

]

(66)

and

∆CSO = ∆CS −∆CSB, (67)

where ∆CS is given by equation (45).

Lemma C.2.13. In the neighborhood of s = 0, we have that

∆CSB = −
(1− λ)(λ− ψ)

ψ
s+ o(s), (68)

∆CSO =
(1− λ)(λ− ψ)

ψ
s+ o(s). (69)

Proof. The first-order approximation if ∆CSB with respect to s for s ≃ 0 can be computed

as follows,

∆CSB = (1− λ)

[

−D0(p− p0) +
1 + λ

2λ
D0(p− p)−

1− λ

2λ
log

1 + λ

1− λ
D0(p− w)

]

+ o(p− w)

= (1− λ)

[

−
p− p0
p− w

+
1 + λ

2λ

p− p

p− w
−

1− λ

2λ
log

1 + λ

1− λ

]

D0(p− w) + o(p− w)

= −(1− λ)(λ− ψ)D0(p− w) + o(p− w)

= −
(1− λ)(λ− ψ)

ψ
s+ o(s).

First, we applied Lemma C.1.3 to approximate the integrals inside the square brackets of

equation (66). Then, we used Lemma C.2.2 and Lemma C.2.4 to derive the approximation

with respect to p−w. The final expression is obtained by using the approximation of p−w

with respect to s for small s given by equation (61).

In section C.2.3 (equation (62)) we showed that ∆CS = o(s). Therefore, in the neigh-

borhood of s = 0, we have that

∆CSO = −∆CSB + o(s) =
(1− λ)(λ− ψ)

ψ
s+ o(s).

C.3 Proofs of Welfare Results when λ is Small

In this appendix, we study the welfare effects of banning dual pricing when λ is small and

provide the proof of Proposition 9. Specifically, we derive the first-order Taylor approximation
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of ∆CS (equation (45)) with respect to λ when λ ≃ 0. This will be sufficient to determine

the sign of ∆AS (equation (47)) when λ ≃ 0 even without deriving the respective Taylor

approximation.

We proceed in the following steps. In Section C.3.1, we establish the limiting equilibrium

behavior and describe the properties of the retail price distribution when λ is small. Then, in

Section C.3.2, we derive some auxiliary Taylor approximations required to approximate ∆CS.

Section C.3.3 is devoted to the approximation of ∆CS, which is used to prove Proposition 9.

C.3.1 Basic Properties of the Equilibrium for Low λ

As discussed above, for a given w retailers set prices according to the CDF F (·, w) =

F (·, p(w), w) given by equation (33) and defined on [p(w), p(w)]. The lower bound of the

support is determined by equation (34). In the following lemma, we show that for small

λ, the upper bound of the retail price distribution is given by the monopoly price for all

w ∈ [c, w]. (Recall from Section 3.1 that wholesale prices w /∈ [c, w] are suboptimal for the

manufacturer.)

Lemma C.3.1. There exists a neighborhood of λ = 0 such that p(w) = pm(w) for every

w ∈ [c, w].

Proof. Define Hm(w) ≡ H(pm(w), w) for every w ∈ [c, w], where H(·, ·) is given by equa-

tion (35). We show that, as λ → 0, Hm(w) converges uniformly to 0 on [c, w]. First, note

that for any w ∈ [c, w], Hm(w) is strictly increasing in λ, as

∂Hm(w)

∂λ
=

∫ pm(w)

p(pm(w),w)

D(p)
∂F (p, pm(w), w)

∂λ
dp

=
1

2λ2

∫ pm(w)

p(pm(w),w)

D(p)

(
π(pm(w), w)

π(p, w)
− 1

)

dp > 0.

Second, by Proposition 2 in Stahl (1989), holding fixed w the equilibrium lower bound, p(w),

converges to pm(w) as λ→ 0. Therefore, as p(w) = p(p(w), w) ≤ p(pm(w), w), we have that

Hm(w) =

∫ pm(w)

p(w)

D(p)F (p, pm(w), w)dp ≤ D(c)(pm(w)− p(w)) −→
λ→0

0,

implying that for any w ∈ [c, w], Hm(w) converges to 0 as λ→ 0.

Thus, for every w ∈ [c, w], Hm(w) is monotone in λ and converges pointwise to 0 as λ

tends to 0. By Dini’s theorem, Hm(w) converges uniformly to 0. Hence, there exists λ̃ > 0

such that Hm(w) < s for all λ ∈ (0, λ̃] and w ∈ [c, w]. This implies that p(w) = pm(w).
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Next, we show that, as λ → 0, the equilibrium of the model under uniform pricing

converges to that under dual pricing. In particular, the following lemma establishes that,

as λ → 0, the upper and the lower bounds, p, p, converge to p0 and the wholesale price w

converges to c. The changes in consumer and aggregate surplus, ∆CS and ∆AS, converge

to 0.

Lemma C.3.2. Under uniform pricing, the limiting equilibrium behavior as λ goes to zero

is as follows:

lim
λ→0

w(s, λ) = c, lim
λ→0

p(s, λ) = lim
λ→0

p(s, λ) = p0.

This implies that

lim
λ→0

∆CS(λ, s) = lim
λ→0

∆AS(λ, s) = 0.

Proof. We drop arguments (λ, s) below to ease notation. We start by showing that p−p→ 0

as λ → 0. In the proof of Lemma C.2.1, we showed that F (p, w) is strictly concave in p on

[p, p] and, therefore, lies above its secant lines. This implies that

H(p, w) ≥

∫ p

p

D(p)
p− p

p− p
dp ≥

D(pm(w))

2
(p− p).

Since H(·, w) is strictly increasing on (w, pm(w)) by Lemma A.1.1, we also have that

H(p, w) ≤ H(pm(w), w) ≤ max
w∈[c,w]

H(pm(w), w)

In Lemma C.3.1, we showed that, as λ→ 0, H(pm(w), w) uniformly converges to 0 on [c, w].

Therefore,
D(pm(w))

2
(p− p) ≤ max

w∈[c,w]
H(pm(w), w) −→

λ→0
0,

which, by the squeeze theorem, implies that p − p → 0 as λ → 0. As p < p0 < p by

Lemma C.1.2, this implies that p→ p0 and p→ p0 as λ goes to 0.

By Lemma C.3.1 we have that in the neighborhood of λ = 0, the upper bound of the retail

price distribution, p, is given by the monopoly price for all w ∈ [c, w]. Therefore, solving out

for w in equation π′
1(p, w) = 0 yields:

w = c+
r′(p)

D′(p)
,

which tends to c as λ goes to 0.

Finally, to show that ∆CS(λ, s) and ∆AS(λ, s) converge to 0 as λ → 0, it is sufficient

to show that F (·, w) converges weakly to a unit mass at p0. For every p > p0, we have that
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for λ close to 0, the upper bound p is strictly lower than p, and so F (p, w) = 1. Similarly,

for every p < p0, the lower bound p is strictly greater than p for λ close enough to 0, and so

F (p, w) = 0. Thus, F (·, w) weakly converges to the one-point distribution at p0.

C.3.2 Taylor Approximations of the Wholesale Price and the Upper and Lower

Bounds of the Support

The goal of this section is to obtain, in the neighborhood of λ = 0, the second-order Tay-

lor approximations of p(s, λ) and p(s, λ) and the third-order Taylor approximation of λ

in w(s, λ) − c. These approximations are required to calculate the first-order Taylor ap-

proximations of ∆CS with respect to λ in Section C.3.3. To ease notation, we define

w̃(s, λ) ≡ w(s, λ)− c, and drop arguments (s, λ) in the following.

Third-order Taylor approximation of p.

Lemma C.3.3. In the neighborhood of λ = 0, we have

p = p0 + αw̃ +
1

2
βw̃2 + δw̃3 + o(w̃3), (70)

where α and β are, respectively, the monopoly pass-through and the derivative of monopoly

pass-through with respect to cost, and δ is a constant.

Proof. By Lemma C.3.1, in the neighborhood of λ = 0, p is equal to pm(w) and solves

π′
1(p, w) = 0. Manipulating this equation yields:

w̃D′(p) = D(p) + (p− c)D′(p) = r′(p).

It follows that

w̃ =
r′(p)

D′(p)

=
r′′0
D′

0
︸︷︷︸

α̃

(p− p0) +

(
1

2

r′′′0
D′

0

− r′′0
D′′

0

(D′
0)

2

)

︸ ︷︷ ︸

β̃

(p− p0)
2 +

1

6

(
r′

D′

)′′′∣
∣
∣
∣
p0

︸ ︷︷ ︸

δ̃

(p− p0)
3 + o((p− p0)

3).

This implies in particular that, for every k ≥ 0, o(w̃k) = o((p − p0)
k) (and vice versa), and

that

w̃2 = α̃2(p− p0)
2 + 2α̃β̃(p− p0)

3 + o(w̃3),

w̃3 = α̃3(p− p0)
3 + o(w̃3).
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Hence,

p = p0 +
1

α̃
w̃ −

β̃

α̃
(p− p0)

2 −
δ̃

α̃
(p− p0)

3 + o((p− p0)
3)

= p0 +
1

α̃
w̃ −

β̃

α̃

[

w̃2

α̃2
− 2

β̃

α̃4
w̃3

]

−
δ̃

α̃4
w̃3 + o(w̃3)

= p0 +
1

α̃
w̃ −

β̃

α̃3
w̃2 +

[

β̃2

α̃5
−

δ̃

α̃4

]

w̃3 + o(w̃3).

It is easily verified that the coefficient on w̃ is α and the coefficient on w̃2 is β/2.

First-order Taylor approximation of p. By Lemma C.3.1, in the neighborhood of λ = 0,

p = pm(w), implying that the first-order condition of the manufacturer given in (42) can be

written as ∫ p

p

r′(p)

D(p)2
p− p

(p− w)3
dp = 0. (71)

Let

ϕ(p, w) ≡
r′(p)

D2(p)

1

(p− w)3
, (72)

and observe that equation (71) can be rewritten as

∫ p

p

ϕ(p, w)(p− p)dp = 0. (73)

In the following lemma, we use equation (73) to derive the first-order Taylor approxima-

tion of p with respect to w̃ for λ ≃ 0.

Lemma C.3.4. In the neighborhood of λ = 0, we have

p = p0 −
1

2
αw̃ + o(w̃). (74)

Proof. Applying Lemma C.1.3 to the first-order condition of the manufacturer given in

equation (73), we have that there exists a bounded function M(λ) such that

0 = ϕ′
0(w)

∫ p

p

(p− p)(p− p0)dp+M(λ)

∫ p

p

(p− p)(p− p0)
2dp

︸ ︷︷ ︸

≡R(λ)

,

where

ϕ′
0(w) ≡

∂ϕ

∂p

∣
∣
∣
∣
(p0,w)

=
r′′0
D2

0

1

(p0 − w)3
.
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The first-order condition can be simplified further:

0 = ϕ′
0(w)

[
1

2
(p− p0)(p− p0)

2 −
1

3
(p− p0)

3

]p

p

+R(λ)

= (p− p0)
3

{

ϕ′
0(w)

[

1

2

(

1−

(
p0 − p

p− p0

)2
)

−
1

3

(

1 +

(
p0 − p

p− p0

)3
)]

+
R(λ)

(p− p0)3

}

= ϕ′
0(w)

[

1

2

(

1−

(
p0 − p

p− p0

)2
)

−
1

3

(

1 +

(
p0 − p

p− p0

)3
)]

+
R(λ)

(p− p0)3
. (75)

For what follows, it is useful to derive an upper bound for the absolute value of the remainder

term. Note that

∣
∣
∣
∣

R(λ)

(p− p0)3

∣
∣
∣
∣
≤

|M(λ)|

(p− p0)3

∫ p

p

(p− p)(p− p0)
2dp

=
|M(λ)|

(p− p0)3

[
1

3
(p− p0)(p− p0)

3 −
1

4
(p− p0)

4

]p

p

= |M(λ)|

[

1

3
(p− p0)

(

1 +

(
p0 − p

p− p0

)3
)

−
1

4

(

(p− p0)−
(
p0 − p

)
(
p0 − p

p− p0

)3
)]

= |M(λ)|

[

1

12
(p− p0) +

(
p− p0

3
+
p0 − p

4

)(
p0 − p

p− p0

)3
]

.

We will show that

τ ≡
p0 − p

p− p0
−→
λ→0

1

2
.

Assume for a contradiction that this is not the case. Then, there exists ε0 > 0, a sequence

(λn)n≥0 that converges to 0, and an associated sequence of equilibrium upper and lower

bounds of the support and wholesale price (pn, pn, wn)n≥0 that converges to (p0, p0, c), such

that ∣
∣
∣
∣
∣
∣
∣
∣

p0 − pn

pn − p0
︸ ︷︷ ︸

≡τn

−
1

2

∣
∣
∣
∣
∣
∣
∣
∣

> ε0

for every n.

Suppose first that (τn)n≥0 is bounded. Then, we can extract a subsequence that converges

to some τ ∗ ̸= 1/2. Moreover, the boundedness of (τn)n≥0 and the above upper bound on the

remainder term imply that
R(λn)

(pn − p0)3
−→
n→∞

0.
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Taking limits along the convergent subsequence in equation (75), this implies that

1

2
(1− τ ∗2)−

1

3
(1 + τ ∗3) = 0.

The above polynomial has exactly two roots: −1 and 1/2. As τn > 0 for every n, this implies

that τ ∗ = 1/2, a contradiction.

Next, suppose that (τn)n≥0 is not bounded, and extract a subsequence that diverges to

+∞. Along the divergent subsequence, for n sufficiently high, we have

|ϕ′
0(w

n)|

[
1

2

(
(τn)2 − 1

)
+

1

3
((τn)3 + 1)

]

=

∣
∣
∣
∣

R(λn)

(pn − p0)3

∣
∣
∣
∣

≤ |M(λn)|

[
1

12
(pn − p0) +

(
pn − p0

3
+
p0 − pn

4

)

(τn)3
]

.

Therefore,

1

2

(
(τn)2 − 1

)
+

1

3
+

(
1

3
−

|M(λn)|

|ϕ′
0(w

n)|

(
pn − p0

3
+
p0 − pn

4

))

(τn)3 ≤
|M(λn)|

|ϕ′
0(w

n)|

1

12
(pn − p0).

As n tends to ∞, the left-hand side of the above inequality tends to +∞ whereas the right-

hand side tends to zero, which is again a contradiction.

It follows that τ −→
λ→0

1/2. Hence, in the neighborhood of λ = 0,

p− p0 = −
1

2
(p− p0) + o (p− p0) ,

and so, by Lemma C.3.3

p = p0 −
1

2
αw̃ + o(w̃).

Lemma C.3.4 implies that o((p− p0)
k) = o(w̃k) (and vice versa) for every k ≥ 0.

Second-order Taylor approximation of p.

Lemma C.3.5. In the neighborhood of λ = 0, we have

p = p0 −
1

2
αw̃ + γw̃2 + εw̃3 + o(w̃3), (76)

where ε is a constant and

γ ≡ −
5

32
β +

3

16

α

p0 − c
(3α− 1). (77)
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Proof. Applying Lemma C.1.3 to the first-order condition of the manufacturer (equation (73)),

we have that

0 = ϕ′
0(w)

∫ p

p

(p− p)(p− p0)dp+
1

2
ϕ′′
0(w)

∫ p

p

(p− p)(p− p0)
2dp

+
1

6
ϕ′′′
0 (w)

∫ p

p

(p− p)(p− p0)
3dp+O

(
∫ p

p

(p− p)(p− p0)
4dp

)

,

where ϕ′
0(w) was defined in the proof of Lemma C.3.4,

ϕ′′
0(w) ≡

∂2ϕ

∂p2

∣
∣
∣
∣
(p0,w)

= ϕ′
0(w)

(
r′′′0
r′′0

−
6D0 + 4(p0 − w)D′

0

(p0 − w)D0

)

,

and ϕ′′′
0 (w) ≡ ∂3ϕ/∂p3|(p0,w). Note that ϕ′′′

0 (w) has a finite limit as λ tends to 0, as the

equilibrium w is bounded away from p0.

Define again τ ≡ (p0 − p)/(p− p0). Then, the first integral can be rewritten as

∫ p

p

(p− p)(p− p0)dp = (p− p0)
3

(
1

2
(1− τ 2)−

1

3
(1 + τ 3)

)

= −(p− p0)
31

3
(τ + 1)2

(

τ −
1

2

)

.

The second integral can be computed as

∫ p

p

(p− p)(p− p0)
2dp =

[
1

3
(p− p)(p− p0)

3

]p

p

+
1

3

∫ p

p

(p− p0)
3dp

=
1

3
(p− p)(p0 − p)3 +

1

12

(
(p− p0)

4 − (p0 − p)4
)

= (p− p0)
3

[(
p− p

3
−
p0 − p

12

)

τ 3 +
p− p0
12

]

,

where we have obtained the first line by integrating by parts. Finally, the third integral is

equal to

∫ p

p

(p− p)(p− p0)
3dp =

[
1

4
(p− p)(p− p0)

4

]p

p

+
1

4

∫ p

p

(p− p0)
4dp

= −
1

4
(p− p)(p0 − p)4 +

1

20

(
(p− p0)

5 + (p0 − p)5
)

= (p− p0)
4

[(
p0 − p

20
−
p− p

4

)

τ 4 +
p− p0
20

]

.

Note that ∫ p

p

(p− p0)
4(p− p)dp ≤ (p− p)6,
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implying that the remainder term is O
(
(p− p)6

)
and thus, by Lemmas C.3.3 and C.3.4, a

little-o of w̃5.

Combining the four terms, dividing through by (p− p0)
3, and rearranging terms yields:

τ −
1

2
=

1

2

ϕ′′
0(w)

ϕ′
0(w)

3

(τ + 1)2

[(
p− p

3
−
p0 − p

12

)

τ 3 +
p− p0
12

]

+
1

2

ϕ′′′
0 (w)

ϕ′
0(w)

1

(τ + 1)2
(p− p0)

[(
p0 − p

20
−
p− p

4

)

τ 4 +
p− p0
20

]

+ o(w̃2). (78)

We begin by using the above expression to obtain an approximation of τ at the first order

in w̃. By Lemma C.3.3 and Lemma C.3.4, the term inside square brackets on the first line

is at most first order in w̃, while the term on the second line is a little-o of w̃. Thus, this

expression simplifies to

τ =
1

2
+

1

2

ϕ′′
0(c)

ϕ′
0(c)

3

(1
2
+ 1)2

[(
p− p

3
−
p0 − p

12

)(
1

2

)3

+
p− p0
12

]

+ o(w̃)

=
1

2
+

2

3

(
r′′′0
r′′0

−
2

p0 − c

)[(
p− p

3
−
p0 − p

12

)
1

8
+
p− p0
12

]

+ o(w̃)

=
1

2
+

2

3

(
r′′′0
r′′0

−
2

p0 − c

)

α

[(
3

2
×

1

3
−

1

2
×

1

12

)
1

8
+

1

12

]

w̃ + o(w̃)

=
1

2
+

3

32

(
r′′′0
r′′0

−
2

p0 − c

)

α

︸ ︷︷ ︸

≡κ

w̃ + o(w̃).

The next step is to use equation (78) to obtain an approximation of τ at the first order

in w̃:

τ =
1

2
+

1

2

[
ϕ′′
0(c)

ϕ′
0(c)

+

(
ϕ′′
0(w)

ϕ′
0(w)

)′∣
∣
∣
∣
w=c

w̃

](
4

3
−

16

9
κw̃

)
9

64
αw̃ +

1

160

ϕ′′′
0 (c)

ϕ′
0(c)

α2w̃2 + o(w̃2)

=
1

2
+ κw̃ + α

[
3

32

(
ϕ′′
0(w)

ϕ′
0(w)

)′∣
∣
∣
∣
w=c

−
1

8

ϕ′′
0(c)

ϕ′
0(c)

κ+
1

160

ϕ′′′
0 (c)

ϕ′
0(c)

α

]

︸ ︷︷ ︸

≡ε̃

w̃2 + o(w̃2).

Therefore, applying Lemma C.3.3, we have that

p0 − p =

(
1

2
+ κw̃ + ε̃w̃2

)

(p− p0) + o(w̃3)

=

(
1

2
+ κw̃ + ε̃w̃2

)(

αw̃ +
1

2
βw̃2 + δw̃3

)

+ o(w̃3)
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=
1

2
αw̃ +

[
1

4
β + ακ

]

w̃2 +

[
1

2
δ +

1

2
βκ+ αε̃

]

︸ ︷︷ ︸

≡−ε

w̃3 + o(w̃3).

It remains to show that the expression in the square brackets is equal to γ defined in equa-

tion (77). Note that

−
1

4
β − ακ = −

1

4
β −

3

32

(
r′′′0
r′′0

−
2

p0 − c

)

α2

= −
1

4
β −

3

16
α2

[
1

2

r′′′0
r′′0

−
D′′

0

D′
0

+
D′′

0

D′
0

−
1

p0 − c

]

= −
5

32
β −

3

16
α2 1

(p0 − c)D′
0

[(p0 − c)D′′
0 −D′

0]

= −
5

32
β −

3

16
α2 1

(p0 − c)D′
0

[r′′0 − 3D′
0]

= −
5

32
β +

3

16

α

p0 − c
(3α− 1)

= γ.

Relating the derivatives of demand to α and β.

Lemma C.3.6. We have:

D′
0 = −

D0

p0 − c
,

D′′
0 =

D0

(p0 − c)2
2α− 1

α
,

D′′′
0 =

D0

(p0 − c)3

[
β(p0 − c)

α3
+

(2− 3α)(2α− 1)

α2

]

.

Proof. The expression for D′
0 follows immediately from the monopolist’s first-order condi-

tion. Moreover,

D′′
0 =

1

p0 − c
((p0 − c)D′′

0 + 2D′
0 − 2D′

0) =
D′

0

p0 − c

(
r′′0
D′

0

− 2

)

=
D0

(p0 − c)2
2α− 1

α
.

Finally,

D′′′
0 =

1

p0 − c
(r′′′0 − 3D′′

0)

=
1

p0 − c

(
1

2

r′′′0
r′′0

2r′′0 − 3D′′
0

)

=
1

p0 − c

((
1

2

r′′′0
r′′0

−
D′′

0

D′
0

)

2r′′0 + 2
D′′

0

D′
0

r′′0 − 3D′′
0

)
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=
1

p0 − c

(

−β
r′′0
α2

+ 2
D′′

0

D′
0

r′′0 − 3D′′
0

)

=
1

p0 − c

[

−
β

α3
D′

0 +

(
2

α
− 3

)

D′′
0

]

=
D0

(p0 − c)3

[
β(p0 − c)

α3
+

(2− 3α)(2α− 1)

α2

]

.

Third-order Taylor approximation of λ and π(p, w).

Lemma C.3.7. In the neighborhood of λ = 0, we have:

λ =
9

16
α

w̃2

(p0 − c)2
+

9

64

(

5α− 3α2 +
3

2
β(p0 − c)

)
w̃3

(p0 − c)3
+ o(w̃3),

π(p, w) = r0 −D0w̃ +
D0

p0 − c

α

2
w̃2 +

D0

(p0 − c)2

[

−
1

6
(2α− 1)α +

1

6
β(p0 − c)

]

w̃3 + o(w̃3).

Proof. Solving out for λ in equation (34) yields:

λ =
π(p, w)− π(p, w)

π(p, w) + π(p, w)
.

We seek third-order Taylor approximations of π(w̃) ≡ π(p, c + w̃) and π(w̃) ≡ π(p, c + w̃).

To ease notation, we define p̃0 ≡ p0 − c.

Applying Lemma C.3.3, we have:

π(w̃) =

(

p̃0 + (α− 1)w̃ +
1

2
βw̃2 + δw̃3

)

D

(

p0 + αw̃ +
1

2
βw̃2 + δw̃3

)

+ o(w̃3)

=

(

p̃0 + (α− 1)w̃ +
1

2
βw̃2 + δw̃3

)

×

(

D0 +D′
0

[

αw̃ +
1

2
βw̃2 + δw̃3

]

+
D′′

0

2

[

αw̃ +
1

2
βw̃2

]2

+
D′′′

0

6
α3w̃3

)

+ o(w̃3)

= p̃0D0 −D0w̃ + p̃0

[

D′′
0

2

[

αw̃ +
1

2
βw̃2

]2

+
D′′′

0

6
α3w̃3

]

+D′
0

(

(α− 1)w̃ +
1

2
βw̃2

)(

αw̃ +
1

2
βw̃2

)

+
D′′

0

2
(α− 1)α2w̃3 + o(w̃3)

= r0 −D0w̃ +

[

p̃0
D′′

0

2
α2 +D′

0α(α− 1)

]

w̃2

+

[

p̃0
D′′

0

2
αβ + p̃0

D′′′
0

6
α3 −D′

0

(

−αβ +
1

2
β

)

+
D′′

0

2
(α− 1)α2

]

w̃3 + o(w̃3),

79



which, using Lemma C.3.6, can be further simplified to

π(w̃) = r0 −D0w̃ +
D0

p̃0

[
1

2
(2α− 1)α− α(α− 1)

]

w̃2 +
D0

p̃20

[

(2α− 1)

(
1

2
(α− 1)α +

1

2
βp̃0

)

−
1

2
βp̃0(2α− 1) +

1

6
βp̃0 +

1

6
α(2− 3α)(2α− 1)

]

w̃3 + o(w̃3)

= r0 −D0w̃ +
D0

p̃0

α

2
w̃2 +

D0

p̃20

[
2α− 1

6
(3α(α− 1) + α(2− 3α)) +

1

6
βp̃0

]

w̃3 + o(w̃3)

= r0 −D0w̃ +
D0

p̃0

α

2
w̃2 +

D0

p̃20

[

−
1

6
(2α− 1)α +

1

6
βp̃0

]

w̃3 + o(w̃3).

We also have:

π(w̃) =
(

p̃0 −
(α

2
+ 1
)

w̃ + γw̃2 + ϵw̃3
)

D
(

p0 −
α

2
w̃ + γw̃2 + ϵw̃3

)

+ o(w̃3)

=
(

p̃0 −
(α

2
+ 1
)

w̃ + γw̃2 + ϵw̃3
)

×

(

D0 +D′
0

[

−
α

2
w̃ + γw̃2 + ϵw̃3

]

+
D′′

0

2

[

−
α

2
w̃ + γw̃2

]2

−
D′′′

0

48
α3w̃3

)

+ o(w̃3)

= r0 −D0w̃ + p̃0

[
D′′

0

2

[

−
α

2
w̃ + γw̃2

]2

−
D′′′

0

48
α3w̃3

]

+D′
0

(

−
(

1 +
α

2

)

w̃ + γw̃2
)(

−
α

2
w̃ + γw̃2

)

−
D′′

0

2

(

1 +
α

2

) α2

4
w̃3 + o(w̃3)

= r0 −D0w̃ +

[

p̃0
D′′

0

8
α2 +D′

0

α

2

(

1 +
α

2

)]

w̃2

+

[

−p̃0
D′′

0

2
αγ − p̃0

D′′′
0

48
α3 −D′

0 (1 + α) γ −
D′′

0

16
α2(2 + α)

]

w̃3 + o(w̃3),

which, using again Lemma C.3.6, simplifies to

π(w̃) = r0 −D0w̃ +
D0

p̃0

[
1

8
α(2α− 1)−

α

2
−
α2

4

]

w̃2 +
D0

p̃20

[

−
(2α− 1)

2
γp̃0

−
1

48
(βp̃0 + α(2− 3α)(2α− 1)) + (1 + α)γp̃0 −

2α− 1

16
α(2 + α)

]

w̃3 + o(w̃3)

= r0 −D0w̃ −
D0

p̃0

5

8
αw̃2 +

D0

p̃20

[
3

2
γp̃0 −

1

48
βp̃0 −

1

6
α(2α− 1)

]

w̃3 + o(w̃3)

= r0 −D0w̃ −
D0

p̃0

5

8
αw̃2 +

D0

p̃20

[

−
15

64
βp̃0 +

9

32
α(3α− 1)−

1

48
βp̃0 −

1

6
α(2α− 1)

]

w̃3

+ o(w̃3)

= r0 −D0w̃ −
D0

p̃0

5

8
αw̃2 +

D0

p̃20

[

−
49

192
βp̃0 +

α

96
(49α− 11)

]

w̃3 + o(w̃3).
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Hence,

π(w̃)− π(w̃) =
D0

p̃0

9

8
αw̃2 +

D0

p̃20

9

32

(

α− 3α2 +
3

2
βp̃0

)

w̃3 + o(w̃3)

and π(w̃) + π(w̃) = 2r0 − 2D0w̃ + o(w̃). It follows that

λ =

9
16
α w̃

2

p̃20
+ 9

64

(
α− 3α2 + 3

2
βp̃0
)
w̃3

p̃30

1− w̃
p̃0

+ o(w̃3)

=
9

16
α
w̃2

p̃20
+

9

64

(

5α− 3α2 +
3

2
βp̃0

)
w̃3

p̃30
+ o(w̃3).

Lemma C.3.7 implies that o(λk) = o(w̃2k) (and vice versa) for any k ≥ 0, and that

w̃2 =
16

9

(p0 − c)2

α
λ+ o(λ).

C.3.3 Proof of Proposition 9

It follows from equation (45) that ∆CS has the same sign as

Ψ ≡ −4λ

∫ p

p0

D(p)dp+ (1 + λ)2
∫ p

p

D(p)dp− (1− λ)2π(w̃)2
∫ p

p

dp

(p− w)2D(p)
,

where π(w̃) ≡ π(p, w̃+ c). We seek a fourth-order Taylor approximation of Ψ. As λ is second

order in w̃, we have that

(1 + λ)2 = 1 + 2λ+ o(w̃3) and (1− λ)2 = 1− 2λ+ o(w̃3),

which implies that

Ψ = 2λ

≡A
︷ ︸︸ ︷(
∫ p

p

D(p)dp+ π(w̃)2
∫ p

p

dp

(p− w)2D(p)
− 2

∫ p

p0

D(p)dp

)

+

∫ p

p

D(p)dp− π(w̃)2
∫ p

p

dp

(p− w)2D(p)
︸ ︷︷ ︸

≡B

+o(w̃4).

As λ is second order, we require a second-order approximation of A and a fourth-order

approximation of B.
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Approximation of B. Put

B1 =

∫ p

p

D(p)dp and B2 =

∫ p

p

dp

(p− w)2D(p)
,

and note that B = B1 − π(w̃)2B2.

We start by approximating B1 at the fourth order:

B1 = D0(p− p) +
D′

0

2

(
(p− p0)

2 − (p0 − p)2
)
+
D′′

0

6

(
(p− p0)

3 + (p0 − p)3
)

+
D′′′

0

24

(
(p− p0)

4 − (p0 − p)4
)
+ o(w̃4)

= D0(p− p)−
D0

p̃0

1

2

([

αw̃ +
1

2
βw̃2 + δw̃3

]2

−
[α

2
w̃ − γw̃2 − ϵw̃3

]2
)

+
D0

p̃20

2α− 1

6α

([

αw̃ +
1

2
βw̃2

]3

+
[α

2
w̃ − γw̃2

]3
)

+
D0

p̃30

5

128
α [α(2α− 1)(2− 3α) + βp̃0] w̃

4 + o(w̃4),

which further simplifies to

B1 = D0(p− p)−
D0

p̃0

1

2

(
3

4
α2w̃2 + α(γ + β)w̃3 +

[
1

4
β2 − γ2 + 2αδ + αϵ

]

w̃4

)

+
D0

p̃20

2α− 1

6α

(
9

8
α3w̃3 − 3α2

(

−
1

2
β +

γ

4

)

w̃4

)

+
D0

p̃30

5

128
α [α(2α− 1)(2− 3α) + βp̃0] w̃

4 + o(w̃4)

= D0(p− p)−
D0

p̃0

3

8
α2w̃2 +

D0

p̃20
α

[
3

16
α(2α− 1)−

1

2
βp̃0 −

γ

2
p̃0

]

w̃3

+
D0

p̃30

[
1

2

(

γ2 −
1

4
β2 − 2αδ − αϵ

)

p̃20 +
5

128
α2(2α− 1)(2− 3α)

+
5

128
αβp̃0 −

α(2α− 1)

2

(

−
1

2
β +

γ

4

)

p̃0

]

w̃4 + o(w̃4). (79)

Applying Lemma C.1.3 to B2, we obtain:

B2 =
1

D0

∫ p

p

dp

(p− w)2
−
D′

0

D2
0

∫ p

p

p− p0
(p− w)2

dp+

(
(D′

0)
2

D3
0

−
1

2

D′′
0

D2
0

)∫ p

p

(p− p0)
2

(p− w)2
dp

+

(
D′

0D
′′
0

D3
0

−
(D′

0)
3

D4
0

−
1

6

D′′′
0

D2
0

)∫ p

p

(p− p0)
3

(p− w)2
dp+ o(w̃4)
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=
1

D0

=B0
2

︷ ︸︸ ︷
∫ p

p

dp

(p− w)2
+

1

p̃0D0

=B1
2

︷ ︸︸ ︷
∫ p

p

p− p0
(p− w)2

dp+
1

p̃20D0

1

2α

=B2
2

︷ ︸︸ ︷
∫ p

p

(p− p0)
2

(p− w)2
dp

+
1

p̃30D0

2α− α2 − βp̃0
6α3

∫ p

p

(p− p0)
3

(p− w)2
dp

︸ ︷︷ ︸

=B3
2

+o(w̃4).

We require a fourth-order approximation for each of the above integrals.21 As p − w =

p− p0 − w̃ + p̃0, we have:

B0
2 =

1

p̃20

∫ p

p

1

1 + 2
p̃0
(p− p0 − w̃) + 1

p̃20
(p− p0 − w̃)2

dp

=
1

p̃20

∫ p

p

[

1−

(
2

p̃0
(p− p0 − w̃) +

1

p̃20
(p− p0 − w̃)2

)

+

(
2

p̃0
(p− p0 − w̃) +

1

p̃20
(p− p0 − w̃)2

)2

−

(
2

p̃0
(p− p0 − w̃) +

1

p̃20
(p− p0 − w̃)2

)3
]

dp+ o(w̃4) (by Lemma C.1.3)

=
1

p̃20

∫ p

p

[

1−
2

p̃0
(p− p0 − w̃) +

3

p̃20
(p− p0 − w̃)2 −

4

p̃30
(p− p0 − w̃)3

]

dp+ o(w̃4)

=
p− p

p̃20
−

1

p̃30

[

(p− p0 − w̃)2 −
(
p− p0 − w̃

)2
]

+
1

p̃40

[

(p− p0 − w̃)3 −
(
p− p0 − w̃

)3
]

−
1

p̃50

[

(p− p0 − w̃)4 −
(
p− p0 − w̃

)4
]

+ o(w̃4)

=
p− p

p̃20
−

1

p̃30

[(

(α− 1)w̃ +
1

2
βw̃2 + δw̃3

)2

−
(

−
(α

2
+ 1
)

w̃ + γw̃2 + ϵw̃3
)2
]

+
1

p̃40

[(

(α− 1)w̃ +
1

2
βw̃2

)3

+
((α

2
+ 1
)

w̃ − γw̃2
)3
]

−
1

p̃50

[

(α− 1)4 −
(α

2
+ 1
)4
]

w̃4 + o(w̃4) (by Lemmas C.3.3 and C.3.5)

=
p− p

p̃20
+

(

3α−
3

4
α2

)
w̃2

p̃30
+

[
9

2
α−

9

4
α2 +

9

8
α3 − (2 + α)γp̃0 + (1− α)βp̃0

]
w̃3

p̃40

+

[[

γ2 −
1

4
β2 − 2(α− 1)δ − (2 + α)ϵ

]

p̃20 − 3

(

−
1

2
(α− 1)2β +

(α

2
+ 1
)2

γ

)

p̃0

+6α−
9

2
α2 +

9

2
α3 −

15

16
α4

]
w̃4

p̃50
+ o(w̃4).

21Although those integrals can be computed in closed form, it is less cumbersome to first approximate the
integrands at the third order.
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For the second integral, we have:

B1
2 =

1

p̃20

∫ p

p

p− p0
1 + 2

p̃0
(p− p0 − w̃) + 1

p̃20
(p− p0 − w̃)2

dp

=
1

p̃20

∫ p

p

(p− p0)

[

1−
2

p̃0
(p− p0 − w̃) +

3

p̃20
(p− p0 − w̃)2

]

dp

+ o(w̃4) (by Lemma C.1.3)

=
1

p̃20

∫ p

p

(p− p0)

[

1 +
2w̃

p̃0
+

3w̃2

p̃20
−

2

p̃0

(

1 +
3w̃

p̃0

)

(p− p0) +
3

p̃20
(p− p0)

2

]

dp+ o(w̃4)

=
1

p̃20

(

1 +
2w̃

p̃0
+

3w̃2

p̃20

)
1

2

[

(p− p0)
2 −

(
p− p0

)2
]

−
1

p̃30

(

1 +
3w̃

p̃0

)
2

3

[

(p− p0)
3 −

(
p− p0

)3
]

+
1

p̃40

3

4

[

(p− p0)
4 −

(
p− p0

)4
]

+ o(w̃4)

=
1

p̃20

(

1 +
2w̃

p̃0
+

3w̃2

p̃20

)
1

2

(
3

4
α2w̃2 + α(γ + β)w̃3 +

[
1

4
β2 − γ2 + 2αδ + αϵ

]

w̃4

)

−
1

p̃30

(

1 +
3w̃

p̃0

)
2

3

(
9

8
α3w̃3 − 3α2

(

−
1

2
β +

γ

4

)

w̃4

)

+
45

64
α4 w̃

4

p̃40
+ o(w̃4) (by Lemmas C.3.3 and C.3.5)

=
3

8
α2 w̃

2

p̃20
+

[
3

4
α2 −

3

4
α3 + α

(
γ

2
+
β

2

)

p̃0

]
w̃3

p̃30
+

[
9

8
α2 −

9

4
α3 +

45

64
α4

+α(γ + β)p̃0 + α2
(

−β +
γ

2

)

p̃0 +
1

2

[
1

4
β2 − γ2 + 2αδ + αϵ

]

p̃20

]
w̃4

p̃40
+ o(w̃4).

For the third integral, we have:

B2
2 =

1

p̃20

∫ p

p

(p− p0)
2

1 + 2
p̃0
(p− p0 − w̃) + 1

p̃20
(p− p0 − w̃)2

dp

=
1

p̃20

∫ p

p

(p− p0)
2

[

1−
2

p̃0
(p− p0 − w̃)

]

dp+ o(w̃4) (by Lemma C.1.3)

=
1

p̃20

∫ p

p

(p− p0)
2

[

1 +
2w̃

p̃0
−

2

p̃0
(p− p0)

]

dp+ o(w̃4)

=
1

p̃20

(

1 +
2w̃

p̃0

)
1

3

[
(p− p0)

3 − (p− p0)
3
]
−

1

p̃30

1

2

[
(p− p0)

4 − (p− p0)
4
]
+ o(w̃4)

=
1

p̃20

(

1 +
2w̃

p̃0

)
1

3

[
9

8
α3w̃3 − 3α2

(

−
β

2
+
γ

4

)

w̃4

]

−
1

p̃30

15

32
α4w̃4

+ o(w̃4) (by Lemmas C.3.3 and C.3.5)

=
1

3

[
9

8
α3 w̃

3

p̃20
+

(
9

4
α3 − 3α2

(

−
β

2
+
γ

4

)

p̃0

)
w̃4

p̃30

]

−
15

32
α4 w̃

4

p̃30
+ o(w̃4)
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=
3

8
α3 w̃

3

p̃20
+

[
3

4
α3 −

15

32
α4 − α2

(

−
β

2
+
γ

4

)

p̃0

]
w̃4

p̃30
+ o(w̃4).

Finally, applying again Lemmas C.1.3, C.3.3, and C.3.5, the fourth integral can be ap-

proximated as:

B3
2 =

1

p̃20

∫ p

p

(p− p0)
3dp+ o(w̃4) =

1

p̃20

1

4

[
(p− p0)

4 − (p− p0)
4
]
+ o(w̃4) =

15

64
α4 w̃

4

p̃20
+ o(w̃4).

Combining those approximations allows us to approximate B2 as:

B2 =
1

r0

(
p− p

p̃0
+ b22

w̃2

p̃20
+ b32

w̃3

p̃30
+ b42

w̃4

p̃40

)

+ o(w̃4), (80)

where

b22 = 3α−
3

8
α2,

b32 =
9

2
α−

21

16
α2 +

3

8
α3 − 2

(

γ −
β

2

)

p̃0 − α
β

2
p̃0 −

1

2
αγp̃0,

b42 =

[
1

2

(

γ2 −
1

4
β2

)

+ (2− α)δ −
(

2 +
α

2

)

ϵ

]

p̃20 −

(

−α2 +
229

64
α− 3

)
β

2
p̃0

−

(
1

4
α2 +

17

8
α + 3

)

γp̃0 + 6α−
187

64
α2 +

253

128
α3 −

15

64
α4.

Next, we use our approximation of B2 to approximate π(w̃)2B2. By Lemma C.3.7, we

have:

π(w̃)2 = r20

(

1−
w̃

p̃0
+
α

2

w̃2

p̃20
−

[
1

6
(2α− 1)α−

1

6
βp̃0

]
w̃3

p̃30

)2

+ o(w̃3)

= r20

(

1− 2
w̃

p̃0
+ α

w̃2

p̃20
−

[
1

3
(2α− 1)α−

1

3
βp̃0

]
w̃3

p̃30
+

[

−
w̃

p̃0
+
α

2

w̃2

p̃20

]2
)

+ o(w̃3)

= r20

(

1− 2
w̃

p̃0
+ (α + 1)

w̃2

p̃20
−

2

3

[

α(α + 1)−
β

2
p̃0

]
w̃3

p̃30

)

+ o(w̃3).

The approximation of the first term in equation (80) multiplied by π(w̃)2 is:

p− p

p̃20D0

π(w̃)2 = D0

(
p− p

)
(

1− 2
w̃

p̃0
+ (1 + α)

w̃2

p̃20
−

2

3

[

α(α + 1)−
β

2
p̃0

]
w̃3

p̃30

)

+ o(w̃4)

= D0

(

p− p− 2
w̃

p̃0

(
3

2
αw̃ −

(

−
β

2
+ γ

)

w̃2 + (δ − ϵ)w̃3

)

+(1 + α)

[
3

2
αw̃ −

(

−
β

2
+ γ

)

w̃2

]
w̃2

p̃20
− α

[

α(α + 1)−
β

2
p̃0

]
w̃4

p̃30

)

+ o(w̃4)
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= D0

(

p− p− 3α
w̃2

p̃0
+

[
3

2
α(1 + α) + 2

(

−
β

2
+ γ

)

p̃0

]
w̃3

p̃20

+

[

2(ϵ− δ)p̃20 −

[

−
β

2
+ γ − αβ + αγ

]

p̃0 − α2(α + 1)

]
w̃4

p̃30

)

+ o(w̃4),

where we have used Lemmas C.3.3 and C.3.5 to obtain the second line. The second term is:

[

3α−
3

8
α2

]
w̃2

p̃30D0

π(w̃)2 = D0

[

3α−
3

8
α2

]
w̃2

p̃0

(

1− 2
w̃

p̃0
+ (α + 1)

w̃2

p̃20

)

+ o(w̃4)

= D0

([

3α−
3

8
α2

]
w̃2

p̃0
− 2

[

3α−
3

8
α2

]
w̃3

p̃20
+ (α + 1)

[

3α−
3

8
α2

]
w̃4

p̃30

)

+ o(w̃4).

The third term is:

b32
w̃3

p̃40D0

π(w̃)2 = D0

([
9

2
α−

21

16
α2 +

3

8
α3 − (2γ − β)p̃0 − α

β

2
p̃0 −

1

2
αγp̃0

]
w̃3

p̃40

+

[

−9α +
21

8
α2 −

3

4
α3 + 2(2γ − β)p̃0 + αβp̃0 + αγp̃0

]
w̃4

p̃50

)

+ o(w̃4).

Combining these three terms yields:

B2π(w̃)
2 = D0

(

p− p+ b̃22
w̃2

p̃0
+ b̃32

w̃3

p̃20
+ b̃42

w̃4

p̃30

)

+ o(w̃4),

where

b̃22 = −
3

8
α2

b̃32 =
3

8
α3 +

15

16
α2 −

1

2
α (β + γ) p̃0

b̃42 =

[
1

2

(

γ2 −
1

4
β2

)

− αδ −
α

2
ϵ

]

p̃20 +

[
α2

2
+

27

128
α

]

βp̃0 −

[
1

4
α2 +

17

8
α

]

γp̃0

+
85

64
α2 −

19

128
α3 −

15

64
α4.

Combining the approximations of B1 and π(w̃)2B2 yields:

B = D0

(

−
9

8
α2 w̃

3

p̃20
+

[

−
45

32
α2 +

27

64
α3 −

27

64
αβp̃0 +

9

4
αγp̃0

]
w̃4

p̃30

)

+ o(w̃4).

Using the expression we derived above for γ from Lemma C.3.5, we finally obtain:

B = D0

(

−
9

8
α2 w̃

3

p̃20
+

9

64
α

[

−13α + 12α2 −
11

2
βp̃0

]
w̃4

p̃30

)

+ o(w̃4).
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Approximation of A. There are three integrals in the definition of A. We have shown

above (see the approximation of B1) that the first integral can be approximated as

∫ p

p

D(p)dp = D0

(

p− p−
3

8
α2 w̃

2

p̃0

)

+ o(w̃2).

In addition (see the approximation of π(w̃)2B2), the second integral can be approximated as

π(w̃)2
∫ p

p

dp

(p− w)2D(p)
= D0

(

p− p−
3

8
α2 w̃

2

p̃0

)

+ o(w̃2),

i.e., the first and second integrals coincide at the second order. The third can be easily

approximated as,

∫ p

p0

D(p)dp = D0

(

p− p0 −
1

2p̃0
(p− p0)

2

)

+ o(w̃2) = D0

(

p− p0 −
1

2
α2 w̃

2

p̃0

)

+ o(w̃2),

where we have used Lemma C.1.3 to obtain the first equality and Lemma C.3.3 to obtain

the second one.

Combining these three approximations yields:

A = 2D0

(

p0 − p+
1

8
α2 w̃

2

p̃0

)

+ o(w̃2)

= D0

(

αw̃ +

[
3

8
α−

7

8
α2 +

5

16
βp̃0

]
w̃2

p̃0

)

+ o(w̃2) (by Lemma C.3.5).

Combining this with Lemma C.3.7, we obtain:

2λA = D0

(
9

8
α
w̃2

p̃20
+

9

32

[

5α− 3α2 +
3

2
βp̃0

]
w̃3

p̃30

)(

αw̃ +

[
3

8
α−

7

8
α2 +

5

16
βp̃0

]
w̃2

p̃0

)

+ o(w̃4)

= D0

(
9

8
α2 w̃

3

p̃20
+

9

64
α

[

13α− 13α2 +
11

2
βp̃0

]
w̃4

p̃30

)

+ o(w̃4).

Approximation of ∆CS. Combining the Taylor approximations of 2λA and B, we obtain

a Taylor approximation of Ψ = 2λA+B:

Ψ = −
9

64
D0α

3 w̃
4

p̃30
+ o(w̃4).

The approximation of consumer surplus is therefore given by

∆CS =
Ψ

4λ
= −

1

16
D0α

2 w̃
2

p̃0
+ o(w̃2),
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where we have used Lemma C.3.7. Using again Lemma C.3.7, we obtain:

∆CS = −
1

9
r0αλ+ o(λ).

Hence, ∆CS is strictly negative when λ (and thus w̃) is sufficiently close to zero. This

means that, regardless of the demand function, consumer surplus is higher under dual pricing

provided λ is sufficiently low. Since the profit of the manufacturer is higher under dual pricing

(see Propositions 1 and 2), we have that ∆Π < 0 when λ ≃ 0, which implies that aggregate

surplus is also higher under dual pricing provided λ is sufficiently low. This concludes the

proof of Proposition 9.

C.4 Proofs of Welfare Results When λ is High and s > ŝ

In this appendix, we study the welfare effects of banning dual pricing when λ is close to 1 and

s > ŝ, thus proving Proposition 10 for the case of high search costs. We derive the Taylor

approximations of ∆CS and ∆AS (equations (45) and (47), respectively) with respect to

(1− λ)2 log(1− λ) when λ ≃ 1.

We proceed as follows. In Section C.4.1, we study the limiting equilibrium behavior when

λ tends to 1. In Section C.4.2, we derive some auxiliary Taylor approximations required to

approximate ∆CS and ∆AS. Section C.4.3 is devoted to the approximations of ∆CS and

∆AS. Additionally, in Section C.4.4, we explore the welfare effect of banning dual pricing

for high λ in the online and offline markets separately.

C.4.1 Basic Properties of the Equilibrium for High λ

The following lemma applies regardless of whether s is high or low:

Lemma C.4.1. Let s ̸= ŝ. Under uniform pricing, the limiting equilibrium behavior as λ

goes to 1 is as follows:

lim
λ→1

w(s, λ) = lim
λ→1

p(s, λ) = p0, lim
λ→1

p(s, λ) = p̃,

where p̃ is equal to p1 ≡ pm(p0) if
∫ pm(p0)

p0
D(p)dp < s, and solves

∫ p̃

p0
D(p)dp = s otherwise.

This implies that

lim
λ→1

∆CS(λ, s) = lim
λ→1

∆AS(λ, s) = 0.

For λ high enough, the derivative p′(w(s, λ)) exists; moreover, the upper bound of the support

is equal to the monopoly price if s > ŝ, and solves H(p, w(s, λ)) = s if s < ŝ.
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Proof. Note first that p− w tends to 0 as λ→ 1, as

0 ≤ p− w =
1− λ

1 + λ

π(p, w)

D(p)
≤

1− λ

1 + λ

r0
D(pm(w))

−→
λ→1

0,

where we have used equation (34) and the inequality follows as w ∈ [c, w].

Next, assume for a contradiction that the equilibrium w does not converge to p0 as λ tends

to 1. Then, there exists a sequence (λn)n≥0 that tends to 1 and such that the associated

sequence of equilibrium wholesale prices (wn)n≥0 remains bounded away from p0. As the

latter sequence is bounded, we extract a subsequence that converges to some w̌ ̸= p0. In the

following, all limits will be taken along that convergent subsequence. This implies that the

associated sequence of equilibrium lower bounds (pn)n≥0 tends to w̌.

Let us show that the associated sequence of CDFs of prices, (F n)n≥0 converges weakly to

a unit mass on w̌. Let p < w̌. Then, for n high enough, pn > p, and so F n(p) = 0, which

does converge to 0 as n goes to infinity. Next, let p > w̌. Then, for n high enough, F n(p) > 0

and π(p, wn) is bounded away from 0, and so

F n(p) = min

(

1−
1− λn

2λn

[
π(pn, wn)

π(p, wn)
− 1

]

, 1

)

−→
n→∞

1.

It follows from the weak convergence of (F n)n≥0 and the continuity of r(·) that the manufac-

turer’s expected profit converges to r(w̌) < r0 as n goes to infinity.

Note however that, for every n, the manufacturer could set a wholesale price of p0, which

would result in an equilibrium CDF of prices denoted by F n
0 (·) and a profit of

Πn
0 =

∫

r(p)d
[
λn(1− (1− F n

0 (p))
2) + (1− λnF n

0 (p))
]
.

Thus, the manufacturer’s equilibrium expected profit must be at least Πn
0 . By Proposi-

tion 2(b) in Stahl (1989), (F n
0 )n≥0 converges weakly to a unit mass on p0 as n goes to infinity,

implying that Πn
0 −→
n→∞

r0, which contradicts the fact that the manufacturer’s equilibrium

profit tends to r(w̌) < r0 as n tends to infinity.

Hence, the equilibrium w converges to p0 as λ tends to 1. Using the same argument as

above, it follows that the equilibrium CDF of prices converges weakly to a unit mass on p0

as λ tends to 1. This implies that ∆CS and ∆AS both converge to 0 as λ tends to 1.

Finally, we turn to the properties of the upper bound of the support, p. We have:

H(pm(w), w) =

∫ pm(w)

p(pm(w),w)

D(p)

(

1−
1− λ

2λ

(
π(pm(w), w)

π(p, w)
− 1

))

dp
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=
1 + λ

2λ

∫ pm(w)

p(pm(w),w)

D(p)dp−
1− λ

2λ
π(pm(w), w) log

p− w

p− w

=
1 + λ

2λ

∫ pm(w)

p(pm(w),w)

D(p)dp−
1− λ

2λ

(

log
1 + λ

1− λ
+ log

D(p)

D(pm(w))

)

π(pm(w), w)

−→
λ→1

∫ pm(p0)

p0

D(p)dp = ŝ.

By Lemma C.1.1, it follows that, for λ close enough to 1, p′(w) exists (since H(pm(w), w) ̸= s)

and p is equal to pm(w) if s > ŝ, and solves H(p, w) = s if s < ŝ. This immediately implies

that, if s > ŝ, then p −→
λ→1

pm(p0) = p̃.

Suppose instead that s < ŝ. Then, for λ high enough, we have

∫ p

p

D(p)F (p, w)dp = s =

∫ p̃

p0

D(p)dp.

Rearranging terms and taking absolute values yields:

∣
∣
∣
∣

∫ p

p̃

D(p)F (p, w)dp

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ p0

p

D(p)F (p, w)dp+

∫ p̃

p0

D(p) [F (p, w)− 1] dp

∣
∣
∣
∣
∣
.

As λ goes to 1, the first integral on the right-hand side tends to 0, as the integrand is

bounded and the p − p0 tends to 0. By Lebesgue’s dominated convergence theorem, the

second integral on the right-hand side also tends to 0, as the integrand is again bounded and

converges pointwise to 0 on (p0, p̃]. It follows that

|p− p̃|F (p̃, w)D(pm(w)) ≤

∣
∣
∣
∣

∫ p

p̃

D(p)F (p, w)dp

∣
∣
∣
∣
−→
λ→1

0,

implying that p −→
λ→1

p̃.

C.4.2 Taylor Approximations of the Wholesale Price and the Upper and Lower

Bounds of the Support

We introduce new notation: D1 ≡ D(p1),D
′
1 ≡ D′(p1), r

′′
1 ≡ ∂2π(p, p0)/∂p

2, r′′′1 ≡ ∂3π(p, p0)/∂p
3,

α1 =
dpm(w)

dw

∣
∣
∣
∣
w=p0

=
D′

1

r′′1
,

and β1 =
d2pm(w)

dw2

∣
∣
∣
∣
w=p0

= α2
1

(
2D′′

1

D′
1

−
r′′′1
r′′1

)

.
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Taylor approximation of p0 −w. Below, we use the manufacturer’s first-order condition

(equation (42)) to obtain approximations of p0 − w. Let ϕ(p) = r′(p)/D(p)2, and note that

the first-order condition can be rewritten as

∫ p

p

ϕ(p)
p− p

(p− w)3
dp = 0. (81)

Put ϕ′
0 ≡ ϕ′(p0) = r′′0/D

2
0 and

ϕ′′
0 ≡ ϕ′′(p0) =

r′′′0
D2

0

− 4
D′

0r
′′
0

D3
0

= ϕ′
0

(
r′′′0
r′′0

− 4
D′

0

D0

)

.

Lemma C.4.2. For s > ŝ, in the neighborhood of λ = 1, we have

p0 − w = 2(p− w) +

(
2

p1 − p0
−
ϕ′′
0

ϕ′
0

)

(p− w)2 log(p− w) + o
(
(p− w)2 log(p− w)

)
. (82)

Proof. Let τ ≡ (p0−w)/(p−w). We begin by showing that τ −→
λ→1

2. Applying Lemma C.1.3

to equation (81), we obtain the existence of a bounded function M(λ) such that in the

neighborhood of λ = 1,

ϕ′
0

∫ p

p

(p− p0)(p− p)

(p− w)3
dp

︸ ︷︷ ︸

≡I1

+M(λ)

∫ p

p

(p− p0)
2(p− p)

(p− w)3
dp

︸ ︷︷ ︸

≡I2

= 0.

We have:

I1 =

∫ p

p

−(p− w)(p0 − w)− (p− w)2 + (p+ p0 − 2w)(p− w)

(p− w)3
dp

=
(p− w)(p0 − w)

2

(
1

(p− w)2
−

1

(p− w)2

)

− log
p− w

p− w
+ (p+ p0 − 2w)

(
1

p− w
−

1

p− w

)

=
1

p− w

[
p− w

2

(
(p− w)(p0 − w)

(p− w)2
− τ

)

−(p− w) log
p− w

p− w
+ (p+ p0 − 2w)

(

1−
p− w

p− w

)]

,

It follows from Lemma C.4.1 that

(p− w)I1 = p1 − p0 −
p− w

2
τ + o(1).
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Moreover,

I2 =

∫ p

p

[(p− w)2 − 2(p0 − w)(p− w) + (p0 − w)2] [(p− w)− (p− w)]

(p− w)3
dp

=

∫ p

p

[

−1 +
p+ 2p0 − 3w

p− w
− (p0 − w)

2p+ p0 − 3w

(p− w)2
+

(p0 − w)2(p− w)

(p− w)3

]

dp

= − (p− p) + (p+ 2p0 − 3w) log
p− w

p− w
+ (p0 − w)(2p+ p0 − 3w)

[
1

p− w
−

1

p− w

]

+ (p0 − w)2(p− w)
1

2

[
1

(p− w)2
−

1

(p− w)2

]

=
1

p− w

(

−(p− p)(p− w) + (p+ 2p0 − 3w)(p− w) log
p− w

p− w

+(p0 − w)(2p+ p0 − 3w)

[
p− w

p− w
− 1

]

+ (p0 − w)(p− w)
1

2

[

τ −
(p0 − w)(p− w)

(p− w)2

])

,

which implies by Lemma C.4.1 that

(p− w)I2 =
p− w

2
(p0 − w)τ + o(1).

Plugging the approximations of I1 and I2 into the first-order condition, we obtain:

ϕ′
0(p1 − p0) +

[

−ϕ′
0

p− w

2
+M(λ)

p− w

2
(p0 − w)

]

τ + o(1) = 0.

As the term inside square brackets tends to −ϕ′
0(p1 − p0)/2 as λ goes to 1, it follows that

τ −→
λ→0

2.

This implies that

p0 − w = 2(p− w) + o(p− w).

Hence, a little-o of p0 − w is a little-o of p− w (and vice versa).

Next, we obtain a higher-order approximation of τ (and thus of p0 −w). Applying again

Lemma C.1.3 to equation (81), we obtain the existence of a bounded function N(λ) such

that in the neighborhood of λ = 1,

ϕ′
0(p− w)I1 +

ϕ′′
0

2
(p− w)I2 + (p− w)N(λ)

∫ p

p

(p− p0)
3(p− p)

(p− w)3
dp

︸ ︷︷ ︸

≡I3

= 0. (83)

Using the above expression for I1 and the approximation of p0 − w yields:

(p− w)I1 = −
p− w

2
τ + (p− w) log(p− w) + (p+ p0 − 2w) + o

(
(p− w) log(p− w)

)
,
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where we have used the fact that a little-o of (p−w) is a little-o of (p−w) log(p−w). Next,

we require an approximation of p − w, which by Lemma C.4.1, is equal to pm(w) − w. We

have:

p− w = pm(p0 + (w − p0))− p0 + (p0 − w)

= pm(p0)− p0 + pm′(p0)(w − p0)− (w − p0) + o(w − p0)

= p1 − p0 + (1− α1)(p0 − w) + o(p0 − w)

= p1 − p0 + 2(1− α1)(p− w) + o(p− w)

= p1 − p0 + o
(
(p− w) log(p− w)

)
.

Plugging this into the approximation of I1 yields:

(p− w)I1 = −
p1 − p0

2
τ + (p− w) log(p− w) + (p1 − p0) + o

(
(p− w) log(p− w)

)
.

Next, we approximate the second term in equation (83). Using the above expression for

I2 and the approximations of p0 − w and p− w yields:

(p− w)I2 = − (p1 − p0)(p− w) log(p− w) + o
(
(p− w) log(p− w)

)
.

Finally, we argue that I3 is bounded in the neighborhood of λ = 1. We have

|I3| ≤

∫ p

p

∣
∣
∣
∣

p− p0
p− w

∣
∣
∣
∣

3

(p− p)dp ≤ max
p∈[p,p]

∣
∣
∣
∣

p− p0
p− w

∣
∣
∣
∣
pm(w)2.

As the function p ∈ [p, p] 7→ (p− p0)/(p− w) is strictly increasing, we have that

max
p∈[p,p]

∣
∣
∣
∣

p− p0
p− w

∣
∣
∣
∣
= max

{
p0 − p

p− w
,
p− p0
p− w

}

−→
λ→1

1,

where we have used Lemma C.4.1 and the above approximation of p0−w to obtain the limit.

Hence, I3 is bounded and (p− w)I3 is a little-o of (p− w) log(p− w).

Putting together our approximations of I1, I2, and I3 yields the following approximation

of Equation (83):

−
p1 − p0

2
τ+(p−w) log(p−w)+p1−p0−

ϕ′′
0

2ϕ′
0

(p1−p0)(p−w) log(p−w)+o
(
(p− w) log(p− w)

)
= 0.

Rearranging terms, this means that

τ = 2 +

(
2

p1 − p0
−
ϕ′′
0

ϕ′
0

)

(p− w) log(p− w) + o
(
(p− w) log(p− w)

)
,
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and

p0 − w = 2(p− w) +

(
2

p1 − p0
−
ϕ′′
0

ϕ′
0

)

(p− w)2 log(p− w) + o
(
(p− w)2 log(p− w)

)
.

Approximation of π(p, w) and λ.

Lemma C.4.3. For s > ŝ, in the neighborhood of λ = 1, we have:

π(p, w)2 = (p1 − p0)
2D2

1 + 2(p1 − p0)D
2
1(p0 − w) + o

(
(p− w)2 log(p− w)

)
,

λ = 1− 2
D0

(p1 − p0)D1

(p− w) + o
(
(p− w)2 log(p− w)

)
,

(p− w)2 log(p− w) =
π2(p1, p0)

4D2
0

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)).

Proof. We begin by approximating p = pm(w):

p = pm(p0) + pm′(p0)(w − p0) +
1

2
pm′′(p0)(w − p0)

2 + o((w − p0)
2)

= p1 + α1(w − p0) +
1

2
β1(w − p0)

2 + o((p0 − w)2)

= p1 − α1(p0 − w) + o
(
(p− w)2 log(p− w)

)
,

where we have used the fact that (w−p0)
2 is a little-o of (p−w)2 log(p−w) (see Lemma C.4.2).

Next, we derive the approximation of π(w) ≡ π(p, w). We have:

π(w) = (p− w)D(p0 + p− p0)

= (p− w)
(
D0 +D′

0(p− p0)
)
+ o((p− w)2)

= (p− w)D0 + o
(
(p− w)2 log(p− w)

)
,

where we have again used Lemma C.4.2.

Next, we turn to the approximation of π(w) ≡ π(p, w). Using the above approximation

of p and Lemma C.4.2, we obtain:

p− w = p1 − p0 + (p− p1) + (p0 − w)

= p1 − p0 + (1− α1)(p0 − w) + o
(
(p− w)2 log(p− w)

)

and

D(p) = D(p1 + p− p1)

= D1 +D′
1(p− p1) +

D′′
1

2
(p− p1)

2 + o((p− p1)
2)

94



= D1 +D′
1(p− p1) + o

(
(p− w)2 log(p− w)

)

= D1 +
D1

p1 − p0
α1(p0 − w) + o

(
(p− w)2 log(p− w)

)
.

It follows that

π(w) = (p1 − p0)D1 +D1(p0 − w) + o
(
(p− w)2 log(p− w)

)
.

Next, we approximate λ:

λ =
π(w)− π(w)

π(w) + π(w)

= 1− 2
π(w)

π(w) + π(w)

= 1− 2
(p− w)D0 + o

(
(p− w)2 log(p− w)

)

(p1 − p0)D1 +D1(p0 − w) + (p− w)D0 + o
(
(p− w)2 log(p− w)

)

= 1− 2
D0

(p1 − p0)D1

(p− w) + o
(
(p− w)2 log(p− w)

)
.

Finally, we approximate (p− w)2 log(p− w) in terms of λ. Rewriting the above approxi-

mation of λ and using the fact that a little-o of p− w is a little-o of 1− λ, we have

p− w =
π(p1, p0)

2D0

(1− λ) + o(1− λ),

which implies that

(p− w)2 log(p− w) =

(
π(p1, p0)

2D0

)2

(1− λ)2 log(p− w) + o((1− λ)2 log(p− w))

=

(
π(p1, p0)

2D0

)2

(1− λ)2 log
(1− λ)π(w)

(1 + λ)D(p)

+ o

(

(1− λ)2 log
(1− λ)π(w)

(1 + λ)D(p)

)

=
π2(p1, p0)

4D2
0

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)),

where we have used equation (34) to obtain the second line and the fact that π(w)/((1 +

λ)D(p)) is bounded for λ close to 1 to obtain the third line.

C.4.3 Proof of Proposition 10 for s > ŝ

Consumer surplus approximation.
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Lemma C.4.4. For s > ŝ, in the neighborhood of λ = 1, we have

∆CS =
π2(p1, p0)

4r0α2

[
α(2− α)− β(p0 − c) + 2(p0 − c)α2µ1

]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Proof. It follows from equation (45) that ∆CS has the same sign as

Ψ ≡ −4λ

∫ p

p0

D(p)dp+ (1 + λ)2
∫ p

p

D(p)dp− (1− λ)2π(w)2
∫ p

p

dp

(p− w)2D(p)

= 4λ

∫ p0

p

D(p)dp+ (1− λ)2
∫ p

p

D(p)dp− (1− λ)2π(w)2
∫ p

p

dp

(p− w)2D(p)
,

where we have used the fact that (1 + λ)2 = (1− λ)2 + 4λ. We seek a Taylor approximation

of Ψ up to order (p− w)2 log(p− w).

By Lemma C.4.3,

(1− λ)2 =
4D2

0

(p1 − p0)2D2
1

(p− w)2 + o
(
(p− w)3 log(p− w)

)
,

and so (1−λ)2 is a little-o of (p−w)2 log(p−w). Hence, as the integral
∫ p

p
D(p)dp is bounded

when λ is close to 1, we have that

(1− λ)2
∫ p

p

D(p)dp = o
(
(p− w)2 log(p− w)

)
.

Next, we turn our attention to the term 4λ
∫ p0
p
D(p)dp. By Lemmas C.1.3 and C.4.2, the

integral can be approximated as

∫ p0

p

D(p)dp = D0(p0 − p)−
D′

0

2
(p0 − p)2 + o

(
(p0 − p)2

)

= D0(p0 − p) + o
(
(p− w)2 log(p− w)

)
,

where we have used Lemma C.4.2 to obtain the second line. Combining this with the ap-

proximation of λ in Lemma C.4.3 and using the fact that (p − w)(p0 − p) is a little-o of

(p− w)2 log(p− w), we obtain:

4λ

∫ p0

p

D(p)dp = 4D0(p0 − p) + o
(
(p− w)2 log(p− w)

)

= 4D0

(

p− w +

[
2

p1 − p0
−
ϕ′′
0

ϕ′
0

]

(p− w)2 log(p− w)

)

+ o
(
(p− w)2 log(p− w)

)
,
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where we have again used Lemma C.4.2.

Finally, we turn to the third term in the above expression for Ψ. By Lemma C.1.3, the

integral can be approximated as22

∫ p

p

dp

(p− w)2D(p)
=

1

D0

∫ p

p

dp

(p− w)2
−
D′

0

D2
0

∫ p

p

p− p0
(p− w)2

dp+O

(
∫ p

p

(p− p0)
2

(p− w)2
dp

)

=
1

D0

[
1

p− w
−

1

p− w

]

+
1

r0

[

log
p− w

p− w
+
p0 − w

p− w
−
p0 − w

p− w

]

+O(1)

=
1

D0

(
1

p− w
−

1

p0 − c
log(p− w)

)

+O(1),

where we have used Lemma C.4.2.

Combining this with the above Taylor approximation of (1− λ)2, we obtain:

(1− λ)2
∫ p

p

dp

(p− w)2D(p)
=

4D0

(p1 − p0)2D2
1

(

p− w −
1

p0 − c
(p− w)2 log(p− w)

)

+ o
(
(p− w)2 log(p− w)

)
,

where we have used the fact that a big-o of (p−w)2 is a little-o of (p−w)2 log(p−w), and a

little-o of (p−w)3(log(p−w))2 is also a little-o of (p−w)2 log(p−w). Combining this with

the approximation of π(p, w)2 from Lemma C.4.3, it follows that

(1− λ)2π(w)2
∫ p

p

dp

(p− w)2D(p)
=

4D0

(

p− w −
1

p0 − c
(p− w)2 log(p− w)

)

+ o
(
(p− w)2 log(p− w)

)
.

We thus obtain a Taylor approximation of Ψ:

Ψ = 4D0

[
2

p1 − p0
−
ϕ′′
0

ϕ′
0

+
1

p0 − c

]

(p− w)2 log(p− w) + o
(
(p− w)2 log(p− w)

)
.

Using the approximation of (p − w)2 log(p − w) from Lemma C.4.3 and the fact that

22To see why
∫ p

p

(p−p0)
2

(p−w)2 dp is bounded in the expression below, recall from the proof of Lemma C.4.2 that

∫ p

p

(p− p0)
2

(p− w)2
dp ≤ max

p∈[p,p]

(
p− p0
p− w

)2

(p− p) ≤ max

{(
p0 − p

p− w

)2

,

(
p− p0
p− w

)2
}

pm(w)

and that both terms within the second maximum are bounded when λ is close to 1.
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∆CS = Ψ/(4λ), we obtain:

∆CS =
π2(p1, p0)

4D0

[
2

p1 − p0
−
ϕ′′
0

ϕ′
0

+
1

p0 − c

]

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)).

Let us define

ζ ≡ (p0 − c)
ϕ′′
0

ϕ′
0

− 1−
2(p0 − c)

p1 − p0

and rewrite it as a function of the pass-through and its derivative:

ζ = (p0 − c)

(
r′′′0
r′′0

− 2
D′′

0

D′
0

+ 2
D′′

0

D′
0

− 4
D′

0

D0

)

− 1−
2(p0 − c)

p1 − p0

=
−β(p0 − c)

α2
− 2

2α− 1

α
+ 3−

2(p0 − c)

p1 − p0

= −1−
β(p0 − c)

α2
+ 2

(
1

α
−

p0 − c

p1 − p0

)

.

Thus,

∆CS =
π2(p1, p0)

4r0

[

−1−
β(p0 − c)

α2
+ 2

(
1

α
−

p0 − c

p1 − p0

)]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Defining µ1 = − 1
p1−p0

, we obtain the approximation in the statement of the lemma.

Producer surplus approximation.

Lemma C.4.5. For s > ŝ, in the neighborhood of λ = 1, we have

∆Π = −
π2(p1, p0)

4r0α
(1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Proof. The change in producer surplus is given by equation (46), which can be rewritten as

∆Π = Φ(λ)/(4λ), where

Φ(λ) ≡ 4λ (r(p)− r0) + (1− λ)2π(w)2
∫ p

p

r′(p)

D(p)2
dp

(p− w)2
− (1 + λ)2

(
r(p)− r(p)

)

= 4λ
(
r(p)− r0

)
+ (1− λ)2π(w)2

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
− (1− λ)2

(
r(p)− r(p)

)
.

The third term is clearly a little-o of (p − w)2 log(p − w), as r(p) − r(p) is bounded and
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(1− λ)2 = o
(
(p− w)2 log(p− w)

)
by Lemma C.4.3. The first term is also negligible, as

r(p)− r0 =
r′′0
2
(p− p0)

2 + o
(
(p− p0)

2
)
= o

(
(p− w)2 log(p− w)

)
,

where the second equality follows by Lemma C.4.2.

Using Lemma C.1.3, we obtain an approximation of the integral in the second term:23

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
=

r′′0
D2

0

∫ p

p

p− p0
(p− w)2

dp+O

(
∫ p

p

(p− p0)
2

(p− w)2
dp

)

=
r′′0
D2

0

[

log
p− w

p− w
+
p0 − w

p− w
−
p0 − w

p− w

]

+O(1)

= −
r′′0
D2

0

log(p− w) +O(1),

where the last line follows by Lemmas C.4.1 and C.4.2. Combining this with Lemma C.4.3,

we obtain:

(1− λ)2π(w)2
∫ p

p

r′(p)

D(p)2
dp

(p− w)2
= −4r′′0(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
.

As r′′0 = −D0/(α(p0 − c)), this implies that

Φ(λ) = 4
D0

p0 − c

1

α
(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
.

Combining this with approximation of (p−w)2 log(p−w) with respect to (1−λ)2 log(1−λ)

from Lemma C.4.3 proves the lemma.

Aggregate Surplus Approximation. Combining Lemmas C.4.4 and C.4.5, we obtain:

Lemma C.4.6. For s > ŝ, in the neighborhood of λ = 1, we have

∆AS =
π2(p1, p0)

4r0α2

[
α(1− α)− β(p0 − c) + 2(p0 − c)α2µ1

]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

C.4.4 Distributional Effects

We now derive the approximation of the change in consumer surplus from a ban on dual

pricing separately for the offline and online markets. The change in consumer surplus in the

23For the argument why the integral inside the big-O on the first line is bounded, see footnote 22.
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offline and the online markets, denoted by ∆CSB and ∆CSO, are given in equations (66)

and (67) respectively.

Lemma C.4.7. For s > ŝ, in the neighborhood of λ = 1, we have

∆CSB = −
1

2
π(p1, p0)(1− λ)2| log(1− λ)|+ o((1− λ)2 log(1− λ)) (84)

∆CSO =
π2(p1, p0)

4r0α2

[

α(2− α)− β(p0 − c) + 2(p0 − c)α2

(

µ1 +
D0

π(p1, p0)

)]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)). (85)

Proof. The change in consumer surplus in the offline market given in equation (66) can be

rewritten as ∆CSB = (1− λ)/(2λ)ΨB(λ), where

ΨB(λ) ≡ −2λ

∫ p

p0

D(p)dp+ (1 + λ)

∫ p

p

D(p)dp− (1− λ)π(p, w) log
p− w

p− w

= (1 + λ)

∫ p0

p

D(p)dp+ (1− λ)

∫ p

p0

D(p)dp− (1− λ)π(p, w) log
p− w

p− w
.

We derive an approximation of ΨB(λ) of order (p−w) log(p−w). By Lemma C.1.3, we have

that ∫ p0

p

D(p)dp = D0(p0 − p) + o(p0 − p) = o((p− w) log(p− w)),

implying that the first term of ΨB(λ) is a little-o of (p − w) log(p − w). Since
∫ p

p0
D(p)dp is

bounded in the neighborhood of λ = 1, we have that by Lemma C.4.3, the second term of

ΨB(λ) is also a little-o of (p− w) log(p− w). Applying Lemma C.4.3, we have that

(1− λ)π(p, w) log
p− w

p− w
= −(1− λ)π(p, w) log(p− w) + o((p− w) log(p− w))

= −2D0(p− w) log(p− w) + o((p− w) log(p− w)).

Combining the terms, we find that

ΨB(λ) = 2D0(p− w) log(p− w) + o((p− w) log(p− w)).

Using the approximation of 1− λ from Lemma C.4.3, we obtain

∆CSB =
2D2

0

π(p1, p0)
(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Finally, using the approximation of (p − w)2 log(p − w) from Lemma C.4.3, we obtain the
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approximation of ∆CSB from the statement of the lemma.

Plugging the approximation of ∆CS from Lemma C.4.4 into ∆CS − ∆CSB, we obtain

the approximation of ∆CSO in the statement of the lemma.

C.5 Proofs of Welfare Results when λ is High and s < ŝ

In this appendix, we study the welfare effects of banning dual pricing when λ is close to 1

and s < ŝ, thus proving Proposition 10 for high search costs. The approach is similar to that

in Appendix C.4.

C.5.1 Basic Properties of the Equilibrium for High λ and s < ŝ

We already characterized the limiting equilibrium behavior as λ tends to 1 in Lemma C.4.1.

For λ high enough, the upper bound of the equilibrium CDF of prices, p, solves H(p, w) = s.

It converges to p̂ as λ tends to 1, where p̂ is the unique solution to

∫ p̂

p0

D(p)dp = s.

C.5.2 Taylor Approximations of the Wholesale Price and the Upper and Lower

Bounds of the Support

Define D̂ ≡ D(p̂), D̂′ ≡ D′(p̂), r̂ = π(p̂, p0), r̂
′ ≡ D̂′(p̂− p0) + D̂, and µ̂ ≡ (r̂′D0

D̂
− D̂)/r̂.

Limit of p′(w) as λ tends to 1.

Lemma C.5.1. We have: limλ→1 p
′(w) = D0/D̂.

Proof. By the definition of p (equation (34)),

(1− λ) log
p− w

p− w
= (1− λ) log

[

(1 + λ)
D(p)

D(p)

]

− (1− λ) log(1− λ) −→
λ→1

0,

(1− λ)
p− w

p− w
= (1 + λ)

D(p)

D(p)
−→
λ→1

2
D0

D̂
.

The lemma follows by taking the limit as λ tends to 1 in equation (36).

First-order approximation of p0−w. We define τ = p0−w

p−w
. As in Appendix C.4.2, we use

the manufacturer’s first-order condition (equation (42)) to obtain approximations of p0 −w.
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Let ϕ(p) = r′(p)/D(p)2, and note that the first-order condition can be rewritten as

∫ p

p

ϕ(p)
1

(p− w)3
dp+ µ(p, w)

∫ p

p

ϕ(p)
1

(p− w)2
dp = 0, (86)

where

µ(p, w) =
π′
1(p, w)

∂p

∂w
−D(p)

π(w)
.

Put ϕ′
0 ≡ ϕ′(p0) = r′′0/D

2
0 and

ϕ′′
0 ≡ ϕ′′(p0) =

r′′′0
D2

0

− 4
D′

0r
′′
0

D3
0

= ϕ′
0

(
r′′′0
r′′0

− 4
D′

0

D0

)

.

Lemma C.5.2. For s < ŝ, in the neighborhood of λ = 1, we have

p0 − w = 2(p− w) + o
(
p− w

)
. (87)

Proof. By Lemma C.1.3, there exist bounded functions M(λ) and N(λ) such that the first-

order condition can be rewritten as

0 = ϕ′
0

≡I1
︷ ︸︸ ︷
∫ p

p

p− p0
(p− w)3

dp+µ(p, w)ϕ′
0

≡I2
︷ ︸︸ ︷
∫ p

p

p− p0
(p− w)2

dp

+M(λ)

∫ p

p

(p− p0)
2

(p− w)3
dp

︸ ︷︷ ︸

≡I3

+µ(p, w)N(λ)

∫ p

p

(p− p0)
2

(p− w)2
dp

︸ ︷︷ ︸

≡I4

. (88)

We can explicitly compute I1 and I2:

I1 =

(
∫ p

p

dp

(p− w)2
− (p0 − w)

∫ p

p

dp

(p− w)3

)

=
1

p− w

[

1−
p− w

p− w
−
p0 − w

2

(
1

p− w
−

p− w

(p− w)2

)]

, (89)

I2 =

∫ p

p

dp

p− w
− (p0 − w)

∫ p

p

dp

(p− w)2

=
1

p− w

(

(p− w) log

(
p− w

p− w

)

− (p0 − w)

(

1−
p− w

p− w

))

. (90)

Since µ(p, w) is bounded (by Lemmas C.4.1 and C.5.1), it follows that

(p− w) (I1 + µ(p, w)I2) = 1−
τ

2
+ o(1).
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We can also explicitly compute I3 and I4 as

I3 =

∫ p

p

dp

p− w
− 2

∫ p

p

p0 − w

(p− w)2
dp+

∫ p

p

(p0 − w)2

(p− w)3
dp,

=
1

p− w

(

(p− w) log

(
p− w

p− w

)

−2(p0 − w)

(

1−
p− w

p− w

)

+
(p0 − w)2

2

(
1

p− w
−

p− w

(p− w)2

))

(91)

I4 =

∫ p

p

dp− 2

∫ p

p

p0 − w

p− w
dp+

∫ p

p

(p0 − w)2

(p− w)2
dp,

=
1

p− w

(
(p− w)(p− p)

−2(p0 − w)(p− w) log

(
p− w

p− w

)

+ (p0 − w)2
(

1−
p− w

p− w

))

. (92)

Multiplying by p− w and taking limits, we obtain:

(p− w)I3 =
p0 − w

2
τ + o(1) and (p− w)I4 = o(1).

Plugging the approximations of I1, I2, I3, and I4 into the first-order condition, we obtain:

ϕ′
0 +

[

−
1

2
ϕ′
0 +M(λ)

p0 − w

2

]

τ + o(1) = 0.

As the term inside square brackets tends to −ϕ′
0/2 as λ goes to 1, we have that τ −→

λ→1
2.

The lemma implies in particular that a little-o of p − w is a little-o of p0 − w (and vice

versa).

Approximation of p− p̂. Define π(w) ≡ π(p, w) and π(w) ≡ π(p, w).

Lemma C.5.3. For s < ŝ, in the neighborhood of λ = 1, we have

p− p̂ = −
D0

D̂
(p− w) log(p− w) + o((p− w) log(p− w)) (93)

Proof. We define

ν ≡
p− p̂

(p− w) log(p− w)
.

Plugging λ = (π(w)− π(w))/(π(w) + π(w)) into the indifference condition 0 = H(p, w)− s,
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we obtain:

0 =
1 + λ

2λ

∫ p

p

D(p)dp−
1− λ

2λ
π(w) log

(
p− w

p− w

)

− s

=
π(w)

π(w)− π(w)

(
∫ p

p

D(p)dp− π(w) log

(
p− w

p− w

))

− s.

Dividing the above expression by π(w)/(π(w)− π(w)) and using the definition of p̂ yields:

0 =

∫ p

p

D(p)dp− π(w) log

(
p− w

p− w

)

−

∫ p̂

p0

D(p)dp+
π(w)

π(w)
s

=

∫ p

p̂

D(p)dp+

∫ p0

p

D(p)dp− π(w) log

(
p− w

p− w

)

+
π(w)

π(w)
s. (94)

Applying Lemma C.1.3 to the two integrals, we obtain the existence of bounded functions

M(λ) and N(λ) such that for λ close enough to 1, we have:

D̂(p− p̂) +M(λ)(p− p̂)2 +D0(p0 − p) +N(λ)(p0 − p)2 − π(w) log

(
p− w

p− w

)

+
π(w)

π(w)
s = 0.

Rearranging terms and using Lemma C.5.2, we obtain

(D̂ν+D(p))(p−w) log(p−w)+M(λ)(p− p̂)ν(p−w) log(p−w)+ o((p−w) log(p−w)) = 0,

or, equivalently,

D̂ν +D(p) +M(λ)(p− p̂)ν + o(1) = 0.

It follows that ν converges to −D0/D̂ when λ tends to 1.

Lemma C.5.3 implies that a little-o of p−p̂ is a little-o of (p−w) log(p−w) (and vice versa).

Moreover, combining equation (93) with the fact that p0−w is a little-o of (p−w) log(p−w)

we have

p− w = p− p̂+ p̂− p0 + p0 − w

= p̂− p0 −
D0

D̂
(p− w) log(p− w) + o((p− w) log(p− w)),

p− p = p− w − (p− w)

= p̂− p0 −
D0

D̂
(p− w) log(p− w) + o((p− w) log(p− w)).
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For what follows, we also compute

log(p− w) = log(p̂− p0) +
1

p− p0
(p− w − (p̂− p0)) + o((p− w) log(p− w))

= log(p̂− p0)−
D0

r̂
(p− w) log(p− w) + o((p− w) log(p− w)).

A higher order approximation of p0 − w.

Lemma C.5.4. For s < ŝ, in the neighborhood of λ = 1, we have

p0 − w = 2(p− w)− 2(µ̂+ γ)(p− w)2 log(p− w) + o((p− w)2 log(p− w)). (95)

Proof. By Lemma C.1.3 applied to the two integrals in equation (86), there exist bounded

functions M(λ) and N(λ) such that

ϕ′
0

≡B1
︷ ︸︸ ︷
∫ p

p

(p− p0)

(
µ(p, w)

(p− w)2
+

1

(p− w)3

)

dp+ϕ′
0γ

≡B2
︷ ︸︸ ︷
∫ p

p

(p− p0)
2

(
µ(p, w)

(p− w)2
+

1

(p− w)3

)

dp

+

∫ p

p

(p− p0)
3

(p− w)3
[M(λ)µ(p, w)(p− w) +N(λ)] dp

︸ ︷︷ ︸

≡B3

= 0,

where ϕ′
0 was defined above and

γ ≡
1

2

r′′′0
r′′0

− 2
D′

0

D0

.

We seek the approximations of (p − w)Bi, for every i. We start with (p − w)B1. Note

that (p− w)B1 = µ(p, w)(p− w)I2 + (p− w)I1, where I1 and I2 were defined in the proof of

Lemma C.5.2. Using equations (89) and (90), we obtain:

(p− w)I1 = 1−
τ

2
+ o((p− w) log(p− w)),

(p− w)I2 = −(p− w) log(p− w) + o((p− w) log(p− w)).

It follows that

(p− w)B1 = 1−
τ

2
− µ̂× (p− w) log(p− w) + o((p− w) log(p− w)).

Next, we approximate (p− w)B2 = µ(p, w)(p− w)I4 + (p− w)I3, where I3 and I4 were also
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defined in the proof of Lemma C.5.2. Using equation (91), we obtain:

(p− w)I3 = −(p− w) log(p− w) +
p0 − w

2
τ + o((p− w) log(p− w))

= −(p− w) log(p− w) + o((p− w) log(p− w)),

where the second line follows as (p0 −w)τ is a little-o of (p−w) log(p−w) by Lemma C.5.2.

Moreover, using equation (92), we immediately obtain that (p − w)I4 is a little-o of (p −

w) log(p− w), so that

(p− w)B2 = −(p− w) log(p− w) + o((p− w) log(p− w)).

Let M , N , and m be upper bounds for |M(λ)|, |N(λ)|, and |µ(p, w)| in the neighborhood of

λ = 1. For high enough λ, we have:

B3 ≤

∫ p

p

∣
∣
∣
∣

p− p0
p− w

∣
∣
∣
∣

3
(
mM(p− w) +N

)
dp

≤

∫ p

p

(

max
p′∈[p,p]

∣
∣
∣
∣

p′ − p0
p′ − w

∣
∣
∣
∣

)3
(
mMp1 +N

)
dp

≤
(
mMp1 +N

)
p1

(

max

{
p0 − p

p− w
,
p− p0
p− w

})3

,

where we have used the fact that p − w ≤ p ≤ pm(w) ≤ pm(p0) = p1 to obtain the second

line and p 7→ (p − p0)/(p − w) is strictly increasing to obtain the third line. Since the two

terms inside the maximum are bounded (see Lemma C.5.2), it follows that (p − w)B3 =

o((p− w) log(p− w)).

Combining the above approximations, we obtain:

1−
τ

2
− (µ̂+ γ)(p− w) log(p− w) + o((p− w) log(p− w)) = 0,

which implies that

τ = 2− 2(µ̂+ γ)(p− w) log(p− w) + o((p− w) log(p− w)),

proving the lemma.

A higher order approximation of p− p̂. Define η ≡ log(p̂− p0)− s/r̂. We have:
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Lemma C.5.5. For s < ŝ, in the neighborhood of λ = 1, we have

p− p̂ = −
D0

D̂
(p− w) log(p− w) +

D0η

D̂
(p− w) + o(p− w). (96)

Proof. Applying Lemma C.1.3 to the two integrals in equation (94) above, we obtain the

existence of bounded functions M(λ) and N(λ) such that, for λ high enough, we have:

D̂(p− p̂) +
1

2
D̂′(p− p̂)2 +M(λ)(p− p̂)3 +D0(p0 − p) +

1

2
D′

0(p0 − p)2 +N(λ)(p0 − p)3

− π(w) log

(
p− w

p− w

)

+
π(w)

π(w)
s = 0.

By Lemmas C.5.2 and C.5.3, the terms (p0 − p)2, (p0 − p)3, (p − p̂)2, and (p − p̂)3 are all

little-os of p − w. Moreover, using the definition of ν from the proof of Lemma C.5.3, we

have that

D̂(p− p̂) = D̂ν(p− w) log(p− w).

Finally,

−π(w) log

(
p− w

p− w

)

+
π(w)

π(w)
s = D0(p− w) log(p− w)−D0η(p− w) + o(p− w),

where we have used Lemma C.5.2 and the definition of η from above.

Combining the above approximations, we obtain:

(D0 + D̂ν)(p− w) log(p− w)−D0η(p− w) + o(p− w) = 0.

It follows that

ν = −
D0

D̂
+
D0η

D̂

1

log(p− w)
+ o

(
1

log(p− w)

)

,

which proves the lemma.

Approximation of π(p, w) and λ.

Lemma C.5.6. For s < ŝ, in the neighborhood of λ = 1, we have:

π(w)2 = r̂2 − 2r̂r̂′
D0

D̂
(p− w) log(p− w) + o

(
(p− w)2 log(p− w)

)
,

λ = 1− 2
D0

r̂
(p− w)− 2

r̂′D2
0

r̂2D̂
(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
,

(p− w)2 log(p− w) =
r̂2

4D2
0

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)).
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Proof. Combining Lemmas C.5.4 and C.5.5, we obtain:

p− w = p− p̂+ p̂− p0 + p0 − w

= p̂− p0 −
D0

D̂
(p− w) log(p− w) +

(
D0η

D̂
+ 2

)

(p− w) + o(p− w).

Moreover, by Lemma C.5.5, we have:

D(p) = D̂ + D̂′(p− p̂) +
D̂′′

2
(p− p̂)2 + o((p− p̂)2)

= D̂ −
D̂′D0

D̂
(p− w) log(p− w) +

D̂′D0η

D̂
(p− w) + o(p− w).

It follows that

π(w) = (p− w)D(p)

= r̂ − r̂′
D0

D̂
(p− w) log(p− w) +

(

2D̂ + r̂′
D0η

D̂

)

(p− w) + o(p− w).

Taking the square and discarding higher-order terms, we obtain the first approximation in

the statement of the lemma.

Next, we turn to the approximation of λ. By Lemma C.5.2, we have:

π(w) = (p− w)
(
D0 +D′

0(p− p0)
)
+ o((p− w)2) = D0(p− w) + o((p− w)2 log(p− w)).

Combining this with the above approximation of π(w) yields:

λ =
π(w)− π(w)

π(w) + π(w)

= 1− 2
π(w)

π(w) + π(w)

= 1− 2
D0(p− w) + o((p− w)2 log(p− w))

r̂ − r̂′D0

D̂
(p− w) log(p− w) +

(

2D̂ + r̂′D0η

D̂
+D0

)

(p− w) + o(p− w)

= 1− 2
D0

r̂
(p− w)− 2

r̂′D2
0

r̂2D̂
(p− w)2 log(p− w) + o((p− w)2 log(p− w)),

as stated.

Finally, we approximate (p− w)2 log(p− w) in terms of λ. Rewriting the above approxi-
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mation of λ and using the fact that a little-o of p− w is a little-o of 1− λ, we have

p− w =
r̂

2D0

(1− λ) + o(1− λ),

which implies that

(p− w)2 log(p− w) =

(
r̂

2D0

)2

(1− λ)2 log(p− w) + o((1− λ)2 log(p− w))

=

(
r̂

2D0

)2

(1− λ)2 log
(1− λ)π(w)

(1 + λ)D(p)
+ o

(

(1− λ)2 log
(1− λ)π(w)

(1 + λ)D(p)

)

=
r̂2

4D2
0

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)),

where we have used equation (34) to obtain the second line and the fact that π(w)/((1 +

λ)D(p)) is bounded for λ close to 1 to obtain the third line.

C.5.3 Proof of Proposition 10 for s < ŝ

Consumer surplus approximation

Lemma C.5.7. For s < ŝ, in the neighborhood of λ = 1, we have

∆CS =
π2(p̂, p0)

4r0α2

[
α(2− α)− β(p0 − c) + 2(p0 − c)α2µ̂

]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Proof. In the proof of Proposition C.4.4, we established that ∆CS = Ψ/(4λ), where

Ψ ≡ 4λ

∫ p0

p

D(p)dp

︸ ︷︷ ︸

≡A1

+(1− λ)2
∫ p

p

D(p)dp

︸ ︷︷ ︸

≡A2

− (1− λ)2π(w)2
∫ p

p

dp

(p− w)2D(p)
︸ ︷︷ ︸

≡A3

.

We approximate Ψ up to order of (p−w)2 log(p−w). Applying Lemmas C.1.3 and C.5.4 to

the integral in A1, we obtain:

∫ p0

p

D(p)dp = D0(p0 − p)−
D′

0

2
(p0 − p)2 + o((p0 − p)2)

= D0

(
(p− w)− 2(µ̂+ γ)(p− w)2 log(p− w)

)
+ o((p− w)2 log(p− w)).
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Multiplying this by the approximation of λ in Lemma C.5.6, we have that

A1 = 4D0(p− w)− 8D0(µ̂+ γ)(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Next, we approximate A2. By Lemma C.5.6,

(1− λ)2 = 4
D2

0

r̂2
(p− w)2 + 8

r̂′D3
0

r̂3D̂
(p− w)3 log(p− w) + o((p− w)3 log(p− w)). (97)

This implies that (1 − λ)2 is a little o of (p − w)2 log(p − w). As the integral
∫ p

p
D(p)dp

is bounded when λ is close to 1 (it tends to s when λ tends to 1), we have that A2 is a

(p− w)2 log(p− w).

Finally, we approximate A3. By Lemma C.1.3, the integral in A3 can be approximated

as follows:24

∫ p

p

dp

(p− w)2D(p)
=

1

D0

∫ p

p

dp

(p− w)2
−
D′

0

D2
0

∫ p

p

p− p0
(p− w)2

dp+O

(
∫ p

p

(p− p0)
2

(p− w)2
dp

)

=
1

D0

(
1

p− w
−

1

p− w

)

−
D′

0

D2
0

(

log

(
p− w

p− w

)

+
p0 − w

p− w
−
p0 − w

p− w

)

+O(1)

=
1

D0(p− w)
+
D′

0

D2
0

log(p− w) +O(1),

where we used Lemma C.5.4 to obtain the third line. Multiplying this by the approximation

of (1 − λ)2 from equation (97) and using the fact that a big-o of (p − w)2 is a little-o of

(p−w)2 log(p−w), and a little-o of (p−w)3
(
log(p− w)

)2
is a little-o of (p−w)2 log(p−w),

we obtain

(1− λ)2
∫ p

p

dp

(p− w)2D(p)
=

4
D0

r̂2
(p− w) +

(

4
D′

0

r̂2
+ 8

r̂′D2
0

r̂3D̂

)

(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

24To obtain the second line, we used the fact that
∫ p

p

(p−p0)
2

(p−w)2 dp is bounded when λ is close to 1. To see

this, recall from the proof of Lemma C.5.4 that

∫ p

p

(p− p0)
2

(p− w)2
dp ≤ max

p∈[p,p]

(
p− p0
p− w

)2

(p− p) ≤ max

{(
p0 − p

p− w

)2

,

(
p− p0
p− w

)2
}

pm(w)

By Lemmas C.5.4 and C.4.1, both terms within the second maximum are bounded when λ is close to 1.
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Using the approximation of π2(w) from Lemma C.5.6, it follows that

A3 = 4D0(p− w)−
4D0

p0 − c
(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Combining the terms, we obtain the approximation of Ψ:

Ψ = −4
D0

p0 − c
(2(p0 − c)(µ̂+ γ)− 1) (p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Using the approximation of (p − w)2 log(p − w) from Lemma C.5.6 and using the fact that

∆CS = Ψ/(4λ), we have:

∆CS =
r̂2

4r0
(2(p0 − c)(µ̂+ γ)− 1)(1− λ)2| log(1− λ)|+ o((1− λ2) log(1− λ)).

Plugging γ defined in the proof of Lemma C.5.4, we can rewrite ζ as a function of the

pass-through and its derivative:

2(p0 − c)(γ + µ̂)− 1 = (p0 − c)

(
r′′′0
r′′0

− 2
D′′

0

D′
0

+ 2
D′′

0

D′
0

− 4
D′

0

D0

)

+ 2(p0 − c)µ̂− 1

= −
β(p0 − c)

α2
− 2

2α− 1

α
+ 3 + 2(p0 − c)µ̂

= −
β(p0 − c)

α2
+

2

α
− 1 + 2(p0 − c)µ̂.

Plugging this expression into the approximation of ∆CS, we obtain the approximation in

the statement of the lemma.

Define p̃ ≡ min{p1, p̂} and µ̃ = max{µ1, µ̂}. Then, combining Lemmas C.4.4 and C.5.7,

we have that for any s ̸= ŝ,

∆CS =
π2(p̃, p0)

4r0α2

[
α(2− α)− β(p0 − c) + 2(p0 − c)α2µ̃

]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Producer surplus approximation

Lemma C.5.8. For s < ŝ, in the neighborhood of λ = 1, we have

∆Π = −
π2(p̂, p0)

4r0α
(1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Proof. In the proof of Proposition C.4.5, we established that the change in producer surplus
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defined in equation (46) is given by ∆Π = Φ/(4λ), where

Φ(λ) ≡ 4λ
(
r(p)− r0

)
+ (1− λ)2π(w)2

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
− (1− λ)2

(
r(p)− r(p)

)
.

We approximate Φ up to order of (p− w)2 log(p− w). By Lemma C.5.4, we have:

r(p)− r0 =
r′′0
2
(p− p0)

2 + o
(
(p− p0)

2
)
= o

(
(p− w)2 log(p− w)

)
.

Applying Lemma C.1.3, the approximation of the integral in the second term:25

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
=

r′′0
D2

0

∫ p

p

p− p0
(p− w)2

dp+O

(
∫ p

p

(p− p0)
2

(p− w)2
dp

)

=
r′′0
D2

0

[

log
p− w

p− w
+
p0 − w

p− w
−
p0 − w

p− w

]

+O(1)

= −
r′′0
D2

0

log(p− w) +O(1),

where the last line follows by Lemmas C.4.1 and C.5.4. Using Lemma C.5.6, the second term

can be approximated as follows:

(1− λ)2π(w)2
∫ p

p

r′(p)

D(p)2
dp

(p− w)2
= −4r′′0(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
.

The third term is a little-o of (p− w)2 log(p− w), as r(p)− r(p) is bounded and (1− λ)2 =

o
(
(p− w)2 log(p− w)

)
be Lemma C.5.6.

Combining the terms and using the fact that r′′0 = −D0/(α(p0 − c)), we have that

Φ(λ) = 4
D0

p0 − c

1

α
(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
.

Using the approximation of (p − w)2 log(p − w) with respect to (1 − λ)2 log(1 − λ) from

Lemma C.5.6 establishes the approximation stated in the statement of the lemma.

Aggregate Surplus Approximation.

Lemma C.5.9. For s < ŝ, in the neighborhood of λ = 1, we have

∆AS =
π2(p̂, p0)

4r0α2

[
α(1− α)− β(p0 − c) + 2(p0 − c)α2µ̂

]

25For the argument why the integral inside the big-O on the first line is bounded, see footnote 24.
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× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Proof. The result directly follows from combining Lemmas C.5.7 and C.5.8.

Combining Lemmas C.5.9 and C.5.9, we have that for any s ̸= ŝ,

∆AS =
π2(p̃, p0)

4r0α2

[
α(1− α)− β(p0 − c) + 2(p0 − c)α2µ̃

]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)),

where p̃ = min{p1, p̂} and µ̃ = max{µ1, µ̂}.

C.5.4 Properties of the Function µ̂

Lemma C.5.10. The function µ̂(s) is strictly negative on (0, ŝ). It is strictly decreasing if

the monopoly pass-through function, pm′(w), is non-increasing in w on [c, p0]

Proof. Define the function

µ : p ∈ (p0, p1) 7→
(p− p0)π

′(p, p0)D0

π2(p, p0)
−

1

p− p0
,

and note that µ̂(s) = µ(p̂(s)). As p̂ : (0, ŝ) → (p0, p1) is strictly increasing in s, µ̂ inherits

the monotonicity properties of µ. Observe that µ can be rewritten as

µ(p) =
D0

p− p0

[
1

D(p)
−

1

D0

−

(
1

D(p)

)′

(p− p0)

]

.

As 1/D is strictly convex on [p0, p1], its graph lies above its tangent lines: for every p ∈

(p0, p1),
1

D0

>
1

D(p)
+

(
1

D(p)

)′

(p0 − p).

Therefore, µ is strictly negative.26

26To see why 1/D is strictly convex, note that

D(p)3
(

1

D(p)

)′′

= 2D′(p)2 −D′′(p)D(p) ≥
−D′(p)D(p)

p

(
−pD′(p)

D(p)
− 1

)

> 0,

where the first inequality follows by differentiating the price elasticity of demand, using Marshall’s second
law of demand, and rearranging terms; and the second inequality holds because the price elasticity of demand
strictly exceeds 1 whenever p > p0, again due to Marshall’s second law.
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Next, we turn to the monotonicity of µ. We have:

µ′(p) =
D0

(p− p0)2

[
1

D0

−
1

D(p)
+

(
1

D(p)

)′

(p− p0)−

(
1

D(p)

)′′

(p− p0)
2

]

︸ ︷︷ ︸

≡ϑ(p)

.

Clearly, ϑ(p0) = 0. Let us show that ϑ is strictly decreasing on (p0, p1). We have:

ϑ′(p) = (p− p0)

[

−

(
1

D(p)

)′′

−

(
1

D(p)

)′′′

(p− p0)

]

.

For every p ∈ (p0, p1), let α(p) ≡ pm′ ((pm)−1(p)). By assumption, α(p) is non-increasing

in p. As, for every w ∈ (c, p0),

pm′(w) =
1

2− D′′(pm(w))D(pm(w))
D′(pm(w))2

,

we can express (1/D)′′ as
(

1

D(p)

)′′

=
1

α(p)

D′(p)2

D(p)3
.

Differentiating once more, we obtain

(
1

D(p)

)′′′

= −
α′(p)

α(p)2
D′(p)2

D(p)3
+

1

α(p)

2D′(p)D′′(p)D(p)3 − 3D′(p)3D(p)2

D(p)6

= −
α′(p)

α(p)2
D′(p)2

D(p)3
+

1

α(p)

D′(p)3

D(p)4

(

1−
2

α(p)

)

.

Inserting these expressions into ϑ′(p) yields

ϑ′(p)

p− p0
=

1

α(p)

D′(p)2

D(p)3

[

−1−
D′(p)

D(p)

(

1−
2

α(p)

)

(p− p0) +
α′(p)

α(p)
(p− p0)

]

≤
1

α(p)

D′(p)2

D(p)4

[

−D(p)−D′(p)

(

1−
2

α(p)

)

(p− p0)

]

=
1

α(p)

D′(p)2

D(p)4

[

− (D(p) + (p− p0)D
′(p)) +D′(p)

2

α(p)
(p− p0)

]

,

where the second line follows because α′(p) ≤ 0. As p 7→ (p− p0)D(p) has a strictly positive

derivative on (p0, p1) due to Marshall’s second law of demand, it follows that ϑ′(p) < 0 for

every p ∈ (p0, p1).
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C.5.5 Distributional Effects

The change in consumer surplus in the offline and the online markets, ∆CSB and ∆CSO,

are given in equations (66) and (67) respectively.

Lemma C.5.11. For s < ŝ, in the neighborhood of λ = 1, we have:

∆CSB = −
1

2
π(p̂, p0)(1− λ)2| log(1− λ)|+ o((1− λ)2 log(1− λ)), (98)

∆CSO =
π2(p̂, p0)

4r0α2

[

α(2− α)− β(p0 − c) + 2(p0 − c)α2

(

µ̂+
D0

π(p̂, p0)

)]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)). (99)

Proof. From equation (66), we have that ∆CSB = (1− λ)/(2λ)ΨB(λ), where

ΨB(λ) = (1 + λ)

∫ p0

p

D(p)dp+ (1− λ)

∫ p

p0

D(p)dp− (1− λ)π(p, w) log
p− w

p− w
.

We approximate ΨB up to the order of (p − w) log(p − w). Applying Lemmas C.1.3 and

C.5.2, we have that

∫ p0

p

D(p)dp = D0(p0 − p) + o(p0 − p) = o((p− w) log(p− w)),

implying that the first term of ΨB(λ) is a little-o of (p−w) log(p−w). Note that
∫ p

p0
D(p)dp

is bounded when λ is close enough to 1. Then, using the approximation of 1 − λ from

Lemma C.5.6, we have that the second term of ΨB(λ) is also a little-o of (p−w) log(p−w).

Applying Lemma C.5.6, we obtain the third term of ΨB(λ):

(1− λ)π(p, w) log
p− w

p− w
= −(1− λ)π(p, w) log(p− w) + o((p− w) log(p− w))

= −2D0(p− w) log(p− w) + o((p− w) log(p− w)).

Combining the three terms, we have that

ΨB(λ) = 2D0(p− w) log(p− w) + o((p− w) log(p− w)).

Using the approximation of 1− λ from Lemma C.5.6, we have:

∆CSB =
2D2

0

π(p̂, p0)
(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Finally, using the approximation of (p − w)2 log(p − w) from Lemma C.5.6, we obtain the
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approximation of ∆CSB from the statement of the lemma.

Using the fact that ∆CSO = ∆CS −∆CSB, the approximation of ∆CSO is obtained by

combining the approximation of ∆CS from Lemma C.5.7 and the approximation of ∆CSB

derived above.

C.5.6 On the Optimality of Supplying Both Retailers when λ is High

In the following proposition, we explore the manufacturer’s incentives to supply both retailers

when λ is close to 1.

Lemma C.5.12. The manufacturer strictly prefers supplying both retailers provided λ is

sufficiently close to 1.

Proof. If the manufacturer supplies a single retailer, then it optimally sets w = c and fully

extracts the retailer’s profit, earning

πone = r0 −
1− λ

2
r0.

If it supplies both retailers, then its expected profit is πtwo = r0 +∆Π, where ∆Π is given in

equation (46). Applying Lemmas C.4.5 and C.5.8, the difference in profits is:

πtwo − πone =
1− λ

2
r0

[

1−
π(p̃, p0)

2

2αr20
(1− λ)| log(1− λ)|

]

+ o((1− λ)2 log(1− λ)),

where p̃ ≡ min{p1, p̂}. As λ tends to one, the term inside square brackets tends to 1, implying

that the manufacturer strictly prefers supplying both retailers.
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